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Abstract 

Memory models typically assume that recall is a two-stage 
process with learning affecting both processes to the same 
degree. This equal learning assumption is difficult to reconcile 
with studies of the 'testing effect', which reveal different 
forgetting rates following learning from test practice versus 
learning from restudy. Here we present a new memory model, 
termed Primary and Convergent Retrieval (PCR) that assumes 
successful recall leads to a selective enhancement for the 
second stage of recall (Convergent Retrieval). We applied this 
model to existing testing effect data. In two new experiments, 
we confirmed novel predictions of the PCR model for transfer 
between retrieval cues and for recall latencies. This is the first 
formally specified model of the testing effect and it has broad 
implications for the nature of learning and retrieval. 

Keywords: Memory Modeling; The Testing Effect, Retrieval 
Practice 

Two-Stage Models of Recall 

As briefly reviewed here, memory models typically assume 

that recall is a two-stage process. For instance, the Search of 

Associative Memory model (SAM, Raaijmakers & Shiffrin, 

1981) contains a sampling stage that selects a specific 

memory trace from a pool of active traces, followed by a 

recovery stage that extracts the details of the sampled 

memory. Similarly, the MINERVA 2 model (Hintzman, 

1984) differentiates between an intensity response 

(measuring overall activation) that is used to weight the 

contribution of memories to the echo content, which is 

subsequently 'cleaned up' through a recursive process to 

produce the desired content. Norman and O’Reilly (2003) 

assumed these separate processes reflect the operations of 

different brain regions, with parahippocampal cortex 

providing a familiarity response, such as used in recognition, 

whereas recall requires pattern completion that depends on 

the actions of the hippocampus. 

These models, and others, include a stage that isolates 

relevant memories based on a scalar value for retrieval 

strength followed by a stage in which sufficient detail is 

extracted to produce on overt recall response. However, these 

models also assume that learning is passive and any 

opportunity to encode a memory will affect both stages in a 

similar manner. Additionally, the time course of this second 

stage is not specified by extant memory models. Here, we 

present a new memory model which specifies the learning 

processes and time course of this second stage, motivated in 

large part by studies of retrieval practice effects. 

Restudy, Test Practice, and Forgetting Rates 

The assumption of passive learning appears at odds with 

testing effect studies that indicate greater learning from 

retrieval practice (see Roediger & Karpicke, 2006a for a 

review). In these studies, participants learn some new 

material, after which the material is practiced by restudying, 

or by taking a practice test (either with or without feedback). 

A retention interval follows this practice, after which 

participants take a final test. The final test often reveals an 

advantage for material practiced with a test relative to 

material practiced by restudying, and this advantage grows 

with retention interval. In other words, these two types of 

practice produce different forgetting rates. A striking 

example of different forgetting rates is found when test 

practice occurs without feedback. In this case, if the retention 

interval is short (e.g., 5 minutes), restudying produces higher 

accuracy than a practice test. However, if the retention 

interval is longer (e.g., 24 hours), this relationship is reversed 

and test practice produces better accuracy than restudying 

(Roediger & Karpicke, 2006b; Toppino & Cohen, 2009; 

Wheeler, Ewers, & Buonanno, 2003).  

This crossover interaction comparing restudy to test 

practice without feedback is partially explained by realizing 

that there is no opportunity for additional learning for the 

items that fail to be retrieved during test practice. Thus, the 

test practice reflects a bifurcated distribution (Kornell, Bjork, 

& Garcia, 2011). However, this account still assumes greater 

learning for the items that were recalled during test practice 

as compared to the learning from restudy and yet no 

explanation is provided as to why this is the case. 

Furthermore, the crossover interaction occurs even when 

considering recallable items, as determined by an initial test 

prior to subsequent test practice or restudy (Jang, Wixted, 

Pecher, Zeelenberg, & Huber, 2012). To explain why the act 

of recall produces qualitatively different learning than 

passive restudy, we developed the Primary and Convergent 

Retrieval (PCR) model of recall. 

The Primary and Convergent Retrieval Model 

The PCR model retains the two-stage recall architecture of 

previous memory models, with the first stage termed Primary 

Retrieval (PR) while the second is termed Convergent 

Retrieval (CR). Primary Retrieval describes the initial 

process of activating all relevant memories based on their 
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associations with the current retrieval cues (e.g., the current 

temporal context and any item information such as a word or 

picture provided as a cue). However, even the most active 

memory in PR may be incomplete (e.g., some of the features 

of the memory remain inactive). Convergent Retrieval 

describes a second stage in which the memory system focuses 

on the most active memory and attempts to activate any 

inactive features through intra-item associations between the 

features of that memory. 

General Assumptions of PCR 

PCR assumes that all memory traces and retrieval cues are 

composed of a finite number of features. New unidirectional 

associations between features are formed according to the 

temporal sequence of events. For instance, if feature A 

becomes active at time t, and feature B becomes active at time 

t+1, an excitatory connection is formed from feature A to 

feature B. This form of learning is consistent with spike time 

dependent plasticity in which potentiation of a synapse only 

occurs if the pre-synaptic cell fires before the post-synaptic 

cell (for examples see Dan & Poo, 2006). We assume this 

learning rule applies in all situations. Thus, context features 

become associated with item features during study because 

context is active prior to presentation of the item. More 

importantly, in terms of explaining the testing effect, initially 

active features of an item become associated with initially 

inactive features of the same item, provided that those 

features are subsequently retrieved. This intra-item learning 

explains the extra benefit of retrieval practice. 

Primary Retrieval 

When a retrieval attempt is initiated, all currently active 

features (e.g., the current temporal context and any retrieval 

cues) serve as cues to activate features of memory traces. 

Thus, PR is cue-dependent, meaning that the content and 

magnitude of the memory system's response depends 

completely on the features of the retrieval cues. During initial 

study, the retrieval cues (context and an item presented as a 

cue) are typically active first, followed by the target item, 

allowing associations between these retrieval cues and the 

features of the target item. However, encoding is likely to be 

incomplete and error prone. Furthermore, the temporal 

context will naturally change between study and test (e.g., 

Howard & Kahana, 2002). Thus, the activation of the target 

features that occurs with PR will be incomplete. Because a 

naming response requires full retrieval of the item, a pattern 

completion process is needed for recall success. We term this 

process ‘convergent retrieval’. 

Convergent Retrieval 

Convergent Retrieval is the process by which initially 

dormant features that were missed by PR become active, via 

intra-item excitatory connections between the individual 

features that define the target item. Even for readily known 

items (e.g., high frequency words), the retrieval cues may fail 

to activate enough of the item, such as occurs with 'tip-of-the-

tongue'. If CR succeeds in activating all the remaining 

features, two things occur: 1) the item can then be recalled; 

and 2) new associations between the features activated by PR 

and the features subsequently activated by CR can be formed 

(note that this also holds true when the target item is provided 

after CR failure, such as occurs in test practice with feedback; 

this explains why the testing effect is more powerful with 

feedback). 

This second outcome, called intra-item learning, represents 

a theoretical departure from most memory models, which do 

not explicitly model the learning between features of an item. 

This intra-item learning makes it easier to recall the item 

regardless of the initial state of activation that occurs with 

PR; because the associations between the individual features 

that compose an item are a property of the item, rather than 

the association between the item and retrieval cues, the intra-

item learning that takes place following successful test 

practice benefits recall in a cue-independent manner. This 

intra-item learning reduces the numbers of steps required for 

CR, resulting in faster recall. Thus, even in situations where 

intra-item learning fails to increase the probability of recall, 

it will decrease retrieval latency for the items that are 

recalled. 

 

Figure 1 shows an example of the CR process, beginning 

where PR ends. In this example, retrieval cue features only 

activate two of the five features of an item in memory 

(features of an item are shown as circles inside an oval, with 

currently active features represented by the filled circles; the 

existing intra-tem associations are indicated by the solid 

arrows). In this example, if a feature requires two excitatory 

inputs to become active, all of the initially dormant features 

will eventually become active across three time steps. New 

intra-item associations are now formed according to this 

progression of events (represented by the dashed arrows).  

This discussion outlines the guiding principles behind the 

PCR model. However, a full-scale neural network 

C
o

n
v

er
g

en
t R

etriev
a

l 

Figure 1: An example of successful Convergent Retrieval. 

The features initially activated by retrieval cues during 

Primary Retrieval activate the remaining inactive features 

according to the associative connections between each 

feature. Following convergence, additional associations are 

learned between the initially active features, and the 

subsequently activated features. 
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implementation would require many auxiliary assumptions 

(e.g., the exact time function underlying learning, the exact 

rule for feature activation during CR, the nature of temporal 

context change, etc.). Next we present a simple abstract 

mathematical model that approximates these guiding 

principles, noting that a fully mechanistic instantiation of 

these principles might deviate somewhat from this simple 

model. 

A Binomial Instantiation of PCR 

We assume each item consists of a finite number of features 

(set to 100 for convenience) and that each item requires a 

specific number of active features for CR to be successful 

(features are discretely active or inactive). This captures pre-

experimental item differences in which some items are more 

easily recalled even if encoding is incomplete or context has 

changed greatly (i.e., even with weak PR). The value of each 

item's CR ‘threshold’, θi, is sampled from a binomial 

distribution with probability t and 100 counts (one count for 

each feature). We use the symbol 𝐵( ) to indicate a binomial 

distribution. 

𝜃𝑖  ~ 𝐵(𝑡, 100) 

We assume that initial encoding is incomplete, or prone to 

errors such that even an immediate final test (i.e., one for 

which context has not changed) fails to activate all of the 

target item's features. As with item differences in threshold, 

we assume some items are better encoded than others, and the 

number of features that are encoded for each item, 𝛼𝑖, is also 

sampled from a binomial distribution, but in this case the 

probability parameter is e. 

𝛼𝑖  ~ 𝐵(𝑒, 100) 

The parameter e may be thought of as an encoding rate 

parameter, and more time spent studying will result in higher 

values of e. 

Restudy and successful recall provide another opportunity 

for encoding item features by associating them with retrieval 

cues and both forms of practice increase the value of αi (there 

is no learning for unsuccessful recall without feedback). This 

learning during the practice phase of an experiment is again 

captured with a binomial sample, but in this case the 

probability parameter is l. However, unlike initial study, this 

learning only applies to features that were not originally 

encoded and so the number of counts for this binomial 

distribution is 100 - αi, resulting in the following expression 

for change in the number of encoded features. 

∆𝛼𝑖 ~ 𝐵(𝑙, 100 − 𝛼𝑖) 

Forgetting is implemented in the model by reducing the 

value of αi. Modeling forgetting by reducing the number of 

features activated by retrieval cues corresponds to the 

assumption that temporal context shifts during the retention 

interval such that PR only activates a subset of the item 

features that were previously encoded in relation to the 

context at the time of initial study. The reduction in features 

activated during PR is captured by a binomial sample with 

probability f as follows.  

∆𝛼𝑖 = −𝐵(𝑓, 𝛼𝑖) 

As outlined previously, CR success produces new intra-

item learning, as the features of an item become associated 

with each other because they were activated in a progressive 

manner. We capture intra-item through a reduction in the CR 

threshold θi. This change in threshold is again a binomial 

sample, but with probability parameter r and the number of 

counts equal to the current threshold. 

∆𝜃𝑖 = −𝐵(𝑟, 𝜃𝑖) 

This reduction makes items more easily recalled regardless 

of how they are cued (i.e., even when PR is weak). In 

simulations with the model, recall success for each item is 

discretely determined according to a comparison between  

and . If  > , then PR has activated more features than are 

required for CR success, and thus the entire content of the 

item is retrieved and available to be named in a recall 

response. However, as described next, a key component of 

the recall process is the order in which items are considered 

for CR and the time that it takes to attempt CR. 

In a cued recall test, it is likely that the target memory is 

the only memory that has any appreciable activation 

(although this is not true in cued recall experiments that pair 

the same cue with multiple targets). In the case where the 

target is the only active memory, the important question is 

whether that memory is sufficiently active to support CR 

success and whether CR can be achieved in the allowed time. 

As outlined in Figure 1, we assume that CR takes time as 

dormant features progressively activate. We implement this 

by assuming that the time needed for CR relates to the 

distance from threshold,  - . More specifically, the 

Reaction Time (RT) to recall (or fail to recall) target item i is 

a negative exponential function. 

𝑅𝑇𝑖 = 𝑇𝑚𝑖𝑛 + (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)(𝑒−𝜆|𝛼𝑖−𝜃𝑖|) 

Here, 𝑇𝑚𝑎𝑥  and  𝑇𝑚𝑖𝑛 are upper and lower bounds on possible 

response times, respectively. Importantly, the term in the 

exponent uses the absolute magnitude of the difference. This 

captures the intuition that an item that is on the 'tip-of-the-

tongue' is one that will take a long time before it is recalled 

or before the memory system admits defeat. In contrast, items 

that are far above threshold are recalled very quickly. 

Similarly, items that are far below threshold fail to progress 

in the CR process, and the retrieval attempt is quickly 

abandoned. 

In a free recall test, the order in which memories are 

considered for CR plays a crucial role. More specifically, a 

considered item may fail to be recalled owing to CR failure 

but another possibility is that the item was not recalled 

because CR was never attempted. We assume that the 

memory system does not directly know whether CR success 

is possible for each memory; this knowledge requires the 

actual engagement of the CR process. However, the amount 

of feature activation (i.e., the amount of PR) is a good proxy 

for CR success. In other words, it is more likely that  >  

when selecting for items with high . Thus, rather than 

random sampling as in the SAM model, we assume that CR 
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is attempted for each item in descending rank order of αi. In 

this way, interference occurs in the construction of the rank 

ordered list; strong memories will be near the top of the list, 

making it more likely that a test taker runs out of time before 

considering items farther down the list. 

The predicted probability of recall in a free recall 

experiment is determined as follows. Monte Carlo 

simulations generate 1,000 hypothetical lists of items in 

which each item has an initial threshold , and value 

owing to initial study, followed by changes to these values 

with restudy or test practice. Simulating final recall, CR is 

attempted for each item in the rank ordered list of  values 

for each list, while keeping track of the total time elapsed 

during the recall session until the allowed time is exceeded or 

the entire list has been considered for CR. 

Applying PCR to Roediger & Karpicke 2006b 

Experiment 1 from Roediger and Karpicke 2006b 

manipulated practice method (test practice without feedback 

vs. restudy) and retention interval (5 minutes, 2 days, and 1 

week), using free recall for both test practice and the final 

test. Participants were given two prose passages that each 

contained 30 ‘idea units’. Participants then took a practice 

test on one passage, and restudied the other. After one of the 

3 retention intervals, participants took a final test on both 

passages. Figure 2 shows recall accuracy in each condition, 

as well as mean accuracy on the practice test. 

We fit the PCR model to the average free recall accuracies 

reported by Roediger and Karpicke 2006b (shown in Figure 

2). The e, l, r, Tmin, f2, and f7 parameters were allowed to freely 

vary, while Tmax was fixed at 60 seconds. Each item's CR 

threshold θi was drawn from a Binomial distribution with 

probability parameter t fixed at .5. We assumed that no 

forgetting occurred in the immediate final test condition (i.e., 

f = 0). The likelihood of the data was maximized using the 

binomial likelihood ratio test, which provides a chi-square 

goodness-of-fit statistic. The low value of this statistic 

indicates that the model is not rejected (χ2(1) = .042, p = .83). 

The predicted accuracy of the best fitting model is shown 

along with the observed data in Figure 1. 

 One the one hand, the accuracy of this fit is not surprising 

considering that 6 free parameters were used to fit 7 

conditions. On the other hand, this crossover interaction 

between type of practice and retention interval is theoretically 

challenging and these results are problematic for any memory 

model, regardless of the number of free parameters. 

Ultimately, the fit to these data can be considered a “proof of 

concept” that the PCR model is able to explain the pattern of 

recall accuracy results observed in studies of the testing 

effect.  In the following sections, we test novel predictions of 

the PCR model in a data set which imposes a much greater 

amount of constraint. 

Hidden Benefits of Retrieval 

The PCR model includes the notion of a bifurcated 

distribution (e.g., learning only applies to items that were 

recalled during test practice). The notion of a bifurcated 

distribution suggests that a great deal of learning has occurred 

for the items that were recalled on the practice test, but does 

not specify the nature of this extra learning for tested items. 

The PCR model attributes this extra learning to increased 

associations between the individual features of a target item. 

The incremental nature of CR during test practice promotes 

this type of learning whereas this does not occur with restudy 

considering that all of the item features are presented 

simultaneously with restudy. However, in the absence of 

feedback during test practice, this extra learning is not 

apparent when examining accuracy on an immediate final test 

because it only occurs for the items that would have been 

recalled even if they hadn't received test practice. Thus, the 

effects of this additional intra-item learning are masked in the 

short term and only emerge after a delay period, where this 

extra learning serves as additional protection against 

interference and forgetting. 

However, it should be possible to reveal the benefit of 

retrieval practice on an immediate final test by measuring 

how long it takes for each item to be retrieved, instead of just 

how many items are ultimately retrieved. The PCR model 

predicts faster retrieval following test practice even if overall 

accuracy does not improve on an immediate final tests.  

Practice Tests Reduce Retrieval Latency 

To see why intra-item learning reduces the latency of 

subsequent retrievals of the same item, consider the example 

of CR shown in Figure 1. Even if successful test practice 

failed to strengthen associations between the retrieval cues 

and the item features (i.e., even if PR still only activated 2 of 

the 5 features), CR would be achieved in fewer time steps 

during subsequent retrieval attempts. The newly formed 

intra-item associations (shown by the dashed arrows), allow 

CR to occur in 2 time steps rather than 4 time steps. This is 

Figure 2: Recall accuracy from Roediger and Karpicke 

2006b shown with the accuracy predicted by PCR. 
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because the 2 features initially activated during PR are now 

associated with all 3 of the initially dormant features, instead 

of just 1.  

Restudy also reduces retrieval latency, but for a different 

reason. Following restudy, the reduction in latency occurs 

because more features are active in the first time step (i.e., 

after PR). In other words, learning from restudy increases the 

number of features activated by the retrieval cues such that 

fewer features need to be filled in during CR. It is important 

to note that this type of learning also occurs with successful 

test practice. In other words, both restudy and test practice 

result in more features activated by the retrieval cues. 

However, successful test practice also boosts intra-item 

learning, and thus the CR process operates more efficiently 

(i.e., fewer time steps) to fill in the remaining features. In 

summary, for an immediate final test, accuracy is predicted 

to be higher following restudy because restudy boosts PR for 

all of the items. In contrast, retrieval latency is predicted to 

be faster following test practice because recalled items will 

have benefited both from better PR and from more efficient 

CR. 

We tested these predictions in a free recall experiment in 

which 34 participants studied lists of 15 words, followed by 

either restudy or a practice test, and then a final test (this 

procedure was repeated 8 times). On the memory tests, 

participants were given 90 seconds to recall the 15 words in 

any order. Participants completed a 30 second math distractor 

task between both the initial study and the practice phase, and 

between the practice phase and the final test. This 

experimental design yields 3 conditions to measure: 

performance on the practice test itself (i.e., the baseline or 

“no prior practice” condition),   performance on the final test 

following restudy practice, and performance on the final test 

following a practice test. In addition to recall accuracy, we 

analyzed the elapsed time between each item recalled (the 

Inter-Response Time, or IRT). The accuracy and latency 

results were in line with the PCR models predictions: restudy 

produced the highest accuracy (average of 81% correct) and 

faster IRTs than baseline, while IRTs were the fastest on a 

final test following test practice, despite no substantial 

change in accuracy (61% correct on the practice test and 59% 

correct on the final test). The median IRTs for each possible 

output position in this experiment are shown in Figure 3. Note 

that the lack of a “testing effect” in terms of recall accuracy 

is expected in this situation, as the learning benefits of test 

practice only apply to items already able to be recalled, and 

thus should only be expected to emerge with a longer 

retention interval. Demonstrating the generality of these 

latency effects, a similar speed-up has been found with a final 

cued recall test following cued recall practice (Broek, Segers, 

Takashima, & Verhoeven, 2014). 

Applying PCR to Free Recall Latencies 

The PCR model was simultaneously fit to the observed recall 

accuracy and IRTs from each item on each list of the free 

recall experiment, separately for each subject. More 

specifically, the PCR model predicts the shape of the IRT 

distributions, and these were used to produce a maximum 

likelihood fit of the joint probability of producing each 

observed latency at the observed output order position within 

the test list (e.g., taking 4.3 seconds after recall of a 4th item 

to then recall a 5th item). In this manner, the model explained 

the shape of the separate IRT distributions as a function of 

output position within the test list, and as a function of prior 

restudy or prior test practice. The predicted IRTs using the 

best fitting model parameters for the baseline, restudy, and 

test practice conditions are shown along with the observed 

data in Figure 3. 

To allow the model to capture the data, the Tmin, Tmax, and λ 

parameters were allowed to freely vary in addition to the e, l, 

r, and t parameters. When using a binomial distribution, the 

model generated IRT distributions are discrete because there 

is a finite number of possible RTs representing a finite 

number of possible values for the difference from threshold 

(however, this finite number is large when considering that 

an observed IRT may reflect some number failed CR attempts 

before a successful CR). A continuous IRT distribution was 

produced owing to two factors. First, rather than using the 

discrete Binomial distribution, we used a continuous Beta 

distribution that approximates the Binomial by having the  

same mean and variance. Theoretically, this corresponds to 

consideration of partial feature activation. Second, rather 

than assuming that each CR attempt was initiated precisely at 

Figure 3: Predicted and observed inter-retrieval times in the 

no practice, study practice, and test practice conditions. 

Inter-retrieval times increased as function of output position 

in the no practice and study practice conditions, but not in 

the test practice condition. 
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the offset of the last CR, we imposed a standard normal (0 

mean and 1 second standard deviation) for the start time of 

each CR. This was implemented with Gaussian kernel 

estimation of the Monte Carlo data. This procedure produced 

a family of IRT distributions across the 15 possible output 

positions (i.e., these 15 distributions integrate to value 1.0), 

and in this way the model simultaneously explained both the 

accuracy data and trial-by-trial IRTs. 

General Discussion 

The PCR model has important theoretical implications for the 

testing effect literature as well as the broader field of memory 

research. To this date, there have been no well specified (i.e., 

mathematical) models of the cognitive processes that 

underlie the testing effect. Beyond serving this need, the PCR 

model provides a conceptually novel account of the benefits 

from retrieval practice. In the testing effect literature, the 

leading theories include overlearning (i.e., testing simply 

produces more learning), transfer appropriate processing 

(i.e., the best way to learn to recall at a later date is to practice 

recall), and desirable difficulties (i.e., testing requires more 

effort). Intra-item learning is conceptually different than any 

of these accounts. It is closest to transfer appropriate 

processing, but it supposes that the act of recall introduces a 

king of learning that will benefit future recall attempts for that 

item under a variety of circumstances (i.e., beyond situations 

that are identical to those of test practice). This theory 

provides an explanation of why test practice benefits are 

largest following recall practice (Carpenter & DeLosh, 

2006); because CR is not reliably engaged by tests that do not 

require recall (e.g., a recognition or some forms of multiple 

choice tests), these tests do not produce as much intra-item 

learning. 

While PCR incorporates many ideas from existing models 

of memory, the assumption of different kinds of learning for 

the two stages that underlie recall is an important departure 

from prior models. These models concern the association 

strength between retrieval cues and memories, and then use 

these associations in different ways to explain the difference 

between familiarity responses (the first stage) and recall 

responses (the combination of two stages). By additionally 

considering intra-item learning, PCR goes beyond passive 

theories of memory formation to explain why the act of 

recalling something from memory results in a qualitatively 

different kind of learning; a kind of learning that is unique to 

the item, allowing better/faster recall of the item even when 

retrieval cues change. Nevertheless, in the PCR model, these 

two types of learning follow from the same learning 

mechanism that builds associations between features 

according to the temporal order in which features become 

active. Thus, the key distinction between passive study and 

active recall is that passive study is an all-at-once event in 

terms of items and their features, whereas recall is a gradual 

unveiling of an item's features. 
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