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Abstract
Perception does not happen instantaneously. Instead, perceptual information is accu-
mulated gradually (i.e., a rise in the perceptual response) to achieve accurate identifica-
tion despite perceptual noise. This temporal integration of information predicts that
previous presentations may become erroneously blended with subsequent presenta-
tions. An optimal decision process can reduce this source confusion by discounting per-
ceptual evidence that may have come from previous presentations. Furthermore,
habituation (i.e., a fall in the perceptual response) may be the brain's trick for approx-
imating this optimal decision. Habituation reduces blending and enhances change
detection: because previous perceptions are habituated, anything new stands out.
However, this solution comes with a cost, making it difficult to detect immediate rep-
etitions. Over the last 6 years, my coauthors and I have tested this theory, examining its
application to a range of different behavioral tasks that involve immediate repetitions.
Here, I review these findings, demonstrating the broad implications of this theory.
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1. INTRODUCTION: THE TRADE-OFF BETWEEN
INTEGRATION AND SEPARATION
Our eyes receive a wealth of constantly changing perceptual informa-

tion due to constant changes in the environment, eye/bodymovements, and

various forms of perceptual noise. To average out these fluctuations, percep-

tual processes integrate information on a relatively slow timescale (Ratcliff &

Rouder, 1998; Smith, 1998). As predicted from slow temporal integration,

perceptual responses linger for hundreds of milliseconds in the absence of a

mask (Sperling, 1960). Because there is no external signal that resets the inte-

gration process when a new object appears, the ongoing temporal integra-

tion of perceptual information may erroneously bridge across different

objects presented in sequence and cause perceptual blending and source

confusion. Thus, there is a need to reduce source confusion by temporally

separating the perceptual response to each object.

The trade-off between temporal integration and separation is made clear

with a simple example from low-level vision. The top row of Fig. 5.1 shows
+ + + +

50 or 2000 ms 20 ms 50 ms

+ + + +

50 or 2000 ms 500 ms 20 ms

Figure 5.1 Example of temporal integration versus separation with two sequences (top
vs. bottom) of four displays, with display durations shown below each display. Top row:
Depending on the duration of the first triangle, the percept is either a six-pointed star or
two different triangles in sequence. Bottom row: Following a short-duration first trian-
gle, it is possible to detect the faint repetition before the final mask. However, the rep-
etition becomes impossible to detect following a long-duration first triangle.
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a sequence of four displays, from left to right, and associated display dura-

tions. This sequence is easily created in PowerPoint using the animation

pane (alternatively, a PowerPoint file of this sequence is available on my

webpage). With these durations and a typical LCD monitor, there are

two different percepts depending on the duration of the first display (50

or 2000 ms). If the first triangle is only viewed for 50 ms, the perceptual

response to that triangle is still active when the second triangle appears,

resulting in the percept of a six-pointed “Star of David.” This situation dem-

onstrates blending due to the integration of information across subsequent

objects.

Next, consider the sequence of the top row when the first triangle

appears for 2000 ms rather than 50 ms. In this case, the percept accurately

reflects the sequence, with the upward-pointing triangle appearing after

the downward-pointing triangle. This occurs because the visual response

to the first triangle becomes habituated, shortening the amount of visible

persistence (Duysens, Orban, Cremieux, & Maes, 1985), such that the first

triangle is no longer apparent when the second triangle appears. Termed the

‘inverse-duration effect,’ experiments have demonstrated that increases in

duration beyond 200 ms reduce rather than increase visible persistence

and reduce the ability to integrate pervious displays with subsequent displays

(Coltheart, 1980; Hogben & Di Lollo, 1974).

The bottom row of Fig. 5.1 begins with exactly the same short- or

long-duration downward-pointing triangle, but this is followed by a longer-

duration interstimulus interval to place the second triangle outside the window

of temporal integration regardless of the duration of the first triangle. Unlike

the top row, the second triangle is identical to the first triangle, and the

question of interest is whether the faint repetition can be detected. To make

this repetition detection difficult, the second triangle is shown at lower con-

trast for a shorter duration and it is followed by a pattern mask. When the

first triangle appears for 50 ms, it is just possible to detect that a repetition has

occurred. However, when the first triangle appears for 2000 ms, it is all but

impossible to detect the repetition, provided that your eyes remain fixated

on the plus sign throughout the sequence. This repetition blindness is an

example of a visual aftereffect (Gibson, 1933)—the neurons that prefer

the black lines of the triangle have been habituated and fail to respond suf-

ficiently to the repetition. To convince yourself that there is a repetition,

instead, focus on a vertex of the long-duration first triangle and then move

your eyes to the plus sign when the first triangle disappears. If youmove your
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eyes, it is possible to detect the repetition because this particular example of

habituation occurs in retinotopic representations.

These two examples highlight the important predictions of the theory

that guided the work reviewed in the succeeding text: (1) Up until a point,

increasing stimulus duration increases perceptual responses, causing

increased blending between one stimulus and the next (i.e., temporal inte-

gration); (2) beyond that point, additional increases in the duration of the

first stimulus reduce this blending (i.e., temporal separation); and (3)

although temporal separation reduces erroneous blending, it comes with a

cost, making it difficult to detect immediate repetitions. As explained next,

these predictions arise from a model that assumes neural habituation at all

stages of perceptual processing. Given the generality of this mechanism, sim-

ilar results are predicted for any task that involves rapid serial visual

presentations (RSVPs).

2. MARR'S LEVELS OF EXPLANATION: FROM BAYES
TO HABITUATION
Marr (1982) famously proposed that phenomena can be explained at

one of the three levels, depending on whether the explanation describes the

core computations, the processing algorithms, or the neural hardware that

implements a solution. These levels of explanation offer different advantages

and disadvantages, and it may prove fruitful to provide different Marr-level

explanations of the same phenomenon. The current theory proposes that

recently viewed features should be discounted to reduce source confusion

between previously viewed objects and subsequently viewed objects. As

explained next, this theory has been formalized at the computational level

through the mathematics of Bayesian decision making and at the implemen-

tation level through the dynamics of neural habituation.

2.1. Responding Optimally with Unknown Sources of Evidence
The theory is termed ‘ROUSE,’ which stands for responding optimally with

unknown sources of evidence. The Bayesian ROUSE model assumes a fea-

ture activation process and then uses Bayes rule to determine howmuch evi-

dence should be assigned to each feature in the percept (Huber, 2006;

Huber, Shiffrin, Lyle, & Ruys, 2001). In brief, the left-hand panel of

Fig. 5.2 shows the Bayesian ROUSE model. In the generative activation

process, a pattern of activated features is determined by the different sources

included in the experiment, such as the previous input (the prime) or the
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Figure 5.2 Illustrations of two different ROUSE models that explain the discounting of
features that belong to previously viewed objects. Left-hand panel: The Bayesian ROUSE
model assumes that previous and current inputs are separate sources of feature activa-
tion, and Bayes rule is used to determine how much evidence a feature provides
towards the currently viewed object considering that a previously viewed object might
have been the cause of feature activation. The neural ROUSE model assumes that fea-
tures exist in a cascaded hierarchy, and neural habituation through synaptic depression
dictates that nodes (i.e., features) gradually lose their ability to excite other nodes as
synaptic resources deplete owing to recent activation. The neural ROUSE model was
designed to capture perceptual dynamics rather than distributed patterns of represen-
tation, and simulations with this model use only the nodes shown in the figure. The
visual level of the model captures visual representations at different locations in the
visual field (see Fig. 5.4 for display sequence), with the four nodes in the center
corresponding to any word or mask shown in the center, whereas the target node
on the left (in blue) and the foil node on the right (in red) correspond to the presentation
of the target and foil on the left versus right side of the screen during the test display.
Adapted from Huber and O'Reilly (2003), with permission.
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current input (the target). The extent to which these sources activate their

associated features is determined by the parameters alpha and beta. When

attempting to identify the currently viewed object, the observer must infer

which sources gave rise to these activated features. If the object that gave rise

to the previous input has been identified, then any features that are consistent

with that previous object are ‘explained away’ (i.e., assigned a discounted

level of evidence than they would have been if they were not part of the

previous object). This reduces source confusion between subsequently pres-

ented objects provided that the objects do not share any features (e.g., each

triangle is perceived separately, rather than as a blended percept). However,
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if the objects share features, there is a cost when identifying the second

object, with the magnitude of this cost determined by the system’s estimate

of source confusion (the estimated value of alpha used in Bayesian

inference).

The Bayesian ROUSE explains the core computational need for feature

discounting and it is a remarkably successful model, providing counterintu-

itive a priori predictions, which were subsequently confirmed (Huber,

Shiffrin, Lyle, & Quach, 2002; Huber, Shiffrin, Quach, & Lyle, 2002;

Weidemann, Huber, & Shiffrin, 2005, 2008). However, this model is static

in nature (although see Huber, 2008a), and different stimulus durations (e.g.,

duration of the previous object) required different free parameters for the

probability of source confusion (alpha) and discounting (estimate of alpha).

Furthermore, it was not clear how the brain might implement feature dis-

counting. To address these limitations, a different ROUSE model was for-

malized with neural dynamics.
2.2. Habituation Through Synaptic Depression
The neural habituation ROUSE model (Huber & O’Reilly, 2003) assumes

that features exist in a cascaded hierarchy, similar to McClelland and

Rumelhart’s (1981) interactive-activation model of word superiority effects.

As applied to reading (see the right-hand panel of Fig. 5.2), the first level

captures the dynamic activation of simple visual features, such as the line seg-

ments that are identified in primary visual cortex (Hubel & Wiesel, 1959).

These representations in turn activate orthographic representations. Finally,

orthographic representations activate lexical-semantic representations. Crit-

ically, lexical-semantic activation also provides feedback onto orthographic

representations, which gives the model attractor dynamics. Each node in the

model describes the average neural response of many neurons that have sim-

ilar input and output connections. The activation equation specifies a rate-

coded (rather than spiking) value at every millisecond after presentation of

visual input (O’Reilly & Munakata, 2000).

Because the activation equation in the neural ROUSE model updates

activation gradually, the model naturally integrates information over time

and will blend previous and current inputs (i.e., source confusion). How-

ever, unlike most neural networks, this model also includes neural habitu-

ation for all of its nodes. The specific form of habituation used in the neural

ROUSE model is termed ‘synaptic depression’ (Abbott, Varela, Sen, &
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Figure 5.3 Illustration of the neural ROUSE model applied to immediate repetition
priming in a masked priming paradigm with forced-choice testing. The left-hand panel
shows the accuracy results of Huber's (2008b) experiment 1, which used the display
sequence shown in Fig. 5.4. The middle panel demonstrates that the neural ROUSE
model can adequately explain these results. The right-hand panel shows the behavior
of the level 1 visual nodes of the model with best-fitting parameters, demonstrating the
manner in which the output (postsynaptic depolarization) of the simulated neurons
habituates owing to the loss of synaptic resources as a function of stimulus duration.
Adapted from Huber, Tian, Curran, O'Reilly, and Woroch (2008), with permission.

197The Rise and Fall of the Recent Past

Author's personal copy
Nelson, 1997; Grossberg, 1969; Nelson, Varela, Sen, & Abbott, 1997;

Tsodyks & Markram, 1997), which is the dynamic loss and recovery of syn-

aptic resources (e.g., neurotransmitter) that enable a neuron to effectively

communicate with other neurons. As seen in the right-hand panel of

Fig. 5.3, the connection between any pair of nodes is captured by presyn-

aptic activity (i.e., membrane potential), the currently available synaptic

resources, and the output to the receiving node (i.e., postsynaptic depolar-

ization), which is the product of the first two variables. Roughly speaking,

this can be thought of as the average spike rate, the effect of each spike, and

the product of these, which describes synaptic output. When an object is

shown to the model, the synaptic resources of the representations associ-

ated with that object gradually become depleted over the span of a few

hundred milliseconds. However, the timing of this habituation process will

depend on the specific properties of the visual sequence, the strength of the

learned representation, and attention. Applications of the model also assume

that higher levels integrate and deplete at a slower rate; for instance, words

are more likely to change from one moment to the next as compared to the

semantic topic (Landauer & Dumais, 1997).
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3. RESULTS: WORDS, FACES, PLACES, AND SEMANTICS

Both the Bayesian and the neural ROUSE models assume that previ-
ously viewed features are discounted, which reduces source confusion

between a previously viewed object and a subsequent object. Both models

also produce repetition deficits as a result of feature discounting. However,

the neural ROUSE model additionally describes the dynamic processes that

give rise to these effects—because synaptic resources are depleted for a

period of time after the prolonged presentation of an object, the perceptual

response to an immediate repetition is less than it otherwise might have

been. As applied to the example found in Fig. 5.1, this makes it difficult

to detect the low-contrast masked repetition when the first triangle is pres-

ented for 2000 ms. Because the neural ROUSE model assumes that habit-

uation occurs at all levels of processing, the notion of perceptual aftereffects

is expanded to ‘cognitive aftereffects.’ Thus, aftereffects are predicted to exist

not only for low-level perceptual properties like visual line segments but also

for abstract high-level properties like the meaning of a word. Because tem-

poral integration and the need to reduce source confusion exist for all forms

of feature detection, similar effects are predicted for a wide variety of stimuli

and tasks that involve immediate repetitions. We have tested these predic-

tions in separate studies as reviewed later.
3.1. Word Repetitions
Many different tasks involve RSVP sequences although a large proportion of

these studies use words. Among RSVP word studies, many simplify the sit-

uation by using a single ‘prime’ word that is followed by a ‘target’ word.

A variety of tasks are used depending on target duration: experiments that

use clearly visible targets examine reaction times (RTs) to name the target

or verify that the target is a properly spelled word (i.e., lexical decision),

whereas experiments that use short-duration masked targets (i.e., threshold

identification) examine accuracy. In addition to these tasks that examine

reading performance, other tasks present sequences of two words and test

recognition memory or change detection. In this section, I summarize

the results of four different studies that examined different tasks and different

measures in tasks that contained immediate word repetitions. Each of these

studies tested key predictions of the neural ROUSE model.
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3.1.1 Threshold Identification
When primes are brief, nearly any type of similarity between prime and tar-

get will enhance performance as compared to control conditions that present

an unrelated prime (Lukatela, Eaton, Lee, Carello, & Turvey, 2002;

Lukatela, Frost, & Turvey, 1998; McKoon & Ratcliff, 1992; McNamara,

2005; Meyer & Schvaneveldt, 1971; Meyer, Schvaneveldt, & Ruddy,

1974; Neely, 1991; Pecher & Raaijmakers, 1999; Perea & Gotor, 1997;

Peressotti & Grainger, 1999). That this also occurs with repetition priming

(Evett & Humphreys, 1981) supports the hypothesis that briefly presented

words become blended with subsequent words, producing a facilitation

when the two words are identical. However, there are two limitations to

this result. First, the task in these experiments does not explicitly test

whether observers are capable of differentiating between prime and target

(i.e., it is not clear whether the facilitation reflects a blend of prime and

target vs. enhanced perception for the target). Second, longer-duration

primes are problematic with these tasks because observers will adopt a strat-

egy of preparing a response based on the prime’s identity (Hutchison, 2007).

In the study reported next, both of these limitations were addressed by using

a forced-choice variant of threshold identification. More specifically, by

having an equal number of trials that prime the incorrect choice (foil-

primed) versus the correct choice (target-primed), there is no effective strat-

egy based on the prime (see Fig. 5.4). Observers were explicitly told this and

trial-by-trial accuracy feedback reinforced this assertion. The foil-primed

condition can be viewed as a test of whether observers can differentiate

between prime and target because the choice in this condition is between

the prime and the target (i.e., which choice word appeared second).

Figure 5.4 shows two of the four conditions examined in experiment 1 of

Huber (2008b). The prime was shown as a doubled-up version so that there

was some visual difference between the prime and a repeated target (alter-

natively, this can be achieved by switching from lower to upper case or by

inserting a brief blank screen between prime and target). Five different prime

durations were used and conditions occurred in random order during the

experiment. The target flash duration was set separately for each observer

to place accuracy at 75%. The duration of the mask that followed the target

was set so the time between the onset of the target and the onset of the test

display was 500 ms.

The left-hand panel of Fig. 5.3 shows the choice accuracy results from

this experiment. As predicted, short prime durations revealed a pattern
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Huber (2008b), with permission.
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indicative of integration, or blending, resulting in increased accuracy in the

target-primed condition but equivalently decreased accuracy in the foil-

primed condition (a baseline neither-primed condition was approximately

halfway between these conditions). In particular, the foil-primed condition

suggests that observers were confused as to which word was first versus sec-

ond and frequently mistook the prime for the target, resulting in significantly

below chance performance in the case of a 50 ms prime. However, this pat-

tern of costs and benefits completely reversed when the prime duration was

400 ms or longer. As predicted, long prime durations revealed a pattern

indicative of separation, or discounting, resulting in repetition deficits in

the target-primed condition but increased accuracy in the foil-primed-

condition. The finding of better performance in the foil-primed condition

than the baseline condition suggests that observers knew that the target

was something other than the prime (i.e., enhanced change detection)—

in this condition, observers did not necessarily have to identify the target

but merely appreciate that target was something different than the prime,

causing them to avoid choosing the foil that repeated the prime.

The middle panel of Fig. 5.3 demonstrates that the neural ROUSE

model can adequately explain these results. The right-hand panel shows

the behavior of the first-level visual nodes of the model with best-fitting

parameters. The rise and fall of output from these nodes mirror the accuracy
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pattern for the foil-primed condition. In other words, the prime duration

that produced the strongest visual response to the prime at the time when

the target appeared was also the prime duration that produced the greatest

amount of source confusion between prime and target. The model also pro-

vided an accurate explanation of the baseline neither-primed condition as

well as a condition that presented a mask of different durations instead of

a prime word (not shown).
3.1.2 Episodic Recognition
The immediate repetition priming paradigm in threshold identification has

many similarities to a classic memory illusion of Jacoby and Whitehouse

(1989). Similar to the paradigm used by Huber (2008b), their paradigm

compared a brief subliminal prime to an easily seen long-duration prime,

and in both cases, the prime word was followed by a test word that might

or might not be identical to the prime. However, the task in their experi-

ments was not the identification of the test word but rather episodic recog-

nition (i.e., did the test word appear on a previous study list). Nevertheless,

the results were strikingly similar to the threshold identification results—for

both paradigms, brief primes caused a bias to endorse a primed test word,

whereas long-duration primes caused a bias against endorsing a primed test

word. For subliminal prime words in the episodic recognition paradigm,

enhanced perceptual fluency is thought to cause the observed bias

(Jacoby & Whitehouse, 1989; Joordens & Merikle, 1992; Lindsay &

Kelley, 1996; Lloyd, Westerman, & Miller, 2003; Rajaram, 1993;

Whittlesea & Jacoby, 1990). More specifically, when the test word is a rep-

etition of the prime word, it is easier to perceive the test word and this

enhanced perceptual fluency increases the sense of familiarity for the word.

The cause of the reverse bias with easily seen primes is thought to reflect an

overcorrection for this misattribution of perceptual fluency (Jacoby &

Whitehouse, 1989; Whittlesea & Williams, 2000). However, it is not clear

whether there is any perceptual fluency following a long-duration prime,

whereas my threshold identification results suggest that there might even

be a perceptual disfluency. As explained next, my coauthors and

I undertook a series of experiments designed to determine whether the neg-

ative priming effect with easily seen primes in episodic recognition is due to

a process designed to correct for the effect of perceptual fluency or whether

it might instead reflect perceptual disfluency (Huber, Clark, Curran, &

Winkielman, 2008).
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Rather than use subliminal primes, we used 100 ms short-duration

primes, which pilot work found to be above the identification threshold.

To discourage any strategic responding, all experiments used forced-choice

testing and all experiments explicitly informed participants that there was no

effective strategy based on the prime, with trial-by-trial accuracy feedback

reinforcing this assertion. Despite these changes, the same Jacoby/

Whitehousememory illusionwas observed,with short prime durations caus-

ing a bias to remember the primed-choice word, whereas long prime dura-

tions caused a bias against remembering the primed-choice word. However,

just because participants could be aware of the 100 ms primes does not mean

that they were aware of the primes. To encourage attention to the primes,

some experiments used a secondary task in relation to the primes (can this

word be a verb?),with it unknown at the start of the display sequencewhether

the primewould be a brief flash or whether it would remain on the screen for

this verb task prior to the recognition test. Furthermore, one experiment

tested awareness of the brief primes, finding that forced-choice accuracy

for prime identification was 100% for 100 ms primes even though it was

not known at the start of the trial which task (prime identification or target

identification) would be performed. Finally, two of the experiments broke

the results down into familiarity-based recognition versus explicit recall of

the study episode (Mandler, 1980; Tulving, 1985). In these experiments, par-

ticipants studied word pairs but recognition was for single items. After each

recognition choice, participants were asked if they could recall the word that

had been studied with the target word, regardless of whether they did or did

not recognize the target word. As expected, for recognition trials that were

followed by correct recall, there were no priming effects.

The last experiment of this study examined a range of prime durations

and the results are shown in Fig. 5.5. The longest prime duration of 2430

was not a fixed duration. Instead, this duration is the average time that par-

ticipants took to decide that the prime was a verb. The neural network

behavior shown in Fig. 5.5 comes from the same neural ROUSE habitua-

tion model as described earlier, with the same parameters used in Fig. 5.3.

However, because this was an episodic recognition task, it was assumed that

the lexical-semantic level of the model provides input to a familiarity

response. For the model behavior shown in Fig. 5.5, there was one free

parameter reflecting the strength of the episodic connection between the

lexical-semantic level and the familiarity level for a previously studied word

and a second free parameter reflecting the magnitude of noise in the decision
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process—with these two free parameters, the model provided an accurate

description of the eight conditions.

3.1.3 Change Detection
The studies reviewed so far examined the disadvantages of neural habitua-

tion, highlighting situations in which perception or memory was impaired

for a repeated word after prolonged exposure to the first instance of that

word. However, ROUSE assumes that habituation exists to reduce source

confusion, making it easier to separate previous objects from subsequent

objects. By habituating to the previous object, new attributes of the visual

environment are made salient—habituation enhances novelty detection.

To test this prediction, my collaborators and I again used the visual presen-

tation of words (Davelaar, Tian, Weidemann, & Huber, 2011), but unlike

the previous studies, the task was change detection rather word identifica-

tion or episodic recognition.

Studies of visual change detection often use displays with many objects

presented simultaneously, identifying situations in which observers fail to

detect change if they are not focusing their attention on the correct location
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or changed attribute (Rensink, 2000, 2002; Simons, 1996; Simons & Levin,

1997). In contrast, our study measured the efficiency of change detection

rather than the limitations that attention places on change detection. There-

fore, we used a simple stripped-down procedure with a single fixated cue

word followed by a single fixated target word that was either identical or

different from the cue word (cue words were always in lower case and target

words were always upper case). This paradigm is most similar to the study of

Johnston and Hale (1984), which is considered an early example of repeti-

tion blindness (Kanwisher, 1987; Kanwisher, Kim, & Wickens, 1996). The

only difference between our paradigm and that of Johnston and Hale was

cue duration—in their study, the cue duration was at the identification

threshold and performance was measured with signal detection theory

(Macmillan & Creelman, 1991), whereas the cue words in our study were

easily seen, with the efficiency of change detection measured with RT.

Our experiments used both 200 and 1000 ms cue due durations although

in both cases, the cues were easily seen and observers were nearly perfect in

their responses. The results did not differ as a function of cue duration and

the reported results collapsed across cue duration. In experiment 1, we col-

lected magnetoencephalography (MEG) measurements to test whether the

pattern of neural responses was similar when the target and cue differed as

compared to the pattern of neural response when target and cue were the

same word. These patterns were not significantly different, implicating

the same neural processes for both conditions. Furthermore, neural response

magnitude was greater for different trials as compared to same trials,

supporting the hypothesis that the underlying variable used to determine

the appropriate behavioral response was change detection rather than rep-

etition detection.

Given that observers appeared to detect changes rather than repetitions,

key predictions of the neural ROUSE model were tested in experiment 2.

The left-hand column of Fig. 5.6 shows the summed lexical-semantic level

response of the neural ROUSEmodel for three different priming conditions

when the target and cue differed. First, consider the unprimed condition in

which both cue and target are seen for the first time in the experiment.

Because the two words are different, the summed activity across the whole

of the lexical-semantic level receives a second boost when the target appears

(in this example simulation, the target word was presented 400 ms after the

cue word). We hypothesized that this boost of new lexical-semantic activa-

tion is the measure used to determine the behavioral response—because

there is new boost of lexical-semantic activation, the observer quickly
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Figure 5.6 Model predictions and reaction time results for experiment 2 of Davelaar et al. (2011). The left-hand column shows predictions of
the neural ROUSEmodel. The blue line shows the summed lexical-semantic activation, which has a second peak to the target word, presented
400 ms after the cue word in this example simulation. Because the target word is different than the cue, there is a second boost in the blue
line, and the magnitude of this change (Novelty¼Target�Cue) is the measure used to rapidly detect changes. The green dashed line in the
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and the green dashed line showing target word activation. The target-primed condition stipulates that the target of the current trial be the
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dition but impairs change detection in the target-primed condition. These predictions were confirmed with the reaction time (RT) to correctly
detect change in both a go/no-go task (i.e., respond only when the target differed from the cue) and a same/different task. Themiddle column
shows RT when cue and target were the same on the previous trial, whereas the right-hand column shows RT when cue and target were
different on the previous trial. Adapted from Davelaar et al. (2011), with permission.
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detects that the target word is different than the cue word. Formally, this

measure is the magnitude of lexical-semantic activation increase when the

target appears, as shown in Fig. 5.6 by the equation: Novelty¼Target�Cue

(N¼T�C).

In the neural ROUSE model, the rate at which synaptic resources are

recovered is substantially slower than the rate at which they become

depleted. Thus, even with several seconds between repetitions, there is a

repetition deficit. This allowed us to examine whether habituation enhances

change detection. The target-primed and cue-primed predictions shown in

the second and third graphs are for simulations in which the cue or target of

the current trial was a repetition of the target word from the preceding trial,

with a 2.5 s break between the end of the previous trial and the start of

the current trial. Because of lingering habituation for the primed word,

the lexical-semantic response to the primed word is substantially less as com-

pared to the unprimed situation, and this was predicted to affect performance

in different ways for each condition. More specifically, in the cue-primed

condition, there is less of a response to the cue word and thus a larger boost

in summed activation when the target is presented, resulting in enhanced

change detection and faster RTs. In contract, in the target-primed condi-

tion, this is less of a response to the target word and thus a smaller boost

in summer activation when the target is presented, resulting in change detec-

tion difficulty and slower RTs. These predictions were confirmed regardless

of the same/different status of the previous trial (middle column vs. right-

hand column) and regardless of whether the task involved responding only

on different trials (go/no go; top row) or same/different judgments on every

trial (bottom row).

3.1.4 Neural Habituation
A key advantage of using a neural model is that it can address both behavioral

and neural data. However, the studies reviewed earlier did not rigorously

test neural predictions of the neural ROUSE model. The model does not

make predictions for specific cortical locations but it does make predictions

for the time course of neural activation for different representations. These

predictions are best tested with event-related voltage potential (ERPs) or

magnetic field strength (MEG). Therefore, my coauthors and I replicated

experiment 1 of Huber (2008b) while recording ERPs and event-related

MEG (Huber, Tian, et al., 2008).

The left-hand panel of Fig. 5.7 shows the a priori predictions of the neu-

ral ROUSE model using the parameters that best described the behavioral
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behavioral data of Huber's (2008b) experiment 1. The yellow lines show predicted acti-
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temporal integration) as compared to the target-primed condition (labeled ‘repeated’).
Assuming that the lexical-semantic level underlies the N170, the activation levels of
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‘predicted effect’ of repetition priming. These predictions were confirmed, as seen in
the graphs of the right-hand panel. The model was applied to all electrodes and each
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O'Reilly, and Woroch (2008), with permission.
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data of Huber’s (2008b) experiment 1. These predictions were made in

terms of electrodes placed over the posterior scalp. In the priming paradigm,

there are no retinotopic repetitions (i.e., even though words and letters

repeat, they do not appear in exactly the same place) and so it is only the

orthographic and lexical-semantic levels of the model that vary as a function

of repetitions. There is a large literature examining late ERP responses to

visually presented words, which are thought to reflect higher-level processes

such as sentence integration. However, the neural ROUSE model was
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designed to capture early perceptual responses. Studies examining these early

ERP waveforms in response to visually presented words find that priming

and other manipulations affect an early positive potential around 100

(P100) and a negative potential around 170 (N170), and we hypothesized

that the orthographic level is the principle source of the P100, whereas

the lexical-semantic level is the principle source of the N170

(Holcomb & Grainger, 2006; Petit, Midgley, Holcomb, & Grainger,

2006; Sereno, Brewer, & O’Donnell, 2003; Sereno, Rayner, & Posner,

1998). The left-hand panel of Fig. 5.7 shows the simulated activation of

these two levels for the target-primed condition, which is relabeled

‘repeated,’ and the foil-primed condition, which is relabeled ‘novel,’ with

this relabeling designed to reflect the relationship of the prime to the target

flash (rather than the prime to the choice words). As seen in the figure, the

peak responses of the model mimic the timing of the P100 and N170 if

40 ms is added to the x-axis, reflecting the delay between the time when

light first hits the eyes and the time when primary visual cortex responds

(Inui & Kakigi, 2006). Because the same posterior electrodes measure both

P100s and N170s, we subtracted the activity of the lexical-semantic level

(the N170) from the activity of the orthographic level (the P100), giving rise

to the black dashed/dotted ‘predicted effect’ lines at the bottom of

each graph.

To avoid differences between short- and long-duration priming that

might result from conscious awareness of the prime in only one condition,

the short prime duration in this study was 150 ms (i.e., long enough to be

easily seen) and the long prime duration was 2000 ms. Otherwise, experi-

ment 1 of this study was identical to experiment 1 of Huber (2008b). For

this design, the prime and target ERP waveforms were overlapping in

the short prime condition but not in the long prime condition, which com-

plicates the analyses. Experiment 2 addressed this concern by presenting two

different prime words on every trial, with the first occurring 2000 ms before

the target flash, whereas the second appeared 150 ms before the target flash.

Thus, all conditions were visually identical at the moment when the target

word first appeared. Nonetheless, as seen in the a priori predictions of

Fig. 5.7, the predictions for both experiments were similar—during the time

period of the P100, the model predicted smaller voltage potential for repe-

titions, and during the time period of the N170, the model predicted larger

voltage potential for receptions. These predictions reflect temporal integra-

tion between prime and target—in the novel condition, two different words

are presented in sequence and so there is more total activation owing to the
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simultaneous activation of two different words. Habituation serves to

modulate this integration effect as seen by comparing the short- versus

long-prime-duration predictions. More specifically, there is a substantial

habitation effect for the orthographic level (the difference between the

repeated and the novel conditions is diminished for the orthographic level),

resulting in much less of an integration effect for the source of the P100. In

contrast, the lexical-semantic level is relatively unaffected by the prime dura-

tion manipulation because the time constant of the lexical-semantic level is

smaller (i.e., lexical-semantic habituation is slower to accrue). In summary,

increasing prime duration was predicted to shift the repetition effect predic-

tions upward during both the P100 and the N170 time periods because the

orthographic representation contributes to the ERP response during both

time periods.

The repetition effect data from these experiments were modeled in

full, providing an explanation of all electrodes during these two time periods,

separately for each observer, by assuming that these two levels of the

model, with dynamics fixed a priori, specify the magnitude of activation

for equivalent source dipoles (Berg & Scherg, 1994; Stok, 1986). This is a

radically different solution to the ‘inverse problem’ of electrophysiology

because it is based on a particular assumed model for the number of active

brain regions and the dynamic time course of those regions. In applying the

model, the only free parameters were a temporal offset to capture the delay

between retinal input and early cortical responses and the cortical locations

and orientations of the dipoles, with different values of these parameters for

each observer. As a result of these factors, the model behavior, averaged

across observers as shown in the right-hand panel of Fig. 5.7, was changed

slightly from the a priori predictions. Although the model was applied to all

electrodes, the right-hand panel of Fig. 5.7 is an average of the data that

treated the electrodes as if they were posterior electrodes. More specifically,

if an electrode revealed a positive rather than a negative repetition effect dur-

ing the P100 time window, the mathematical sign of that electrode was

flipped before averaging. This was done for both the real data and the model

data, separately for each observer, with the results shown in the graphs of the

right-hand panel of Fig. 5.7. In line with the a priori predictions, both exper-

iments produced negative repetition effects during the P100 and positive

repetition effects during the N170, and these effects shifted in the positive

direction for the long-prime-duration condition.

This modeling revealed substantial individual differences in terms of the

placement of the best-fitting equivalent dipoles for the orthographic and
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lexical-semantic levels. To assess these differences, and to test the generality

of the findings, experiment 3 used the same design as experiment 2 while

recording event-related MEG. Indeed, the same pattern of results was

obtained in terms of repetition priming and the effect of increasing prime

duration. Furthermore, the topographic patterns for the M100 and M170

were substantially different for each individual, as predicted from the

ERP modeling results.

3.2. Face, Place, and Semantic Repetitions
The studies mentioned earlier used immediate repetition of words

in situations where the letters of one word might be confused with then next

word. However, the ROUSE theory not only is a theory of word priming

but also concerns temporal integration and separation more generally. Thus,

a crucial test of the theory is whether similar effects exist for other types of

stimuli and representations.

3.2.1 Face Repetitions
Similar to expertise with reading, most people have a high degree of exper-

tise when it comes to processing the identity and attributes of faces. How-

ever, there is evidence that face expertise is fundamentally different in

important ways (Kanwisher, McDermott, & Chun, 1997). In the neural

ROUSE model of reading, expertise is implemented through connection

strength in a perceptual hierarchy and through attractor dynamics via feed-

back connections. To test the generality of this model, Rieth and Huber

(2010) examined whether the same model could be applied to threshold face

identification and the immediate repetitions of faces. Of particular interest,

we contrasted upright and inverted faces considering that face inversion

effects are one way that faces differ from other visual objects (Yin, 1969).

The paradigm used by Rieth and Huber (2010) was identical to exper-

iment 1 of Huber (2008b), except for the stimuli—the sequence of displays

was as seen in Fig. 5.4 except that faces were shown instead of words. The

faces were previously unknown to the observers and each face only appeared

on one trial (i.e., there was no opportunity to learn these particular faces).

Besides replicating the transition from positive to negative priming, the ini-

tial experiments found an intriguing individual difference effect that did not

occur with words. Using a post hoc median split of observers based on the

target flash duration needed to place performance at the 75% threshold, we

found that the ‘fast’ observers (i.e., individuals who needed shorter target

durations for threshold performance) also had a faster/stronger transition
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from positive to negative priming as a function of increasing prime duration.

Additional experiments replicated this effect and ruled out uninteresting

alternative explanations. Experiment 4 compared performance for upright

and inverted faces—on each trial, either all of the face images were upright

or all of the face images were inverted. Figure 5.8 shows the results broken

down by face inversion and by the duration needed for threshold per-

formance (fast group vs. slow group). As seen in the figure, the fast group

produced a different priming pattern for upright versus inverted faces,

whereas the priming pattern for the slow group was essentially the same

regardless of face inversion, except for a main effect (i.e., worse performance

with inverted faces). Furthermore, the only situation that produced neg-

ative priming (i.e., target-primed< foil-primed) was the fast group with

upright faces.
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We did not initiate this study expecting to find individual differences.

However, these differences are naturally explained by the neural ROUSE

model. We hypothesized that expertise with upright faces stems from stron-

ger feedforward connections between the second level (i.e., the identifica-

tion of face parts) and the third level (i.e., the identification of specific

configurations of face parts that uniquely specify a particular face) of

processing. Besides modulating the speed of face identification, this connec-

tion strength affects habituation because synaptic depression is caused by

recent activation. Thus, a stronger connection between the second and third

level of the model causes faster identification of the face (i.e., a shorter target

duration is needed for threshold performance) as well as earlier/stronger

habituation (i.e., more rapid depletion of the synaptic resources for the con-

nections between the second and third level). In applying the model to these

data, the only parameter allowed to vary between the upright and the

inverted face conditions was this connection strength. The fits of the model

were remarkably accurate with the values: (1) fast group upright, 2.05; (2)

fast group inverted, 0.73; (3) slow group upright, 0.83; and (4) slow group

inverted, 0.50. In other words, upright faces were processed 2.81 times as

strongly as inverted faces for the group of participants that was better at

threshold face identification, whereas this ratio was only 1.66 for the group

that was worse at threshold face identification.

3.2.2 Place Repetitions
The studies mentioned earlier described the rise and fall activation dynamic

of visual features. In the case of upright versus inverted faces, this dynamic

differed in the predicted manner, with well-learned representations (i.e.,

upright faces) activating and habituating more quickly. However, upright

and inverted faces may differ in ways besides amount of experience.

A fully controlled test of this prediction requires a training study in which

observers receive more experience with some features than others. Never-

theless, because it is difficult to identify the psychologically relevant features,

it is challenging to design such a study.

Instead of using visual features, the location where an object is placed can

be considered a feature (Cohen, Servanschreiber, &Mcclelland, 1992). Fur-

thermore, sequences of locations need to be temporally separated to avoid

positional source confusion. Indeed, a similar rise and fall dynamic is observed

in spatial cuing studies—a short stimulus onset asynchrony (SOA) between

a spatial cue and a subsequent target (e.g., 100 ms) facilitates detection of

the targets at the cued location (Posner, Snyder, & Davidson, 1980), whereas
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a slightly longer SOA (e.g., 350 ms) makes it difficult to detect targets

(Posner & Cohen, 1984). The latter effect is termed ‘inhibition of return’

(IOR), although the mechanism that produces IOR is debated and likely dif-

fers with different kinds of IOR effects (Berlucchi, 2006; Taylor & Klein,

2000). Following the suggestion of Dukewich (2009), it may be that IOR

effects reflect habituation, although the specific nature of that habituation will

depend on task/stimulus details.

Some training studies of spatial cuing have manipulated how frequently

targets appear in different locations (Farrell, Ludwig, Ellis, & Gilchrist, 2010)

and others have manipulated the frequency of different SOAs (Gabay &

Henik, 2008). However, the combination of these factors has not been

examined, and it is this combination that tests key predictions of the neural

ROUSE model as applied to spatial features. Consider a simple speeded tar-

get detection task with two possible left/right locations where cues (e.g., a

brightened square) and targets (e.g., an asterisk) can appear. One form of

training presents targets at the cued location (i.e., a valid cue) with a short

SOA or at an uncued location (i.e., an invalid cue) with a longer SOA. An

optimal adaptation to this training would involve a rapid shift of attention to

the cued location followed by a shift to the uncued location. Such behavior

corresponds to the typical cuing pattern, with facilitation following short

SOAs but deficits following long SOAs (because a valid cue with a long

SOA is in contradiction to training). Next, consider training with targets

appearing opposite the cue with a short SOA or at the cued location with

a long SOA. This training contradicts the standard pattern of results and

optimal adaptation would involve a rapid shift of attention away from the

cue followed by a shift to the cue. However, if exogenous cues automatically

activate spatial attention features, an initial shift away from the cue would be

difficult to learn.

To address this issue, we performed a spatial cuing training study and the

results of our first experiment are shown in Fig. 5.9 (Rieth & Huber, 2013).

In the figure, the red circles highlight the combinations of SOA and cuing

that observers experienced during the first phase of the single-session exper-

iment. Remarkably, observers remained completely unaware of these

manipulations, presumably because targets appeared equally on either side

(i.e., observers did not explicitly detect these cue/SOA contingencies). After

training, observers experienced all 10 conditions shown in the figure in

equal proportions. Throughout each trial, observers kept their eyes fixated

on a central cross, and target-absent catch trials were used to make sure that

observers only responded to the appearance of targets.



Figure 5.9 Spatial cuing as a function of stimulus onset asynchrony (SOA) between the
onset of a square (the cue) and a subsequent asterisk (the target) as reported in exper-
iment 1 of Rieth and Huber (2013). Each graph shows average reaction time to detect
the target for separate groups of observers that were first trained with the conditions
highlighted by the red circles. After training, all 10 of the conditions were tested. Valid
cues appeared at the target location and invalid cues appeared at the left/right opposite
location. Adapted from Rieth and Huber (2013), with permission.
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As seen in Fig. 5.9, target detection RTs were strongly affected by train-

ing for SOAs greater than 200 ms. Indeed, the typical IOR effect was fully

reversed for the group shown in the left-hand graph, suggesting that atten-

tion to the cued location was maintained for these individuals. In contrast,

there was no reliable effect of training for SOAs that were less than 200 ms.

This suggests that exogenous cues automatically grab spatial attention (i.e.,

automatic spatial feature attention). However, the cue always appeared for

150 ms (as indicated by the box in the lower left-hand corner of each graph),

and it is possible that the increased visual contrast for short SOA targets made

these contingencies difficult to learn. Experiment 2 replicated these effects

and ruled out this explanation by using shorter duration cues that always dis-

appeared before the target. Another explanation of these results supposes

that attention is lazy or cannot shift quickly enough to fully adapt to a con-

tingency that requires a rapid shift to/from the cue followed by a shift to the

opposite side—instead, perhaps, the system only learns the second contin-

gency because 100 ms after the cue, there is certainty as to where the target

will appear if it has not already appeared. Experiment 3 addressed this alter-

native by using only a single short SOA contingency. However, to avoid

having the target always appear on the cued or uncued side, probabilistic
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training was used (e.g., 87.5% of targets appeared at the cued side 100 ms

after the cue, whereas the remaining targets appeared at the uncued location

after 100 ms). Finding some support for this alternative explanation, there

were modest training effects for the short SOAs in this experiment, although

cuing facilitation was merely reduced, rather than eliminated or reversed.

These experiments demonstrated that the rise and fall of spatial attention

can flexibly adapt to the spatial–temporal regularities. However, these

experiments also found important limitations for this adaptation. These

results and limitations are consistent with these hypotheses that (1) an exog-

enous cue automatically activates spatial attention features at the cued loca-

tion; (2) spatial attention features habituate, resulting in a shift of attention

away from the cue and also difficulty reactivating the same spatial attention

feature when a subsequent target appears at the cued location; and (3) with

training, the system can learn to maintain spatial attention feature activation.

A full implementation of this model awaits additional experiments to deter-

mine whether this maintenance of attention is a top-down influence (i.e.,

maintained activation of spatial attention features despite habituation) or

whether it reflects an adaptation of the habituation mechanism (e.g., an

adjustment to the dynamics of synaptic depression).

3.2.3 Semantic Repetitions
To test whether habituation is a general mechanism for temporal separation,

Xing Tian and I performed a series of experiments examining temporal sep-

aration of semantic features (Tian &Huber, 2010). These experiments relate

to the classic phenomenon of ‘semantic satiation,’ in which a word repeated

20–30 times appears to lose its meaning (Severance & Washburn, 1907).

However, rather than asking observers to speak the word aloud, we used

the paradigm of Smith and Klein (1990) that visually presents a category

name repeatedly followed by a match/mismatch judgment to visually pres-

ented category member. In our version of the task, observers experienced a

series of 20 cue–target trials of which 10 trials presented a repeated category

name, whereas the other 10 trials presented a new category name (see the

left-hand panel of Fig. 5.10 for an example sequence of trials). After one such

block, a new repeated category namewas chosen for the next block of 20 tri-

als. On each trial, the category name appeared for 1 s followed by a category

member just below the cue. The 10 trials of the repeated (R) and novel (N)

conditions were further divided into 5 match (S for same category) and 5

mismatch (D for different categories) trials, and the order of the 20 trials

was random. There are two advantages of this design. First, because each
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Figure 5.10 The effect of repeating a word, or the meaning of a word, within a block of
20 trials (Tian & Huber, 2010). The left-hand panel shows an example block of 20 trials for
the design of each experiment. Every trial presented a category cue for 1 s as indicated
by the upper word in each cell, followed by a target word as indicated by the lower word
in each cell. 10 of the 20 trials repeated (R) the same category for the cue and the other
10 trials presented new categories (N), with the order of trials randomly determined.
Observers gave speeded ‘match’ (S for same) or ‘mismatch’ (D for different) judgments.
As seen in the right-hand panel, only the design of experiment 1 produced a satiation
effect, revealing increasingly slower responses for the repeated category as the number
of repetitions increased. Adapted from Tian and Huber (2010), with permission.
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block provides data for both the repeated and novel conditions, the results

are not confounded with a general sense of fatigue that might arise from

repeating the same word. Second, because all trials provide data, the time

course of semantic satiation is fully mapped out.

Semantic repetitions provide a unique opportunity for testing whether

the connections between representations habituate (i.e., synaptic depression)

by examining what happens for words that have similar meaning but

different orthography. For semantic satiation to a visually repeated word,

we predicted that the loss of meaning occurs because the orthography (or

phonology) of the repeated word can no longer activate the associated

meaning. If this account is correct, that meaning should be accessible by

presenting a similar-meaning word that has a different orthography. In

terms of this experimental design, we predicted that the repeated category

name (e.g., vegetable) can no longer activate the meaning of the vegetable

category but a novel vegetable member (e.g., broccoli) would activate the

meaning of vegetable by using a nondepleted connection.
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Based on the change detection study reported in Section 3.1.3, we

assumed that ‘mismatch’ judgments are made when the observer detects a

sufficiently large boost in activated meaning. For instance, after seeing the

category cue sport, the presentation of football does not result in much

new meaning beyond the meaning implied by sport and so the observer

responds ‘match.’ However, a repeated category name will fail to activate

its associated meaning and so a matching category member will activate a

great deal of new meaning despite matching the category. In other words,

after reading vegetable ten times, the observer will no longer think about veg-

etables and so a presentation of broccoli will appear to mismatch the category.

As a result, the observer must slow down to avoid errors. In summary, the

observer is led astray by experiencing greater contrast (i.e., enhanced change

detection) between the repeated category name and a matching category

member.

The right-hand panel of Fig. 5.10 shows our results across three exper-

iments, using the designs shown in the left-hand panel of the figure. The

results were analyzed in terms of the number of prior repetitions of the

repeated or novel condition within each block of 20 trials (match status

did not interact with this factor). There are up to nine prior repetitions

and these are broken into thirds in the graphs. Median RT for the repeated

condition was subtracted from median RT for the novel condition for each

observer and the average of these median RT differences is plotted.

As seen in the experiment 1 graph, the first third revealed better perfor-

mance for the repeated category, the middle third found no difference, and

the last third revealed worse performance for the repeated category—over a

time period of tens of seconds, there was a repetition benefit (a rise) followed

by a repetition deficit (a fall). However, this semantic satiation effect is also

consistent with explanations that assume satiation of the orthographic/pho-

nemic representation (Esposito & Pelton, 1971) or satiation of the semantic

representation (Jakobovits & Lambert, 1962). Experiments 2 and 3 ruled out

these alternatives, supporting the claim that these results reflect satiation of

the connection between orthography and semantics.

Experiment 2 used a new category member on every trial such that the

inferred category repeated but no specific orthography repeated. Unlike

experiment 1, this experiment produced facilitation for the repeated cate-

gory, regardless of the number of prior repetitions. Experiment 3 used

repeated words but changed the task to simple word change detection

(i.e., directly analogous to the cue-primed conditions of Section 3.1.3). Sim-

ilar to experiment 2, this experiment produced facilitation for the repeated
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condition, regardless of the number of prior repetitions. Thus, the semantic

satiation effect requires repetitions of the same word in a task that requires

access to the meaning of that word.

3.2.4 Neural Connectivity with Semantic Repetitions
The study in Section 3.2.3 used behavioral data to test whether the connec-

tions between representations habituate. However, a direct test of synaptic

depression requires neural data rather than behavioral data. Therefore, we

replicated experiment 1 of Tian and Huber (2010) while measuring neural

responses with MEG (Tian & Huber, 2013). In this study, we used two dif-

ferent analyses, providing converging evidence that repeated presentation of

the same category cue word causes a progressive weakening of neural con-

nection strength. The first analysis used the nROUSE model as applied to

change detection, similar to Section 3.1.3, to make predictions regarding

different waveforms as a function of the number of prior repetitions. The

second analysis directly tested connectivity change by using dynamic causal

modeling (DCM; Friston, Harrison, & Penny, 2003), which is a technique

that describes patterns of activity and connectivity using all of the raw data.

The first step for both analyses is the identification of brain regions and

associated waveforms thought to be most relevant to this paradigm. For the

visual presentation of words, there are three distinct waveforms (Bentin,

Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999; Tarkiainen,

Helenius, Hansen, Cornelissen, & Salmelin, 1999), which have been labeled

the M100, M170, and M400 in the literature. As in the study reported in

Section 3.1.4, we assumed that the M100 reflects a combination of primary

visual cortex (the first level of the nROUSE model) and orthographic rep-

resentations, such as found in the visual word form area (VWFA; Dehaene,

Le Clec, Poline, Le Bihan, & Cohen, 2002). However, unlike the study in

Section 3.1.4, the semantic satiation paradigm presents other words between

each repetition, which supplants any lingering activation, and we did not

expect (and did not observe) any M100 repetition effects. Although there

is no carryover of orthographic activation, synaptic resources do not fully

recover between repetitions, increasing depletion with additional repeti-

tions. Critically, this effect is not evident in the activation of the ortho-

graphic representations. Instead, this depletion is apparent in the output

of the orthographic representations, which affect activity in the lexical-

semantic representations, such as found in the left middle temporal gyrus

(MTG) thought to underlie the M170 (Lau, Phillips, & Poeppel, 2008).
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Figure 5.11 A replication of Tian and Huber's (2010) experiment 1 while collecting MEG
responses (Tian & Huber, 2013). Predictions (left-hand panel) and results (right-hand
panel) are shown for the M100 and M400 waveforms. The predicted graphs show
the lexical-semantic level of the nROUSE model and the yellow and red double-headed
arrows are predictions for the M170 and M400, respectively. As predicted, the M400 (a
measure of semantic mismatch) in response to a matching target increased as function
of prior repetitions, corresponding to worse performance. The bottom two graphs of the
right-hand panel show the modulation parameter between the left visual word form
area (a brain region related to orthography) and the left inferior frontal gyrus (a brain
region related to semantics). The modulation parameter was determined with dynamic
causal modeling and describes the connectivity between brain regions, revealing a pro-
gressive reduction between orthographic and semantic processing with increasing rep-
etitions. Adapted from Tian and Huber (2013), with permission.
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The predicted effect of increasing synaptic depression with repetitions is

shown in the left-hand panel of Fig. 5.11, which graphs the lexical-semantic

response (i.e., the M170, as shown by the double-headed yellow arrows in

the figure) over the course of each trial. The M170 was predicted to pro-

gressively decrease across the 10 repetitions of the category name within a

block. As in the study of Section 3.1.3, we assumed that match/mismatch

judgments were based on the amount of new semantic activity in response

to the category member. This difference, shown by the double-headed red
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arrows in the left-hand panel of Fig. 5.11, needs to be calculated somewhere,

and we hypothesized that this arises from an interplay between the left MTG

and context-dependent integration in the left inferior frontal gyrus (IFG;

Brown & Hagoort, 1993; Kutas & Federmeier, 2000). The left IFG is

thought to underlie the M400 (the analog of the ERPN400) and is sensitive

to unexpected lexical-semantic events (Halgren et al., 2002; Kutas &

Hillyard, 1980). Thus, in response to a matching category member that fol-

lows the repeated category name, we predicted that that the M400 would

increase as a function of increasing prior repetitions. As discussed earlier,

we hypothesized that people slow down with increasing repetitions because

habituation gives the false impression that a matching category member is a

mismatch—thus, the M400, which reflects semantic mismatch, should

increase.

The top four graphs of the right-hand panel of Fig. 5.11 confirmed these

predictions. The MEG waveforms were analyzed in the same way as the

behavioral data by breaking the number of prior repetitions into thirds

and by taking the difference between the repeated and the novel category

conditions. As seen in the figure, the M170 and the M400 to the repeated

category name (cue) progressively decreased as a function of the number of

prior repetitions. Also as predicted, the M400 to the matching category

member (match target) increased as a function of the number of prior rep-

etitions, corresponding to faster RT responses in the repetition condition for

the first third but slower RT responses in the repetition condition for the

final third.

These predictions were generated assuming that connectivity between

orthographic and lexical-semantic representations decreased with increasing

repetitions. Next, DCM was used to directly test for reduced connectivity

(David et al., 2006). Using the cortical regions discussed earlier, the first step

in applying DCMwas the identification of the connectivity pattern between

regions. With the most likely connectivity determined by Bayesian model

selection, we then examined the connectivity modulation parameters as a

function of prior repetitions. Only the connectivity between the left VWFA

and the left MTG varied as a function of prior repetitions, revealing a

decrease in connectivity in response to the repeated category name, as

shown in the bottom two graphs of the right-hand panel of Fig. 5.11. Thus,

the observed semantic satiation effect reflects a decrease in connectivity

between a brain region related to orthographic processing and a brain region

related to lexical-semantic processing.
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4. CONCLUSIONS

In psychological research, there is a tendency to focus on different
experimental effects in isolation, developing separate theories of effect

X or effect Y, rather than general theories of cognitive processing that might

explain both X and Y. In this chapter, I have attempted to demonstrate how

a general theory that addresses the need to reduce source confusion between

sequentially presented visual objects can explain a wide variety of different

effects in different areas of research. What these effects have in common is

that they involve repetitions with relatively short delays between each

occurrence. That these repetitions occur in radically different tasks (e.g.,

threshold identification, recognition memory, and semantic matching)

and that they reflect radically different representations (e.g., repetitions of

orthography, faces, meaning) are immaterial because in all situations, there

is a need to integrate perceptual information over time with minimal blend-

ing between subsequent objects. In all of these situations, we see signatures

of temporal integration and activity-dependent habituation, producing rep-

etition advantages with minimal processing of the prior object but repetition

deficits with longer durations or more repetitions of the prior object. How-

ever, these repetition deficits are essentially a side effect of habituation and

the advantage of habituation is revealed by an increased ability to detect

change.
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