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Abstract
This chapter is presented in three sections corresponding to three
models that incorporate Bayesian explaining away between different
sources. The first section considers primes and targets as potential
sources without reference to time. The original ROUSE model is
reformulated as a generative model, arriving at the original
equations but with slightly different dependence assumptions. The
second section considers a model in which past time steps explain
away future times steps, thereby producing perceptual sensitivity to
the onset of new objects (i.e., new events). The resultant dynamics
are related to the dynamics of neural habituation in several
important ways. The third section considers a model in which future
time steps explain away past time steps, thereby producing
sensitivity to the offset of old objects (i.e., old events). By cascading
layers, a working memory system is developed that represents the
temporal rank ordering of objects regardless of their specific
durations (i.e., scale free sequential information).

In recent years, Bayesian models of cognition have effectively explained a wide 
variety of cognitive behaviors ranging from visual perception (Yuille & Kersten,
2006) and eye movements (Najemnik & Geisler, 2005) to episodic memory 
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(Dennis & Humphreys, 2001; Glanzer & Adams, 1990; McClelland & Chappell, 1998;
Shiffrin & Steyvers, 1997) and implicit memory (Colagrosso et al., 2004; Mozer et al.,
2002; Schooler et al., 2001) to semantic memory (Steyvers et al., 2006) and syntax
(Dennis, 2005; Griffiths et al., 2004). This approach brings together recent advances in
computer science and engineering related to graph theory and probability theory
(Pearl, 1988) in combination with the Rational Analysis of Anderson (1987; Schooler &
Anderson, 1997). The Rational Analysis supposes that cognition is a problem of opti-
mizing processes to reflect the environment that we live in. In other words, people are
adapted to their environment, and this optimization problem is best understood with
Bayesian statistics.

Despite the success of these Bayesian models, they say little about neural processing
(although see Pouget et al., 2003). In line with David Marr’s three levels for theorizing
about cognition (Marr, 1982), the Bayesian approach could be placed at the abstract
computational level, rather than the lower levels of algorithm or implementation.
However, as seen in this chapter, in some cases there is a more or less direct corre-
spondence between the level of neural implementation and the level of abstract com-
putation. The particular example under consideration examines dynamic neural
processing and the ubiquitous observation of neural habituation. The claim is made
that neural habituation is the brain’s trick for implementing Bayesian inference for
sequences of events in time.

In this chapter: (i) the notion of explaining away is introduced within a static
Bayesian model; (ii) the static model is augmented by explicitly representing time in a
causal graph such that previous perceptions explain subsequent perceptions (a model
of new events); and (iii) the same model is considered under the assumption that
temporal causality is reversed such that subsequent perceptions explain previous 
perceptions (a model of old events). In light of these results, inference over time 
may specify the dynamics of perception (explaining the near future) and short-term
memory (explaining the recent past).

Responding Optimally with Unknown Sources of 
Evidence (ROUSE)
Before presenting the full causal model that explains the ‘why’ of neural habituation,
several background pieces are needed. First, immediate priming data are reviewed as
explained by the ROUSE model, which includes the notion that primes serve as an
explanation for subsequent targets (i.e., explaining away is the central contribution of
the model). Second, ‘generative’ Bayesian models are introduced, in which the same
causal structure that produces observations also guides inference. Third, the inferen-
tial process of ‘explaining away’ (otherwise known as discounting) is introduced,
which arises from a particular kind of causal structure. Finally, the ROUSE model is
reformulated as a truly generative model and the original equations are re-derived
starting with a causal graph under the assumption that entire distributions of objects
serve as causes. This first section is solely concerned with static models (i.e., time is
not explicitly represented), but the data and model serve as the basis for incorporating
time in the second and third sections.
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Explaining away and priming
There are many methods for examining the immediate effect of one word on another
when we read. Such ‘priming’ effects usually produce facilitation when a prime 
word and a subsequent target word are related, with this facilitation resulting in faster
responding for lexical decision or naming tasks or more accurate responding 
with threshold identification tasks. This is called priming because the first word
‘primes the pump’ for the second word. Such tasks have established a large number of
prime-target relationships that produce facilitation, including but not limited to
orthographic (Evett & Humphreys, 1981; Meyer et al., 1974; Peressotti & Grainger,
1999), phonemic (Goldinger, 1998; Lukatela et al., 2002; Lukatela et al., 1998),
associative-semantic (McKoon & Ratcliff, 1992; Mcnamara, 1992; McNamara, 1994;
Meyer & Schvaneveldt, 1971; Perea & Gotor, 1997), and syntactic (Ferreira, 2003) 
similarity, to name just a few.

In our research, we sought to understand the nature of priming itself rather than
asking what primes what. Therefore, we modified the task of threshold identification
so that we could examine the costs and benefits associated with priming (Huber et al.,
2002; Huber et al., 2001; Huber et al., 2002; Weidemann et al., 2005). As seen in 
Fig. 16.1, participants attempted to identify target words flashed at the perceptual
threshold, with this threshold set separately for each participant. Rather than naming
the flashed target, accuracy was measured by means of a forced-choice between a tar-
get and a foil. Immediately before the flash of the target word, one or two primes were
presented, which were on average non-diagnostic (i.e., primes were just as likely to
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Fig. 16.1. Sequence of events for the priming data shown in Fig. 16.2. Primes were 
presented for 17, 50, 150, 400, or 2,000 ms. Target flash durations were determined
separately for each participant to place performance at 75% on average (perceptual
threshold). Mask durations were set such that the total time between target flash onset
and test display onset was 500 ms. Trial-by-trial feedback was provided to minimize
strategic responding.
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indicate the wrong answer as the correct answer). Furthermore, participants were
instructed that there was no effective strategy in relation to explicit use of the primes
and trial-by-trial accuracy feedback reinforced this assertion. These procedures 
were implemented in order to assess the implicit inference process in the priming of
perceptual evidence while reducing strategic responding.

Use of forced-choice testing allowed conditions that primed the correct answer
(target-primed) but also other conditions that primed the incorrect answer (foil-
primed). Not shown in the figure are still other conditions that primed neither choice
word (neither-primed) or conditions that primed both choice words equally (both-
primed). The example in Fig. 16.1 and the data of Fig. 16.2 tested repetition priming,
which is found to sometimes produce facilitation but other times produce priming
deficits (Bavelier et al., 1994; Evett & Humphreys, 1981; Hochhaus & Johnston, 1996;
Huber et al., 2001). As seen in Fig. 16.2, which was reported by Huber (submitted for
publication), brief prime durations resulted in a ‘preference’ for whichever word was
primed. This helped performance in the target-primed condition but harmed per-
formance in the foil-primed condition (the neither-primed baseline condition lay
between these conditions for all prime durations shown in Fig. 16.2). However, for
prime durations of 400 ms or longer, this preference reversed its direction, and the
preference against choosing primed words lowered performance for the target-
primed condition but raised performance when the foil was primed.
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Fig. 16.2. Accuracy for the experiment shown in Fig. 1 (Huber, submitted). As prime
duration increased, there was initially a preference to choose primed words, resulting in
better performance when the target was primed and worse performance when the foil
was primed. For longer prime durations this preference changed to a preference against
choosing primed words. This experiment also included the neither-primed condition,
which appeared roughly halfway between the target-primed and foil-primed conditions
at all prime durations.
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Complicating things further, the both-primed conditions, not shown in Fig. 16.2,
always revealed deficits as compared to the neither-primed baseline conditions
(Huber et al., 2002a; Huber et al., 2001; Huber et al., 2002b; Weidemann et al., 2005).
In order to make sense of these results and other results with orthographic and
semantic priming, Huber et al. (2001) proposed a Bayesian model that included the
offsetting forces of source confusion (unknown sources of evidence) and discounting
(responding optimally). Source confusion assumes that people are confused about
what was presented when and where, tending to mistake the prime for the target.
Discounting is enacted at the level of individual features during the decision process
in relation to the choice words and it assumes that features known to have been
primed should be assigned a lower level of evidence.

Beyond producing accurate fits to data such that the degree of source confusion
and the degree of discounting can be quantified (e.g., similar to use of signal detec-
tion theory to quantify sensitivity and bias), ROUSE also proved remarkably effective
in producing a priori predictions. For instance, the Bayesian discounting based on
observed features predicts that even extreme discounting will fail to eliminate or
reverse the direction of priming in some situations. Critically, even fully discounted
features provide a measure of positive evidence, and, therefore, discounting efficacy
relies upon a relative deficit. In other words, discounting only works if it serves to
lower the evidence provided by features that would otherwise strongly indicate the
target. Huber et al. (2002a) analyzed the mathematics of ROUSE, revealing that dis-
counting efficacy relies on (1) a sufficient number of features participating in the
decision; (2) sufficient presentation of the target; and (3) sufficient similarity between
primes and primed alternatives. By separately increasing similarity between the
choice words (e.g., choice between LIED and DIED, decreasing target duration
(including a condition where no target was flashed), and decreasing similarity
between primes (the number of letters in common), each of these predictions was
empirically confirmed; these manipulations changed a condition that produced nega-
tive priming into one that produced positive priming.

Despite this success, the original ROUSE model was not truly generative because it
did not use a causal structure to specify the joint probability distribution. Instead, it
was assumed that in general choice words were independent and that features were
independent, with these assumptions made in order to simplify the math rather than
as the result of a particular causal structure. In what follows, I reformulate ROUSE as
generative model by means of a plausible causal structure. In this reformulation, the
original equations follow naturally from this structure, which stipulates instead that
words are mutually exclusive and that features are only conditionally independent.
These causal assumptions lend greater plausibility and wider applicability to ROUSE,
releasing the original model from overly constraining assumptions of independence.

Generative models of cognition
Some Bayesian models can be termed ‘generative’, meaning that they define a causal
structure that is used both for production and for inference. Examples of generative
model are commonly found in the study of language where the same causal structure
produces text and is used to understand the text produced by others (Dennis, 2005;
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Griffiths et al., 2004; Steyvers & Griffiths, 2005; Steyvers et al., 2006). Figure 16.3 pro-
vides a more mundane example of a generative model that highlights the phenome-
non of explaining away.

According to Fig. 16.3, there are two causes of the observation that a light is out:
Either the electricity is out or the bulb is broken. It is important that the connection
between these causes and the observation is drawn with an arrow that points in a par-
ticular direction. These arrows indicate the direction of causation and the pattern of
causal links across the entire graph specifies whether causes and effects are dependent
or independent (Castillo et al., 1997). The part of the figure to the left is the real world
producing observations from this causal structure. Inside the observers head, cogni-
tion assumes this causal structure and the goal is to infer states of the world based
upon limited observations (e.g., the light is out, but the cause is unknown).

In Fig. 16.3, the two causes converge on a common effect, which defines a situation
in which ‘explaining away’ can occur. In the absence of any observations regarding the
light (i.e., if it is not known whether the light is on or off), the two causes are truly
unrelated and independent; the status of the electricity has nothing to do with
whether the filament in the light bulb is intact. However, once the common effect is
observed, this introduces dependence between the causes. For instance, imagine that
you are in a room with single light bulb that suddenly goes out, leaving you in the
dark. The first thing you might do is attempt to turn on the stereo. But why would you
do this and what does the stereo have to do with the light bulb? The answer is that
you’re establishing the status of one of the two possible causes. If the stereo works,
then you know that the electricity is not out and at that point you are essentially cer-
tain that the light bulb needs to be replaced. One can write the equation, p(bulb bro-
ken | light out, electricity on), which has value 1.0. However, what is the corresponding
value of p(bulb broken | light out, electricity off)? This second expression is close to 0,
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Fig. 16.3. Example of a generative model that includes real causes (electricity out and
broken bulb) and an observation (loss of light). Electricity out and broken bulb are 
usually independent but become dependent once the loss of light is observed. Given the
loss of light, if one cause is known to exist, then the probability of the other cause is
less (explained away).
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and equal to the prior probability that the bulb is broken in general. In other words,
this second expression is the probability of a coincidence such that the bulb happened
to be break at the same time that the power went out. This is explaining away; if the
electricity out provides an explanation of the light out, then the probability that the
bulb is broken is much less. This defines a dependency between otherwise independ-
ent causes – the probability of bulb broken depends on the status of the electricity,
but this is true only when observing that the light is out.

Reformulating ROUSE as a generative model
As seen in Fig. 16.4 and Table 16.1, ROUSE assumes three possible causal sources for
the observed features in the word identification task (these features could be thought
of as letters, but our results suggest higher level semantic features also play a role in
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Fig. 16.4. The causal structure that guides reformulation of ROUSE as a generative
model. The Prime and Target nodes are distributions over all possible words. The 
features are binary, taking on value 0 or 1, depending on whether they have been 
activated by any of the three sources. The probability of feature activation conditional
on only the Prime, only the Target, or only Noise, is equal to α, β,?or γ respectively. For
the Prime and Target these conditional probabilities only apply to features contained
within a particular word whereas Noise always applies. The task of inference is to deter-
mine the Target distribution given the observed feature states and the observed Prime.
This inference is achieved with estimated conditional probabilities, α’, β’, and γ’. When
α is underestimated there is too little explaining away from the prime and when α is 
overestimated there is too much explaining away from the prime. Dark gray indicates
active features and white indicates inactive features. Light gray is used to indicate that
the particular prime word within the discrete Prime distribution is known.
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forced-choice threshold identification). All features exist in one of two observed
states: Either features are observed to be active, or they are observed to be inactive.
The generative process defined by this causal structure stochastically produces pat-
terns of active/inactive features according to the probabilities found in Table 16.1. The
appropriate equation depends on which sources could produce a particular feature
based upon the ‘true’ prime and target presented on a particular trial (noise matches
all features). After stochastically producing a pattern of active/inactive features, the
model next performs inference based on the observed states of feature activation. In
this reformulation of ROUSE, the causal structure in Fig. 16.4 is used to derive this
inference.

The original ROUSE model assumed that each word was a binary distribution, sim-
ilar to the features. Therefore, features were divided into those that matched the target
choice alternative versus those that matched the foil choice alternative under the
assumption that the choice words were independent. However, this reformulation
employs probability distributions over all possible words rather than a binary word
representation. Thus, the prime is a distribution over all words for the status of the
word that was presented first (the prime) and the target is a distribution over all words
for the status of the word that was presented second (the target). The key calculation is
inference for the target distribution under the assumption that the prime is a known
word (i.e., one word in the prime distribution is set to probability 1.0 and the rest set to
0.0). Although the distribution for the second word is referred to as the ‘target distribu-
tion’, it is important to keep in mind that this distribution contains probabilities both
for the particular target word as well as the particular foil word that subsequently
appear in the force-choice test display. Furthermore, because this is a distribution over
all possible words, the entire pattern of feature activation over all possible features is
considered, rather than just the features that pertain to the choice alternatives. Features
that do not match either choice word may play an important role in other paradigms,
such as naming, in which case all responses need to be considered. However, in light of
the particular choices that appear at the end of a forced-choice trial, the large number
of features that do not match either choice alternative provide a constant term that
applies equally to both choices. Thus, for this particular situation, only features that
match the target or match the foil matter in forced-choice testing.

The conditional probabilities that determine the generation of feature activation 
(α for primes, β for targets, and γ for noise) are not necessarily the same conditional
probabilities used for inference. In other words, one set of parameters generates 
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Table 16.1 Conditional probabilities for combinations of sources

Possible sources Inactive/Mismatch Active/Match

Noise (1−γ) 1−(1−γ)

Prime or noise (1−α)(1−γ) 1−(1−α)(1−γ)

Target or noise (1−β)(1−γ) 1−(1−β)(1−γ)

Target or prime or noise (1−β)(1−α)(1−γ) 1−(1−β)(1−α)(1−γ)
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feature activation (source confusion), but a slightly inaccurate set of parameters
might be used to determine accuracy from the observed pattern of activation (dis-
counting). In this manner discounting is often incommensurate with source confu-
sion, resulting in positive or negative priming. These potentially misestimated
probabilities correspond to the prime symbols in the upper portion of Fig. 16.4.
Active features that are a common effect of both a particular prime and a particular
target are features that are explained away (discounted). Such features do not provide
strong evidence in favor of the target considering that these features may have arisen
from the prime rather than the target. If the estimate of prime activation, α’, is set too
low, then there is too little explaining away, resulting in a preference for primed
words, but if the estimate is set too high, then there is too much explaining away,
resulting in a preference against primed words.

(1)

To infer the target distribution (i.e., calculate the posterior distribution of potential
target words based on the observed pattern of active/inactive features), the causal
structure seen in Fig. 16.4 is used to simplify the joint probability distribution
through the implied independence relationships. For this causal structure, the target
distribution, the target distribution, and the noise sources are independent of each
other in the absence of knowing the status of the features. Therefore, in writing out
the joint probability distribution (1), these three probabilities, p(T), p(P), and p(N)
are extracted first in order to simply the expression; because the features are not
observed at this point in the factorization, there is no need to write these causes as
conditional probabilities. Furthermore, with these causes now specified, the features
become independent of each other. Therefore, the factorization is completed in (1)
through the product over all possible features, i, conditioned on the prime, target, and
noise distributions.

(2)

Equation 2 is the probability that the target is a particular word (T=a) conditioned on
the prime, noise, and all observed features. By convention, use of italics indicates that
a variable may take on any possible value whereas use of non-italics indicates that a
variable is set to a specific value. Equation 2 is definitional and true regardless of the
causal structure. Inclusion of the causal constraints from (1) yields (3).

(3)

The original ROUSE model was formulated for forced-choice performance but 
(3) (and more simply Equation 4) can be applied to many situations, such as lexical
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decision, speeded naming, or threshold identification with naming as the response.
Performance in these tasks is a function of the probability that the target is the correct
answer, p(T=a), as compared to all other possible answers contained in the target dis-
tribution. The ratio to the right of the equals sign in (3) combines terms that are the
same across the entire target distribution, and, thus, this ratio does not change across
different conditions of interest in most situations (i.e., provided that all primes, fea-
tures, and noise sources are equally likely in the various experimental conditions, this
ratio is constant). For convenience, this term is dropped and replaced with a propor-
tional relationship, yielding (4).

(4)

Equation 5 can be converted into a relationship of equality by calculating this expres-
sion for all possible target words followed by normalization against the sum of the
calculations. The term, p(T=a), is the prior probability that a particular word is the
target. This term is typically the same across all conditions. However, comparisons
between different classes of objects (for instance high versus low frequency 
words) may affect these priors. In addition, task specific manipulations may serve to
make some classes of objects more likely (e.g., an experiment that only uses nouns as
targets), which would likewise affect these priors. The final term in (4) is the probabil-
ity of observing features in their known active/inactive states given a particular 
target and the known values of the prime and noise; it is this last term that enacts
explaining away.

For the particular task of forced choice testing, the situation is further simplified by
taking (3) as calculated for the correct target word (T=a) and dividing it by Equation
3 as calculated for the incorrect foil (T=b), yielding the likelihood of choosing the
correct answer, seen in (5).

(5)

In order to implement ROUSE using (5) (or more generally Equation 4), specific
probabilities need to be entered for observed feature activation conditioned on the
observed sources. The equations in Table 16.1 not only generate patterns of
active/inactive features, but these same equations are used to the fill in appropriate
values for the probability of particular features existing in the observed active/inactive
state given the particular target word under consideration (a or b) and the known
prime word. The only difference is that estimated probabilities are used in the equa-
tions of Table 16.1 instead of the ‘true’ probabilities. Thus, simulation with ROUSE
consists of a generative pass, which stochastically determines the particular feature
observations, followed by inference to determine accuracy for that trial (however,
see Huber, 2006, for a method of implementing ROUSE without stochastic feature
generation).

To see how these equations are used, consider the particular feature T___, the 
particular prime TRIP, and the particular target TOWN. This feature matches both
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prime and target (and all features match noise), and, thus, the probability that this
feature will be active is found in the lower right-hand entry of Table 16.1. If indeed
this feature is activated, this same conditional probability is also used to infer the
probability for the particular possible target words TRIP in the target distribution of
(4), although in this case estimated values are used for the parameters.

Conclusions from Section ‘Responding Optimally with
Unknown Sources of Evidence (ROUSE)’
Equation 5 is the same equation appearing in the original ROUSE model, and it spec-
ifies that forced-choice accuracy is the ratio of priors for the two choice words multi-
plied by the likelihood ratios that come from each of the features. Critically, derivation
of (5) in this reformulation did not assume that choice words were independent, such
as was assumed in the original ROUSE model. Instead, (5) was derived by assuming
that the choice words are mutually exclusive because they are both part of the same
discrete probability distribution for the second word presented in the sequence (i.e.,
the target distribution). Also, derivation of (5) did not assume that the features are in
general independent, such as was assumed in the original ROUSE model. Instead, (5)
was derived by assuming that the feature are in general dependent but that the fea-
tures become independent when conditioned on the three sources. Because this refor-
mulation is a generative model, these new assumptions were drawn directly from the
causal structure shown Fig. 16.4. In developing this reformulation, (4) was derived,
which is generally applicable to any identification paradigm such as speeded naming,
lexical decision, or threshold identification without forced choice testing. This pro-
vides an avenue for extension of ROUSE to these other identification paradigms.

Explaining away the future (what’s new)
Despite the success of ROUSE in explaining a number of non-intuitive results related
to similarity and to the efficacy of discounting (Huber et al., 2002a), this static version
of the model does not explain why brief prime durations result in too little explaining
away while long duration primes result in too much explaining away. Instead, applica-
tion of ROUSE requires a different set of parameters for each prime duration (i.e., fit-
ting the data seen in Fig. 16.3 would require 5 α values and 5 α´ values). A better
solution would be that these effects emerge naturally from a single set of parameters
in a model that explicitly includes timing. Therefore, Huber and O’Reilly (2003)
developed an alternative account based on the dynamics of neural habituation. Their
model naturally captured the data of Fig. 16.3 because brief primes result in lingering
activation that blends with the target whereas long duration primes habituate and
actually lessen the response to a repeated target. In this section, the neural habituation
model is briefly summarized and it is demonstrated that a Bayesian model that explic-
itly incorporates time produces similar behaviors.

Neural habituation
The brain includes many mechanisms that produce habituation in the presence of an
ongoing stimulus. One way to quantify the joint action of these mechanisms is to
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drive a sending neuron (pre-synaptic membrane potential) while recording from a
receiving neuron (post-synaptic membrane potential). This is precisely what Tsodyks
and Markram did (1997), observing that the synapse appears to lose resources as a
function of recent activity, thereby temporarily lowering the efficacy of the connec-
tion between the two cells. Abbott et al. (1997) developed a mathematical model of
this habituation and Huber and O’Reilly (2003) derived a ‘rate-coded’ version of the
model that does not require simulation of spiking neurons.

In the dynamic neural network of Huber and O’Reilly (2003), every simulated 
neuron within a 3 layer network activates (pre-synaptic membrane potential, v)
according to (6), in which netin refers to the summed excitatory input, L is a constant
leak current, I is the strength of inhibition, and o refers to the post-synaptic effect of
the sending cell.

(6)

Equation 6 specifies how the pre-synaptic membrane potential changes at every mil-
lisecond. Each layer of the model incorporates all-to-all inhibition (however, (6) and
the right-hand panel of Fig. 16.5 only include self inhibition) and the simulated cells
of each layer integrate information at a layer-specific rate, S.

(7)

Equation 6 is similar to a large number of other neural network models but the new
element is a second time dependent variable, a, which captures the depletion, D, and
recovery, R, of synaptic resources in the face of ongoing synaptic output, o. Because 
D is greater than R, the synapse quickly loses its resources and requires some time 
to recover. Equation 7 presents the updating of this synaptic ‘amplitude’. In order to
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Fig. 16.5. Results with the 3-layer dynamic neural network of Huber and O’Reilly (2003),
which included neural habituation. The right-hand panel illustrates neural habituation
using parameters for the bottom visual feature layer as dictated by (6–8). The simulated
cell was driven with netin=1.0 and the other parameters were: S=0.054, D=0.324,
R=0.022, I=0.3, θ=0.15, and L=0.15.
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produce output, o, the pre-synaptic cell needs to spike, which happens with probabil-
ity v − θ (i.e., there is a threshold for activity), and the post-synaptic amplitude of each
spike is a, resulting in (8).

(8)

The three panels of Fig. 16.5 show (1) observed behavior; (2) predicted behavior of
the 3-layer dynamic neural network with habituation (the decision rule was to choose
the word that reached its highest level of output first); and (3) an example of neural
habituation for a simulated cell from the bottom visual feature layer of the model
using (6–8). Additional details are reported by Huber and O’Reilly (2003), but hope-
fully this is sufficient to give a qualitative sense of the model. As seen in Fig. 16.5, there
is a close correspondence in the initial build up and then elimination of the prefer-
ence for repeated words as a function of prime duration and the build up and then
habituation in the post-synaptic effect of visual features in the presence of ongoing
input. Because the visual features project to orthographic features, this imparts lin-
gering orthographic activation from the prime that reaches a peak but then habituates
for longer primes. This lingering activation boosts a repeated target, but, with 
sufficient habituation, the lingering activation is reduced and, furthermore, the
orthographic response becomes sluggish due to depletion of resources.

A cascaded hidden Markov model for new events
In order to extend the ROUSE model by explicitly including inferences over time, a
temporal causal structure is needed. Hidden Markov Models (HMMs) provide a
mechanism to represent time in a causal model because time is implemented as a con-
tinually unfolding chain of steps, with each step causally related to the prior time step.
HMMs successfully capture sequential processing and have been applied to long-term
priming (Colagrosso et al., 2004; Mozer et al., 2002) and other phenomena. Perhaps
their most well known use is in the realm of phonology and their application in
speech recognition software (Jaffe et al., 1964; Mari et al., 1997; Ostendorf et al., 1996;
Seward, 2004). The bottom half of Fig. 16.6 (not including the event layer) portrays
the classic form of an HMM, with links pointing forward in time and other links
pointing from objects towards observations. For the remainder of this chapter, the
more neutral term of ‘objects’ is used rather than ‘words’ because the models are
broadly applicable to a wide variety of stimuli and paradigms. A standard HMM is a
generative model because real objects in the world cause observations and inference is
performed on these observations to determine which objects were likely to have pro-
duced them (i.e., perception as an inferential problem).

It is often useful to breakdown the problem of inference over time into different
layers of abstraction, such as with a generative grammar model of sentence processing
(Crocker & Brants, 2000), or a perceptual layer followed by a response layer (Mozer 
et al., 2002). These models are referred to as ‘cascaded HMMs’ and are typically imple-
mented by performing inference in lowest layer based on observations and then per-
forming inference in the next layer based on the results of the lower layer, etc. In other
words, these models are implemented by severing the dependence relationships
between levels of the inferential cascade. This is done because including dependence

o v a= −( )Θ
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relationships between layers is computationally difficult, but, as presented next, inclu-
sion of these dependencies naturally includes explaining away over time, thus produc-
ing behaviors that are similar to the neural dynamics of habituation.

In the notation applicable to Fig. 16.6, specific points in time are indicated by the
superscript on variables and a particular layer in the HMM is indicated by the 
subscript. In light of the model presented in section III, nodes are referred to with
variable B, indicating Buffer. Dependencies in time (i.e., horizontal connections) cor-
respond to conditional probabilities with parameter α and dependencies in detection
(i.e., vertical connections) correspond to conditional probabilities with parameter β.
In this manner, the static version of ROUSE is related to this dynamic version in terms
of the explaining away from prior time steps (corresponding to the prime with
parameter α) versus explaining away from new events, such as the second word in the
sequence (corresponding to the target with parameter β). As with the static version of
ROUSE, every node also includes noise as a potential source of activation with proba-
bility γ (not shown in Fig. 16.6). Unlike the static version, this version does not
include features and, instead, all nodes are entire distributions over all possible
objects. This was largely for reasons of simplification, and the object node at each
time step could be replaced with all possible feature nodes at each time step, thereby
maintaining the ability of the model to represent similarity through proportions of
shared features.

The model seen in Fig. 6 includes an additional layer, ‘new events’, which is not typ-
ically included in an HMM. However, this is still in keeping with a generative model
framework if it is assumed that events are the underlying cause of new objects. Thus,
while things tend to persist over time with a previous object causing its ongoing pres-
ence at the next point in time (the α links), new events are the reason that objects
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object onset). All nodes represent discrete distributions over all possible objects and all
nodes include noise as a possible source, with probability γ (not shown).
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change (the β links). Although the new event layer is the same distribution over
objects as appears at the object layer, its interpretation is that of the event of a new
object – thus, the new event layer is inherently transient. However, inclusion of α links
in the event layer allows that events are not entirely discrete in time such that events
linger for awhile (e.g., an ongoing event). This latter assumption is critical in explain-
ing why neural habituation is not instantaneous. Traditional HMMs do not include
explaining away and have no converging arrows. However, by including a second layer
with dependencies between layers, this model is considered a factorial HMM
(Ghahramani & Jordan, 1997) because the distribution at B0 depends both on the
previous time step and on the second layer at that point in time. In this manner, pre-
vious time steps explain away ongoing objects and the inference at the new event layer
becomes mainly sensitive to the onset of new objects.

Unlike the static version of ROUSE, exact inference in this model is intractable con-
sidering that every time step depends on every other time step and every time step
contains a factorial connection (Ghahramani & Jordan, 1997). Instead, approximate
inference is achieved by means of Gibbs sampling (Albert & Chib, 1993). In the Gibbs
sampling algorithm, the entire chain is initially randomly sampled according to the
priors (e.g., every node at every time step is randomly set to a particular object as
drawn from the uniform discrete distribution). Then, the entire chain is repeatedly
stepped through in permuted order. With each step, one node is chosen, the posterior
probability distribution at that node is calculated based on the current values of the
other nodes (i.e., local inference), and, finally, a new particular value for the chosen
node is sampled from the newly calculated local posterior distribution. After an initial
‘burn-in’ period (set to 1,000 iterations in the reported results), the model sufficiently
departs from the initial priors to allow collection of ‘counts’ that are used to determine
the posterior distribution over the entire chain of time steps. Counts are the number of
times that each object is sampled for every node and every time step. For the reported
simulations, 100,000 counts were collected. Between collection of each count, the
chain was stepped through 4 times in permuted order to provide relative independence
between counts. The value of 4 was determined by examining the asymptotically low
value for the correlation between one count and a subsequent count.

Gibbs sampling turns an intractable global inference problem into a relatively easy
local inference problem. With this method, the causal graph need only provide the
joint probability distribution for a local area as dependent upon just one node of the
causal chain over time. Because the other values of the other nodes are known
through stochastic sampling, this ‘severs’ the dependence relationships from propa-
gating down the entire chain. The observations, I, are specified for a particular simu-
lation (e.g., this is perceptual input) and so only two equations are needed to perform
local inference. As before, these are derived from the causal structure (Fig. 16.6 in this
case). The first of these equations (9) is the probability that a node in the object layer,
B0

t, takes on the value j, conditional on the other nodes.

(9)

As in the static version of ROUSE, there is no need to express this as an equality rela-
tionship and the posterior distribution is turned into a true distribution by dividing
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(9) by the sum of (9) as calculated for all values of the object j. The first term two
terms in (9) to the right of the proportional symbol include explaining away based on
the prior time step and event perception (i.e., both an α link and a β link, with noise γ
always as a source). The third term only includes a β link between the object node and
an observation. In calculating the local posterior distribution for a particular object
node, the equations of Table 16.1 are used for the terms of (9) as dictated by the exis-
tence of a possible α source or a β source and whether the nodes match or mismatch
in object value.

(10)

Equation 10 is the local posterior probability distribution of an event node. This
equation consists of two α only links and one explaining away term with α and β. In
theory, the causal chain continues endlessly into the future and endlessly into the past.
However, simulations are over a prescribed number of time steps. Equations 9 and 10
are modified slightly for the first and last time steps because there is no known value
for the time step prior to the first or the time step after the last time step. Instead, it is
assumed that these time steps beyond the boundaries are set to uniform priors.

The neural habituation model of Huber and O’Reilly (2003) not only produces
realistic habituation functions with ongoing stimulation, but it also produces behav-
iors at the offset of a stimulus that correspond to the finding that some cells linger in
their response while others exhibit a rebound effect and fall below baseline firing rates
with the offset of the preferred stimulus (Duysens et al., 1985). Lingering responses
are seen for a simulated cell that has a 0 baseline firing rate (the low baseline panel of
Fig. 16.7) and are due to gradual leaking of membrane potential. In contrast, a
rebound effect is seen for a simulated cell that is driven above zero even in the absence
of the preferred stimulus (the high baseline panel of Fig. 16.7). For both the high and
low baseline situations there is a lingering depletion of synaptic resources past
removal of the preferred input. However, synaptic depression is not the same as post-
synaptic inhibition, and can only produce a relative deficit. Therefore, the slower
process of recover only produces the apparent rebound in the non-zero baseline situ-
ation, serving to keep post-synaptic depolarization below the ultimate baseline level
until synaptic resources are fully recovered.

As seen in Fig. 16.7, not only is the cascaded new event HMM capable of producing
something analogous to neural habituation, but it also produces offset behaviors sim-
ilar to simulated cells with low or high baseline firing rates. In these simulations, the
cascaded HMM was shown 3 different objects in succession with each object observed
for 10 time steps. Unlike the static version of ROUSE, this was not done by generating
stochastic patterns of activation. Instead, the goal here was to examine the temporal
properties of the inference process and so an idealized sequence of observations was
presented to the model. Thus, while this model is capable of generating observations,
this aspect of the model is not currently utilized. The figure shows the probabilities at
the object and event layers appropriate to the second object (the first and third objects
are presented to place the model in an appropriate ‘baseline’ state before and after the
second object). At the time of the onset of the second object, the object layer reaches
its peak probability for that object, and, thus, the event probability reaches its peak
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value as well. However, subsequent time steps are progressively explained away by
prior time steps within the object layer and so the event probability is progressively
lowered (but it retains some probability due to the inclusion of α links within the
event layer).

With offset of an observation, the probabilities return to baseline levels. However,
the path that the probabilities take in reaching baseline is a function of how many
other potential objects exist (high versus low priors) as well as the strength of the 
α links. Based on the forward directed α links, the time step just prior to offset stipu-
late that the object probabilities should continue unabated. However, because a new
observation overrides object perception, this forward prediction is not born out.
Therefore, the event layer has even a greater reason to expect anything but the previ-
ous object (i.e., a rebound due to excessive explaining away). Conversely, the α links
within the event layer work against this effect and tend to produce maintenance of the
previous event. When there are few alternative possibilities (5 total possible objects for
high priors), the rebound effective is large enough to overcome a maintenance, but
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Fig. 16.7. Comparison between the forward directed cascaded HMM seen in 
Fig. 16.6 and the neural habituation model of Huber and O’Reilly (2003). Neural habitu-
ation was simulated with the same parameters as Fig. 16.5 for a 500 ms presentation
with netin set at 1. Low baseline corresponded to netin at 0 all other times and high
baseline corresponded to netin at 0.3 all other times. For the cascaded HMM, α and β
were both set to 1.0 in order to produce strong explaining away from prior time steps
as well as strong sensitivity to new observations. 5 possible values existed for every node
in the high prior simulation and γ was set at 0.2. 100 possible values existed for every
node in the low prior simulation and γ was set at 0.02.
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when there are many alternative possibilities (100 total possible objects for low 
priors), the rebound effect is negligible and the model produces some degree of
persistence.

Conclusions from Section ‘Explaining away the future
(what’s new)’
Having developed a cascaded HMM with event detection, the goal is not necessarily
to promote its widespread use in modeling experimental results, particular in light of
the difficult nature of inference. Instead, this serves as an existence proof, demonstrat-
ing the similar dynamic properties in both the Bayesian model and the dynamics of
neural habituation. If the cascaded HMM is treated as an ideal observer model under
the assumed causal structure, then neural habituation can be viewed as a useful mech-
anism for calculating approximate inference over time. Thus, neural habituation is
not merely an artifact or some sort of capacity limitation, but, instead, neural habitu-
ation is a trick that has evolved to solve the difficult problem of deciding whether a
particular observation is something new within the ongoing stream of observations
(i.e., event detection), or, whether the observation should instead be considered a lin-
gering response to something that was previously identified. In relating the causal
graph to neural processing, it is suggested that neural habituation is the natural result
of a perceptual system that is constantly trying to predict the future and determine
what’s new.

Explaining away the past (what’s old)
This section considers the same cascaded HMM from Section ‘Explaining away the
future (what’s new)’ with the assumption that the causal time links are reversed in
their direction, pointing towards the past rather than the future. This is done, not in
the service of any particular behavioral result, but, rather, simply as an exploration of
the computational properties under this assumption. The claim is not that causation
is literally flowing backward (although note that the equations of Physics are symmet-
ric in time). Instead, the question is whether inference based on backwards causation
may be useful. The model in Section ‘Explaining away the future (what’s new)’
assumed forwards causation and produced behaviors that were predictive of the near
future, which is likely to be useful in many situations in which a response is required
when the environment changes. In contrast, a model with backwards causation ‘post-
dicts’ the past, which could be useful when events from the recent past are no longer
at hand, but perhaps important for sequential processing. As seen below, this inferen-
tial process can be used to build a working memory system that keeps track of recent
events in the order in which they occurred (see Miyake & Shah, 1999 for different
views on working memory).

Working memory buffers are created by cascading one layer into the next within
this backwards causation model. Analogous to event detection in Section ‘Explaining
away the future (what’s new)’, this produces the most recent past event in the layer
above object perception, the event before that in the next layer, and so on. Thus,
the model keeps track of the last N objects in the order in which they arrived.
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This representation may be desirable for sequential learning because it is ‘scale free’
over time, keeping track of the rank order relationship of the last N objects regardless
of how quickly or slowly they occurred.

Higher-order dependencies in a hidden Markov model
Figure 16.8, not including the dashed links, is a classic HMM with forward directed
links from the last time step. For reasons of computational complexity, applications of
HMM’s typically only include these first-order dependencies (i.e., what follows what).
However, some applications of HMM’s find that higher-order dependencies produce
more accurate identification based on the expanded temporal context (Mari et al.,
1997). Inclusion of the dashed links in Figure 16.8 is an example of a third-order
HMM. Beyond reasons of computational complexity, one advantage of first-order
HMM’s is that first-order relationships are scale free and are preserved regardless of
the rate at which a sequence is presented. However, higher-order sequential informa-
tion is important in many situations and the model presented next provides an alter-
native method for including higher-order links that depends on the sequence of
objects, rather than the timing of objects.

A cascaded hidden Markov model for old events
Figure 16.9 gives an example of the backwards causation model with one layer for
object perception and three additional layers for past events (working memory
buffers). The model can be built with any number of layers although each additional
layer adds complexity and becomes progressively imprecise in representing past
objects. The reported simulations used 4 total layers but the dashed links in the figure
were not implemented. The dashed links are included in the figure to portray the ana-
logue of higher-order links from past objects in the sequence. Even though these
dashed links appear within the same time step, they are effectively links from the past,
similar to the dashed links in Fig. 16.8. However, unlike Fig. 16.8, these links consti-
tute a scale-free higher-order dependence because the representations in the buffers
are largely independent of the rate at which objects are presented.
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Fig. 16.8. A traditional HMM with first-order dependencies is shown for the solid links.
Inclusion of the dashed links creates a third-order HMM in which the next time step is
predicted based upon the factorial combination of the previous three time steps.
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As with the forwards causation model, approximate inference in this backwards
causation model is implemented with Gibbs sampling and the necessary equations
are the joint probability distributions for a node at each layer, with all other nodes
existing with known values. In general, the local posterior probability distribution for
some layer n, where n is neither the object layer 0 nor the top buffer N, is calculated
according to (11), which includes three different explaining away terms with both α
and β links (as before, noise is always a source with probability γ). Equations 12 and
13 modify this expression for the object layer B0, and the top buffer BN, respectively.

(11)

(12)

(13)

The two simulations reported in Fig. 16.10 were designed to demonstrate the 
buffering capacities and scale-free nature of this backwards causation model. The
parameters for the model in Section II were set to produce abrupt event detection
through explaining away (α=1 and β=1), such that the last time step fully explains 
a persistent object, but an event also fully explains a new object. In contrast,
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Fig. 16.9. A cascaded hidden Markov model that includes backwards causation. 
This produces a model that is sensitive to order of past events. Therefore, these layers
implement working memory buffers that represent the sequence of objects regardless of
the rate of the sequence. The dashed links represent higher-order terms from past
events and are analogous to the dashed lines in Fig. 16.8, except that these apply to
past events rather than past time steps.
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the backwards causation model is used to build a working memory system and must
attempt to satisfy the contradictory goals of maintaining objects while also allowing
that new objects enter the buffering system. This was achieved by setting maintenance
to a decent but not excessive level (α=0.7) and by setting detection to a sizable but
nonetheless smaller value (β=0.3).

For both simulations there were 100 possible objects and the sequence provided to
the observation nodes consisted of the same 3 objects cycling in the same order. These
three objects correspond to the solid, dashed, or dotted probability lines, respectively.
The simulation reported in (a) changed objects every 10 times steps whereas the sim-
ulation in (b) changed objects every 5 time steps. This is analogous to use an HMM
for speech recognition with higher-order dependencies as applied to talkers who dif-
fer in rate of speech by as much as a factor of two. The vertical bars in each simulation
demonstrate that both simulations are able to faithfully represent the order of the 
last 3 objects (assuming that the object with the highest probability is selected); in
both simulations the object layer B0 represents the current object, the first working
memory buffer B1 represents the most recent object, and the second working memory
buffer B2 represented the object before that. The third working memory buffer is not
shown in Fig. 16.10 for reasons of simplicity, but, also, because the last buffer often
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Fig. 16.10. Results from simulating the backwards causation model seen in Fig. 16.9
with a repeating sequence of three objects. Simulation in the left graph presented a
new object every 10 time steps while simulation in the right graph presented a new
object every 5 time steps. The solid, dashed, and dotted lines are the probabilities of the
three presented objects. The vertical bars in each simulation highlight a point in time to
demonstrate that both simulations represent with highest probability the current object
in B0, the most recent object in B1, and the object before than in B2, despite the 
fact that one sequence was twice as fast. All nodes consisted of distributions over 
100 possible objects. The other parameters were γ=1 × 10−10, α=0.7, and β=0.3.
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fails to faithfully represent previous objects because it does not have a layer above to
explain away its representation from objects even further in the past. Figure 16.10 
was accomplished with N=3 (4 layers). Additional simulations with N set to higher
values revealed that the model can continue to buffer past objects, but that with each
additional layer the model becomes progressively inaccurate and the probabilities
become closer and closer to uniform priors. Presumably this is because even very
small amounts of noise result in temporal uncertainty ad the noise is propagated
across multiple inferential steps.

Conclusions from Section ‘Explaining away the past 
(what’s old)’
The cascaded HMM developed in section II, which proved useful for detecting new
events, is likewise useful as a model of past events and maintenance of previous
objects when the direction of the causality in time is reversed. Furthermore, cascading
one event layer into the next produced a buffering system such that the cascade keeps
track of previous objects in the order they were presented. This could be viewed is a
scale-free rank order working memory system that encodes sequences in a similar
manner regardless of the rate that they occur. Implementation of causal links 
from higher layers directly onto current object perception (i.e., the dashed links in
Fig. 16.9) could be used to establish sequential learning that applies to similar
sequences even if the sequences do not occur at the same rate.

The reported simulations were implemented with identity transition matrices. In
other words, α and β links consisted of α or β for the conditional probability values
along the diagonal for each object as a function of every other object, and the off diag-
onal elements were all set to zero. This was done because the simulations were an
exploration of dynamic properties rather than an analysis of perceptual competence
or sequential learning. Future applications of the model could include these off diag-
onal elements so that previous objects predict different subsequent objects, perhaps as
learned from large corpora of follows and precedes data (Dennis, 2005; Griffiths et al.,
2004), or perhaps as specified by associative norms (Nelson et al., 1994). The same off
diagonal elements may play a role in working memory too, providing an explanation
as to why known sub-sequences enable apparent increases in capacity through chunk-
ing (Baddeley, 1994).

The new event perception model in section II used parameters to promote abrupt
onsets. In contrast, the parameters for the past events model of working memory were
set to allow some degree of maintenance as well as sensitivity to new offsets of objects.
The setting of maintenance (α) and change detection (β) is tricky in several respects.
If change detection is too high, then presentation of a new observation immediately
propagates through the entire cascade of buffers. Conversely, if maintenance is set too
high, then it is difficult to swap objects between buffer states. What appears to work is
that both parameters are set to sizable levels with maintenance greater than change
detection. In addition, noise needs to be set as low as possible.

In theory the backwards causation model is also a generative model, although, like
the model in Section II, it was not used for its ability to produce sequences of observa-
tions. Nevertheless, conditional probabilities (the parameters α and β) that produce
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desirable inferential characteristics are perhaps interpretable in light of environmen-
tal statistics; presumably the ratio of α to β is something like the frequency for main-
tenance of objects as compared to the frequency for events (object change). Recently
we performed a series of experiments that manipulated the statistics of repetition fre-
quency within different blocks of trials in threshold word identification (Weidemann
et al., submitted). In using the static version of ROUSE to explain the results, we
found that the most sensible account assumed the system adopts different estimates
of source confusion (i.e., different α ‘levels) to handle repetition frequency.
Furthermore, the empirical evidence suggested that these adaptations to the local sta-
tistics were rapid as revealed by the lack of differences between the first block of trials
with a new frequency and a subsequent block that contained the same frequency of
repetitions. Despite this rapid adaptation, discounting behavior was also sensitive to
the global statistics of the entire experiment and with each change in the local statis-
tics, behavioral changes in discounting were attenuated. Therefore, we modeled the
current estimate of source confusion as a mixture of the current statistical regularities
combined with the previous statistical regularities. This suggests that learning appro-
priate parameters for detection and maintenance is multifaceted, involving both
short-term and long-term statistical regularities.

Conclusions
Section ‘Responding Optimally with Unknown Sources of Evidence (ROUSE)’ of this
chapter set the stage by presenting an overview of generative models based on causal
graphs, with the reformulation of the ROUSE model providing a specific example.
Sections ‘Explaining away the future (what’s new)’ and ‘Explaining away the past
(what’s old)’ were an exploration of this same explaining away model as applied to
time steps rather than temporally unspecified primes and targets. In Section
‘Explaining away the future (what’s new)’, it was demonstrated that explaining away
from past time steps produces a model that is sensitive to the onset of new objects
(i.e., new events) and that these inferential dynamics are similar to the dynamics of
neural habituation both in terms of the lessening of a response in light of an ongoing
observation, but, also in terms of the offset behavior with either a lingering response
or a rebound response. In Section ‘Explaining away the past (what’s old)’ it was
demonstrated that explaining away from future time steps produces a model that is
sensitive to the offset of old objects (i.e., past events) and that this can be used to pro-
duce a scale-free working memory system that buffers objects in rank order, regard-
less of the timing of the objects. Combing the models form Sections ‘Explaining away
the future (what’s new)’ and ‘Explaining away the past (what’s old)’, these two types of
temporal inference may serve as fundamental building blocks for perception (predict-
ing the future) and working memory (postdicting the past).
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