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Abstract

Several theorists in perception, attention, and memory have
suggested that temporal correlation in neural firing patterns
(synchrony) could play an important role in processing and
learning. Recent neuropsychological evidence demonstrates
the wide spread occurrence of synchrony and its stimulus
specific nature. Numerous proofs and simulations have
demonstrated the ease with which synchrony develops.
However, ease of development could be a problem since
synchrony is the mechanism behind abnormal processing in
epileptic seizures. Previous modeling ignores the role of
spatial propagation along the axon. Comparing simulations
with and without propagation for a biologically plausible
model of neural oscillations, I show that synchrony is far less
liable to occur. Using a grid of fully activated cells, the extent
of connectivity, impulse amplitude and duration, and natural
frequency variability are examined: synchrony is
substantially diminished when propagation is included.

Introduction

A long standing problem in theories of information
processing is the lack of adequate mechanisms for binding
together separate components of a stimulus or memory.
Traditionally, theorists have proposed high-level abstract
models to deal with this "binding problem" without
appealing to the neural substrate of processing (Biederman,
1987; Carpenter & Grossberg, 1988; Treisman & Gelade,
1980). Recent evidence demonstrates that the temporal
correlation of neural firing patterns (synchrony) exists in
many species under conditions of normal behavior and is
stimulus specific in its elicitation (for a review article see
Singer & Gray, 1995). Accordingly, some theorists propose
that synchrony is the neural mechanism underlying binding
within their models (Grossberg & Somers, 1991; Hummel
& Biederman, 1992; Treisman, 1996).

In support of these ideas, numerous simulations and
proofs demonstrate the ease with which coupled oscillators
readily achieve a synchronous state. Synchrony has been
demonstrated for leaky integrate and fire models of neurons
which couple by discrete activation changes (Gomez &
Budelli, 1996; Mirollo & Strogatz, 1990), simple sinusoidal
oscillators coupling through phase pulling (Lumer &
Huberman, 1992), two variable relaxation oscillators with
continual coupling (Grossberg & Somers, 1991), and
models implementing multiple ion currents through
Hodgkin-Huxley style gating terms (Golomb, Wang, &

Rinzel, 1994; Demir, Butera, DeFranceschi, Clark, &
Byrne, 1997).

The wide range of models and conditions under which
synchrony results suggests that synchronous oscillations
might be unavoidable. Virtually universal synchrony would
not serve a useful function and might predict almost
universal epilepsy (for classic work on synchrony and
epilepsy see Jasper & Kershman, 1941). In this article 1
provide evidence that the buildup and propagation of action
potentials along nerve fibers substantially limit the range of
conditions under which synchrony develops.

Behavior of a Single Cell

Choosing a Model

Somers and Kopell (1993; 1995) provide mathematical
proofs that the group of models termed relaxation
oscillators, referring to systems operating with variables on
different time scales, synchronize more readily than other
models. Their theorems are specific to two variable
oscillators such as the Morris-Lecar (Morris & Lecar, 1981)
or Fitzhugh-Nagumo (Fitzhugh, 1961; Nagumo, Arimoto, &
Yoshizawa, 1962) models, but are relevant to the four
variable Hodgkin-Huxley equations (Hodgkin & Huxley,
1952) which the two variable models approximate.
Essentially these relaxation oscillators easily synchronize
since small impulses cause multiple cells to immediately
and synchronously “fire” due to rapid threshold
modulations. This situation can arise even between cells of
differing frequencies since the fast variable (i.e. Na+ gating)
is unchanged with frequency.

In order to demonstrate that inclusion of spatial
propagation provides an important constraint on synchrony
development, I select one of these relaxation oscillators.
Rather than working with the four variable Hodgkin-Huxley
equations, I choose the two variable Fitzhugh-Nagumo
model. Limiting the situation to two variables allows for a
qualitative accounting of behavior through phase portrait
analyses.

Fitzhugh-Nagumo Model without Propagation

The Fitzhugh-Nagumo model was independently derived
by Fitzhugh (Fitzhugh, 1961) and Nagumo (Nagumo,
Arimoto, & Yoshizawa, 1962) from the Hodgkin-Huxley
equations by assuming that Na+ gating is instantaneous and
lumping K+ gating, leakage currents, and ATP pump action
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into a single recovery variable. As a simplification of ion
currents, it is inadequate for quantitative modeling yet
sufficiently captures the dynamics for the present situation.

The assumption for Na+ gating results in a cubic
expression for thresholding on membrane potential. This is
the fast variable, v, whose actions are dictated by the partial
differential equation:

o (1)
in which v is the membrane potential (measured in arbitrary
units so the term voltage is avoided), w is a recovery
variable, 0 is the threshold parameter (0<6<1 fixed at .2 for
all simulations), and {I} is any external driving currents or
synaptic input. The slow recovery variable, w, is
determined by the partial differential equation:
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5~ Ev—mw)
in which € is the coupling parameter between membrane
potential and recovery (0<é<<1), and ¥ is a shunt parameter
(fixed at 2.5 for all simulations) placing a maximum on
recovery growth. Since € determines the time scale for w, it
is used to run the model at different frequencies.

One way to analyze the behavior of dynamical systems
is with a phase portrait. This is a graph (see Figure 1)
representing the change in each variable by a vector (arrow)
as a function of the current values for each variable. In this
graph there is no momentum and subsequent values for the
variables are completely determined by their present values.
An aid for interpreting phase portraits is the portrayal of
isoclines. These are lines along which one of the variables
does not change. Isoclines are derived by setting the partial
differential equations equal to zero. For equations 1 and 2,
this produces:
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for the membrane potential (v) isocline and:
w="Y @
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for the recovery (w) isocline.

Figure 1 shows the phase portrait when the model is
driven with an input of /=.112. This corresponds to a real
neuron which is fully activated by synaptic long lasting
input. For a range of constant inputs (see Figure 2), the
model will display this limit cycle behavior. Limit cycle
behavior is characterized by a repelling fixed point. A fixed
point is any location where the isoclines cross resulting in
no change in either variable. With the exception of starting
at the fixed point, a cell placed at any other combination of
membrane potential and recovery will ultimately relax onto
the gray line representing a path of continual oscillations.
This is the limit cycle.

For somewhat lesser or greater values of constant input,
the membrane potential isocline (eq. 3) will correspondingly
shift downwards or upwards and the cell will enter an
attractor state. In an attractor state, a cell placed at any
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combination of membrane potential and recovery will
ultimately end up at the fixed point and oscillations will
cease (see Figure 2). A cell at rest (/=0) would be an
example of this. The cell will remain at rest indefinitely.
However, the cubic thresholding allows that a small
temporary input to the cell will cause it to cycle a single
time and then return to its resting point. This is in keeping
with real neurons at rest with some spontaneous firing due
to random fluctuations in input.
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Figure 1. Phase portrait for limit cycle behavior in the
Fitzhugh-Nagumo model without propagation. The gray
line is the limit cycle (£=.00216; Period=300) and flow in
the recovery direction is magnified 10X.

In order to measure synchronous behavior or even record
the frequency of a cell, an explicit firing criterion is needed.
I have chosen the membrane potential corresponding to the
right hand peak of the membrane potential isocline. For a
cell to reach the right hand branch of the membrane
potential isocline, it is necessary to cross this criterion. This
is analogous to recording voltage fluctuations in a real
neuron and using a voltage criterion for determining the
exact moment when a cell fires.

Adding Spatial Propagation

All of the previously mentioned models (including the
Fitzhugh-Nagumo model) are expressions of inward and
outward currents (i.e. radial currents) for any arbitrary point
along the axon. The models disregard current in the
direction of the axon (i.e. axial current). Radial currents are
due to voltage gated or leakage ion channels and the actions
of ATP pumps. In order to relate these radial currents to
axial current, a simple two step derivation has been
developed by applying conservation of charge and Ohm’s



law (Fitzhugh, 1962; Jurisic, 1987). This leads to the

following expression:
vy r 9%y
o 2R gx?
where the variable x is position along the axon, c¢ is
membrane capacitance (which can by a function of the
membrane potential), r is axon radius, R is resistance of the
axoplasm, and J, is radial current. This is a very general
expression and any of the previously mentioned models for
radial current could be used to replace J,.

In deriving an expression for radial current, Hodgkin and
Huxley (1952) used empirical data obtained with a voltage
clamped neuron. With this technique the voltage at each
position along the axon is kept at a fixed value through a
feedback loop. For this reason the second derivative of v
with respect to x is assumed to be zero. Based upon these
condition, the Hodgkin-Huxley model and others similar to
it are only appropriate for explaining the nature of voltage
clamped data. In order to capture the true buildup and
propagation of an action potential it is necessary to consider
the spatial variable as well.

The equations are kept relatively simple by assuming
capacitance is minimally dependent upon membrane
potential and is set to one. Similarly, the expression /2R is
set to one yielding the following equation for change in the

+J, (5)

membrane potential within the  Fitzhugh-Nagumo
framework:

v 9%

v vv=0)v-D-w+{I,—o} ®

The axon hillock is placed at position x=0. This is the
only position receiving external input. Every other position
remains at rest except for changes initiated by axial
currents. The equation for the partial differential of
recovery with respect to time is the same as before (eq 2)
and is applied separately at each position along the axon.
Insulated boundary conditions are assumed and the partial
differential with respect to x is solved through a spatially
centered difference scheme with step size 1.0. Partial
differential equations with respect to time are calculated
using a forward difference scheme with fixed step size .25.

As shown in Figure 2, the behavior of the model for
different amplitude inputs radically changes with the
addition of propagation. Larger inputs are needed to yield
constant oscillations due to a spreading out of injected
charge as dictated by the second order spatial differential.
Additionally, the range over which a cell oscillates is
increased. ~ Without propagation, the Fitzhugh-Nagumo
model has strong symmetry and its behavior is similar for
different frequency cells (i.e. different €'s). With the
inclusion of propagation, non-linearities appear for larger
amplitudes. Most significantly, the behavior is no longer
consistent for different frequencies.

Figure 3 shows that period is proportional to 1/¢ for both
types of simulations. The graph without propagation was
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determined with the frequency maximizing input of I=.112.
A range of €'s was chosen based upon this figure such that
the slowest cell has a period of 400 time units and the
fastest cell a period of 200 time units. This is the range
used in the next section for a grid of cells. For the inclusion
of propagation, it is not clear what input is appropriate for
maximizing frequency since, as seen in Figure 2, cells
respond differently with different £&s. The value of [=.25
was chosen because it is below the first major non-linearity
for both the maximum and minimum ¢€’s.
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Figure 2. Resultant frequencies from driving a cell with a
range of constant inputs. Curves are shown for the
maximum (€,,x) and minimum (€, frequency cells.

The reason for analyzing behavior in terms of period
instead of frequency is to compare refractory period to
baseline period. Refractory period is assessed by driving a
cell with a sinusoidally varying input of the same amplitude
as the constant baseline input. The period of oscillation for
the sinusoidal input was systematically varied from zero up
to a value corresponding the baseline period. The shortest
period for constant firing was recorded as a rough estimate
of refractory period. For simulations with propagation,
firing is determined at the end of the axon (x=19). An
oscillation occurring at x=0 is irrelevant unless it is capable
of producing an action potential which traverses the entire
length of the axon.

For a cell without propagation, the refractory period is
around 50 time units and remains at this level regardless of
€. Essentially, the cell has no refractory period without
propagation. If a sinusoidal driving input of a larger
amplitude is applied, the refractory period can be reduced



further. This is not the case for a cell with propagation.
Here the refractory period is proportional to the baseline
period and is absolute. Even a very large input is incapable
of provoking an action potential during the refractory
period. At the point where the refractory period and
baseline period converge, the cell becomes non-viable and
oscillations cease. As € is set to larger values, recovery can
prevent the axon from producing any action potentials even
though oscillations are still provoked at the axon hillock.

without propaggtion
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‘ €'s used in simulations
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inverse of epsilon (1/¢)
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Figure 3. Baseline and refractory periods for cells with
different natural frequencies (i.e. different €’s).

Behavior of a Grid of Cells

For assessing synchrony, a grid of 11 X 11 cells was
simulated with different degrees of connectivity. At one
extreme, each cell communicated with its 8 immediate
neighbors (local connectivity). At the other extreme every
cell communicated with every other cell (full connectivity).
For local connectivity the ends of the grid were connected
to form a torus thus avoiding edge effects. All the cells
were driven with a constant baseline input (/=.112 without
propagation and /=25 with propagation). For every
simulation, cells were placed at randomly determined
positions along their limit cycles to place the grid in a
completely asynchronous state. The only means for
synchronization was through impulses delivered between
cells with each passing of their firing criteria.

As with communication between real neurons, these
impulses were exponentially decaying inputs. The non-
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committal term impulse is used since the effect of one cell
on another might be due to neurotransmitter gated ion
channels or direct electrical coupling (i.e. gap junctions).
For each cell the totality of its input {/} was the baseline
input plus the sum of the incoming impulses. For each
simulation, these impulses were of a fixed amplitude and
exponential decay rate. Individual amplitudes were
determined by dividing total amplitude by the number of
connected cells. In other words, amplitude was divided by
8 for local connectivity and 120 for full connectivity. This
equates the connectivity conditions for a fully synchronized
grid. 100 simulations were performed with variations of
total impulse amplitude from .1 to 1.0 in increments of .1
combined with variations in average impulse duration from
25 to 250 in increments of 25. Each of the bars shown in
Figure 4 is averaged across these 100 amplitude/duration
combinations.

Impulse amplitudes were either excitatory (positive) or
inhibitory (negative) and simulations were run with
identical (same €) or non-identical cells (different €’s). For
the non-identical cells, €'s were chosen according to the
previously mentioned range with periods from 200 to 400 in
equal increments. The actual location of each of these
different cells was randomly determined.

Synchrony was measured in the same manner found in
the single cell recording literature. Auto-correlograms were
computed with bins of 5 time units for every cell and then
averaged. Cross-correlograms between every cell and every
other cell were calculated and then averaged. After an
initial 1000 time unit period, cell firing times were recorded
for 2560 time units. Recording two simulations for each
condition allowed for the calculation of shift predictors to
normalize correlograms for random matching (see Singer &
Gray, 1995 for a discussion of all these measures).
Synchrony was determined by taking the sum of the zero
centered 3 bins in the averaged cross-correlogram and
dividing by the zero centered bin of the auto-correlogram.
If all the cells fired within 15 time units of one another, this
would be measured as perfect synchrony (ratio of 1). It
should be noted that this is a measure of global synchrony
for the entire grid and would under represent a situation of
separate synchronous groups of neurons placed at evenly
spaced phase relationships.

For simulations with spatial propagation, every cell had
an axon of length 20. Perhaps a more realistic assumption
would be to vary axon length with the separate distances for
each connection. This would serve to further diminish what
turned out to be greatly reduced synchronization.

The four sets of results seen in Figure 4 stem from three
conditions without the inclusion of propagation and a fourth
with propagation. The immediate condition is the standard
Fitzhugh-Nagumo model with immediate delivery of
impulses between cells. This condition is similar to much
of the previous work on synchrony development. In the
delay condition, the basic model is augmented with a delay
of 60 time units which is approximately the time it takes for



propagation down an axon of length 20. The delay+ref
condition is a further augmentation through the inclusion of
refractory periods as dictated by the results in Figure 3 for a
cell with propagation.
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Figure 4. Synchrony results. Each bar is averaged across
100 combinations of impulse amplitude and impulse
duration.

Variables Affecting Synchronization

Propagation

Approximating the full scale propagate simulation with
the addition of delays and refractory periods induced the
same ordering of conditions, yet synchronization is
substantially less for the propagate simulation. Explicit
delays and refractory periods are inadequate for capturing
some of the non-linearities involved in propagation. For
instance, refractory period is more appropriately a dynamic
construct. Recent failed attempts at propagation can block
subsequent action potentials almost as strongly as recent
successful action potentials. In some sense there is a
dynamic memory to the axon. Another example of dynamic
non-linearity is found with delay time. While a continually
firing cell has a delay time of 60 time units, a fully
recovered resting cell is capable of propagation in 40 time
units.

These and other anecdotal accounts are provided by
watching two real time computer graphics programs
developed to analyze the cells within a phase portrait and a
x vs. viw plot.
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Inhibition vs. Excitation

Replicating previous work, the grid readily synchronized
for immediate excitatory coupling for both identical and
non-identical cells. This was regardless of connectivity. In
contrast, any sort of inhibitory coupling greatly diminished
synchronization in the immediate condition. In retrospect
this is not surprising. If there is any distribution in firing
times the message by the lead cells to the followers will be
to not fire making coherency of the group difficult. The
addition of a delay, whether it be explicit or through
propagation, puts excitation and inhibition on equal grounds
for identical cells.

For non-identical cells, the imposition of a delay causes
inhibition to produce greater synchrony than excitation. For
variable frequency cells, the spreading out of the group
during recovery is avoided with inhibition. =~ Without
inhibition the faster cells would recover more quickly and
fire earlier, whereas the dynamics of an inhibiting impulse
override and the group is quiescent until released from
inhibition.

Local vs. Full Connectivity

The overall effect for extent of connectivity is a reduction
in synchronization with local connections. This patterns
hold true across all the variables and is due to increased
input variability with local connections. For the case of full
connectivity every cell in the grid experiences exactly the
same input at every point in time. This is in contrast to the
situation for local connectivity which is equated in terms of
average input but not variability. For local connectivity
each cell is following a unique dynamics as dictated by its
particular collection of recent incoming impulses.

Frequency Variability (non-identical cells)

In general there was a reduction in synchronization for
the non-identical (variable frequency) simulations. This
reduction is more pronounced for the three conditions
including a delay (delay, del+ref and propagate) with the
notable exception of fully connected inhibitory coupling.
The previously mentioned interaction between frequency
variability and inhibition/excitation accounts for this
exception. Inhibition provides a more consistent overriding
dynamics for full connectivity since it is guaranteed that
every cell will be released from inhibition at the same time.

Plausible Correspondences to Real Synapses

The biologically plausible scenario for coupling through
chemical (i.e. neurotransmitter mediated) synapses is the
case of non-identical cells in the propagate condition. For
these simulations, synchronization was almost nonexistent
for local connectivity.  Furthermore, fully connected
inhibitory coupling produced greater synchronization than
excitatory coupling. This result is in keeping with recent



reports implicating the inhibitor GABA in the development
of synchrony (MacLeod & Laurent, 1996).

The appropriate scenario for electrical synapses (gap
junctions) is locally connected excitatory coupling for non-
identical cells in the immediate condition. Gap junction
impulses are always excitatory and only between neighbors.
This kind of synapse results from direct links between
adjacent cell bodies making the simulation of propagation
irrelevant. Gap junctions are primarily found in low level
sensory areas, such as the retina, where cells are densely
packed together. In agreement with studies of cells
connected through electrical synapses (Neuenschwander &
Singer, 1996), synchronization was sizable for this
simulation.

Conclusions

These simulations demonstrate that the buildup and

propagation of action potentials are an important
consideration in analyzing boundary conditions for
synchrony development. Propagation is marginally

approximated through the inclusion of explicit delay times
and refractory periods, yet only a full simulation with a
spatial variable and its resulting non-linearities can account
for the diminished range of conditions Ileading to
synchronization. Now that a plausible model has been
developed which fails to synchronize except in certain
situations, the search for architectures resulting in stimulus
specific synchronization can be initiated.
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