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A bstract

Several theorists in perception, attention, and m em ory have  
su ggested  that tem poral correlation in neural firing patterns 
(synchrony) cou ld  play an im portant role in processing and 
learning. R ecent n europsych olog ica l ev id en ce dem onstrates 
the w ide spread occurrence o f  synchrony and its stim ulus 
sp ec ific  nature. N um erous proofs and sim ulations have  
dem onstrated the ease  w ith w hich  synchrony develop s. 
H ow ever, ease o f  develop m en t cou ld  be a problem  since  
synchrony is the m echanism  behind abnormal processing in 
epileptic  seizures. Previous m odelin g  ignores the role o f  
spatial propagation along the axon. Com paring sim ulations 
w ith and w ithout propagation for a b io lo g ica lly  plausible  
m odel o f  neural o sc illa tion s, I sh ow  that synchrony is far less  
liab le  to occur. U sin g  a grid o f  fu lly  activated ce lls , the extent 
o f  connectiv ity , im pulse am plitude and duration, and natural 
frequency variability are exam ined: synchrony is
substantially dim inished  w hen propagation is included.

Introduction

A long standing problem in theories of information 
processing is the lack of adequate mechanisms for binding 
together separate components of a stimulus or memory. 
Traditionally, theorists have proposed high-level abstract 
models to deal with this ’’binding problem" without 
appealing to the neural substrate of processing (Biederman, 
1987; Carpenter & Grossberg, 1988; Treisman & Gelade, 
1980). Recent evidence demonstrates that the temporal 
correlation of neural firing patterns (synchrony) exists in 
many species under conditions of normal behavior and is 
stimulus specific in its elicitation (for a review article see 
Singer & Gray, 1995). Accordingly, some theorists propose 
that synchrony is the neural mechanism underlying binding 
within their models (Grossberg & Somers, 1991; Hummel 
& Biederman, 1992; Treisman, 1996).

In support of these ideas, numerous simulations and 
proofs demonstrate the ease with which coupled oscillators 
readily achieve a synchronous state. Synchrony has been 
demonstrated for leaky integrate and fire models of neurons 
which couple by discrete activation changes (Gomez & 
Budelli, 1996; Mirollo & Strogatz, 1990), simple sinusoidal 
oscillators coupling through phase pulling (Lumer & 
Huberman, 1992), two variable relaxation oscillators with 
continual coupling (Grossberg & Somers, 1991), and 
models implementing multiple ion currents through 
Hodgkin-Huxley style gating terms (Golomb, Wang, &

Rinzel, 1994; Demir, Butera, DeFranceschi, Clark, & 
Byrne, 1997).

The wide range of models and conditions under which 
synchrony results suggests that synchronous oscillations 
might be unavoidable. Virtually universal synchrony would 
not serve a useful function and might predict almost 
universal epilepsy (for classic work on synchrony and 
epilepsy see Jasper & Kershman, 1941). In this article I 
provide evidence that the buildup and propagation of action 
potentials along nerve fibers substantially limit the range of 
conditions under which synchrony develops.

B ehavior o f  a Single Cell 

Choosing a Model

Somers and Kopell (1993; 1995) provide mathematical 
proofs that the group of models termed relaxation 
oscillators, referring to systems operating with variables on 
different time scales, synchronize more readily than other 
models. Their theorems are specific to two variable 
oscillators such as the Morris-Lecar (Morris & Lecar, 1981) 
or Fitzhugh-Nagumo (Fitzhugh, 1961; Nagumo, Arimoto, & 
Yoshizawa, 1962) models, but are relevant to the four 
variable Hodgkin-Huxley equations (Hodgkin & Huxley, 
1952) which the two variable models approximate. 
Essentially these relaxation oscillators easily synchronize 
since small impulses cause multiple cells to immediately 
and synchronously “fire” due to rapid threshold 
modulations. This situation can arise even between cells of 
differing frequencies since the fast variable (i.e. Na+ gating) 
is unchanged with frequency.

In order to demonstrate that inclusion of spatial 
propagation provides an important constraint on synchrony 
development, I select one of these relaxation oscillators. 
Rather than working with the four variable Hodgkin-Huxley 
equations, I choose the two variable Fitzhugh-Nagumo 
model. Limiting the situation to two variables allows for a 
qualitative accounting of behavior through phase portrait 
analyses.

Fitzhugh-Nagumo Model without Propagation

The Fitzhugh-Nagumo model was independently derived 
by Fitzhugh (Fitzhugh, 1961) and Nagumo (Nagumo, 
Arimoto, & Yoshizawa, 1962) from the Hodgkin-Huxley 
equations by assuming that Na+ gating is instantaneous and 
lumping K+ gating, leakage currents, and ATP pump action
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into a single recovery variable. As a simplification of ion 
currents, it is inadequate for quantitative modeling yet 
sufficiently captures the dynamics for the present situation.

The assumption for Na+ gating results in a cubic 
expression for thresholding on membrane potential. This is 
the fast variable, v, whose actions are dictated by the partial 
differential equation:

-  -v (v  -  6 ) ( v  -1 )  -  w + { /}  (1)

in which v is the membrane potential (measured in arbitrary 
units so the term voltage is avoided), w is a recovery 
variable, 6 is the threshold parameter (O<0<1 fixed at .2 for 
all simulations), and {/} is any external driving currents or 
synaptic input. The slow recovery variable, w, is 
determined by the partial differential equation:

dw
—  =  e ( v - y w )  (2)

in which e is the coupling parameter between membrane 
potential and recovery (0<£«1), and y is a shunt parameter 
(fixed at 2.5 for all simulations) placing a maximum on 
recovery growth. Since £ determines the time scale for w, it 
is used to run the model at different frequencies.

One way to analyze the behavior of dynamical systems 
is with a phase portrait. This is a graph (see Figure 1) 
representing the change in each variable by a vector (arrow) 
as a function of the current values for each variable. In this 
graph there is no momentum and subsequent values for the 
variables are completely determined by their present values. 
An aid for interpreting phase portraits is the portrayal of 
isoclines. These are lines along which one of the variables 
does not change. Isoclines are derived by setting the partial 
differential equations equal to zero. For equations 1 and 2, 
this produces:

w  = (1 + 0) ~ vO + {/} (3)
for the membrane potential (v) isocline and:

for the recovery (w) isocline.
Figure 1 shows the phase portrait when the model is 

driven with an input of /=. 112. This corresponds to a real 
neuron which is fully activated by synaptic long lasting 
input. For a range of constant inputs (see Figure 2), the 
model will display this limit cycle behavior. Limit cycle 
behavior is characterized by a repelling fixed point. A fixed 
point is any location where the isoclines cross resulting in 
no change in either variable. With the exception of starting 
at the fixed point, a cell placed at any other combination of 
membrane potential and recovery will ultimately relax onto 
the gray line representing a path of continual oscillations. 
This is the limit cycle.

For somewhat lesser or greater values of constant input, 
the membrane potential isocline (eq. 3) will correspondingly 
shift downwards or upwards and the cell will enter an 
attractor state. In an attractor state, a cell placed at any

combination of membrane potential and recovery will 
ultimately end up at the fixed point and oscillations will 
cease (see Figure 2). A cell at rest (7=0) would be an 
example of this. The cell will remain at rest indefinitely. 
However, the cubic thresholding allows that a small 
temporary input to the cell will cause it to cycle a single 
time and then return to its resting point. This is in keeping 
with real neurons at rest with some spontaneous firing due 
to random fluctuations in input.

membrane potential (v)

Figure 1. Phase portrait for limit cycle behavior in the 
Fitzhugh-Nagumo model without propagation. The gray 
line is the limit cycle (£^=.00216; Period=300) and flow in 
the recovery direction is magnified 10X.

In order to measure synchronous behavior or even record 
the frequency of a cell, an explicit firing criterion is needed. 
I have chosen the membrane potential corresponding to the 
right hand peak of the membrane potential isocline. For a 
cell to reach the right hand branch of the membrane 
potential isocline, it is necessary to cross this criterion. This 
is analogous to recording voltage fluctuations in a real 
neuron and using a voltage criterion for determining the 
exact moment when a cell fires.

Adding Spatial Propagation
All of the previously mentioned models (including the 

Fitzhugh-Nagumo model) are expressions of inward and 
outward currents (i.e. radial currents) for any arbitrary point 
along the axon. The models disregard current in the 
direction of the axon (i.e. axial current). Radial currents are 
due to voltage gated or leakage ion channels and the actions 
of ATP pumps. In order to relate these radial currents to 
axial current, a simple two step derivation has been 
developed by applying conservation of charge and Ohm’s
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law (Fitzhugh, 1962; Jurisic, 1987). This leads to the 
following expression:

d c (y )v  r  d  v

~ a T  = 2 r ^ t + j '
(5)

where the variable jc is position along the axon, c is 
membrane capacitance (which can by a function of the 
membrane potential), r is axon radius, R is resistance of the 
axoplasm, and Jr is radial current. This is a very general 
expression and any of the previously mentioned models for 
radial current could be used to replace Jr.

In deriving an expression for radial current, Hodgkin and 
Huxley (1952) used empirical data obtained with a voltage 
clamped neuron. With this technique the voltage at each 
position along the axon is kept at a fixed value through a 
feedback loop. For this reason the second derivative of v 
with respect to x is assumed to be zero. Based upon these 
condition, the Hodgkin-Huxley model and others similar to 
it are only appropriate for explaining the nature of voltage 
clamped data. In order to capture the true buildup and 
propagation of an action potential it is necessary to consider 
the spatial variable as well.

The equations are kept relatively simple by assuming 
capacitance is minimally dependent upon membrane 
potential and is set to one. Similarly, the expression r/2R is 
set to one yielding the following equation for change in the 
membrane potential within the Fitzhugh-Nagumo 
framework:

dv_
d t

d 2 V  r ,
— 2 -  v ( v - 0 ) ( v - l ) - w  + {**=<)} (6)
ox

The axon hillock is placed at position x=0. This is the 
only position receiving external input. Every other position 
remains at rest except for changes initiated by axial 
currents. The equation for the partial differential of 
recovery with respect to time is the same as before (eq 2) 
and is applied separately at each position along the axon. 
Insulated boundary conditions are assumed and the partial 
differential with respect to x is solved through a spatially 
centered difference scheme with step size 1.0. Partial 
differential equations with respect to time are calculated 
using a forward difference scheme with fixed step size .25.

As shown in Figure 2, the behavior of the model for 
different amplitude inputs radically changes with the 
addition of propagation. Larger inputs are needed to yield 
constant oscillations due to a spreading out of injected 
charge as dictated by the second order spatial differential. 
Additionally, the range over which a cell oscillates is 
increased. Without propagation, the Fitzhugh-Nagumo 
model has strong symmetry and its behavior is similar for 
different frequency cells (i.e. different £’s). With the 
inclusion of propagation, non-linearities appear for larger 
amplitudes. Most significantly, the behavior is no longer 
consistent for different frequencies.

Figure 3 shows that period is proportional to l/£ for both 
types of simulations. The graph without propagation was

determined with the frequency maximizing input of 7=.112. 
A range of £’s was chosen based upon this figure such that 
the slowest cell has a period of 400 time units and the 
fastest cell a period of 200 time units. This is the range 
used in the next section for a grid of cells. For the inclusion 
of propagation, it is not clear what input is appropriate for 
maximizing frequency since, as seen in Figure 2, cells 
respond differently with different £’s. The value of /=.25 
was chosen because it is below the first major non-linearity 
for both the maximum and minimum e’s.

6x1 o3

4x10-3

2x10-3

o

§ o
D" 6x1 O'3 (1)

4x103

2x1 O'3

w ith o u t D roD aaation

r \
-----  W = 00357
•••• -00155

w ith D roD aaation

r

0.0 0.2 0.4 0.6
constant input {/}

Figure 2. Resultant frequencies from driving a cell with a 
range of constant inputs. Curves are shown for the 
maximum (emax) and minimum (emin) frequency cells.

The reason for analyzing behavior in terms of period 
instead of frequency is to compare refractory period to 
baseline period. Refractory period is assessed by driving a 
cell with a sinusoidally varying input of the same amplitude 
as the constant baseline input. The period of oscillation for 
the sinusoidal input was systematically varied from zero up 
to a value corresponding the baseline period. The shortest 
period for constant firing was recorded as a rough estimate 
of refractory period. For simulations with propagation, 
firing is determined at the end of the axon (x=19). An 
oscillation occurring at x=0 is irrelevant unless it is capable 
of producing an action potential which traverses the entire 
length of the axon.

For a cell without propagation, the refractory period is 
around 50 time units and remains at this level regardless of 
£. Essentially, the cell has no refractory period without 
propagation. If a sinusoidal driving input of a larger 
amplitude is applied, the refractory period can be reduced
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further. T h is is  not the ca se  for  a c e ll w ith  propagation . 
H ere the refractory p eriod  is p roportional to  the b a se lin e  
period  and is ab so lu te . E ven  a very  large input is incap ab le  
o f  p ro v o k in g  an action  p oten tia l during the refractory  
p eriod . A t the p o in t w h ere the refractory period  and  
b a se lin e  period  co n v erg e , the ce ll b e c o m e s  n o n -v ia b le  and  
o sc illa tio n s  cea se . A s £ is set to  larger va lu es , reco v ery  can  
p reven t the axon  from  p rod u cin g  any action  p oten tia ls ev en  
th ou gh  o sc illa tio n s  are still p ro v o k ed  at the axon  h illo ck .

200 400 600 800 1000
inverse of epsilon (1/e)

F igure 3. B a se lin e  and refractory p er iod s for c e lls  w ith  

d ifferen t natural freq u en c ies  (i.e . d ifferen t £’s).

Behavior of a Grid of Cells

For a sse ss in g  syn ch ron y , a grid o f  11 X  11 c e lls  w as  
sim u lated  w ith  d ifferen t d eg rees o f  co n n ectiv ity . A t on e  
extrem e, each  c e ll co m m u n ica ted  w ith  its 8  im m ed iate  
n eigh b ors (lo ca l co n n ec tiv ity ) . A t the other extrem e every  
c e ll co m m u n ica ted  w ith  ev ery  other c e ll (fu ll co n n ectiv ity ). 
For loca l co n n ec tiv ity  the en d s o f  the grid w ere co n n ected  
to form  a torus thus a v o id in g  e d g e  e ffec ts . A ll the ce lls  
w ere driven  w ith  a con stan t b a se lin e  input ( /=  . 1 1 2  w ith ou t  
p ropagation  and /= .2 5  w ith  propagation ). F or every  
sim u la tion , c e lls  w ere p la ced  at random ly  determ ined  
p o sitio n s  a lo n g  their lim it c y c le s  to  p la ce  the grid in a 
co m p lete ly  a syn ch ron ou s state. T h e o n ly  m eans for  
sy n ch ron iza tion  w a s through im p u lses d e liv ered  b etw een  
c e lls  w ith  each  p a ss in g  o f  their fir in g  criteria.

A s  w ith  co m m u n ica tio n  b etw een  real neurons, th ese  
im p u lses w ere  e x p o n en tia lly  d eca y in g  inputs. T h e n o n -

com m itta l term  im p u lse  is  u sed  s in ce  the e ffe c t  o f  o n e  ce ll 
on another m igh t b e d u e to  neurotransm itter gated  ion  
ch an n els or d irect e lec tr ica l co u p lin g  (i.e . gap  ju n ctio n s). 
F or each  c e ll the to ta lity  o f  its input { /}  w as the b a se lin e  
input p lus the su m  o f  the in co m in g  im p u lses . For each  
sim u la tion , th ese  im p u lses w ere  o f  a f ix e d  am plitude and  
ex p o n en tia l d eca y  rate. In d iv id u a l am plitudes w ere  
d eterm ined  by  d iv id in g  total am plitude by the num ber o f  
co n n ected  c e lls . In other w ord s, am plitude w as d iv id ed  by  
8  for  lo ca l co n n ec tiv ity  and 12 0  fo r  fu ll co n n ectiv ity . T h is  
eq u ates the co n n ec tiv ity  co n d itio n s  for  a fu lly  syn ch ron ized  
grid. 1 0 0  s im u la tio n s w ere  p erform ed  w ith  variations o f  
total im p u lse  am plitude from  .1 to  1 . 0  in increm ents o f  .1 

co m b in ed  w ith  variations in average  im p u lse  duration from  
25  to 2 5 0  in in crem en ts o f  2 5 . E ach  o f  the bars sh o w n  in 
F igure 4  is a veraged  across th ese  100  am plitude/duration  
com b in a tio n s .

Im p u lse  am plitudes w ere  e ither ex c ita tory  (p o s itiv e ) or 
inh ib itory  (n eg a tiv e ) and sim u la tio n s w ere  run w ith  

id en tica l (sa m e £) or n o n -id en tica l c e lls  (d ifferen t £’s). For  

the n o n -id en tica l c e lls , £’s w ere  ch o sen  accord in g  to the 
p r ev io u s ly  m en tio n ed  range w ith  p er iod s from  2 0 0  to  4 0 0  in 
equal increm ents. T h e actual lo ca tio n  o f  each  o f  these  
d ifferen t c e lls  w a s random ly  d eterm ined .

S yn ch ron y  w as m easured  in the sam e m anner fou n d  in 
the s in g le  ce ll record ing  literature. A u to -corre logram s w ere  
com p u ted  w ith  b ins o f  5 tim e units for  ev ery  ce ll and then  
averaged . C ro ss-corre logram s b etw een  ev ery  c e ll and every  
other c e ll w ere  ca lcu la ted  and then averaged . A fter  an 
in itia l 1 0 0 0  tim e unit period , c e ll fir in g  tim es w ere recorded  
for  2 5 6 0  tim e units. R eco rd in g  tw o  sim u la tion s for  each  
co n d itio n  a llo w e d  for the ca lcu la tio n  o f  sh ift pred ictors to  
n orm alize  correlogram s for  random  m atch in g  (see  S in g er  &  
G ray, 1995  for  a d isc u ss io n  o f  all th ese  m easures). 
S yn ch ron y  w a s d eterm in ed  b y  tak ing the sum  o f  the zero  
centered  3 b in s in the averaged  cross-corre logram  and  
d iv id in g  by  the zero  cen tered  bin o f  the auto-correlogram . 
I f  all the c e lls  fired  w ith in  15 tim e units o f  o n e  another, this 
w o u ld  be m easured  as p erfect syn ch ron y  (ratio o f  1). It 
sh ou ld  be n oted  that th is is a m easure o f  g lob a l syn ch ron y  
for  the entire grid and w o u ld  under represent a situation  o f  
separate sy n ch ro n o u s grou p s o f  neurons p la ced  at e v en ly  
sp aced  ph ase re la tio n sh ip s.

For sim u la tio n s w ith  spatia l propagation , ev ery  c e ll had  
an axon  o f  len gth  2 0 . P erhaps a m ore rea listic  assum ption  
w o u ld  be to vary axon  len gth  w ith  the separate d istan ces for  
each  co n n ectio n . T h is w o u ld  serv e  to  further d im in ish  w hat 
turned out to  b e greatly  red u ced  syn ch ron iza tion .
T he four sets o f  resu lts seen  in F igure 4  stem  from  three  
co n d itio n s w ith o u t the in c lu sio n  o f  p ropagation  and a fourth  
w ith  propagation . T h e immediate co n d itio n  is the standard  
F itzh u g h -N a g u m o  m o d el w ith  im m ed ia te  d e liv ery  o f  
im p u lses b e tw een  c e lls . T h is  co n d itio n  is sim ilar to m uch  
o f  the p rev io u s w ork  on  sy n ch ro n y  d ev e lo p m en t. In the 
d ela y  co n d itio n , the b asic  m o d el is au gm en ted  w ith  a d elay  
o f  6 0  tim e units w h ich  is ap p rox im ate ly  the tim e it takes for
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p ropagation  d o w n  an axon  o f  len gth  2 0 . T h e delay+ ref 
co n d itio n  is a further au gm en tation  through the in c lu sio n  o f  
refractory period s as d ictated  by  the resu lts in F igure 3 for  a 
c e ll w ith  propagation .
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excitatory<->local 
l i inhibitory<->local

n
non-identical cells

I.  i
immediate delay delay+ref propagate

F igure 4 . S yn ch ron y  resu lts. E ach  bar is averaged  across  
1 0 0  co m b in a tio n s o f  im p u lse  am plitude and im p u lse  
duration.

Variables Affecting Synchronization 

Propagation
A p p rox im atin g  the fu ll sca le  propagate sim u lation  w ith  

the add ition  o f  d e la y s and refractory p eriod s in d u ced  the  
sam e ordering o f  co n d itio n s, yet syn ch ron iza tion  is 
substantia lly  le ss  for  the propagate s im u lation . E x p lic it  
d ela y s and refractory p eriod s are inadequate for capturing  
so m e o f  the n on -lin earities in v o lv e d  in propagation . For  
in stan ce, refractory p eriod  is m ore appropriately a dynam ic  
construct. R ecen t fa iled  attem pts at propagation  can b lo ck  
su b seq u en t action  p oten tia ls a lm o st as stron g ly  as recent 
su ccessfu l action  p oten tia ls . In so m e sen se  there is  a 
dyn am ic m em ory to the axon . A n oth er ex a m p le  o f  dynam ic  
n on -lin earity  is fou n d  w ith  d ela y  tim e. W h ile  a con tin u a lly  
firing  c e ll has a d e la y  tim e o f  6 0  tim e units, a fu lly  
recovered  resting  c e ll is cap ab le  o f  p ropagation  in 4 0  tim e  
units.

T h ese  and other an ecd ota l accou n ts are p rovid ed  by  
w atch in g  tw o  real tim e com p u ter graph ics program s  
d ev e lo p ed  to an a ly ze  the c e lls  w ith in  a p h ase portrait and a 
x v s . v/w p lot.

Inhibition vs. Excitation
R ep lica tin g  p rev io u s w ork , the grid  read ily  syn ch ron ized  

for immediate ex c ita to ry  co u p lin g  for both  id entica l and  
n o n -id en tica l c e lls . T h is w as regard less o f  co n n ectiv ity . In 
contrast, any sort o f  inh ib itory  co u p lin g  greatly  d im in ish ed  
syn ch ron iza tion  in the immediate co n d itio n . In retrospect 
th is is n o t surprising. I f  there is any distribution  in firing  
tim es the m essa g e  by  the lead  c e lls  to  the fo llo w ers  w ill be  
to not fire m ak ing co h eren cy  o f  the group d ifficu lt. T he  
addition  o f  a d e la y , w h eth er it be ex p lic it  or through  
p ropagation , puts ex c ita tio n  and in h ib ition  on equal grounds 
for id en tica l c e lls .

For n o n -id en tica l c e lls , the im p o sitio n  o f  a d elay  ca u ses  
inh ib ition  to produce greater syn ch ron y  than excita tion . For  
variab le freq u en cy  c e lls , the spread ing out o f  the group  
during reco v ery  is  a v o id ed  w ith  inh ib ition . W ithout  
inh ib ition  the faster  c e lls  w o u ld  reco v er  m ore q u ick ly  and  
fire earlier, w h ereas the d y n a m ics o f  an in h ib itin g  im p u lse  
override and the group is q u ie scen t until re leased  from  
inh ib ition .

Local vs. Full Connectivity
T he overa ll e ffe c t  for  ex ten t o f  co n n ec tiv ity  is a reduction  

in syn ch ron iza tion  w ith  lo ca l co n n ec tio n s . T h is patterns 
h old  true across all the variab les and is due to increased  
input variab ility  w ith  lo ca l co n n ec tio n s . For the ca se  o f  fu ll 
co n n ec tiv ity  ev ery  c e ll in the grid ex p er ien ces  ex a ctly  the 
sam e input at ev ery  p o in t in tim e. T h is is in contrast to the 
situation  for  loca l c o n n ec tiv ity  w h ich  is equated  in term s o f  
average input but n ot variab ility . For lo ca l co n n ectiv ity  
each  c e ll is fo llo w in g  a u n ique d yn am ics as d ictated  by its 
particular c o lle c tio n  o f  recent in co m in g  im p u lses .

Frequency Variability (non-identical cells)
In gen eral there w a s a reduction  in syn ch ron iza tion  for  

the n o n -id en tica l (variab le  freq u en cy ) sim u la tion s. T h is  
reduction  is m ore p ron ou n ced  for  the three co n d itio n s  
in c lu d in g  a d e lay  (delay, del+ref  and propagate) w ith  the  
notab le  ex cep tio n  o f  fu lly  co n n ec ted  inh ib itory co u p lin g . 
T he p rev io u s ly  m en tion ed  interaction  b etw een  freq u en cy  
variab ility  and in h ib itio n /ex c ita tio n  a ccou n ts for th is 
ex cep tio n . Inhib ition  p ro v id es a m ore co n sisten t overrid ing  
d yn am ics for fu ll co n n ec tiv ity  s in ce  it is guaranteed that 
every  c e ll w ill be re lea sed  from  in h ib ition  at the sam e tim e.

Plausible Correspondences to Real Synapses
T h e b io lo g ic a lly  p la u sib le  scen ario  for co u p lin g  through  

ch em ica l (i.e . neurotransm itter m ed iated ) syn ap ses is the  
ca se  o f  n o n -id en tica l c e lls  in the propagate con d ition . For  
th ese  s im u la tion s, sy n ch ron iza tion  w as a lm ost n o n ex isten t  
for  lo ca l co n n ec tiv ity . Furtherm ore, fu lly  co n n ected  
inh ib itory co u p lin g  prod u ced  greater sy n ch ron iza tion  than 
excita tory  co u p lin g . T h is resu lt is in k eep in g  w ith  recent
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reports implicating the inhibitor GABA in the development 
of synchrony (MacLeod & Laurent, 1996).

The appropriate scenario for electrical synapses (gap 
junctions) is locally connected excitatory coupling for non-
identical cells in the immediate condition. Gap junction 
impulses are always excitatory and only between neighbors. 
This kind of synapse results from direct links between 
adjacent cell bodies making the simulation of propagation 
irrelevant. Gap junctions are primarily found in low level 
sensory areas, such as the retina, where cells are densely 
packed together. In agreement with studies of cells 
connected through electrical synapses (Neuenschwander & 
Singer, 1996), synchronization was sizable for this 
simulation.

Conclusions

These simulations demonstrate that the buildup and 
propagation of action potentials are an important 
consideration in analyzing boundary conditions for 
synchrony development. Propagation is marginally 
approximated through the inclusion of explicit delay times 
and refractory periods, yet only a full simulation with a 
spatial variable and its resulting non-linearities can account 
for the diminished range of conditions leading to 
synchronization. Now that a plausible model has been 
developed which fails to synchronize except in certain 
situations, the search for architectures resulting in stimulus 
specific synchronization can be initiated.
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