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Abstract
The primary and convergent retrieval (PCR) model assumes that the act of successful recall not only boosts associations between
the item and retrieval cues but additionally strengthens associations within the item (i.e., between the features of an item),
speeding the rate of information retrieval from memory. The latter effect is termed intra-item learning and is a unique benefit
of recall practice (i.e., the Btesting effect^). Prior work confirmed the prediction that recall practice produces faster subsequent
recall than restudy practice even if accuracy is higher following restudy. The current study replicated this result, but also
examined the downside of recall practice: that after a failure to recall during practice, participants will be faster in their failure
to recall on a subsequent recall test. This prediction was confirmed in a multisession cued recall experiment that collected
accuracy and recall latency measurements for no practice, recall practice, or restudy, with an immediate or delayed final test.
The linear ballistic accumulator model was fit to latency distributions, and model comparison determined that these effects reflect
differences in drift rates, as predicted by the PCR model.
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Atkinson and Shiffrin (1968) proposed the modal model of
memory, with separate storage Bmodes^ differing in terms of
information content, capacity, and retention duration. In addi-
tion, Atkinson and Shiffrin outlined the manner in which mem-
ories move through these modes, entering long-term storage in
the form of separate memory traces for each episode, and sub-
sequently, the manner in which information is retrieved from
long-term storage. The current study concerns a specific aspect
of this retrieval process—the manner in which an initial partial
retrieval of a memorymight or might not lead to full retrieval. A
classic example of this is the tip-of-the-tongue phenomenon
(Brown & McNeill, 1966), in which an individual might fail
to recall something, but know that they know the desired
information—for instance, as realized by their ability to recog-
nize the answer. Of this phenomenon, Atkinson and Shiffrin
wrote that Ba simple trace model can probably not handle these
results. A class of models for the trace which can explain the

tip-of-the-tongue phenomenon are the multiple-copy models
suggested by Atkinson and Shiffrin (1965).^ (p. 105).

Atkinson and Shiffrin (1965) is a lesser known technical
report, outlining much of what would appear in the subsequent
1968 paper, but this technical report went into greater detail
regarding the mathematics of the proposed memory models.
The single copy models that served as the basis for the 1968
paper are presented, but in addition, this technical report con-
sidered multiple-copy models in which different study episodes
of the same item are stored in separate memory traces. First, it
was demonstrated that the multiple trace model produces sim-
ilar learning effects as compared with the strength-based single
copy model. Second, a specific Binformation model^ imple-
mentation of the multiple trace assumption was considered in
which the copies are bits of information concerning an item.
Thus, the longer that an item is studied (or the more times that it
is encountered), the higher the proportion of stored features for
that item. Of this information model, Atkinson and Shiffrin
wrote, BOn any one search this information may be insufficient
to actually report the correct answer with assurance. On the
other hand the idea of a small portion of information being
available gives a natural explanation for the difference between
recall and recognition measures of retention^ (p. 80). This in-
formationmodel was not further developed, and the subsequent
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SAM (Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981)
and REM models (Malmberg & Shiffrin, 2005; Shiffrin &
Steyvers, 1997), as applied to recall data, assume that the
Brecovery process^ is based on the single-copy memory
strength that also underlies recognition. In other words, the
subsequent models assume that the main qualitative difference
between recognition and recall arises from the sampling of
traces in the memory search process.

The primary and convergent retrieval (PCR) model pro-
posed by Hopper and Huber (2018) assumes a qualitatively
different kind of associative information that is unique to re-
call, predicting differences between recall and recognition
above and beyond the sampling process that only applies to
recall. In other words, not only are recognition and recall
different processes, as is assumed by all memory models,
but the PCR model assumes they operate on different kinds
of memory storage and are supported by different learning
processes. The representation assumed in the PCR model is
similar to Atkinson and Shiffrin’s (1965) Binformation
model,^ where memory traces are a pattern of features within
a larger interconnected network. In the PCRmodel, the recov-
ery process (i.e., convergent retrieval) that occurs during recall
unfolds dynamically, with already retrieved item features serv-
ing as the cues for the retrieval of additional item features.
Successful convergent retrieval not only enables recall of the
item but additionally supports new learning for the associa-
tions between the features of an item. Thus, the PCR model
proposes that the act of recalling something induces a kind of
learning different from the learning that might occur when
studying an item in a passive fashion. Furthermore, this con-
vergent retrieval learning is predicted to affect the speed with
which items are recalled frommemory. In light of this propos-
al, the PCR model is well positioned to explain the benefits of
retrieval practice, as briefly reviewed next.

Retrieval practice

In preparation for an upcoming exam, which form of practice
is most effective? Beyond rote rehearsal, a wide variety of
techniques can be employed, including spaced learning, im-
agery, and Bsurvival processing^ (e.g., Nairne, Pandeirada, &
Thompson, 2008). However, for long-term retention (e.g.,
preparing for an exam a week in advance, rather than 1 hour
in advance), there is considerable evidence that the act of
taking a practice test is particularly effective (for a review of
early research into retrieval-based learning, see Roediger &
Karpicke, 2006a, and see Karpicke, 2017, for a review of
more recent findings), particularly if the practice test involves
recall of the material (Rowland, 2014). Retrieval practice ex-
periments typically have three phases: an initial acquisition
phase, a practice phase, and a final test phase. The acquisition
phase presents novel material for study (e.g., lists of unrelated

word pairs, or text passages). In the practice phase, items from
the acquisition phase are reviewed in different ways; typically,
some items are restudied while a practice test is given for other
items (e.g., recalling the missing word from a pair). Lastly, a
memory test is administered for all items in the final test phase
and the key comparisons concern final test accuracy following
different kinds of practice. The benefits of test practice be-
come apparent when there is a substantial retention interval
(e.g., at least 24 hours) between the practice and final test;
after a delay, memory retrieval is more accurate for items that
received a practice test, as compared with restudied items, and
this is true even in the absence of any feedback during the
practice test (Carpenter & DeLosh, 2006; Carpenter, Pashler,
Wixted, & Vul, 2008; Kuo & Hirshman, 1996; Roediger &
Karpicke, 2006b; Toppino & Cohen, 2009; Wheeler, Ewers,
& Buonanno, 2003).

The finding that recall practice is better than restudy after a
delay might simply indicate that recall practice produces
stronger memories. However, the effect of recall practice ap-
pears to be more complicated than a simple strengthening of
all practiced items. For instance, if the final test occurs imme-
diately after a practice phase that does not include feedback,
the opposite pattern is often observed, with higher accuracy
following restudy as compared with following test practice.
Thus, there is a crossover interaction with delay, suggesting
different forgetting rates following recall practice as compared
with restudy. However, there is not much opportunity to learn
from the failure to recall an item in the absence of feedback
(although the current experiment demonstrates that something
is indeed learned from recall failure—more specifically, this
produces more rapid failure on the final test). Because not all
items are recalled on a practice test, and no feedback is pro-
vided on the practice test, the distribution of memory strengths
is Bbifurcated,^ with the successfully recalled items receiving
a large boost, whereas the nonrecalled items are unchanged
(Kornell, Bjork, & Garcia, 2011). Thus, an immediate final
test reveals essentially the same accuracy level as occurred on
the practice test, whereas with restudy, there is an opportunity
to learn items that were not initially acquired, resulting in
higher accuracy. Furthermore, if restudy produces weaker
learning, albeit learning that is applied to all items (i.e., a
nonbifurcated distribution), and if memory strengths decrease
at the same rate for all items with delay, then more memories
of restudied items will fall below the retrieval threshold after a
sufficient delay than will recalled items, reversing the pattern
of results. This account suggests that accuracy on the practice
test is a key factor, and when practice test recall accuracy is
very high, there is an accuracy advantage for tested material
over restudied material even for an immediate final test
(Rowland & DeLosh, 2015).

Although a bifurcated distribution following test practice
can explain this crossover interaction between delay and type
of practice, it does not indicate why successful test practice
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produces more strengthening than restudy. Furthermore, this
account is at odds with the finding that the crossover interac-
tion holds even if the experiment uses only Bretrievable^
items, as indicated by the pretesting of all items (Jang et al.,
2012).

One way to gain traction on the underlying mechanisms
that support learning from recall practice is an examination of
recall latencies. Latencies may be particularly informative in
the case of a bifurcated distribution, allowing assessment of
memory strength for the upper portion of the distribution (i.e.,
the items that were recalled on the practice test), considering
that accuracy is nearly perfect for these items on the final test.
Several studies have examined recall latency as a measure-
ment tool to index retrieval effort during test practice (Pyc &
Rawson, 2009; Vaughn, Dunlosky, & Rawson, 2016). A few
others examined final recall latency following recall practice,
finding that participants are faster to recall items after recall
practice with free recall (Lehman, Smith, & Karpicke, 2014)
and with cued recall (van den Broek, Segers, Takashima, &
Verhoeven, 2014; also see Keresztes, Kaiser, Kovács, &
Racsmány, 2014; van den Broek, Takashima, Segers,
Fernández, & Verhoeven, 2013). In the case of the van den
Broek study, participants were faster to recall items that had
undergone recall practice as compared with restudy, even
though accuracy was higher following restudy. This suggests
that an analysis of latency may reveal attributes of the memory
retrieval process not apparent when only considering accura-
cy. However, these studies only examined mean recall laten-
cies, and we know from the application of sequential sampling
models to latency distributions that a change in mean latency
might reflect a change in response bias rather than an increase
in the speed of the underlying process (Ratcliff, Thapar,
Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon,
2004). Thus, it is not clear whether these latency differences
reflect a change in memory strength or whether they reflect a
change in decision-making aspects of the recall paradigm
(e.g., when to give up). The current study seeks to apply a
decision-making model of reaction-time data to adjudicate
between these theoretical alternatives.

Primary and convergent retrieval

At this stage in its development, the primary and convergent
retrieval (PCR) model, as first proposed by Hopper and Huber
(2018), is a set of principles defining the learning that takes place
during study or retrieval practice, and a sketch of the retrieval
process necessary for recall. However, many computational de-
tails are currently unspecified, such as item similarity and the
nature of the item features, the nature of stochastic noise during
retrieval and learning, and the specific nature of context repre-
sentations and changes in those representations with retention
interval. Thus, no formal (mathematical) implementation of

PCR exists at this time. Nevertheless, some qualitative predic-
tions follow from the core principles of the PCR model regard-
less of these auxiliary assumptions, and the goal of the current
study is to test these predictions to guide further development of
the PCR model. This test of the PCR model requires application
of a reaction-time decision-making model to rule out alternative
explanations based on response bias.

In the PCR memory model, the primary retrieval and con-
vergent retrieval processes are roughly similar to search and
recovery processes in prior models (e.g., the sampling and
recovery process in the SAM model: Raaijmakers &
Shiffrin, 1981; the echo intensity and content responses in
the MINERVA II model: Hintzman, 1984; and the cortical
familiarity and hippocampal pattern completion processes in
the complementary learning systems framework: Norman &
O’Reilly, 2003). The unique contribution of the PCR model is
further specification of the recovery process and a proposal for
the types of learning (e.g., recall practice) that uniquely affect
recovery. Previously proposed memory models assume that
the probability of recovery is based on the same item strength
that underlies sampling and familiarity. In contrast, the PCR
model allows for associative information that is unique to item
recovery. Furthermore, unlike previous memory models, the
PCR model assumes that item recovery takes some time, with
this duration affected by recall practice. In the primary retriev-
al stage of the PCR model, retrieval cues (e.g., explicitly pro-
vided item cues, or temporal context features) activate features
of relevant target memories. However, this activation is in-
complete for any particular item (i.e., some, but not all of the
features are active). Successful recall requires convergent re-
trieval, a process whereby already active features excite inac-
tive features based on associations between item features (i.e.,
intra-item associations). In brief, the PCR model contributes a
greater consideration of retrieval pathways and the process of
following along these pathways during the act of recall.

The PCR model assumes a feature representation, although
the precise nature of these features is unspecific at this time.
The features of a to-be-retrieved episode might, for instance,
include perceptual, semantic, phonological, or orthographic
attributes of the episode, and conjunctions of these attributes
(see Criss & Shiffrin, 2004, for a similar proposal). This con-
junction of attributes corresponds to the specific manner in
which the item is interpreted during study (e.g., as seen in
Fig. 1, upon encountering the word pair table–bank, one
might create a mental image of a picnic on a river bank, and
it is this conjunction of the lexical items and the created mental
image that defines the episodic item). Although the features
defining the episode are well known prior to the experiment,
the particular conjunction is novel, and the pathways neces-
sary for retrieval may not be well practiced (e.g., failing to
remember that the correct answer is bank upon retrieval of
the mental image of the picnic, particularly when considering
that bank is more often a financial institution).
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The core assumption in the PCR model is that the associ-
ations between features are directional and are learned or
strengthened depending on the temporal order of feature acti-
vation. More specifically, if two features become active at the
same time, the association between them is not learned (or
perhaps weakly learned), but if one feature becomes active
and then the other becomes active shortly thereafter, the asso-
ciation between them is strengthened in a directed manner
(from the first to the second). This assumption predicts that
different types of practice will produce different kinds of
learning, depending on the dynamics of the encoding event.

During restudy, the material is presented in its entirety (e.g.,
presentation of both table and bank). The temporal context is
active before this presentation, allowing learning from that
context to the presented material. In addition, the material
may elicit memory for the original study episode (e.g., retriev-
al of the river picnic mental image), allowing additional learn-
ing from the presented material to the study episode. This
boosts primary retrieval on a subsequent test (e.g., the context

and any cue words on the final test more readily elicits the
mental image). However, this boost may not prove to be help-
ful when the test involves recall rather than recognition. For
instance, restudy may make it easier to recall the mental image
of the riverside picnic in response to the cue word table, but
this might only produce a modest boost for correct recall of
bank, rather than some other aspect of the retrieved episode
(e.g., tree or river).

In contrast to restudy, which activates features simulta-
neously owing to the representation of the material, recall
success often occurs in a gradual staged fashion (Smith,
Huber, & Vul, 2013). For instance, if asked to recall what
you ate for dinner last night, you might arrive at an answer
through a multistep process (e.g., BYesterday was a
Wednesday, and on Wednesdays my daughter has her ukulele
lesson after school, so there’s little time to cook anything
fancy . . . that’s right, it was pizza!^). This successful recall
practice not only strengthens the associations supporting pri-
mary retrieval (e.g., from the context to the correct answer), it

Fig. 1 Different directed associations that are learned when studying (or
restudying) the word pair table–bank (solid arrows) or when successfully
recalling bank in response to the cue word table (dashed arrows). During
initial study, a participant might create a mental image of a picnic table by
a river bank to episodically conjoin the words. This produces directed
associations from these words to the mental image. Restudy strengthens
these forward associations, but this does not necessarily enhance recall of
bank upon retrieval of this mental image, which relies backward

associations. In contrast, successful cued recall practice involves
activation of the mental image in response to table and then activation
of bank in response to this mental image. According to the PCR memory
model learning rule, this establishes directed associations from this
mental image to the word bank as well as directed associations from
table to bank, with both of these pathways boosting subsequent cued
recall performance (both accuracy and latency) in response to the cue
word table
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also strengthens associations between features within the ep-
isodically defined item (e.g., from the features of
BWednesday^ to the features of Bpizza^). We refer to this
learning of associations between features of an episode as
intra-item learning.1 Intra-item learning protects an item from
forgetting when activation from primary retrieval diminishes
with an increased retention interval. For instance, contextual
change between study and a later recall attempt (Mensink &
Raaijmakers, 1988) makes it difficult to begin the process of
recalling a dinner that occurred on January 2, 2019, after
months or years have passed.

Critically, the temporal order of the stages during recall prac-
tice strengthens associations that support recalling the features of
the episode in the same order on subsequent occasions. In the
dinner recall example, the act of successful recall strengthens
directed associations from BWednesday^ to Bpizza,^ making it
easier to recall this particular dinner menu at some later date by
reconstructing the day of the week in question. Returning to the
table–bank example, successful practice recalling bank in re-
sponse to table strengthens the directed association from the
mental image of the river picnic to the lexical entry bank (the
backward-pointing dashed arrow in Fig. 1), bolstering recall
based on this particular convergent retrieval path from table to
bank via the mental image. In addition, because the correct an-
swer is retrieved after the cue, this also supports a direct associ-
ation from the cue to the answer, providing a more rapid retrieval
path (the rightward-pointing dashed arrow Fig. 1).

This table–bank example is provided to aid intuitive under-
standing of the model, based on a particular assumption regard-
ing the nature of the features that define an episodic item.
Stepping back from this example, Fig. 2 provides amore abstract
demonstration of the PCR model’s predictions. These features
might correspond to lexical entries and mental images, as in the
table–bank example, but alternatively they might correspond to
features within the lexical entry, such as when retrieving the first
sound of someone’s name (primary retrieval) and then attempting
to recall the remainder of their name (convergent retrieval). The
left-hand column shows a situation with successful recall prac-
tice. In this illustration, a feature becomes active if it has at least
two lines of input from other active features (this particular acti-
vation rule is not a core assumption of the PCRmodel and is only
adopted to spur intuitions about the model). Primary retrieval
activates the first two features and then remaining features are
gradually activated across four time steps. Because this is a grad-
ual process, this produces intra-item learning, as indicated by the
dashed arrows, which are directed associations from features that
were active in earlier time steps to features that became active in
later time steps. After this successful recall practice, a subsequent
recall attempt starting from the same two initial features achieves
full convergence in just two time steps owing to the new intra-
item associations. Thus, the PCR model predicts that recall

latencies will be faster after successful recall practice. Restudy
might also produce faster recall by bolstering primary retrieval
(i.e., a higher proportion of the features are active in the first time
step). However, this speed-up owing to restudy should (1) be less
than the speed-up after successful recall practice considering that
recall practice boost primary retrieval and convergent retrieval,
and (2) affect the latency distribution in a different manner than
intra-item learning (we expand on this prediction below). In
summary, because intra-item learning is an added benefit of recall
practice, boosting previously unused retrieval pathways, the PCR
model predicts faster recall following successful recall as com-
pared with restudy, and this additional boost should affect the
convergent retrieval process above and beyond a boost to the
starting level of retrieved information.

Across both free recall and cued recall, Hopper and Huber
(2018) confirmed the PCRmodel’s prediction that recall prac-
tice reduces recall latencies more than restudy. Their free re-
call task measured accuracy and interretrieval time (IRT) for
recall of 15-item word lists immediately following a practice
recall test or a restudy. Restudy produced higher final test
accuracy than did test practice, but accuracy and recall latency
dissociated; an analysis of the IRTs revealed faster recall fol-
lowing recall practice, especially for the last few items that
were recalled. The cued recall results reported by Hopper and
Huber largely replicated the results of van den Broek et al.
(2014), but additional conditions tested whether recall practice
with one cue would generalize to a final test with a different
cue. Each target item was paired with two unique cue words
during initial study, but was only practiced with one of these
cues. The final test cue was either the practiced cue or the
unpracticed cue, and final recall was found to be faster only
with the practiced cue, regardless of retention interval. This
result is compatible with the directed nature of the learning
rule in the PCR model; intra-item learning from a particular
subset of features activated in response to a particular cue may
not benefit convergent retrieval proceeding from a different
subset of features activated in response to a different cue (i.e.,
learned navigation from one start point does not necessarily
help navigation to the same goal from a different start point).
This lack of generalization between retrieval cues argues
against a context-based account of retrieval-based learning;
if retrieval practice boosts associations between the temporal
context and the target, then practice with one retrieval cue
should transfer to another retrieval cue, provided that the tem-
poral context is sufficiently similar between retrieval practice
and the final test.

Learning from the failure to recall

The learning rule assumed in the PCR model concerns the
temporal activation of features regardless of whether full con-
vergence is achieved. Thus, the PCR model also makes1 The term Bconvergent retrieval learning^ may also be used interchangeably.
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predictions regarding the effects of recall failure, which are
illustrated in the right column of Fig. 2. In this example, the
item has a different set of preexisting intra-item connections,
and these connections initially support the gradual activation
of additional features. However, the convergent retrieval pro-
cess ultimately reaches a dead end with no further change
because the second feature only has one intra-item connection
and thus does not become active even if all the other item
features are active. This results in a tip-of-the-tongue state in
which the test taker may be keenly aware that they know the
answer, but is unable to overtly produce the answer owing to a
missing feature. Nevertheless, because this dead end was
gradually reached, intra-item learning occurs, as indicated by
the dashed arrows. This intra-item learning supports faster
failure to recall on the final test, assuming that the test taker
decides to give up on the process at the point when the pattern
of features no longer changes. Again by analogy to

navigation, when attempting to go from Location A to
Location B, one might encounter an insurmountable road
block, and this experiencewill make it easier/faster to navigate
from A to the road block in the future (i.e., faster failure).

Unfortunately, the large retrieval practice literature does not
provide a test of these predictions because failure-to-recall
latencies are rarely examined. The primary goal of the current
study is collection of these failure latencies to test these pre-
dictions. We refer to the key dependent measure as the failure
latency rather than error latency because these predictions
concern a stalling of the recall process and, subsequently, the
decision to give up on the attempt (i.e., errors of omission).
This type of error can be contrasted with recalling the wrong
item (i.e., errors of intrusion or commission). The PCR
model’s predictions for intrusions and commissions is compli-
cated, depending on whether the same incorrect answer is
given on the practice and final tests (in which case these error

Fig. 2 The convergent retrieval process and intra-item learning. Nodes
represent episodic item features; filled nodes are active features, and
unfilled nodes are inactive features. Arrowed paths represent associative
connections. Solid arrows represent associative connections that activate
subsequent features in the convergent retrieval process. The activation
rule in this illustration requires two input connection from active nodes

to cause an inactive node to become active. Dashed arrows represent new
intra-item associative connections learned from retrieval. Left column:
Successful recall on a practice test produces intra-item learning, enabling
faster retrieval on the final test. Right column: Unsuccessful recall on a
practice test also entails intra-item learning, but in this case intra-item
learning results in faster failure to recall on the final test
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latencies should be faster following recall practice for exactly
the same reason that correct recalls are faster) or whether
intrusion/commission errors are unique to the final test (in
which case they may reflect a failure of primary retrieval). In
light of these complexities, intrusion/commission errors are
not considered in this experiment. Instead, we focus on recall
failures (omissions) by requiring participants to make a binary
Brecall^ or Bcan’t recall^ decision on each cued recall trial (see
Fig. 3a). If the participant reports that they can recall the miss-
ing target, then they are instructed to immediately type in the
target word (i.e., they need to have recalled the word before
pressing the Brecall^ button). Each participant was tested on a
large number of word pairs in this fashion, across multiple
days, allowing analysis of latency distributions.

Thus far, memorymodels have not addressed learning from
cued recall practice as measured with recall latencies, al-
though different aspects of this situation have been

investigated in isolation. Raaijmakers and Shiffrin (1981) im-
plemented learning from retrieval in the SAM model by in-
creasing the associative strength between retrieval cues and
memory traces following recall success, and this assumption
explained part-list cueing effects as well as output interference
in free recall. Similarly, Criss, Malmberg, and Shiffrin (2011)
modeled output interference during recognition tests with the
REM model, assuming that existing memory traces are up-
dated when items are judged to be old, whereas new traces are
added to the memory set when items are judged to be new.
Most similar to the current experiment, Nobel and Shiffrin
(2001; also see Diller, Nobel, & Shiffrin, 2001), modeled in-
trusion and Bgive up^ latencies from cued recall testing of
word pairs using a modified version of the REM model.
However, Nobel and Shiffrin (2001) did not test the same
word pairs more than once, and so these data are unsuitable
for testing the prediction that a failure to recall following one

Fig. 3 a Example of the Brecall^ versus Bcan’t recall^ decision made on
each test trial of the current experiment. b Schematic representation of a
decision between the Brecall^ and Bcan’t recall^ alternatives as described
by the LBAmodel. The accumulator that intersects the response threshold

first is the chosen alternative, and the response time is the amount of time
elapsed before the response threshold is met. In this example, the Brecall^
accumulator reaches the threshold first, and is the response given on this
simulated trial
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cued recall test should produce a faster failure to recall on a
subsequent cued recall test with the same cue word. In brief,
existing memory models have not addressed learning from
recall failures. This is not to say these models are incompatible
with learning from errors of omission, or that they make dif-
ferent predictions than the PCR model, but rather that their
predictions in this respect have not been explored.

Recall latencies: A change in response bias
(metamemory) or memory?

The PCR model predicts that the convergent retrieval process
should unfold more quickly after recall practice and, further-
more, that this speed-up should exist both for recall success
and recall failure. However, an examination of average recall
latency could be misleading in regard to these predictions.
More specifically, faster responses can occur at the expense
of accuracy (i.e., a speed–accuracy trade-off) in a situation
where there is a shift in response bias rather than a change in
the evidence accumulation process. In the context of cued
recall, such a response bias corresponds to the adoption of a
more liberal stopping rule (e.g., giving up more readily) or a
more conservative stopping rule (i.e., careful checking before
producing an answer), with changes in this stopping rule de-
pending on the cue item. For instance, the participant may
explicitly remember that they failed or succeeded with the
cue word on the practice test and use this knowledge of their
own memory process to adjust the effort they are willing to
expend during cued recall. Such behavior is a kind of
Bmetamemory^ (i.e., knowledge about your memory), similar
to Bjudgments of learning^ (Nelson & Dunlosky, 1991), if the
setting of response bias is based on a prediction for the out-
come of the ongoing recall attempt. Similarly, the familiarity
of the cue word may influence the time it takes to make a
Brecall^ versus Bcan’t recall^ decision. For example,
Malmberg (2008a) showed that increasing the familiarity of
a cue can increase the amount of time spent searching memory
without increasing accuracy. Fortunately, we do not expect
that cue familiarity will differ between the restudy and test
practice conditions, given that both re-present the cue word.2

Nonetheless, an adjustment of response bias based onmemory
for the success of the previous recall attempt is likely to affect
performance, and thus it is critical that any analysis of the
results consider this decision-making aspect of the task.

This decision-making component lies outside of the current
scope of the PCR model. When available, fully implemented
process models can be applied to decisional aspects of

memory performance (Malmberg, 2008b; Malmberg & Xu,
2006; Malmberg, Zeelenberg, & Shiffrin, 2004), but this is not
the case for the PCR model at this point in its development. In
situations such as this, measurement models are often used to
untangle decisional aspects (e.g., response bias) from memo-
rial aspects (e.g., sensitivity) of the data, such as with an ap-
plication of signal detection theory (Green & Swets, 1966;
Macmillan & Creelman, 2005). Fortunately, a broad class of
reaction time measurement models (so-called sequential
sampling models) have been developed to address the poten-
tial ambiguity of a speed–accuracy trade-off, and these models
have proven useful in the study of memory (Brown &
Heathcote, 2008; Ratcliff & Smith, 2004; Starns, 2014).
These decision models address latency and choice data on a
trial-by-trial basis to identify whether an on-average change in
speed or accuracy reflects a change in response bias versus a
change in the evidence accumulation process. We follow in
this tradition, using a sequential sampling model to transform
our data into more psychological relevant parameters that, for
instance, indicate whether the observed latency effects reflect
the retrieval process (as predicted by PCR) or whether they
reflect a change in the speed–accuracy trade-off (or more like-
ly, some combination of these factors).

The linear ballistic accumulator model

In a sequential sampling model, Bevidence^ builds up in sup-
port of the possible response options over the course of the
decision process (Donkin, Brown, & Heathcote, 2011). These
models have been applied to recognition memory tasks, as-
suming that the drift rate parameter reflects access to informa-
tion from the memory system (Osth, Bora, Dennis, &
Heathcote, 2017; Ratcliff, 1978; Ratcliff & Starns, 2009;
Ratcliff, Thapar, & McKoon, 2004). As applied to recall, we
assume that the drift rate reflects activation of item features
during the convergent retrieval process—each additional fea-
ture that is activated provides further evidence towards a
response.

There are many successful sequential samplingmodels (see
Voss, Nagler, & Lerche, 2013, for a good introduction to the
properties of these models), all of which include parameters
that capture the speed–accuracy trade-off in which partici-
pants can elect to respond slowly and accurately, or quickly
but with more errors. More specifically, some parameters of
these models are related to response bias (e.g., the required
evidence threshold and/or the starting level of evidence),
which affect latency distributions in a different manner than
parameters related to the rate of information accrual (i.e., drift
rate). In the current case, if the test-taker realizes that a cue was
previously used in a practice test, she may adopt a lower
threshold for making an educated guess of the target or a lower
threshold for giving up on the recall attempt. In addition,

2 If test practice increases cue familiarity more than restudy, this would work
against our central prediction of faster Bcan’t recall^ decisions after test prac-
tice, assuming cue familiarity increases willingness to continue searching
memory.
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changes to primary retrieval may provide a higher level of
initial evidence. These effects can be contrasted with intra-
item learning, which should change the rate of information
accrual over the course of the retrieval attempt. A test of these
predictions requires separate measurement of parameters re-
lated to recall success versus parameters related to recall fail-
ure, and so we used the linear ballistic accumulator (LBA)
model (S. D. Brown & Heathcote, 2008), because it is an
independent race model, with one racer capturing recall suc-
cess and the other capturing recall failure.

The adoption of the LBA model was made after careful
consideration. For example, we could have applied a diffusion
model to these data (Ratcliff, 1978; Ratcliff & Rouder, 1998;
Ratcliff & Tuerlinckx, 2002). A diffusion model uses a single
accumulator (and thus, a single drift rate parameter), and re-
sponse outcomes are determined by which of two opposing
decisional boundaries is reached first by the accumulator. In
the Ratcliff diffusion model, the two responses are not inde-
pendent of one another; any evidence gained in favor of one
response is evidence against the other. Thus, the parameters of
the diffusion model would not allow us to identify character-
istics of recall failure separate from the characteristics of recall
success. Because the LBA model assumes independent accu-
mulators, it is possible to identify parameters unique to the
recall failure process as well as the recall success process. It
is important to note that while evidence accumulators in the
LBA model are independent, we are not asserting that there
are two independent convergent retrieval processes occurring
simultaneously. Rather, we are using the accumulators of the
LBA to measure the internal evidence supporting recall of the
target item and the evidence supporting the failure to recall.

The LBAmodel assumes that any decision between a set of
alternatives is based on the outcome of a race between com-
peting evidence accumulation processes. Each accumulator
begins with some initial amount of evidence supporting the
corresponding response alternative. Over time, additional ev-
idence is gained, until one accumulator reaches a critical
threshold, and at that point in time, the corresponding re-
sponse is given. Thus, the LBA model describes the decision
process as a race between evidence accumulators towards a
response threshold, as illustrated in Fig. 3b. The intercept of
the vertical axis and the bold line shows the amount of initial
evidence, the upward slope of the bold line shows the accu-
mulation of evidence over time, and the dashed horizontal line
across the top represents the critical amount evidence that
must be reached for that particular response alternative.

Because the LBA is an independent race model, the
amount of evidence for the Brecall and Bcan’t recall^ alterna-
tives may have two different initial values, increase at two
different rates, and be racing towards two different thresholds
for responding. The initial evidence value for each alternative
is drawn from a uniform distribution on each trial, ranging
from zero to the parameter A (thus beginning at a value of

A/2 on average). The rate of evidence accumulation follows
a normal distribution across trials, with mean v and standard
deviation s. The v parameter is commonly referred to as the
drift rate, as it describes the average speed at which evidence
strength Bdrifts^ away from the initial starting value over the
course of a trial. The amount of evidence required for a spe-
cific response (i.e., the response threshold parameter b) is
assumed to be constant across trials, as is the amount of time
required for nondecisional processes necessary to give a re-
sponse (e.g., planning and executing motor movements),
which is given by the parameter T0. The model is described
as being Blinear^ because it assumes that evidence is accumu-
lated at a constant rate, and this accumulation is Bballistic^ in
the sense that once the starting points and drift rates are deter-
mined, the accumulation process has a preordained conclu-
sion. These characteristics can be contrasted with the assump-
tion of random-walk fluctuations of evidence within a trial,
made by models such as the drift-diffusion model. However,
the assumption of a linear and ballistic evidence accumulation
process is made primarily for reasons of mathematical conve-
nience and simulation studies have demonstrated that the
LBA’s parameters are largely similar to those of the drift-
d i ffus ion model (Donkin, Brown, Heathcote , &
Wagenmakers, 2011).

The LBA as applied to recall latencies

In a typical application of the LBA model, the accumulators
represent a small set of different possible response options—
for example, is the stimulus a word or a nonword (S. D. Brown
& Heathcote, 2008), or is the stimulus moving to the right or
the left (Forstmann et al., 2008). In contrast, the set of possible
words to recall is vast. Our assumption in using the LBA
model to test the predictions of the PCR model is that the
test-taker gives a Brecall’ response once they have recalled a
particular word, but gives a Bcan’t recall^ response once the
convergent retrieval process stalls with no further change in
the pattern of item feature activations. Thus, our goal with
application of the LBA is to describe the nature of recall suc-
cess versus recall failure generically, rather than describing
recall of a particular word. With this goal in mind, the drift
rate of the Brecall’ accumulator is predicted to increase as a
function of prior successful recall practice (i.e., the benefits of
successful test practice) whereas the drift rate of the Bcan’t
recall^ accumulator is predicted to increase as a function of
prior recall failure (i.e., the cost of unsuccessful test practice).
In addition, we use the LBA to test alternative accounts of the
data, examining, for instance, whether the results are better
explained by changes in the response thresholds versus chang-
es in the drift rates (see Fig. 3b).

Trial-to-trial variability in the starting point of the evidence
accumulation process is necessary to capture the fast errors
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that occur when speed is emphasized over accuracy (S. D.
Brown & Heathcote, 2008). The parameter governing this
starting point distribution, A, can also be used to represent bias
towards a specific response alternative; an accumulator with
starting points sampled from distributions with a larger A pa-
rameter will also have a higher mean starting point and thus
start closer to the response boundary on average. However, the
A parameter is not typically used in this fashion, and most
applications of the LBAmodel set the A parameter to the same
value for all accumulators. The current situation is different
because the choice behavior being modeled is not a simple
stimulus classification. In the PCRmodel, the starting point of
the convergent retrieval process is the set of features activated
by the retrieval cues. If primary retrieval is very rapid, taking
essentially the same duration on each trial, the starting point
for the evidence accumulation process as measured by the
LBA model might reflect the primary retrieval strength in
response to the retrieval cues. Under this assumption, different
values of the A parameter for different accumulators and ex-
perimental conditions are possible; according to the PCR
model, primary retrieval should differ across conditions, cor-
responding to different starting points for convergent retrieval.
Alternatively, if primary retrieval is itself a dynamic process,
then primary retrieval and convergent retrieval will collective-
ly serve to specify the drift rate. In this case, an LBA model
that attempts to capture the data through variation in the
starting point parameter will fail.

We can distinguish between faster responding owing to
a change in response bias versus faster responding owing
to a change in the retrieval process because each possibil-
ity produces a different change in the shape of the latency
distribution. For instance, if drift rate for the recall accu-
mulator increases, this will increase accuracy and de-
creases mean latency, and the nature of this decrease is a
less variable, more normally distributed recall latency dis-
tribution. In other words, the convergence process hap-
pens more quickly, with greater reliability. If the recall
threshold decreases, this also produces an increase in ac-
curacy and decrease in mean latency. However, in this
case, the recall latency distribution becomes more expo-
nentially shaped rather than normally shaped. For in-
stance, with a sufficiently low recall threshold, on some
trials the test-taker decides immediately to respond
Brecall^ (e.g., primary retrieval places the evidence above
the threshold level), but failing this, it is still possible that
a positive, but near-zero drift rate will take a long time to
reach the threshold. In practice however, these differences
are likely to be subtle, and so we use model comparison
to determine which parameter changes provide the best
account of the data.

To characterize the nature of any changes in retrieval
latency and accuracy, we fit different LBA models,
allowing only the A (starting point), v (drift rate), or b

(decision boundary/threshold) parameter to vary between
conditions, which instantiate different hypotheses about
the effects of restudy and test practice. If the benefits of a
practice recall test increase primary retrieval, this should
increase the average evidence accumulation starting point,
and the A parameter of the LBA model should provide the
best account of the data. We also considered an alternative
version in which primary retrieval affected the starting
time of evidence accumulation (the T0 parameter), to ex-
amine the possibility that primary retrieval includes not
only a strength component, but a latency component (the
time before the onset of convergent retrieval) that may vary
across items with different primary retrieval strengths. For
instance, if primary retrieval activates relatively many fea-
tures, it may be that that this step occurs more quickly as
compared with a situation with weaker primary retrieval. If
the benefits of a practice recall test occur because the par-
ticipant is biased to quickly respond Brecall^ owing to a
change in response bias, this should correspond to a de-
crease in the evidence threshold, and the b parameter of
the LBA model should provide the best account of the data.
Finally, as predicted by the PCR model, if the benefits of a
practice test increase the average rate of evidence accumu-
lation during convergent retrieval, this should correspond
to an increase in the drift rate, and the v parameter of
the LBA model should provide the best account of the data.
Furthermore, this should be true not only for faster recall
after success on the practice test but also faster failure after
failure on the practice test. Finally, we also considered
hybrid models, allowing combinations of these parameters
to vary across the experimental conditions.

Overview of the current study

Faster correct recall following recall practice has been ob-
served in several prior studies (Hopper & Huber, 2018; van
den Broek et al., 2014), but to date, the effect of recall practice
on the speed of recall failure has not been examined. The
current study addresses this by examining the latency of re-
call/can’t recall judgments, replicating the finding that recall
success results in faster recall success on a subsequent test and
also testing the novel prediction of the PCR model that recall
failure on a practice test results in faster recall failure on a
subsequent final test. By including many trials per participant
in each condition, a reaction time measurement model is ap-
plied, characterizing the nature of any on-average changes in
latency to determine whether these effects reflect a change in
drift rate rather than response bias, as expected if the latency
change reflects a more rapid convergent retrieval process,
rather than a metamemory strategy to require less evidence
to choose the Brecall^ response.
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Method

Participants

Ten individuals were recruited from the University of
Massachusetts Amherst community via electronic mailing
lists and word of mouth. Participants were compensated at a
rate of $15 per hour, plus a $5 bonus for showing up to each
session. All participants completed all sessions and were paid
a total of $70. The relatively small sample size reflects an
emphasis on collecting enough observations from each partic-
ipant for participant-level model fitting.

Materials

Twelve hundred (1,200) English words were used, with the
constraint that each word had between four and 10 letters, and
a word frequency between five and 200 uses per million
words according to the SUBTLXUS corpus (Brysbaert &
New, 2009). Words of a single conjugation were selected,
and nouns were permitted to be either singular or plural, with
only one form or the other included in the stimulus set. From
this pool, 600 randomly determined word pairs were created,
but these same word pairs were used for all participants. These
word pairs were grouped into 25 lists of 24 pairs, and the pairs
within each lists were randomly assigned to the conditions for
each subject, with the constraint that four pairs from each list
were assigned to each of the six conditions

Procedure

The experiment was administered over the course of four ses-
sions on four consecutive days. During the first session, par-
ticipants learned and practiced the first nine of the 24 word
pair lists. One third of the pairs in each list were restudied, one
third of the pairs were given a practice cued recall test, and the
remaining third were not practiced again after the initial study
opportunity. Half of the words in each practice condition were
given a final cued recall test immediately after the learning and
practice phase for that list, with a brief distractor task (30
seconds of cumulative addition problems) interposed between
the practice phase and the final test. The remaining half of the
items were given a final cued recall test at the start of Session
2. For both immediate and delayed final tests, the order of
items within each list was randomly shuffled. The delayed test
was a test of multiple lists, and the test list was blocked by list,
with the order of the tested lists the same as the order in which
they were studied the previous day.

Following the final test for items from Session 1, partici-
pants learned and practiced word pairs from eight new lists
during Session 2. Just as in Session 1, word pairs were evenly
divided between the three practice conditions (cued recall,
restudy, and no practice), half of the word pairs in each

condition received a final test immediately, and the remaining
half were tested at the start of Session 3 the following day.
Following the final test for items from Session 2, participants
learned and practiced word pairs from the final eight lists
during Session 3.

Again, word pairs learned in Session 3 were evenly divided
between the three practice conditions, half of the word pairs
received a final test immediately, and the remaining half were
tested during Session 4 the next day. No new pairs were
learned during Session 4, thus the delayed final test concluded
the experiment. A diagram outlining the schedule of learning
and testing over the course of the four sessions is shown in
Fig. 4. This procedure yields a 2 × 3 within-subjects factorial
design, fully crossing retention interval (immediate vs. de-
layed final test) with practice type (cued recall, restudy, and
no practice), with 100 final test trials per participant in each
condition.

During study and restudy trials, word pairs were pre-
sented on the computer screen for 4 seconds, with one
word (the Bcue^ word) on the left, and the other word
(the Btarget^) on the right. Test trials (practice and final)
had two phases. First, participants were presented with the
cue word alone and had to report whether they could
recall the missing target word or whether they could not
recall the missing word. Participants reported this decision
by pressing keys on the keyboard (pressing the M key for
Bremember^ and the Z key for Bdon’t remember^).
Participants were instructed to only press the Bremember^
key when they absolutely knew what the missing word
was and were ready to begin typing it in. If participants
responded in the affirmative, they were asked to type in
the correct word using the keyboard, and press the Enter
key to confirm their response. There was a half-second
interstimulus interval between all types of trials (study,
restudy and test trials).

To maximize recall performance on the practice tests, the
initial study phase and practice phase were intermixed. After
every three new word pairs studied, the word pair studied four
trials ago was practiced (i.e., restudied or given a cued recall
test). Items assigned to the Bno practice^ condition were
skipped. If necessary, filler word pairs (i.e., pairs that were
never practiced or given a final test) were inserted at the end
of the list to maintain the Lag-3 spacing between Btrue^ pairs
in the list. The maximum number of filler pairs that were
inserted in any list was three.

Results

Statistical analysis

Scoring All latencies were measured as the duration be-
tween the onset of the cue word and the key press
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indicating the recall/can’t recall decision. The accuracy
of subsequent typed responses on trials where partici-
pants indicated they could recall the target were scored
by a software routine that allowed for small misspell-
ings (e.g., letter transposition, pluralization) to be la-
beled as correct.

Recall accuracy The percentage of words correctly recalled
in each condition is shown in the top panel of Fig. 5. A
trial was deemed correct only if the participant indicated
they could recall the missing target word and subsequent-
ly typed the correct word. Differences in accuracy be-
tween conditions was assessed with a logistic mixed-
effects regression model, using the lme4 (Bates,
Mächler, Bolker, & Walker, 2015) and afex (Singmann,
Bolker, Westfall, & Aust, 2018) packages for the R sta-
tistical computing environment (R Core Team, 2017).
Practice type (restudy, cued recall, and no practice) and
retention interval (immediate vs. delayed final test), as
well as their interaction, were included as fixed effects.
The model also included random intercepts and slopes for
participants in each condition, and random intercepts for
each item. This random effects structure was reached by
starting with the maximal random effects structure (i.e.,
random intercepts and slopes for both participants and
items in each condition), removing terms from the random
effects structure (beginning with the item component) un-
til the model fitting routine was able to converge on stable
parameter estimates (see Barr, Levy, Scheepers, & Tily,
2013).

The significance of the fixed effects in the model were
assessed using likelihood ratio tests.3 These tests indicat-
ed that the full model including both main effects of prac-
tice type and retention interval along with their interaction
fit the data significantly better than the restricted model
without a main effect of practice type, χ2(2) = 17.86, p <
.001, better than the restricted model without a main ef-
fect of practice type, χ2(1) = 30.73, p < .001, and better
than the restricted model without a practice type by reten-
tion interval interaction, χ2(2) = 10.92, p = .004. The
conclusion drawn from these model comparison tests is
that there were significant differences in recall accuracy
between the levels of each condition, as well as an inter-
action between the practice type and retention interval
factors.

From inspection of the top panel of Fig. 5, it is clear that the
main effect of retention interval reflects lower recall accuracy
on the delayed final test. Differences in accuracy between
practice types were assessed using Holm–Bonferroni
corrected contrasts at each retention interval. In the immediate
final test condition, accuracy in the no practice condition was
significantly below both the restudy condition (z = −6.89, p <
.001) and the test practice condition (z = −2.56, p = .01), while
performance in the restudy condition was significantly higher
than in the test practice condition (z = 3.61, p < .001). In the

3 All models compared using the likelihood ratio test were fit using the max-
imum likelihood method. The likelihood ratio test is known to be too liberal
when the number of participants is low (Luke, 2017), but given that the accu-
racy effects reported here are regularly observed, the conclusions from this
particular test are unlikely to be Type I errors.

Fig. 4 Outline of the experimental design, with the temporal structure of the sessions flowing left to right, and then top to bottom
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delayed final test condition, the relationship between the re-
study and test practice conditions reversed, with the test prac-
tice condition displaying significantly higher accuracy than
restudy (z = 2.37, p < .017). Accuracy in the no-practice con-
dition was still significantly below both the restudy condition
(z = −3.52, p < .001) and the test practice condition (z = −6.06,
p < .001) at the delayed final test.

Recall latency The decision latency for Brecall^ and Bcan’t
recall^ judgements is shown in the bottom panel of Fig. 5.
Trials where participants indicated they could recall the miss-
ing target word and subsequently typed in the correct word
were considered to be correct recall latencies, with latency
determined by the time to press the Bremember^ key. Only
trials where participants indicated they could not recall the

Fig. 5 Performance across conditions. Larger, darker points represent
averages across participants. Smaller gray points represent observations
from individual participants. Error bars represent +/- one standard error of
the mean, estimated using the subject-normalized method of Morey
(2008). Top row: Recall accuracy on the final cued recall test. Bottom

row: Average decision latency on the final cued recall test. Incorrect
latencies reflect trials where participants indicated they could not recall
the target item. Correct latencies reflect trials where participants indicated
they could recall the target item, and subsequently provided the correct
word as a response
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missing target word in the decisional phase were treated as
error latencies. Trials where participants indicated they could
recall the target word, but failed to type in the correct word
(7% of final test trials), and trials where recall decision laten-
cies were over 10 seconds (5.8% of trials) were not analyzed.
Together, these criteria excluded 11% of the data.

Differences in recall decision latencies between conditions
were assessed with a linear mixed-effects regression model,
again using the lme4 and afex packages for the R statistical
computing environment. Recall decision latencies were log
transformed prior to analyses to meet the assumption of
Gaussian residual variance in the regression model. For ease
of interpretability, correct and incorrect latencies were ana-
lyzed with separate regression models. Practice type and re-
tention interval, as well as their interaction, were included as
fixed effects in both models. Both models included random
intercepts and slopes for participants in each condition, and
both models were fit using the residual maximum likelihood
(REML) method.

The significance of the fixed effect components in each
model were evaluated with an ANOVA using the Kenward–
Roger approximation of the error degrees of freedom in all F
tests and follow-up contrasts (Kenward & Roger, 1997). For
the correct recall decision latencies, there was a significant
main effect of practice, F(2, 6.46) = 8.24, p = .016, a signif-
icant main effect of retention interval, F(1, 7.77) = 185.38, p <
.001, but no interaction between retention interval and practice
type, F(2, 5.89) = 0.74, p = .51. From the bottom-right panel
of Fig. 5, it is clear that the main effect of retention interval
reflects slower responding on the delayed final test for all
practice types. Differences in correct recall decision latencies
between practice type conditions were assessed using Holm-
Bonferroni adjusted contrasts, collapsing over the retention
interval factor. Correct responses in the no practice condition
were significantly slower than in the test practice condition,
t(7.6) = 4.21, p = .009, and slower than in the restudy condi-
tion, t(7.14) = 2.13, p = .069, though the difference narrowly
missed the threshold of statistical significance at α = .05.
Correct responses in the test practice condition were faster
than in the restudy condition, t(7.61) = 2.72, p = .054, again
narrowly missing the threshold of statistical significance.

For the incorrect trial decision latencies (i.e., Bcan’t recall^
responses), there was no main effect of retention interval, F(1,
8.25) = 0.04, p = .84, though there was a significant main
effect of practice type, F(2, 4.73) = 6.89, p = .039, and a
significant practice type by retention interval interaction,
F(2, 4.56) = 8.10, p = .031. The nature of the interaction
was investigated using Holm–Bonferroni adjusted contrasts
between the practice types at each retention interval. There
was no difference between the incorrect trial decision latencies
for the no practice and restudy condition on the immediate
final test, t(3.87) = .205, p = .84. However, incorrect trial
decision latencies in the test practice condition were

significantly faster than in both the no-practice condition,
t(6.37) = −4.56, p = .009, and the restudy condition t(4.6) =
3.74, p = .031. There was no difference in incorrect trial de-
cision latencies between any of practice type conditions on the
delayed final tests (all |t| statistics < 1). Thus, the main effect
and interaction observed in the F tests were driven by signif-
icantly faster Bcan’t recall^ responses in the test practice con-
dition on the immediate final test.

LBA model analysis

Overview Six LBA models with different parameter con-
straints were applied to the recall decision latencies from the
10 participants individually. Four of these models assessed
whether just one of the key parameters could capture the dif-
ferences between conditions: (1) convergent retrieval, corre-
sponding to the v parameter; (2) primary retrieval, correspond-
ing to the A parameter; (3) an alternative formulation of pri-
mary retrieval in which primary retrieval affected the starting
time of evidence accumulation, corresponding to the T0 pa-
rameter; and (4) a metamemory change in the response thresh-
old, corresponding to the b parameter. A fifth model allowing
both primary retrieval and convergent retrieval was consid-
ered (both v and A), to examine whether primary retrieval
might load onto the A parameter when the V parameter also
varied. The models allowing only A and to T0 vary between
conditions performed poorly (were never the winners in mod-
el comparison), and the v and Amodel faired almost as poorly
(was preferred only for a few subjects, and only when using
the AIC measure of goodness of fit). Within the framework of
the PCR model, this suggests that primary retrieval is a dy-
namic process, similar to convergent retrieval, in which case
the drift rate parameter reflects the combined actions of pri-
mary and convergent retrieval. The model allowing the b pa-
rameter to vary across conditions was the second best single
parameter model (the v parameter model was the best single
parameter model), and so a sixth model was considered,
allowing drift rate and boundary to vary (v and b). The key
question addressed by this sixth model was whether the pre-
dicted drift rate parameter value results would still hold when
allowing boundary to change as well.

Model details All models set the drift rate variance parameter
to a constant value (s = .5 for each accumulator). Unless
otherwise specified, all models used a common parameter
value across all conditions and all accumulators for each free
parameter of interest (e.g., for most models, the same value for
T0 was assumed for the recall and can’t-recall accumulators in
all conditions). Test trials for items recalled on the practice
tests were modeled separately from test trials for items not
recalled on the practice test. Thus, different parameters were
allowed for these two types of items, effectively treating them
as observations from separate conditions. This follows
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directly from the assumption of a bifurcated distribution in
which the learning processes following successful recall prac-
tice are different than the learning from the failure to recall.

The Bv free^ model allowed separate drift rate parameters
(v0 and v1) for each accumulator in every condition (i.e., each
combination of retention interval and practice type). Separate
starting point parameters (A0 and A1) were fit for each accu-
mulator, but these parameters were shared across all condi-
tions. The boundary parameter for both accumulators was
fixed to a constant value (b = 4) across all conditions. Note
that this parameterization of the LBAmodel solves the scaling
problem4 by fixing the response boundary, rather than setting
the sum of drift rates to a fixed constant, as is common in the
response time modeling literature (Donkin, Brown, &
Heathcote, 2009). This model included 19 free parameters
per participant (4 practice conditions [no practice, restudy,
correct test practice, and incorrect test practice] × 2 retention
intervals × 2 accumulators equals 16 drift rate parameters, plus
two starting point parameters and the nondecision time
parameter).

The BA free^ model allowed separate starting point param-
eters (A0 and A1) for each accumulator in every condition.
Separate drift rate parameters (v0 and v1) were used for each
accumulator at each retention interval, but these parameters
were shared across all practice type conditions at each reten-
tion interval. The boundary parameter for both accumulators
was fixed to a constant value (b = 4) across all conditions. In
total, the BA free^ model allowed for 21 free parameters per
participant.

The Bb free^ model allowed separate boundary parameters
(b0 and b1) for each accumulator in every condition. Just as
with the BA free^ model, separate drift rate parameters were
used for each accumulator at each retention interval, but were
shared across practice type conditions. The starting point dis-
tribution parameter for both accumulators was fixed at a con-
stant value (A = 1.5) across all conditions. This model also
allowed 21 free parameters per participant.

The BT0 free^ model allowed separate non-decision time
parameters for all racers and conditions. Like the BA free^ and
Bb free^ models, separate drift rate parameters were used for
each accumulator at each retention interval, but were shared
across practice type conditions. Similarly, each racer was
allowed a free starting point parameter that was shared across
retention interval and practice type conditions. The boundary
parameter for both accumulators was fixed to a constant value
(b = 4) across all conditions. In total, this model also
allowed 22 free parameters per participant.

The Bv and A free^ model, allowed separate drift rate pa-
rameters (v0 and v1) and starting point variability parameters
(A0 and A1) for each accumulator in every condition. The
boundary parameter for both accumulators was fixed to a con-
stant value (b = 4) across all conditions. This model allowed
33 free parameters per participant.

An initial analysis revealed that some participant’s data
were best described by a model with different boundaries
across conditions, while data from other participants were best
described by a model with different drift rates across condi-
tions. To determine whether the drift rate parameter results
would still hold when boundary was also allowed to vary,
we fit a Bv and b free^ model that allowed different boundary
parameters (b0 and b1) for each accumulator across all condi-
tions and different drift rate parameters (v0 and v1) for each
accumulator across all conditions. Just as in the Bb free^mod-
el, the starting point parameter Awas fixed at a constant value
across all conditions (A = 1.5). This model allowed 33 free
parameters per participant.

The actual number of free parameters was lower than the
maximum number possible for some participants because of
variation in individual performance levels. For example, some
participants failed to recall any items from the no-practice
condition on the delayed final test, obviating the need for a
drift rate parameter for fitting correct recall latencies from that
condition. More generally, models were not fit to conditions
where there were fewer than two observations per recall deci-
sion alternative.

Model comparison All models were fit to the data from indi-
vidual participants separately, using the maximum likelihood
method to estimate the best fitting model parameters. The
rtdists package (Singmann, Brown, Gretton, & Heathcote,
2017) for the R statistical computing environment was used
to compute the LBAmodel’s density, quantile, and cumulative
distribution functions. Prior to estimating each model’s pa-
rameters, excessively long decision latencies (>10 seconds)
were removed, and trials with a decision latency in the most
extreme 2.5% of the latency distribution (in both tails) were
removed for each subject. These exclusion criteria resulted in
the elimination of 9% of the trials. Model parameters that
maximized the likelihood function were estimated using a
box-constrained gradient descent search algorithm. The good-
ness of fit for each of the six models was compared using both
BIC (Bayesian information criterion; Schwarz, 1978) and AIC
(Akaike information criterion; Akaike, 1974). The AIC and
BIC are likelihood-based statistics that impose a penalty on a
model’s likelihood proportional to the number of free param-
eters to account for the flexibility afforded by each free pa-
rameter. The AIC and BIC differ in the degree of penalty
applied, with AIC typically imposing a smaller penalty than
the BIC, thus leading the AIC to favor more complex models
than the BIC.

4 The parameters of the LBA and diffusion models can be multiplied by a
constant without changing the RT distributions. Fixing a single parameter
makes the model identifiable and enables model comparison (analogous to
coding a categorical predictor with K levels in a regression model using K-1
dummy coded variables).
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The AIC and BIC for the best fitting parameters of each
models are shown in Table 1. Using the AIC penalty for flex-
ibility, the Bv free^ was the favored model for Participants 2
and 5, and the Bv and A free^ model was favored for
Participant 10. The Bv and b free^ model was favored for
Participants 1, 3, 4, 6, 7, 8, and 9. When considering a simul-
taneous fit of all participants, the Bv and b free^model had the
lowest total AIC of all six models (Σ AIC = 17856.72). The
BIC penalty for flexibility tended to favor the single parameter
models and the Bb free^ model was preferred for Participants
3, 8 and 9, while the Bv free^ model was preferred for
Participants 1, 2, 4, 5, 7, and 10. When considering a simul-
taneous fit all participants, the Bv free^ model provided the
lowest total BIC over all subjects (Σ BIC = 18923.44).

The difference in the complexity penalty imposed by the
AIC and BIC measures, and thus their discrepancy when ap-
plied to these models, stems from the goal of each measure.
The AIC assesses generalization (i.e., a frequentists test,
predicting future data), whereas BIC is based on model selec-
tion (i.e., a Bayesian test of hypotheses based on the extant
data). In the current case, if you sought the simplest explana-
tion of the data (i.e., BIC), the behavior of most participants
was best explained by changes in drift rate. Furthermore,
across the entire data set a change in drift rate was the clear

winner under the BIC measure. However, if your goal was to
predict future performance (i.e., AIC), using all possible
mechanisms, including ones that captured a lower proportion
of the variance in the data, using the model with freedom in
both the drift and response boundaries would be the best
choice for most participants. This model is also the clear win-
ner when considering total AIC across the entire dataset.

In summary, as predicted by the PCR model, a change in
drift rate (convergent retrieval) is the most crucial aspect of
these results, although there is evidence that response bound-
aries (response bias, such as with a change in metamemory)
changed as well. Crucially, these are not mutually exclusive
explanations, and while the PCR model predicted changes in
convergent retrieval, it did not specify whether response bias
might or might not change as well.

Model behavior Beyond quantitative assessment of the
models, we examined the qualitative pattern of model fits
and differences in best-fitting parameter values across exper-
imental conditions to assess the behavior of the three best-
fitting models (the Bb free,^ Bv free,^ and Bv and b free^
models).

The Bb free^model was favored for Participants 3, 8, and 9
under BIC, and examination of these participants revealed that

Table 1 AIC and BIC goodness of fit statistics for the six LBA models applied to each participant. The model with the lowest BIC/AIC is the most
preferred model, and is denoted for each participant with an asterisk

Subject Statistic v Free A Free b Free T0 Free v & A Free v & b Free

1 AIC 1611.18 1718.87 1652.62 1706.9 1610.10 *1565.42

BIC *1679.11 1795.30 1729.05 1787.5 1724.74 1680.06

2 AIC *1592.39 1653.47 1638.18 1644.4 1594.49 1605.52

BIC *1655.09 1724.53 1709.24 1719.6 1698.99 1710.02

3 AIC 1646.47 1661.62 1614.60 1660.7 1655.94 *1613.71

BIC 1701.64 1725.28 *1678.27 1728.5 1745.06 1702.84

4 AIC 2042.22 2119.18 2060.09 2101.1 2037.25 *2014.05

BIC *2116.66 2201.89 2142.80 2188.0 2165.46 2142.26

5 AIC *1890.13 1991.22 1958.48 1980.3 1901.27 1917.19

BIC *1959.21 2068.93 2036.19 2062.3 2017.83 2033.75

6 AIC 1969.69 2075.32 1901.01 2046.7 1954.51 *1830.97

BIC 2039.59 2153.44 1979.13 2128.9 2073.74 *1950.21

7 AIC 1890.10 1996.22 1923.43 1982.4 1888.92 *1850.15

BIC *1962.05 2076.64 2003.85 2067.0 2011.66 1972.89

8 AIC 1982.94 2018.70 1907.33 2020.8 1977.62 *1885.32

BIC 2050.08 2094.24 *1982.87 2100.5 2090.92 1998.63

9 AIC 1591.67 1584.60 1542.02 1586.0 1561.47 *1511.76

BIC 1656.08 1657.06 *1614.48 1662.5 1670.17 1620.46

10 AIC 2026.30 2054.72 2090.41 2043.4 *2015.20 2062.61

BIC *2103.92 2140.95 2176.64 2134.0 2148.86 2196.28

Total AIC 18243.09 18873.92 18288.17 18773.0 18196.76 *17856.72

BIC *18923.44 19638.26 19052.51 19579.4 19347.44 19007.40
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they had nearly perfect accuracy on the immediate final test
(between 90% and 100% correct) and thus very small differ-
ences in accuracy between experimental conditions. However,
this model qualitatively misfit the data from the other seven
participants, with the best-fitting parameters producing better
accuracy on the immediate final test in the no practice condi-
tion than the test practice condition. More specifically, to ac-
commodate faster recall success after success on the practice
test, the boundary for the Brecall^ accumulator was set lower,
but this served to reduce accuracy (i.e., a negative testing
effect not seen in the data). In summary, it appears that this
model can only accommodate the data when practice test ac-
curacy is nearly perfect and it incorrectly produces an accura-
cy deficit following test practice, making this an undesirable
explanation of the results.

A more plausible alternative is that different practice con-
ditions produced different response biases as well as different
rates of evidence accumulation. Corresponding to this alterna-
tive, Bv and b free^ model was favored for seven of our 10
subjects under the AIC statistic. Inspecting the fits of this
model to data from individual participants showed that
allowing free drift rate parameters in addition to the free
boundary parameters corrected the qualitative misfit of the
Bb free^model, correctly producing an accuracy increase after
test practice, as compared with the no practice condition. To
understand which free parameters were important in capturing
the data, we performed multiple contrasts on the best-fitting
parameter values using paired-samples t tests.5 Remarkably,
the boundary parameter did not systematically differ between
any pairs of practice conditions at either retention interval, for
either accumulator. In general, all t statistics for comparisons
amongst the boundary parameters were less than 1.87. Thus,
while the b parameter may have been important for producing
high quality fits of the data in general (as determined by AIC),
it did not differ in a systematic manner across the conditions of
interest. As such, it does not appear that response bias pro-
vides an adequate explanation of the highly reliable on-
average retrieval latency effects seen in these data.

Finally, we consider the Bv free^ model. The correlation
between observed accuracy values and model accuracy values
was very high for this model (r = .995), and the model cap-
tured the absolute accuracy rates observed for each practice
type and retention interval, including the crossover interaction
between the restudy and test practice condition across the two
retention intervals. The specific parameter values for each
subject under this model are reported in Appendix Tables 2
and 3. In brief, this model captured all of the important accu-
racy trends in the data.

To assess whether the Bv free^ model captured the impor-
tant retrieval latency effects, Fig. 6 displays the joint quantile-

probability plots for this model, showing the correspondence
between the observed and predicted quantiles of the recall
decision latency distributions in each condition. The joint
quantile values were determined by estimating the response
times associated with the .1, .3, .5, .7, and .9 quantiles of the
conditional latency distribution for each response (i.e., condi-
tioned on recalled or not recalled). So-called defective distri-
butions (i.e., distributions that accumulate to the observed or
predicted level of accuracy) were then produced by weighting
these conditional quantiles by the predicted or observed accu-
racy level, depending whether the distribution being plotted
was the model or the observed data. For example, assume the
.7 quantile of the Brecall^ response conditional latency distri-
bution was predicted to be 2.5 seconds by the LBAmodel, and
the total probability of responding Brecall^was predicted to be
.6. Then, the joint quantile corresponding to a Brecall^ re-
sponse with a latency of 2.5 seconds would be .6 × .7 = .42.
The joint quantiles values were calculated for each participant
individually and averaged together to create the values plotted
in the figure.

In general, the model captured the shapes of the quantile
functions in each condition reasonably well. One notable mis-
fit is the long tail in the model’s behavior for the correct recall
decision on the delayed final test. The model produced a lon-
ger tailed distribution of Brecall^ responses as compared with
the Bcan’t recall^ responses, while the reverse is true in the
observed data. However, the model was not fit to these
quantile distributions and was instead fit to the raw trial-by-
trial data (we only examine quantiles as a way of assessing
model behavior). If the model had been fit to the quantile
distributions, it is likely that it would have produced a shorter
tail in this situation, as dictated by the observed quantiles.
More to the point, the delayed final test condition had the most
skewed distribution of correct recall latencies, with partici-
pants usually taking less than 4 seconds to respond, but occa-
sionally taking around 10 to give a correct response. In a
maximum likelihood fit of the trial-by-trial data, these outliers
play a huge role, imposing a substantial penalty for parameter
values that fail to place probability mass that covers these
outliers. In contrast, a quantile function does not differentiate
between a situation in which the slowest 10% of trials occur
between 4 and 5 seconds versus one in which the penultimate
9% occurs between 4 and 5 seconds, with the last 1% at 9
seconds. Second, and perhaps more importantly, this qualita-
tive misfit of the data represented a tiny fraction of the data
(this was the condition with the worst accuracy, and so there is
very little data to indicate the shape of the recall success la-
tency distribution in this condition). Thus, the observed
quantile function in this case is highly unreliable. Given that
the model captures the study/test crossover interaction, and
matches the recall decision latency distributions reasonably
well, we are satisfied that the Bv free^ model describes the
data accurately enough to interpret its parameter values.

5 Identical t tests were also performed for the Bv free^ model, and described in
detail in the Parameter Contrasts section.
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Parameter contrasts Because the model with different drift
rate parameters in each condition was the most consistent
winner, we conclude that an adequate description of the
data requires different drift rates. As described earlier, the

PCR model predicted that the drift rate for the correct
(Brecall^) accumulator should be highest after successful
test practice, and, furthermore that the drift rate for the
incorrect (Bcan’t recall^) accumulator should be highest

Fig. 6 LBA Model RT quantiles, together with empirical quantiles
estimated directly from the observed data. The quantile values were
estimated at the .1, .3, .5, .7, and .9 quantiles of the RT distributions.

No quantile functions for correct Brecall^ responses are presented for
the delayed final test incorrect practice test condition because there
were an insufficient number of responses for this situation
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after unsuccessful test practice. To test these predictions
we compared the average drift rate parameters in the Bv
free^ model between all pairs of practice types at each
retention interval condition using paired-samples two-
sided t tests (the mean values are plotted along the bottom
row of Fig. 7 for the Bv free^ model). All p values were
corrected for multiple comparisons using the Holm–
Bonferroni procedure, treating the contrasts for each drift
rate parameter (v0 and v1) as separate families of tests.6

First, we consider the Bcan’t recall^ accumulator’s drift rate
(v0), shown in the lower-left panel of Fig. 7. Confirming the key
predictions of the PCRmodel, the drift rate on the immediate test
following incorrect test practice was greater than for the no prac-
tice condition, t(8) = 7.73, p < .001, and greater than for the
restudy condition, t(9) = 6.09, p = .001. None of the remaining
comparisons reached statistical significance (minimum p value =
.17). No significant differences were found between any pairs of
the Bcan’t recall^ accumulator’s drift rate parameters for different
practice types at the delayed final test. The correct test practice
condition for the incorrect racer is not shown in Fig. 6 consider-
ing that there were far fewer trials of this type and also to simplify
the figure; a full report of these parameter values appears in
Table 2 in the Appendix. A larger drift rate parameter for Bcan’t
recall^ responses following a previous retrieval failure (i.e., an
immediate test of the incorrect test practice condition) supports
the PCR model’s prediction that the convergent retrieval process
will stall more quickly following a prior failure to recall.

Fig. 7 Average drift rates across participants for each condition from the Bv free^ (bottom row) and Bv and b free^models (top row). Error bars represent
+/- one standard error of the mean within each condition

6 Some of the contrasts reported here have identical p values because of the
mechanisms of the Holm–Bonferroni FWE rate correction. The sequential
Holm–Bonferroni procedure tests hypothesis ordered by p values, from
smallest to larger. The smaller p values tested first are subjected to more
conservative correction than later tests. This means that one p value that was
initially slightly smaller than another may become larger after both have been
corrected, because of the difference in the correction factor applied to them. In
order to prevent the rank order of the p values from being distorted by the
correction, the two p values are both corrected to the larger of the two.
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Next, we consider contrasts involving drift rates for the
Brecall^ accumulator on the final test, shown in the lower-right
panel of Fig. 7. All pairwise comparisons between the Brecall^
accumulator drift rates (v1) for the different practice types on the
immediate final test were statistically significant. The drift rate
for the correct test practice condition was greater than the drift
rate for the no practice condition, t(9) = 6.15, p < .001, and
greater than the drift rate for the restudy condition t(9) = 4.42,
p = .01. In turn, the drift rate for the restudy condition was greater
than that of the no practice condition t(9) = 6.77, p < .001, and
greater than the incorrect test practice condition, t(4) = 4.38, p =
.024. The drift rate for the incorrect test practice condition was
the smallest of all, significantly less than that of the no practice
condition t(4) = 3.63, p = .024, and the correct test practice
conditions t(4) = 4.65, p = .024. The incorrect test practice con-
dition is not shown in the figure considering that very few trials
involved incorrect test practice followed by a correct final test;
furthermore, contrasts involving the incorrect test practice condi-
tion have fewer degrees of freedom than the other contrasts be-
cause not all subjects produced correct responses on the imme-
diate final test for pairs they failed to recall on the practice test. A
similar pattern of contrasts was observed for the delayed final test
conditions. For the delayed conditions, pairwise differences were
found between the Brecall^ accumulator drift rate parameters (v1)
for the no practice, restudy and correct test practice conditions.
The correct test practice drift rate was significantly greater than
the drift rate for the restudy condition, t(8) = 2.67, p = .024, and
significantly greater than the no practice condition, t(7) = 5.85, p
= .024. The restudy condition drift rate was also significantly
greater than the no practice condition drift rate, t(7) = 3.38, p =
.024.

In summary, both the mean latency results and the LBA
modeling results support the predictions made by the PCR
model that successful recall practice results in faster recall
success on a final test, while, at the same time, recall failure
during recall practice results in faster recall failure on a final
test. Furthermore, these effects appear to reflect the retrieval
process itself (drift rate) rather than a change in response bias.

Discussion

The Atkinson and Shiffrin (1968) modal model of memory, and
subsequent implementations in the SAM and REM models, as-
sume that recovery of memories is an all-or-none process, with
the probability of retrieval proportional to the memory strength
values dictating the search process. However, the tip-of-the-
tongue phenomenon suggests that recovery is a gradual dynamic
process that may ultimately result in success after an extended
period of time, or might terminate after partial recovery with no
further progress. The PCR model of Hopper and Huber (2018)
assumes a dynamic recovery process, identifying learned associ-
ations that may be unique to recovery. Primary retrieval is the

initial state of item retrieval based on the retrieval cues (temporal
context and any presented cues). However, primary retrieval is
often incomplete, and convergent retrieval is the recovery process
in which already active item features activate inactive item fea-
tures as dictated by directional intra-item associations between
features. This account makes specific predictions regarding the
time course of recall, and interactions between the time course of
recall and the outcome of previous recall attempts. The current
study confirmed these predictions by examining recall success
and recall failure latency distributions as interpreted with a se-
quential sampling model of reaction times. We conclude that
recall success speeds the rate of item recovery on a subsequent
test, whereas recall failure speeds the failure to recover on a
subsequent test.

The PCR model learning rule specifies directional associa-
tions between already active features and subsequently activated
features. This supports the learning of associations between re-
trieval cues and the item in the case of initial study and restudy
practice. In addition, this supports the learning of associations
between the features of an item, but only when item features
become active in a gradual fashion, such as occurs during recall
practice. Thus, the PCR model provides a novel mechanism for
explaining the learning benefits of taking a practice test as com-
pared with passive restudy. Previous work confirmed the predic-
tion that these benefits result in faster recall even in situations
where restudy produced better accuracy (e.g., for an immediate
final test following restudy or following test practice without
feedback). The current study confirmed that these recall latency
benefits reflect the recall process itself (drift rate) rather than a
metamemory response bias to hastily give a Brecall^ response
based on knowledge that the prior recall attempt was successful.
In addition, the PCRmodel predicted that intra-item associations
are learned even if the convergent retrieval process stalls without
reaching full convergence (i.e., learning from the failure to re-
call). The currently study confirmed these recall failure predic-
tions both in terms of average failure latencies but also in terms of
a change in the recall process itself rather than a metamemory
response bias to hastily give Bcan’t recall^ responses based on
knowledge that the prior recall attempt failed.

Error latencies have proven useful for constraining theories of
recognition memory (e.g., Cox & Shiffrin, 2017; Starns, 2014),
but error latencies are rarely considered in the study of recall
(although see Diller et al., 2001; Nobel & Shiffrin, 2001). One
reason for this is that a typical recall task does not ask participants
to indicate when they have failed to recall. Instead, most recall
experiments give participants a fixed recall period, with the fail-
ure to recall indicated by the conclusion of this time period with-
out recall. Instead, the current experiment asked participants to
report whether they could, or could not, recall the missing target
item when given the cue word. These responses are roughly
similar to judgments of learning (Nelson & Dunlosky, 1991),
although in this case the judgment is immediately followed by
typing in the answer if the Bremember^ option is chosen. The

Mem Cogn (2019) 47:816–841 835



remember responses from this procedure replicated previous
findings of faster recall following test practice from studies that
used more traditional measures of recall latency (Hopper &
Huber, 2018; van den Broek et al., 2014). This correspondence
suggests that participants performed the recall/can’t recall deci-
sion task in a similar fashion to a standard cued recall paradigm
(i.e., by recalling the target word before making a response). In
addition, this technique confirmed the novel prediction of the
PCR model that retrieval failures (i.e., the Bcan’t recall^ deci-
sions) would also be faster following recall failure on the practice
test. Bymeasuring both recall success and recall failure latencies,
we were able to apply a reaction time decision making model
(the LBAmodel) to these data to determine whether test practice
caused a change in the speed–accuracy trade-off (i.e., a change in
response bias) or whether it changed the retrieval process (i.e.,
drift rate). Comparisons between different LBA models identi-
fied that a change in drift rate provided the best account of the
data and, furthermore, the drift rate parameters reliably changed
in the predicted manner.

Caveats and concerns

The PCRmodel makes no prediction as to whether subjects will
or will not adopt a metamemory decision strategy that adjusts
decision thresholds for the recall/can’t recall decision. However,
regardless of whether such a strategy is adopted, the PCR model
predicts that drift rates will change. One subject was best fit by
the Bv and b free^ model as assessed by BIC and several others
were fit best fit by this model as assessed by AIC, raising the
possibility that there were biases as well as drift rate changes. As
seen in the top two panels in Fig. 7, the pattern of drift rates is
nearly identical for this model as compared with the Bv free^
model (comparing the top graphs to the corresponding bottom
graphs). Thus, the drift rate results remain even when allowing
for changes in the response boundary. A keen eyemight note that
the magnitude of the drift rate increase for the immediate final
test Bcan’t recall^ accumulator after failure on the practice test is
reduced for the Bv and b free^ model. This suggests that part of
the on-average speed-up after recall failure on the practice test is
indeed a metamemory decision strategy (although the drift rates
still reliably changed). It is important to note however, that the Bv
and b free^ model may be too flexible, as indicated by the BIC
measure, and as indicated by the finding that the threshold pa-
rameters did not reliable differ between conditions for this model.

Another concern comes from consideration of item selec-
tion effects. Our analyses separated the test practice condition
into two pseudoconditions based on success versus failure on
the practice test. However, because this was a post hoc sepa-
ration of the data, this may have introduced item selection
effects (i.e., some items are more recallable than others in
general, and these pseudoconditions would select for easy
versus hard items). We addressed this concern by directly
comparing response latencies on the practice test to response

latencies on the final test. We did this for two groups of items:
Ones that were not recalled on either test and ones that were
recalled on both tests. Providing clear evidence against an
item selection effect account of these results, the average cor-
rect recall latency decreased by 1.22 seconds for a successful
immediate final test as compared with the same items on a
successful practice test, t(9) = 9.35, p < .001, and the average
failure recall latency decreased by 3.93 seconds for recall fail-
ure on the immediate final test as compared with recall failure
latency for the same items on the practice test, t(8) = 7.17, p <
.001.7 The results for the delayed final test are more compli-
cated considering that considerable forgetting occurred over
the course of 24 hours, which is likely to make recall success
slow (if asked to recall what you did the summer before last,
you probably could, but it would take a while to remember)
and at the same time make recall failure fast (if asked to recall
your first birthday, you might immediately state that you can’t
recall). Thus it is not surprising that the average correct recall
latency increased by 1.15 seconds from practice test success to
a delayed final test success, t(9) = 3.76, p = .005, and de-
creased by 2.14 seconds from practice test failure to a delayed
final test failure, t(8) = 5.27, p < .001.

To further investigate item selection effects, we applied the
LBAmodel to the joint practice and final test data. As with the
mean latency analysis, this was done for the correct–correct
items and the failure–failure items, and so in this case the LBA
was used only to describe the shape of the latency distribution,
as determined by drift rate, and changes in drift rate from
practice to final test, rather than also explaining accuracy
(which was by definition perfect or zero for these two groups
of items). The model included a unique starting point param-
eter A for each response type (success or failure) that was
shared across test types, and a nondecision time parameter
T0 that was shared across all response and test types. As with
the mean latency results, the drift rate for the correct recall
latency distribution increased by .85 from the practice test to
the immediate final test, t(9) = 10.91, p < .001, while the drift
rate for the correct recall latency distribution decreased by .22
from the practice test to the delayed final test, t(9) = 2.84, p =
.019. The drift rate for the recall failure latency distribution
increased by .75 from the practice test to the immediate final
test, t(8) = 18.99, p < .001, and increased by .42 from the
practice test to the delayed final test, t(8) = 3.95, p = .008.
Thus, even if the pseudoconditions selected for different kinds
of items, it still appears that recall success on the practice test
led to faster recall success on an immediate final test, whereas
recall failure on the practice test led to faster recall failure on
the immediate final test.

7 Paired t tests were performed on the log scale, to satisfy the assumption of
normality.
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Learning from failure

The effect of a failed retrieval on subsequent performance has
been examined at least once before in the context of the testing
effect. Kornell, Klein, and Rawson (2015) had participants
study weakly associated word pairs in preparation for two
cued recall tests (i.e., practice and then a final test). The key
comparison in their study was between two kinds of practice,
both of which involved an initial presentation of the cue alone
for a recall attempt of the target. In one condition, this initial
recall attempt was followed by copying down the correct an-
swer, regardless of recall success (i.e., this served as feed-
back), while in the other condition, subjects were given a
relatively easy fragment completion of the target after the
initial recall attempt such that they could find the answer
through their own retrieval processes rather than overt feed-
back. These conditions produced approximately equal final
test performance, which was considerably better than other
conditions that involved copying or fragment completion
without first attempting recall based on the cue alone.
However, study through fragment completion was better than
copying in the absence of an initial recall attempt. This pattern
of results indicates that the practice test retrieval attempt is the
key to effective learning, and that whether the correct answer
is reached by recall success (fragment completion) or feed-
back (copying the target word) is inconsequential. In other
words, there is a beneficial effect of recall failure if feedback
is provided.

These results are readily explained by the PCR model.
According to the PCR model, intra-item learning requires an
initial partial activation of the item followed by complete activa-
tion of the item, although this complete activation could be
achieved either through convergent retrieval or through feedback.
However, if there is no initial partial activation (i.e., if there is no
initial retrieval attempt), then there is no intra-item learning.
Thus, there is beneficial learning from recall failure if that failure
is immediately followed with some form of feedback for the
item. According to the PCR model, this partial activation might
be for the word form itself (e.g., recalling the first two letters of
the correct answer), or it might be for the episodic conjunction
created during study (e.g., recalling the mental image created in
response to a word pair). In either case, if this partial activation is
followed either by full retrieval or by feedback for the correct
answer, this will strengthen a directed pathway from the retrieval
cues to the answer via this partial activation.

Sequential sampling model and recall decisions

Our study includes a novel application of sequential sampling
models, which are more typically used for decision-making.
Rather than a binary decision about a presented stimulus, we
asked participants to judge the outcome of the retrieval
process—whether it had identified the target word, or whether

it had failed to recover the target. In our application of the LBA
model, the mapping between the model parameters and psycho-
logical variables was slightly different than the typical choice
situation. Specifically, the v parameter (drift rate) was interpreted
as a measure of convergent retrieval strength (and possibly pri-
mary retrieval strength), whereas the b parameter (threshold) was
interpreted in terms of the metamemory process dictating how
readily to give up on the retrieval attempt (i.e., the stopping rule).
At first glance, this application seems far afield from traditional
decisionmaking applications of thesemodels. In light of this, it is
worth revisiting the foundational concepts that led to the devel-
opment of sequential sampling models.

Ratcliff (1978) describes the theory and application of a dif-
fusion model as applied to recognition memory. In doing so, he
described the drift rate of the diffusion process (i.e., evidence
accumulation) as reflecting the relatedness of the recognition
probe to the contents of memory. This relatedness value was
conceptualized as the outcome of a feature matching process
between the probe and the contents of memory. Specifically,
Ratcliff wrote that Bprobe and memory-set item features are
matched one by one. A count is kept of the combined sum of
the number of feature matches and non-matches, so that for a
feature match, a counter is incremented, and for a feature non-
match, the counter is decremented. The counter begins at some
starting value Z, and if a total of A counts are reached, the probe
is declared tomatch thememory-set item^ (Ratcliff, 1978, p. 63).
This interpretation of the evidence accumulation process is re-
markably similar to the current application of the LBA model as
a way of describing the accumulation of item features during the
recovery process.

Straying from the original Ratcliff diffusion model, our
application of the LBA model also concerned the accumula-
tion of evidence toward the decision to cease the recall at-
tempt, with this potentially exhibiting different dynamics.
For recall successes, the decision threshold is reached when
the target item is recovered into awareness. For recall failures,
several possibilities exist. In the domain of free recall, the
decision to cease retrieval attempts is well described by a
stopping rule based on the accumulated number of retrieval
failures (Dougherty, Harbison, & Davelaar, 2014). Dougherty
et al. (2014) hypothesized that each retrieval failure involved a
new sample from the sample space of potential memories.
However, in the case of cued recall, the sample space may
play less of a role, such as indicated by the failure to find
list-strength effects with cued recall even though such list-
strength effects with spaced repetitions are found with free
recall (Malmberg & Shiffrin, 2005; Wilson & Criss, 2017).
Instead of accumulated failures in the sampling process, the
accumulated failures that drive the decision to cease a cued
recall attempt may be occurring within the recovery process.
In other words, a participant may attempt to Bread out^ an item
from the set of currently active features, and reach their Bcan’t
recall^ decision after some number of failures to name the
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pattern of features (which is likely to occur if the pattern is no
longer converging). Alternatively, a participant may be direct-
ly monitoring changes in the set of activated features, ceasing
the retrieval attempt when this set has stabilized without con-
vergence. Our results are compatible with either explanation,
and further experiments are necessary to understand the stop-
ping rule used in cued recall tasks.

Conclusions

Introspection suggests that recall is a gradual dynamic process
that may stall (tip-of-the-tongue) or rapidly progress to the
point that the desired memory can be named. This process
was termed recovery by Atkinson and Shiffrin (1968), al-
though the details of this process have remained largely un-

specified during the 50 years since this seminal work. The
PCR model of Hopper and Huber (2018) makes a specific
proposal regarding the dynamics of recovery and the manner
in which these dynamics enable additional learning from the
act of recall. The current study tested key predictions of the
PCR model that were confirmed with mean recall latencies
and with a novel application of a sequential sampling model
that ruled out alternative explanations based on response bias.
These results move beyond the bifurcated distribution model
of Kornell et al. (2011), specifying why a practice recall test
promotes long-term learning. Furthermore, the two halves of
the bifurcated distribution were separately evidenced, with
recall success on a practice test resulting in faster recall on a
subsequent test whereas recall failure on a practice test result-
ed in faster recall failure on a subsequent test.

Appendix

Table 2 Best fitting drift rates for the Bv free^ model

Subject Drift
rate

Immediate test Delayed test

No
practice

Restudy Test practice,
incorrect

Test practice,
correct

No
practice

Restudy Test practice,
incorrect

Test practice,
correct

1 v0 0.670 0.393 1.514 − 1.288 1.169 1.593 0.885

v1 1.326 1.812 – 2.161 0.399 0.636 – 1.216

2 v0 0.623 0.162 1.625 − 1.287 1.271 1.178 1.322

v1 1.010 1.593 −0.190 2.070 – − – −0.309
3 v0 – – – − 1.083 1.001 1.110 1.039

v1 1.830 2.104 − 1.920 −0.315 0.341 − 0.142

4 v0 0.510 0.206 0.792 −0.089 0.859 0.624 0.780 0.489

v1 0.672 1.207 −1.558 1.999 −1.715 −1.854 – −0.066
5 v0 1.009 0.805 2.034 −0.237 1.098 1.229 1.568 0.837

v1 1.058 1.286 – 2.278 – −0.752 – −0.361
6 v0 0.351 0.285 1.602 − 0.627 0.510 0.726 0.456

v1 0.801 1.559 −0.027 2.433 −1.489 −0.266 – −0.029
7 v0 −0.029 −0.907 1.552 −0.268 1.289 0.883 1.500 0.524

v1 1.102 1.548 – 1.989 −1.113 −0.157 – 0.389

8 v0 0.411 0.440 1.681 − 0.712 0.684 0.792 0.693

v1 1.306 1.571 – 1.988 −0.758 −0.520 – 0.306

9 v0 −0.796 – 0.373 − 0.319 0.289 0.246 −0.021
v1 1.484 1.699 0.917 1.946 −1.124 −0.152 – 0.380

10 v0 0.704 0.678 1.295 0.398 1.322 1.275 1.282 1.210

v1 0.875 1.102 0.202 1.466 −0.398 −0.059 – −0.128

The 0 and 1 subscripts refer to the Bcan’t recall^ (incorrect) and Brecall^ (correct) accumulators, respectively. The B–^ in some cells indicates that the
parameter was not used for that participant
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