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Abstract 

Recognition of an item from a list is typically 
modeled by assuming that the representations 
of the items are activated in parallel and 
combined or summed into a single measure 
(sometimes termed 'familiarity' or 'degree-of-
match') on which a recognition decision is 
based.  The present research asks whether extra 
items (length), or extra repetitions (strength), 
increase this activation measure.  Activation was 
assessed through examining hits and false 
alarms as the length or strength of word 
categories were varied.  The use of a categorized 
list insured that response criteria were not 
changed across the length and strength 
manipulations.  The results demon-strated that:  
1) The activation does not change with an 
increase in the strength of presented items other 
than the test item; and 2) The activation is 
increased by an increase in the number of 
presented items in a category.  The results 
provide important constraints for models of 
memory, because most models predict or 
assume either that activation grows with both 
length and strength, or grows with neither.  In 
fact, the only extant model that can predict both 
the length and strength findings is the 
differentiation version of the SAM model 
(Shiffrin, Ratcliff, & Clark, 1990). 
________________ 
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Introduction 
 
The explosion of interest in memory models 

associated with the advent of neural net and 
connectionist frameworks has called into focus 
certain fundamental assumptions about 
memory representation and retrieval.  Many 
models assume that the result of probing 
memory is the activation of all of memory.  
Especially for recognition tests, it is typically 
assumed that the recognition decision ('old' or 
'new') is based on a single number, representing 
total activation (or 'familiarity', or 'degree of 
match').  In the present research we ask whether 
activation is increased by extra items added to 
memory (i.e. by list-length) and whether 
activation is increased by stronger or repeated 
items added to memory (i.e. by list-strength).  
The answers provide critical constraints for 
modelers of memory. 

To help in understanding the experiments 
and the models, we review briefly the way in 
which performance in recognition tasks is 
measured.  The subject studies a list of items 
and is then given items to judge as 'old' or 'new'.  
Responses of 'old' to items from the list (targets) 
are correct and termed 'hits'; responses of 'old' to 
new items (distractors) are incorrect and termed 
'false alarms'.  These data are usually related to 
theory in the following way:  The subject is 
assumed to base the recognition judgment upon 
a measure representing 'familiarity', 'summed 
activation', 'degree of match', or some similar 



statistic.  It is assumed that targets have a 
distribution of familiarity with a somewhat 
higher mean than the distribution for 
distractors, as shown in    Figure 1.  A given trial 
results in a sample from either the target or 
distractor distribution:  An old response is given 
if the sampled value is higher than a subject-
chosen criterion.  Thus, the hit probability is the 
area under the target curve above the criterion, 
and the false alarm probability is the area under 
the distractor curve above that criterion.  

If an experimental manipulation is carried 
out on a list (such as increasing its length or 
strength), it is of course possible that the subject 
will adjust the criterion to a new position, 
changing the hit rates and false alarm rates.  For 
this reason, in most studies the concern is not 
with the absolute levels of hits and false alarms 
but rather a comparison between them that can 
be used to measure sensitivity of performance.  
The measure d' is theoretically independent of 
the placement of the criterion and is defined as 
the difference between the means of the target 
and distractor distributions, divided by the 
(common) standard deviation: 


 dt  - 

 = d'  

This measure is simply calculated from the 
standard normal (z) transforms of the hit and 
false alarm rates. 

In the present research, however, we are 
interested in the placements of the distributions 
and their movements, information not available 
from d'.  We therefore developed an exper-
imental procedure in which it is reasonable to 
expect the criterion to remain fixed over the 
conditions of interest.  Under these circum-
stances, various models can be discriminated by 
the values of the hit and false alarm rates. 

 
 

Experiments 
 
We embedded categories of words in a single 

long list for study.  Words from a given category 
(but never the prototype) were spaced randomly 
throughout the list, disguising the category 
structure.  The length and strength of different 
categories were varied.  Following presentation 
of the study list, items were randomly chosen 
and tested.  The distractors that were tested 

included non-studied exemplars from each 
category, non-studied category prototypes and 
items from none of the categories.  A studied 
item (target) from each category was also tested. 

The experiment consisted of eight conditions:  
4 length manipulations and 4 strength 
manipulations.  The L-1, L-2, L-6, and L-10 
conditions were comprised of 1, 2, 6, or 10 
words chosen from a given category.  Each of 
these words was presented once.  The 'Pure' 
strength conditions consisted of 6 words, each of 
which was presented the same number of times; 
for different categories the number of repetitions 
were 1, 2, and 3.  Unlike these Pure conditions, 
the 'Mixed' strength condition consisted of 6 
words of which 2 were presented once, 2 were 
presented twice and 2 were presented three 
times.  The selected words from all 8 conditions 
were randomly placed into a study list of 335 
presentations, and presented for 3 seconds each.  
The test list consisted of 170 words for which the 
subject gave 'old' or 'new' judgments. 

There were two separate types of word 
categories used in the experiment:  Semantic 
and orthographic-phonemic.  For example, the 
semantic category of prototype 'butterfly' 
contained the words 'moth', 'nectar', 'fragile', 
'cocoon', 'monarch', 'flutter', 'metamorphosis', 
'dragonfly', 'flitting', 'caterpillar', and 'camou-
flage'.  In general, the semantic categories 
consisted of long words with relatively low 
natural language frequency (both prototypes 
and exemplars); the exemplars were all related 
to the prototype but not so closely that the 
presentation of an exemplar would likely call to 
mind the prototype.  An example of an 
orthographic-phonemic category is that formed 
for the prototype 'sip'; it contained the words 
'tip', 'lip', 'hip', 'sir', 'sin', 'sit', 'dip', 'rip', 'six', 
'big', and 'fib'.  In general, an orthographic-
phonemic category contained short words with 
relatively high natural language frequency; the 
exemplars all shared vowels with the prototype, 
and one but not both of the starting and ending 
consonant clusters. 

 
 
 

Predictions 
 
Some patterns predicted for our study by 

typical models are illustrated in Figure 1.  It is 



important to note that the predictions are 
somewhat different from those for studies in 
which variables are manipulated one list at a 
time.  In list studies, manipulations are often 
predicted to alter the variance of the 
distributions of activations.  However, for 
essentially all models in which activations of all 
items participate in the resultant distributions, 
the mixing of so many categories of different 
types means that the variances of the 
distributions are not predicted to differ 
noticeably for different conditions. 
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Figure 1.  Probability distributions for activation due to 
targets and distractors.  The panels represent predictions for 
experimental manipulations for various models (see text). 

 
Given this, panel B illustrates the situation 

when a target is tested of increased strength 
relative to panel A, but where all items other 
than the target have unchanged strength-- the 
target distribution increases; false alarms are 
unchanged, hits rise, and d' rises (virtually all 
models).  The category-length predictions vary 
with the model.  For models in which non-target 
items contribute activations with greater than 
zero mean (e.g. the SAM model of Gillund and 
Shiffrin, 1984; the Matrix model of Pike, 1984), 
panel C illustrates the situation-- both 
distributions increase; hits and false alarms 
increase, and d' does not change.  However, for 
models in which non-target items contribute 
zero mean activations (e.g. the TODAM model 
of Murdock, 1982; the CHARM model of 
Metcalfe, 1985; various feed-forward 
connectionist networks), the distributions do not 
move.  This situation is given by panel A-- hits, 
false alarms and d' do not change. 

For virtually all models, the category-
strength predictions are at least qualitatively the 
same as the category-length predictions just 
discussed.  That is, repetitions of an item should 
affect other items more or less as would an 
equivalent number of new items.  However, 
Shiffrin, Ratcliff, and Clark (1990) discussed two 
alternative models.  Their differentiation model 
utilized a tradeoff (discussed below) that causes 
summed activation to remain constant; this 
situation is represented by panel A.  The 
category-length predictions are still those 
illustrated in panel C.  The other model 
discussed by Shiffrin et al (1990) posited that 
both distributions increase with category 
strength, so panel C would illustrate these 
models' predictions for both length and 
strength.  (For a list experiment this last model 
would predict a variance increase for length but 
not strength, but in the present category study, 
the variance differences "wash out"). 

Finally, we can consider the case in which all 
list items are increased in strength (in effect 
confounding the effect of target strength and the 
effect of strength of other category items).  All 
models predict the same patterns as they do for 
strength of other items in the category (which for 
most models are also the predictions for 
category length), with the exception that the 
target distribution should increase, increasing 
the hit rates. 

 
 

Results and Discussion 
 
The results for performance (d') were as 

follows:  Increasing strength led to a sizable 
increase in performance, increasing length led to 
a slight decrease in performance, and there was 
no appreciable difference in performance 
between the mixed and pure conditions for the 
1, 2, and 3, times presented items.  The latter 
result indicates that category strength had little 
effect, since performance for an item of fixed 
strength (repetitions) is being compared when 
the other category members are varied in 
strength (repetitions).  This finding is consistent 
with many earlier list studies (e.g. Ratcliff, 
Clark, & Shiffrin, 1990; Murnane & Shiffrin, 
1991).  As contrasted with the earlier list studies, 
however, all these d' data are consistent with the 
predictions of almost all models. 



These performance results were expected, 
but the goal of the present research involved the 
separate hit and false alarm results.  We assume 
that our procedure led the subjects to use a 
single criterion, regardless of the category, or 
category type, being tested.  The pattern of 
results below is certainly consistent with this 
position. 

Figure 2 shows the effect of increasing the 
strengths of all items in a category (solid lines).  
As predicted by all models, hit rates for targets 
rise; t(888) = 4.871,  p < .001.  Most importantly, 
the distractor false alarms clearly do not rise 
with strength of category, whereas the 
prototype false alarms show an upward trend 
that does not reach statistical significance. 
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Figure 2.  Probability of responding old for targets, 
prototypes, and distractors, as a function of the number of 
repetitions within a category.  The solid lines are observed 
data and the dotted lines are predicted data.   
 

The fact that the distractor false alarm rates 
did not rise with strength of category is 
consistent with the differentiation version of 
SAM, as well as those models that predict no 
shifts in the distributions for both category 
strength and category length (e.g. TODAM, 
CHARM, and some feed-forward connectionist 
nets). 

The overall increased false alarm rate for 
prototypes would be predicted by almost all 
models on the basis of similarity; the prototypes 
should, on the average, be more similar to the 
words presented within the category than is the 

average distractor from that category.  If the 
slight increase in the prototypes with strength is 
real, it would require explanation.  It may be 
that subjects occasionally think of the prototype 
during the study list (especially when the words 
are repeated many times), and this occasionally 
leads the prototype to behave as a target at test. 

In summary, the key result is the flat 
distractor function as strength increases. 

Figure 3 shows the effect of extra items in the 
category.  The probability of responding 'old' 
rises with category length for targets, t(1184) = 
2.54, p < .05, for prototypes, t(1184) = 6.840, p < 
.001, and for distractors, t(1184) = 3.357, p < .001.  
Of the models consistent with the strength 
results, only the differentiation version of SAM 
predicts this pattern (since the other models 
predict similar patterns for length and strength).  
Thus the critical finding here is the contrast with 
the strength results.  This contrast is reinforced 
by the category-strength effect that we turn to 
next. 
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Figure 3.  Probability of responding old for targets, 
prototypes, and distractors for categories of differing length.  
The dotted line represent predictions and the solid lines 
observed results. 

 
Figure 4 depicts the effect of the strength of 

other items in a category by comparing the 
mixed and pure conditions for tested items of a 
given strength.  None of these mixed/pure 
differences were significant, and all were small.  
Once again, the key point is the contrast with 
the length results.  Although some models 



predict no effect of category strength, they also 
predict no effect of category length.  Of the 
models we have considered and know of, only 
the differentiation version of the SAM model 
predicts this pattern. 

 
 

Category Type

p(
O

ld
)

0.00

0.25

0.50

0.75

1.00

1

3

1

3

Thrice presented targets

Once presented targets

Distractor

Prototype

PureMixed
 

Figure 4.  Probability of responding old for three times 
presented targets, once presented targets, prototypes, and 
distractors across the Mixed and Pure conditions.  For both 
the prototypes and distractors there are two Pure points, 
representing tests from categories of differing strengths.  

 
 

Modeling 
 
 To model the data, a simplified version of 

SAM was employed (see also Murnane and 
Shiffrin, 1991).  In the SAM model introduced by 
Shiffrin et al (1990), it is assumed that all 
repetitions of an item are stored in the same 
trace; whenever an item is repeated, the new 
trace is appended to the pre-existing trace.  At 
recognition, familiarity is determined by 
summing activations over all the traces.  
Activation of a given trace by two cues, a test 
item and a context cue, is posited to be the 
product of the separate activation tendencies for 
these two cues.  An increase in repetitions for an 
item surely increases the activation tendency for 
the context cue.  However, according to the 
differentiation hypothesis, an increase in the 
strength of a trace will cause it to mismatch 
more strongly the (different) test item.  Thus, the 
activation tendency of the item cue will 
decrease.  The model assumes that there is an 

approximate tradeoff of these two opposing 
factors.  Hence activation of trace i will not 
change with the repetitions of item i, when item 
j and the context cue are used as memory 
probes.  Of course, when item i is activating 
trace i (tests of a target), then differentiation 
does not operate, and activation rises with 
strength.  Finally, it is assumed that the 
standard deviation of activation of an image is 
proportional to the mean activation.  The 
activations of all images are summed and 
compared to the criterion in order to make a 
decision. 

The effect of similarity is dealt with in the 
following manner:  Items outside the category of 
the probe have one level of activation, and items 
within the category have another.  Items within 
the category when the probe is a proto-type 
have a third level of activation.   

For computational ease, parameter estim-
ation was performed through the fitting of 
predicted z-scores to the z-transforms of the hit 
and false alarm rates.  The following is an 
example of the predicted formula for a target 
test from a Pure-2 category: 
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where Cr is the criterion, No is the number of 

out-of-category traces, So is the out-of-category 
strength, Ni is the number of different 
in-category traces, Si is the in-category strength, 
S2 is the strength of a twice repeated item that 
matches the probe, and  is a proportionality 
constant.  The same type of formula applies to 
all cases; one must simply use, where needed, 
the remaining parameters:  S1 (once presented 
target strength), S3 (three times presented target 
strength), and Sp (the in-category prototype 
strength).  It is clear from the figures that the 
resultant predictions capture the main features 
of the data.  

 
 

Conclusion 
 
Under the assumption, partially supported 

by the data, that the subjects in our study utilize 
the same recognition criterion for all test items, a 
number of results concerning activation can be 



drawn:  1) Increasing the number of presen-
tations of an item causes greater activation when 
that item is tested; 2) Increasing the number of 
presentations of some items in a category does 
not cause more activation when some other item 
in that category is tested (either target or 
distractor); and 3) Additional items presented in 
a category cause more activation when any item 
in that category is tested (either target or 
distractor).  These results are consistent with just 
one of the models we know of-- the 
differentiation version of the SAM model 
proposed by Shiffrin et al (1990). 

It is interesting to note that the differentiation 
version of SAM was proposed to explain the 
lack of an effect upon d' of strengthening other 
items in a list for recognition.  This lack of list-
strength effect for recognition result was used to 
argue against models that are sufficiently 
composite in nature to produce storage 
interference.  The present results further 
constrain the class of models that might be 
proposed for recognition memory:  When an 
item is tested, increasing the number of 
presentations of some other item does not 
increase activation (i.e. familiarity, degree of 
match), even though additional items do cause 
such an increase. 
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