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Our intuitive sense of number allows rapid estimation for the number of objects (numerosity) in a scene. How does the continuous 
nature of neural information processing create a discrete representation of number? A neurocomputational model with divisive 
normalization explains this process and existing data; however, a successful model should not only explain existing data but also 
generate novel predictions. Here, we experimentally test novel predictions of this model to evaluate its merit for explaining mechanisms 
of numerosity perception. We did so by consideration of the coherence illusion: the underestimation of number for arrays containing 
heterogeneous compared to homogeneous items. First, we established the existence of the coherence illusion for homogeneity 
manipulations of both area and orientation of items in an array. Second, despite the behavioral similarity, the divisive normalization 
model predicted that these two illusions should reflect activity in different stages of visual processing. Finally, visual evoked potentials 
from an electroencephalography experiment confirmed these predictions, showing that area and orientation coherence modulate 
brain responses at distinct latencies and topographies. These results demonstrate the utility of the divisive normalization model for 
explaining numerosity perception, according to which numerosity perception is a byproduct of canonical neurocomputations that exist 
throughout the visual pathway. 
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Introduction 
The ability to make a rapid estimation of the number of items 
in a scene, or numerosity, is a ubiquitous feature of both verte-
brate and invertebrate animal behavior (Butterworth et al. 2018; 
Kobylkov et al. 2023). Like other perceptual abilities, this “number 
sense” conforms to Weber’s law (Anobile et al. 2016). However, 
unlike many other perceptual domains, the number sense is 
thought to underlie more analytical abilities such as addition, 
subtraction, and averaging (Feigenson et al. 2004; Dehaene 2011; 
Clarke and Beck 2021; Katzin et al. 2021; Togoli et al. 2021), 
and some authors suggest that it underlies symbolic numerical 
abilities (e.g. Halberda et al. 2008; Starr et al. 2013; but  see  Wilkey 
and Ansari 2019). 

While the predominant view is that there exists an indepen-
dent mechanism for the number sense (Burr and Ross 2008; 
Dehaene 2011), the precise computational mechanisms for how 
numerosity is represented within the visual system are not well 
understood. This lack of mechanistic explanations has caused 
some to challenge the traditional view. For instance, based on 
numerous findings that numerosity judgments can be influenced 
by other continuous magnitude dimensions (such as density and 
total area of the items) and vice versa (Gebuis and Reynvoet 2012a, 
2012b; Leibovich and Henik 2014; DeWind et al. 2015; Anobile et al. 
2016; Starr et al. 2017; Piazza et al. 2018), some authors have 

proposed that other continuous dimensions are integrated 
and used as a proxy for number in later decision-making 
stages (Gebuis et al. 2016; Leibovich et al. 2017). Others have 
suggested that both numerosity and continuous dimensions are 
encoded and sustained interdependently and multidimensionally 
throughout visual processing (Lourenco and Aulet 2022). However, 
these alternative accounts still do not provide a detailed 
computational account of how other continuous dimensions are 
integrated to represent numerosity or how numerosity and other 
dimensions are encoded interdependently. 

Computational modeling studies have provided some insights 
into the mechanisms of numerosity perception. Dehaene and 
Changeux first proposed that the number sense is extracted 
from feedforward visual processing stages in which objects on 
the retina are coded by their position regardless of the size of 
each object (Dehaene and Changeux 1993). Recent computational 
models following this foundational framework of feedforward 
mechanisms have shown that some units in a deep convolutional 
neural network can be sensitive to numerosity, indicating that 
some combination of convolution and pooling of neural activity 
across multiple layers gives rise to numerosity representation 
(Stoianov and Zorzi 2012; Nasr et al. 2019; Kim et al. 2021). 
There are distinct advantages to some of these learning models, 
such as their capacity to explain the development of a visual
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number sense in newborn infants and in animal species like rhe-
sus monkeys and honeybees (Testolin et al. 2020). However, suc-
cessful application of these models is only a first step. Although 
learning or nonlinear computations across the multiple layers of 
these models can produce network units sensitive to numerosity 
among other magnitude dimensions, additional investigations are 
needed to determine which neurocomputational mechanisms are 
necessary and which are not (Bowers et al. 2023; Kobylkov et al. 
2023). 

In our prior modeling work, we demonstrated that divisive 
normalization applied to template filters is the crucial neuro-
computational mechanism for the visual number sense (Park and 
Huber 2022). To simulate number sense for dot arrays, this divi-
sive normalization mechanism was implemented using center-
surround filters, at differing spatial scales, within a single-layer 
convolutional network. The output of these retinotopic filters was 
then normalized, consistent with research on divisive normal-
ization within the animal visual system (Carandini and Heeger 
2012). We then quantified the output of the model in response 
to images of dot arrays varying in number (the number of dots 
in an array), size (the surface area of a dot array while holding 
number constant), and spacing (the overall inter-dot distance 
of the array while holding number constant). Importantly, all 
three dimensions can be manipulated independent of each other 
and various continuous dimensions such as the density, convex 
hull, total surface area, and individual dot area of the array can 
be expressed as a linear combination of the three independent 
dimensions (see DeWind et al. 2015). We found that the output 
activity of the divisive normalization model was strongly modu-
lated by the number of dots in an array but not by size and spacing, 
and it was subject to various visual illusions (as described in 
detail below). Most importantly, this neurocomputational model 
provided a mechanistic explanation of the manner in which the 
nervous system is sensitive to numerosity information (Park and 
Huber 2022). 

Center-surround filters were used in modeling the perception 
of dot arrays because they are the ideal filter for dots. How-
ever, that does not mean that numerosity representations arise 
only from center-surround neural responses. Rather, the proposed 
computational account suggests that divisive normalization is the 
neural mechanism that gives rise to the number sense. Because 
divisive normalization exists at all levels of visual processing, 
displays of objects other than dots may rely on behavioral “read 
out” from other brain regions. In other words, this model suggests 
that there is not just one processing stage for numerosity, but 
rather many stages. 

To test the hypothesis that divisive normalization underlies 
sensitivity to numerosity, we took advantage of the coherence illu-
sion in numerosity perception, where participants systematically 
underestimate heterogeneous arrays compared to homogeneous 
arrays (Lee et al. 2016; DeWind et al. 2020; Qu et al. 2022). One 
previous study showed that arrays in which items are oriented 
randomly are underestimated compared to arrays in which all 
the items are oriented identically (DeWind et al. 2020). Likewise, 
another previous study hinted at the possibility that arrays with 
heterogeneous item areas are underestimated relative to arrays 
with homogeneous item areas (Lee et al. 2016). While both illusory 
effects are considered the same coherence illusion, as will be 
explained, the divisive normalization model suggests different 
underlying neural activity for these two effects. 

Previous electroencephalography (EEG) studies of numerosity 
perception show that brain activity becomes sensitive to 
numerosity extremely early in the visual cortical hierarchy. When 

participants view dot-array images that vary systematically in 
number, size, and spacing, the amplitude of their visual evoked 
potentials become modulated primarily by number, but much 
less so—if any—by size or spacing, at the latency of 75 to 100 ms 
at central occipital scalp locations (likely arising from V1, V2, 
and V3) and again around 200 to 300 ms at bilateral occipital 
scalp locations (likely arising from V3 and beyond) (Park et al. 
2016, 2021; Fornaciai et al. 2017; Fornaciai and Park 2018a, 2018b). 
The sensory, perceptual, or cognitive processes underlying these 
stages are unknown but could be determined by proposing 
and testing theories about the manner in which numerosity 
perception unfolds across different temporal stages of visual 
processing. 

In this study, we use computational modeling to develop a 
theory of numerosity perception and use EEG to test empirical 
predictions of the theoretical framework. Specifically, we hypothe-
size that divisive normalization underlies numerosity perception, 
as demonstrated by the success of our original computational 
model (Park and Huber 2022). However, a successful model should 
not only explain existing data but also make novel, testable pre-
dictions, which lead to new experiments. To achieve this, we con-
ducted a psychophysical experiment, designed and implemented 
a computational model to explain our psychophysical results and 
to elicit novel predictions, and then performed an EEG experiment 
to test the prediction of the model. First, we test for and confirm 
the behavioral effects of the coherence illusion in area (e.g. rect-
angles of same or different areas in an array) and orientation (e.g. 
rectangles of same or different orientations in an array). Second, 
we demonstrate that the divisive normalization model simulates 
the area coherence illusion with a first layer of center-surround 
filters but that it only simulates the orientation coherence illusion 
after augmenting our prior model with a second layer of Gabor 
filters of different spatial frequencies. This model simulation 
predicts that the orientation coherence illusion arises from a 
different, later visual processing stage than the area coherence 
illusion. Third, we test this prediction using the high temporal 
resolution of the EEG. The analysis of the visual evoked potentials 
confirms the prediction that these two coherence illusions occur 
in different stages of visual processing as determined by the 
latency and topography of the neural activity. 

Materials and methods 
Participants 
Twenty-seven subjects (n = 27) recruited from the departmental 
research participation system participated in the behavioral psy-
chophysical experiment. They included 4 men and 23 women with 
the age range from 18.2 to 22.9 years with the mean of 20.2 years. 
Self-reported ethnic and racial category were as follows: Hispanic 
or Latino (3) and Not Hispanic or Latino (24); White or Caucasian 
(17), Asian (8), and Black or African American (2). 

Another group of 45 subjects from the same pool participated 
in the EEG experiment. These participants did not overlap with 
those who participated in the psychophysical experiment. Data 
from two subjects were corrupted due to equipment failure and 
one subject kept falling asleep; therefore, data from these three 
subjects were removed. Therefore, the final sample size was 
n = 42. This sample included 20 men and 22 women with the age 
range from 18.4 to 24.4 years with the mean of 20.4 years. Self-
reported ethnic and racial category were as follows: Hispanic or 
Latino (2) and Not Hispanic or Latino (40); White or Caucasian (31), 
Asian (9), and Black or African American (2).
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All the participants signed a written informed consent before 
participating in the experiment and were compensated with 
course credit. All the participants included in the study were naive 
to the purpose of the experiment and had normal or corrected-
to-normal vision. All the experimental procedures were approved 
by the University of Massachusetts institutional review board and 
were in line with the Declaration of Helsinki. 

Stimuli 
A large set of arrays containing rectangular elements (see Fig. 1A) 
was created for the psychophysical experiment. All the visual 
stimuli were generated by adapting the previously published code 
for generating dot-array stimuli for magnitude perception studies 
(https://osf.io/s7xer/) in MATLAB version R2022b (The MathWorks, 
Inc.). In the psychophysical and EEG experiments, the stimuli were 
presented on a monitor screen running at 144 Hz with a resolution 
of 1920 × 1080, encompassing ∼34◦ × 19◦ of visual angle from the 
viewing distance of 90 cm. 

First, a set of “probe” arrays were created whose dimensions 
of number (N), size (Sz), and spacing (Sp) were systematically 
determined following previous work (Fornaciai and Park 2018a, 
2021). This stimulus construction scheme allows the quantifica-
tion of the effects of numerical and non-numerical dimensions on 
a dependent measure (DeWind et al. 2015; Park 2022). This scheme 
was used here to provide systematic variations in non-numerical 
dimensions while the subjects were asked to make a judgment 
on number. The different levels of non-numerical dimensions, 
however, were collapsed during data analysis because the pri-
mary goal of the study was on coherence illusory effects, not 
on the influence of non-numerical dimensions on numerosity 
judgments. 

These probe arrays consisted of black (50%) and white (50%) 
rectangles on a gray background of size 600 × 600 pixels. When 
there was an odd number of rectangles, either the set of black or 
white rectangles (randomly chosen) outnumbered the other set 
by one. The size of the rectangles within an array was identical 
in these probe arrays, and the height of each rectangle was twice 
as large as its width (d). The minimum center-to-center distance 
between any two rectangles was at least twice as d. The  number  
of rectangles (N) in a probe array ranged from 12 to 48 in seven 
equidistant levels on a logarithmic scale (i.e. n = 12, 15, 19, 24, 
30, 38, 48). The width (d) ranged from 7 to 14 pixels likewise in 
seven equidistant levels on a logarithmic scale. These rectangles 
were drawn in random positions within an invisible circle with 
the field radius (rf) that ranged from 150 to 300 pixels in seven 
equidistant levels on a logarithmic scale. This configuration gen-
erated 91 unique sets of parameters (N, Sz, and  Sp) across the  
three-dimensional parameter space defined by N, Sz, and  Sp. A  
total of 455 unique probe arrays were pre-generated for the area 
coherence condition. 

These arrays were used as the probe images in the “area 
coherence” condition. Note that the area of each rectangle was 
homogeneous within a probe array. The probe images in the 
“orientation coherence” condition were generated by rotating all 
the rectangles in each array in one of five different orientations: 
12◦, 84◦, 156◦, 228◦, and 300◦. Thus, while the orientations of the 
rectangles varied across arrays, they were homogeneous within 
a probe array. These orientations were chosen to avoid cardinal 
(0◦ and 90◦) and oblique (45◦ and 135◦) angles. As in the area 
coherence condition, a total of 455 unique probe arrays were pre-
generated for the orientation coherence condition. 

Second, separately for the area coherence and orientation 
coherence conditions, a set of “reference” arrays was created, 

which contained both homogeneous and heterogeneous rectan-
gles within each array. The reference arrays contained 25 rectan-
gles, which was one more than the median number of rectangles 
(n = 24) across all the probe arrays. This was intended as we 
expected the manipulation of coherence to cause an underes-
timation. That is, we anticipated that the perceived numerosity 
of the homogeneous reference array to be slightly greater than 
the median numerosity of the probe arrays, while the perceived 
numerosity of the heterogeneous reference array to be slightly 
smaller than the median numerosity of the probe arrays. 

In the area coherence condition, homogeneous reference 
arrays were constructed by creating 25 rectangles using the 
median values of rf (=212 pixels) and d (=10 pixels) from the probe 
arrays. Heterogeneous reference arrays were constructed likewise 
but by creating five rectangles with d = 4,  five  rectangles  with  
d = 6, five rectangles with d = 9, five rectangles with d = 12, and  five  
rectangles with d = 15. This ensured that the area of the rectangles 
varied within each array (thus, creating heterogeneity) while 
holding the total area equivalent to that of the homogeneous 
reference arrays. A total of 175 unique homogeneous reference 
arrays and 175 unique heterogeneous reference arrays were pre-
generated. 

In the orientation coherence condition, homogeneous refer-
ence arrays were constructed by creating 25 rectangles using the 
median values of rf (=212 pixels) and d (=10 pixels) from the probe 
arrays, in one of five orientations (i.e., 12◦, 84◦, 156◦, 228◦, 300◦). 
Heterogeneous reference arrays were constructed likewise but by 
creating five rectangles with 12◦, five rectangles with 84◦, five  
rectangles with 156◦, five rectangles with 228◦, and five rectangles 
with 300◦ within each array. A total of 175 unique homogeneous 
reference arrays and 175 unique heterogeneous reference arrays 
were pre-generated. 

In the EEG experiment, the aforementioned homogeneous and 
heterogeneous reference arrays—designed and used in the psy-
chophysical experiment—were used. In half of the trials (see 
Experimental paradigms), a rectangle array was immediately fol-
lowed by a backward mask. The backward mask images were 
created by randomly translating (up to −120 pixels and +120 
pixels horizontally and vertically) each of 64 randomly chosen 
reference arrays and overlapping the images successively with an 
exclusive disjunction (xor) operation on each pixel, after which a 
circular aperture with a radius of 256 pixels cropped the image. 
This procedure of creating mask images was to ensure that the 
visual characteristic of the mask was similar to that of the ref-
erence array images. A total of 64 masks for the area coherence 
condition was created using the reference arrays from that con-
dition; another 64 masks for the orientation coherence condition 
was created likewise. 

In simulations using the computational model, the aforemen-
tioned homogeneous and heterogeneous reference arrays as well 
as the probe arrays were used. However, the size of the image was 
down sampled to 128 × 128 pixels for computational efficiency 
and the shade of the images was converted so that all the rect-
angles were white on a black background. 

Data acquisition 
All experiments were performed on individual subjects in a quiet 
room. The psychophysical experiment was built and presented 
using PsychoPy version 2022 February 4 (Peirce et al. 2019). The 
EEG experiment was built and presented using Psychtoolbox 3 
on MATLAB versions R2013a. The EEG data were continuously 
recorded using an active electrode amplifier (actiCHAmp; Brain 
Products GmbH) from 64 channels distributed in an extended
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Fig. 1. Experimental procedure and results of the psychophysical experiment. A) Structure of an example trial. Participants judged which of the two 
arrays sequentially presented in the same position (randomly on either left or right of the fixation point) contained more items. The reference array 
always contained 25 homogeneous or heterogeneous items, and the probe array contained from 12 to 48 homogeneous items. The images are not drawn 
to scale. B) Example stimuli for the area and the orientation conditions. C) Psychometric curves computed from aggregate data across all participants 
describing how the probe stimuli were perceptually matched with either homogeneous or heterogeneous item arrays. 
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coverage, triangulated, equidistance cap (M10; EasyCap GmbH), 
with a sampling rate of 1000 Hz. During the recording, all the 
channels were referenced to the vertex (Cz). One vertical elec-
trooculogram (EOG) electrode was placed below the left eye and 
two EOG electrodes were placed lateral to the left and right canthi. 
Channel impedances were kept below 15 kΩ most of the time, 
although up to 35 kΩ was tolerated. 

Experimental paradigms 
Psychophysical experiment 
In the psychophysical experiment, each participant was given the 
area coherence condition (4 blocks of 98 trials) and the orientation 
coherence condition (4 blocks of 98 trials) in a counterbalanced 
order. The two conditions were identical in their experimental 
paradigm, except for the stimuli used for numerosity judgment. 
The paradigm was consistent with our previous experiments on 
the connectedness illusion (Fornaciai and Park 2018a, 2021). On 
each trial, a reference array consisting of 25 items was presented 
for 48.6 ms (7 screen flips under the refresh rate of 144 Hz) 
on either the left or the right side of a central fixation cross 
(eccentricity of 5.3◦). The reference array always contained exactly 
25 items that were either homogeneous or heterogeneous in 
nature (see Fig. 1A). For example, in the area condition either 
25 homogeneously sized or 25 heterogeneously sized rectangles 
appeared on the left or right side. The reference array was fol-
lowed by a variable interstimulus interval (ISI; 500 to 600 ms 
from a uniform distribution) where only the central fixation cross 
remained on the screen. After the ISI, a probe array was presented 
for 48.6 ms in the same spatial position as the reference array. 
The probe array contained from 12 to 48 homogeneous items to be 
compared against the reference array. The participant then judged 
which array contained more elements by pressing the “1” key 
(first/reference array contained more) or the “2” key (second/probe 
array contained more) on a standard keyboard. After the response, 
the following trial started after a variable intertrial interval of 
950 to 1150 ms. The very brief stimulus presentation (∼50 ms) 
and the peripheral spatial positions were specifically chosen to 
maximize the coherence bias. Biases in numerosity perception, 
such as the connectedness illusion and the serial dependence 
effect, are indeed usually stronger at short stimulus presentations 
and at peripheral locations (Franconeri et al. 2009; He et al. 2009; 
Fischer and Whitney 2014; Fornaciai and Park 2018b). 

The reference and probe arrays were randomly chosen from 
the pre-generated images as described in the Stimuli section. The 
reference array always contained 25 rectangles. Importantly, a 
random half of the trials presented a homogeneous reference 
array, and the other half presented a heterogeneous reference 
array. The probe array contained one of the seven number of 
rectangles (n = 12, 15, 19, 24, 30, 38, 48). The probability of the 
appearance of 12, 24, and 48 rectangles to the probability of the 
appearance of 15, 19, 30, and 38 rectangles was in a 3:4 ratio. This 
distribution was to ensure that slightly more trials are allocated 
for more challenging judgments and relatively less trials are 
allocated to trials that are the easiest or that need to be largely 
guessed. 

Since the stimuli were presented always in the same order 
(reference first, followed by the probe array), the overall accu-
racy of numerosity judgments might be influenced by time-order 
errors (Hellström 1985; Hellström and Rammsayer 2015), namely, 
a systematic under- or overestimation of the first stimulus in 
the sequence, depending on the properties of the stimuli and the 
type of judgment. However, the present study focused on the rel-
ative difference in perceived numerosity due to the manipulation 

of stimulus homogeneity and not on the absolute accuracy of 
numerical judgments. Even if possibly present, time-order errors 
are thus not expected to affect the interpretation of the results. 

EEG experiment 
In the EEG experiment, four different types of the reference arrays 
were presented at the center of the screen in random order. The 
four types were area homogeneous arrays, area heterogeneous 
arrays, orientation homogeneous arrays, and orientation hetero-
geneous arrays. Each reference array was presented for a duration 
of 48.5 ms (7 screen flips), which was followed by a variable 
intertrial interval (663 to 1063 ms from a uniform distribution). 
A total of 288 arrays were presented in each block, and a total 
of 8 blocks were given to each participant. A black fixation cross 
was presented at the center of the screen throughout the trial and 
across all the trials. Occasionally at random times, the central 
fixation cross turned red. Participants were instructed to press 
a button under their right or left index finger (counterbalanced), 
at which point the fixation cross turned yellow to provide button 
response feedback to the participants. The purpose of this color 
oddball detection task was to ensure that participants kept their 
attention on the center of the screen, and it was orthogonal to 
the purpose of the experiment. Of the 288 arrays in each block, 
24 were presented as an oddball, and these oddball trials were 
excluded from the analysis. The average (±SD) of the median 
response time (RT) across subjects in the color oddball task was 
438 ± 44 ms, and the average hit rate was 95.8%. In random half of 
the trials, the reference array was immediately followed by a very 
short (13.9 ms) fixation cross which was followed by a backward 
mask image described in Stimuli for 48.5 ms. The purpose of this 
manipulation was to assess the impact of backward masking on 
the visual evoked potentials for the design and interpretation of 
future studies. These trials are not the focus of the current work 
and therefore were not reported in this paper. 

Data analysis 
Psychophysical data 
Behavioral response from the psychophysical experiment was 
analyzed to obtain individual subject’s accuracy and precision in 
the numerosity judgment task. A cumulative Gaussian function 
was fitted to each individual subject’s choice data under four 
conditions (area homogeneous, area heterogeneous, orientation 
homogeneous, orientation heterogeneous) using the quickpsy tool-
box implemented in R, with the lapse rate set to 0.02 and all other 
parameters set to their default values (Linares and López-Moliner 
2017). The median point of the best-fitting curve for each condi-
tion was taken as the point of subjective equality (PSE) for that 
condition, which was our primary measure of underestimation 
effect expected due to coherence illusion. In addition to this pri-
mary measure, the difference in numerosity between the median 
point and the 75% correct response from the fitted curve was 
taken as the just noticeable difference (JND). The Weber fraction 
was derived from JND divided by PSE. JND and Weber fraction were 
interpreted as the precision in the numerosity judgment task. 

EEG data 
The EEG data were analyzed off-line using the functions pro-
vided by the EEGLAB software package and the ERPLAB toolbox 
(Delorme and Makeig 2004; Lopez-Calderon and Luck 2014). As 
part of preprocessing, the raw continuous EEG data were high-
pass filtered at 0.01 Hz and referenced to the average value of all 
the 64 channels. The continuous data were then segmented into 
epochs from 100 ms before to 500 ms after stimulus onset, with
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a baseline correction using the pre-stimulus interval. We then 
performed an independent component analysis (ICA) to remove 
components identified as eye blinks. After ICA, epochs with large 
signal amplitudes (signal going outside the range of [−150, 150] 
μV) were further identified and rejected using an artifact rejection 
tool in ERPLAB. This procedure led to the median rejection rate 
of 3.8%. One of the subjects had the rejection rate >50%, and 
this subject was removed from further analysis, making n = 41. 
Finally, the epochs were selectively averaged for each of the four 
conditions (area homogeneous, area heterogeneous, orientation 
homogeneous, orientation heterogeneous), followed by a low-pass 
filter at 30 Hz before computing the grand average of the event-
related potentials (ERPs). Based on the previous results showing 
early ERP sensitivity to numerosity in the medial occipital channel 
(Park et al. 2016; Fornaciai and Park 2017, 2018a), our primary 
analysis was focused on the channel Oz. In order to test our 
hypothesis concerning the neural effects of coherence illusion 
in the case of area manipulation and in the case of orientation 
manipulation, the ERPs evoked by homogeneous arrays were 
contrasted with the ERPs evoked by heterogeneous arrays across 
each time point in Oz separately for the area conditions and for 
the orientation conditions. 

Computational modeling 
The previously published neural network model for magnitude 
perception served as the starting point for the computational 
model in this study (Park and Huber 2022). Therefore, some of the 
descriptions below are a reiteration of what was explained in that 
previous work. Images fed into the model were the four different 
types of reference arrays (area homogeneous, area heterogeneous, 
orientation homogeneous, and orientation heterogeneous) as in 
the EEG experiment and the probe arrays used in the psychophys-
ical experiment, except the shades of the images were converted 
so that white rectangles were displayed on a black background 
and the size of the images was rescaled to 128 × 128 pixels for 
computational efficiency. 

Difference-of-Gaussians layers 
The first part of the neural network model consisted of a set 
of convolutional layers with five different sizes of difference-
of-Gaussians (DoG) filters. This part of the architecture hence 
contained 128 × 128 × 5 simulated neurons. The DoG filters were 
formally defined as the following:

�
(
x, y

) = I ·
(

1 
2πσ 2 e

− x2+y2 

2σ2 − 
1 

2πK2σ 2 e
− x2+y2 

2K2σ2

)
, (1)  

I is the input image, σ 2 is the spatial variance of the narrower 
Gaussian, and K is the scaling factor between the two variances. 
K = 1.6 was used to achieve balanced bandwidth and sensitivity 
of the filters (Marr and Hildreth 1980). Considering that the input 
values range [0, 1], the DoG filters were reweighted so that the sum 
of the positive portion equals to 1 and the sum of the negative 
portion equals to −1, making the summation across all domains 
0. This reweighting ensured that the response is maximized when 
the input matches the DoG filter regardless of filter size and that 
the filter produces a response of value 0 if the input is constant 
across a region regardless of filter size. Finally, the output of this 
convolution process was followed by half-wave rectification at 
each simulated neuron, where negative responses were replaced 
by zero (Heeger 1991). This stipulation sets the “firing threshold” 
of the network such that the simulated neurons would not fire if 
the input does not match its DoG filter. 

Five different σ values were used (σ k = 1, 2, 4, 8, 16  for  filter  
size k, respectively) that covered spatially fine features like the 
edge of the smallest rectangles to spatially broad features like 
the landscape of the rectangles of the image. The activity of each 
simulated neuron, i, in filter size k following this convolution 
procedure is referred to as the driving input, Di,k. 

The activity of each simulated neuron was represented by the 
driving input of that neuron normalized by the driving inputs of 
other neighboring neurons. This divisive normalization procedure 
is modeled as the following (Carandini and Heeger 2012): 

Ri,k =
Dγ 

i,k 

c + ∑
j,k η(i,j,k)Dγ 

j,k 
, (2)  

where the neighborhood weight η is defined as 

η(i,j,k) = e− d(i,j) 
rk . (3)  

Di is the driving input of neuron i (i.e., the output of the convo-
lution procedure described above), d(i,j) is the Euclidean distance 
between neuron i and neuron j in any filter size, and c is a con-
stant that prevents division by zero. The denominator minus this 
constant, which was set to 1, is referred to as the normalization 
factor. The parameter rk, or the scaling factor, serves to scale 
between local and global normalization. As rk gets larger, activi-
ties from a broader set of neurons constitute the normalization 
factor, and it was defined as a function of σ k so that neurons 
with larger filter sizes have their normalization factor computed 
from a broader pool of neighboring neurons. The parameter γ 
determines the degree of amplification of individual inputs and 
serves to scale between winner-take-all and linear normalization. 
Following our previous work, rk was set to 2σ k and γ was set to 2. 
Ri,k represents the normalized response of neuron i in filter size 
k (Park and Huber 2022). 

The normalized responses were summed across the five layers 
of different filter sizes, �k Ri,k, which resulted in a map of 128 × 128 
simulated activations. This map of neural representation was fed 
into the next part of the neural network architecture (see Gabor 
layers below). The summed value across all neurons and all filter 
sizes, �i,k Ri,k, was interpreted as the summarized neural activity 
in response to the given input image. 

Gabor layers 
In our investigation of the orientation coherence illusion, we 
assumed another set of layers capable of capturing orientation 
representations. Thus, a second part of the neural network model 
consisted of a set of convolutional layers with Gabor filters of four 
wavelengths (4, 8, 16, 32 pixels/cycle) and six orientations (0◦, 30◦, 
60◦, 90◦, 120◦, 150◦) as implemented in MATLAB version R2022b. 
This part of the architecture hence contained 128 × 128 × 4 × 6 
simulated neurons. To keep the range of the simulated neural 
activity comparable across different stages of the neural network 
architecture, the output map of the DoG layers, Ri, was linearly 
rescaled before being fed into the set of Gabor filters. Specifically, 
a constant scaling factor was computed so that one of the output 
maps of the DoG layers would be rescaled to [0, 1], and all other 
output maps would be rescaled using that constant scaling factor. 
Otherwise, the simulated values become infinitesimally small as 
the signal feeds through subsequent layers due to the immense 
divisive operations. 

Convolution of the input activity with Gabor filters resulted in 
the driving input, Di,θ, in each simulated neuron i, in wavelength
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λ, in orientation θ. As  in  the  DoG layers, the driving input was 
normalized by the principle of divisive normalization (Eq. 2). The 
summation of normalized responses across all the wavelengths, 
orientations, neurons �i, λ,θ Ri,λ,θ, was interpreted as the summa-
rized neural activity after this second part of the model. 

Unlike center-surround normalization, orientation normal-
ization depends on the similarity between orientations (Hubel 
and Wiesel 1962). To capture the difference between neighboring 
objects of the same orientation versus neighboring objects of a 
different orientation, the scaling factor, r, for neighborhood weight 
η (Eq. 3) was assumed to vary as a function the difference between 
the orientation of the filter for one neuron θi and the orientation 
of the filter for one neuron θj. Initially, we set these parameters so 
that the model can capture cross-orientation suppression effects for 
overlapping stimuli: when | θi − θj | = 0◦, r = 2λ; when |  θi − θj | = 30◦ 

or 150◦, r = 4λ; when | θi − θj | = 60◦ or 120◦, r = 8λ; when |  θi − θj | = 90◦, 
r = 16λ. In this setting, different orientations are constantly more 
suppressed than similar orientations (e.g. Brouwer and Heeger 
2011). However, this assumption runs counter to other studies 
reporting the opposite effect, in that presentation of identical or 
similar orientations in the surround produces more suppression 
in V1 cells (e.g. Meese et al. 2007; Coen-Cagli et al. 2015). Thus, we 
also performed simulations under the iso-orientation suppression 
assumption in which similar orientations are constantly more 
suppressed than different orientations: when | θi − θj | = 0◦, r = 16λ; 
when | θi − θj | = 30◦ or 150◦, r = 8λ; when |  θi − θj | = 60◦ or 120◦, 
r = 4λ; when |  θi − θj | = 90◦, r = 2λ. Finally, we also simulated the 
case where the scaling factor stayed constant, at r = 2λ, with  no 
dependency in orientation. 

The MATLAB code used to implement the model can be found 
in the following public repository: https://osf.io/4rwjs/. 

Results 
Numerosity of a heterogeneous array is 
underestimated compared to a homogeneous 
array 
We first verified behavioral effects of coherence illusion in the 
case of area and orientation. While coherence illusion for orienta-
tion has been studied systematically (DeWind et al. 2020), empir-
ical results concerning coherence illusion for area are less well 
documented. A psychophysical study on the perception of area, 
numerosity, and mean size suggested the possibility of underesti-
mation of numerosity for arrays with heterogeneous individual 
areas, but a systematic investigation of homogeneous versus 
heterogeneous arrays was not its focus (Lee et al. 2016). 

In a numerosity comparison task, participants indicated which 
of the two successively presented arrays of rectangles contained 
more items (Fig. 1A). In both the area and the orientation condi-
tions, participants compared an array with homogeneous items 
(ranging in number from 8 to 32) to an array with 25 heteroge-
neous items or an array with 25 homogeneous items (Fig. 1B; see  
Materials and methods for the explanation of systematic manipula-
tions of visual features of these arrays). To investigate the under-
estimation effects, a mixed-effects linear analysis was conducted 
on the point of subjective equality (PSE) using the lmer package 
(Bates et al. 2015). We included the heterogeneity of the array 
as well as the condition (i.e. area or orientation) as fixed effects 
and the participant as a random effect. There was a moderate 
underestimation of numerosity with heterogeneous displays in 
both conditions (Fig. 1C). In the area condition, the PSE of the array 
with 25 heterogeneous rectangles was 21.1 (=24.399) on average,  
which was significantly lower than the PSE of the array with 

25 homogeneous rectangles, which was 22.9 (=24.515) on average  
(t(22) = 5.197, p < 0.001). In the orientation condition, the mean PSE 
of the heterogeneous array was 21.9 (=24.454) and the mean PSE of 
the homogeneous array was 22.6 (=24.499) (t(22) = 2.868, p = 0.009). 
The interaction between heterogeneity and condition was sig-
nificant (t(66) = −2.173, p = 0.033), indicating that underestimation 
due to coherence illusion was stronger in the area condition than 
in the orientation condition. It is worth noting that the strength 
of the coherence illusion observed in our experiment was largely 
consistent with previous observations, which is reported to be 
∼5% to 7% of underestimation (DeWind et al. 2020; Qu et al. 
2022), although a quantitative comparison between the effect 
sizes needs caution. 

Divisive normalization model explains 
sensitivity to numerosity and insensitivity to size 
and spacing 
In a previous computational modeling work, we proposed the 
number sense divisive normalization model using a single layer 
of center-surround filters, testing for the effects of number, size, 
and spacing (Fig. 2B) of circular dot arrays on the network unit 
activity (Park and Huber 2022). Here, we apply the same model 
in its original form to the rectangle array stimuli used in the 
psychophysical experiment. 

The divisive normalization model contains a single convo-
lutional layer with difference-of-Gaussians (DoG) filters of five 
different sizes (Fig. 2A). The driving input D for each network unit 
is determined by convolving the stimulus image with a DoG filter 
of a particular size at a particular position (Eq. 1). The driving input 
is then normalized by the weighted summation of neighboring 
neurons and filter sizes (Eq. 2), resulting in a normalized response 
R for each network unit. As applied to the arrays with rectangular 
items, the total normalized response across all network units, �R, 
was strongly modulated by the number of rectangles whereas any 
effect of size or spacing of the array was minimal. This was true 
for the stimuli used in both the area and orientation conditions 
(Fig. 2C). A regression was performed with the simulated summed 
normalized responses as the dependent measure and the three 
dimensions (N, Sz, Sp) as the independent variables to assess the 
relative size of the effects of N, Sz, Sp on the output activity. 
This analysis revealed a much larger coefficient estimate for N 
(b = 19.47 for area and b = 19.47 for orientation) than for Sz (b = 2.70 
for area and b = 2.64 for orientation) and for Sp (b = 1.64 for area 
and b = 1.70 for orientation). The R-squared value for area was 
0.965, and the R-squared value for orientation was 0.966. 

Divisive normalization model predicts 
underestimation of numerosity for heterogeneity 
of area and orientation for different reasons 
We then assessed the outputs of the divisive normalization model 
in response to rectangle arrays with heterogeneity manipulations 
in area and orientation separately. The visual arrays used in the 
psychophysical experiment were fed into the original DoG center-
surround divisive normalization model. We compared the results 
for arrays with 25 rectangles that were homogeneous in area 
versus heterogeneous in area (identical orientation in all cases). 
The same comparison was done with 25 rectangles that were 
homogeneous versus heterogeneous in orientation (identical area 
in all cases). The model produced 9.75% smaller summed nor-
malized responses, �R, for area heterogeneous arrays compared 
to area homogeneous arrays (Cohen’s d = 6.85), but there was no 
reduction in the normalized responses in the case of orientation 
arrays (Fig. 3A).
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Fig. 2. Illustration of the computational model and simulation results of the effect of number (N), size (Sz), and spacing (Sp) on the normalized responses 
as applied to the arrays of rectangles. A) Bitmap images of item arrays were fed into a convolutional layer with difference-of-Gaussian (DoG) filters 
with divisive normalization (for details, see computational modeling in Methods). The resulting normalized responses were considered the output of 
the neural network. B) The probe arrays were constructed systematically across the log-scaled dimensions of N, Sz, and  Sp following previous studies 
(DeWind et al. 2015; Park and Huber 2022). N refers to the number of items in an array. Sz refers to the dimension independent of N that is associated 
with both individual item area and total item area. In other words, it is the dimension that changes with individual item area or total item area while 
holding N constant (because they necessarily change together under the constant N). Sp refers to another dimension independent of N that is associated 
with sparsity (inverse of density) and field area. It is the dimension that changes with sparsity and field area while holding N constant (again because 
they necessarily change together under the constant N). Sz and Sp are independent of each other as well. This architecture allows an easy visualization 
of stimulus parameters and a systematic analysis of the effects of various magnitude dimensions on choice behavior or neural data. For more details, 
see DeWind et al. (2015) and Park and Huber (2022). C) Normalized responses from the neural network were simulated from the probe arrays across all 
the stimulus parameters. The summed normalized responses, �R, were strongly modulated by N and much less so, if any, by Sz and Sp. The value s on 
the horizontal axis indicates the median value for each dimension. 

As explained in our previous work, the underestimation of area 
with heterogeneous arrays arises from the nonlinear saturation 
of the normalized response as a function of item area ( Park and 
Huber 2022). That is, the summed normalized response of an 
individual item increases logarithmically (not linearly) as the 
area of the item increases. Note that heterogeneity in area is 
achieved by making some items smaller and other items larger 
while keeping the total area constant. Because of the saturation 

effect, the increase in the normalized response from making some 
items larger is not as great as the decrease in the normalized 
response from making some items smaller by the same amount. 
Thus, when individual item areas are heterogeneous, the overall 
normalized response becomes smaller than when all the items 
have the same area. The current simulation demonstrates 
that this effect holds regardless of whether the items are 
circular dots or rectangles, suggesting that the area coherence
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Fig. 3. Simulation of area and orientation coherence illusions from the divisive normalization model. A) A neural network with one layer of center-
surround difference-of-Gaussian (DoG) convolution and divisive normalization. Compared to the homogeneous item arrays, heterogeneous arrays 
resulted in reduced normalized responses (by 9.76%) in the area condition. This reduction was not observed in the orientation condition, indicating 
that the neural activity underlying the coherence illusion is different for the two heterogeneity illusions. B) A neural network with a layer of DoG 
convolution and divisive normalization followed by another layer of Gabor convolution and divisive normalization. After this additional layer in the 
neural network, the heterogeneous arrays resulted in reduced normalized responses (by 5.78%) compared to the homogeneous arrays in the orientation 
condition. This reduction was much smaller in the area condition. The stimulations all together suggest that the orientation coherence illusion arises 
from a downstream brain region as compared to the area coherence illusion. 

illusion arises from a very early visual process (i.e., center-
surround filters). 

As might be expected considering that the center-surround 
model has no capacity to represent orientation, the original, 
unaltered divisive normalization model was completely unable 
to explain underestimation for heterogeneity of orientation. This 
failure, despite success at explaining the heterogeneity of area 
effect, suggests that the brain region producing the area coher-
ence illusion is different than the brain region producing the 
orientation coherence illusion. To further explore the differences 
between these two different heterogeneity illusions, we added the 
capacity to represent orientation to the divisive normalization 
model by adding a second layer. If successful in explaining the 
orientation heterogeneity effect, the addition of this second layer 
predicts that the neural substrate underlying the heterogeneity 
effect resides in a different neural process at a longer delay from 
stimulus onset than the heterogeneity effect of area. 

To simulate the orientation coherence illusion, a second con-
volutional layer that contained oriented Gabor filters rather than 
center-surround filters was added to the model (Fig. 3B). In this 
augmented model, the normalized responses from the center-
surround DoG filters were fed into 24 different types of Gabor 
filters representing six different orientations of four different sizes 
(i.e., different spatial frequencies as captured by adjusting the 
wavelength parameter), with orientation-dependent normaliza-
tions (see Materials and methods). The dependency on the orien-
tation difference resulted in a convolutional layer that attempts 
to determine the dominant orientation at each location, consis-
tent with classic physiological findings (Hubel and Wiesel 1962; 
Klímová et al. 2021), and consistent with the “pooling” process that 

is often used in machine vision convolutional neural networks 
(Krizhevsky et al. 2012). 

Images of rectangle arrays with homogeneous and het-
erogeneous orientations were submitted to this augmented 
model, with cross-orientation suppression. The output of the 
model showed smaller summed normalized responses, �R, for  
heterogeneous arrays compared to homogeneous arrays by 5.78% 
(Cohen’s d = 3.10) (Fig. 3B). These results demonstrate that the 
“underestimation” of heterogeneous arrays in the orientation 
condition can arise from this additional convolutional layer of 
Gabor filters with divisive normalization where different orienta-
tions are constantly more suppressed than similar orientations 
(Brouwer and Heeger 2011). 

The greater normalization between filters of different orien-
tations is likely the cause of the underestimation of heteroge-
neous arrays in the augmented divisive normalization model. 
When the rectangles have the same orientation, they will not 
suppress each other as much within a local region, but when there 
are of differing orientations within a local region, there will be 
greater normalization for that region. The simulations resulted 
in a different pattern when the augmented model assumed iso-
orientation suppression; compared to homogeneous arrays, the 
summed normalized responses in heterogeneous arrays were 
greater by 2.60% (d = -1.26). When no dependency in orientation 
was assumed, the responses in heterogeneous arrays were smaller 
by 0.90% (d = 0.30). Orientation-dependent normalization in the 
brain is likely to be a complex mixture of these different cases 
depending on the anatomical location and the context of the 
visual parameters. However, regardless of whether the simulated 
Gabor layer corresponds to area V1 versus a later “pooling” region
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(Krizhevsky et al. 2012) that is attempting to identify orienta-
tion regardless of location, the simulation results reveal that the 
center-surround layer cannot capture the orientation coherence 
illusion, and, furthermore, that this effect can be captured by 
some form of normalization in a downstream brain region that 
is sensitive to orientation. 

The model does not contain feedback between the layers, so 
the inclusion of the Gabor layer does not alter the area coherence 
effect in the DoG layer. In the area coherence condition, the 
objects did not differ in orientation. Thus, it is sensible that 
behavior reflects the summed activity of the DoG in the area 
coherence condition because participants focused on blob rather 
than orientation detection. However, to assess the specificity of 
the two coherence effects, we also evaluated the summed activity 
of the Gabor layer for an area heterogeneity effect. The area 
heterogeneity effect was much reduced in the Gabor layer as 
compared to the DoG layer (Fig. 3B). In other words, the two 
different kinds of coherence effects were predicted to reflect 
divisive normalization in different brain regions. This is consistent 
with the idea that numerosity perception does not arise from 
a single processing stage. Instead, numerosity perception arises 
from multiple processing stages, with each stage reflecting divi-
sive normalization in the brain region that is best suited to identify 
the elements that make up a scene (i.e., if assessing identically ori-
ented rectangles, center-surround is best, but if assessing object 
that differ in orientation, Gabor filters are needed). Thus, the 
orientation coherence effect primarily lives in the Gabor layer and 
the area coherence effect primarily lives in the DoG layer. 

In summary, the divisive normalization model explains the 
area coherence illusion as arising from nonlinear saturating 
responses in the center-surround filter layer, whereas the 
orientation coherence illusion primarily reflects competition 
between orientations in the oriented Gabor filter layer. Thus, the 
two effects are predicted to reside in different brain regions and 
to occur at different delays from onset of the image. 

Visual evoked potentials show an earlier effect of 
area coherence and a later effect of orientation 
coherence as predicted by the computational 
model 
We used EEG to test the predictions that area and orientation 
coherence illusions arise at different time points as expected if the 
origin of orientation coherence is downstream from area coher-
ence. In the EEG experiment, participants saw the “reference” 
arrays from the psychophysical experiment flashed briefly on the 
screen. These arrays contained rectangular items with identical 
values of number, size, and spacing but were either homogeneous 
or heterogeneous in area, or were either homogeneous or hetero-
geneous in orientation (see Fig. 1A). Prior studies demonstrated 
that visual evoked potentials in the midline occipital channel 
are sensitive to numerosity as early as 75 ms (Park et al. 2016; 
Fornaciai et al. 2017). Based on this finding, the primary channel 
of interest was Oz. As expected, the visual evoked potential was 
modulated by heterogeneity, as computed by the brainwaves of 
the homogeneous conditions minus those of heterogeneous con-
dition (Fig. 4A). A point-by-point t-test with multiple comparisons 
correction (false discovery rate, FDR q < 0.05) was performed, 
which indicated a significant effect of area heterogeneity at [88, 
112] ms (Cohen’s d = −0.641) and a significant effect of orientation 
heterogeneity at [188, 252] ms (d = −0.753) and at [302, 326] ms 
(d = 0.511). Confirming model predictions, the effect of area het-
erogeneity was earlier than the effect of orientation heterogeneity. 

The topographic pattern across the electrodes was then exam-
ined to assess whether the two effects were reflected in different 
brain regions. The posterior-view topographic maps of the two 
heterogeneity effects (Fig. 4B) indicate different electrode sources 
for the two effects. The area heterogeneity effect was observed 
early in the midline occipital site (75 to 125 ms) likely indicating 
V1,  V2,  and V3 as the source  (Fornaciai et al. 2017), while the 
orientation heterogeneity effect was observed later in bilateral 
occipital sites (175 to 275 ms) from V3 and beyond, which became 
focal again in the midline occipital site after 275 ms, with inverted 
polarity, possibly indicating feedback signals into V1, V2, and V3. 
The observed bilateral effects motivated us to conduct a post 
hoc analysis on the four channels left and right of Oz (channel 
locations equivalent to PPO7h, POO7h, POO8h, and PPO8h in the 
standard 10–20 system) (Fig. 4C). A point-by-point t-test revealed 
a significant effect of orientation heterogeneity at [110, 128] ms 
(d = −0.515) and [176, 278] ms (d = −1.054). 

In summary, the earliest effect of area heterogeneity arises 
from the medial occipital site (at 88 ms), followed by the earliest 
effect of orientation heterogeneity in the bilateral occipital sites 
(at 110 ms), consistent with a downstream cortical source for 
the orientation heterogeneity effect as compared to the area 
heterogeneity effect predicted by our computational model. 

Discussion 
The results presented here demonstrate divisive normalization 
as a crucial mechanism underlying the visual number sense. In 
its broadest terms, the model produces sensitivity to the number 
of items (but not to size or spacing of the array) owing to local 
regions of suppression (normalization) within convolutional filter 
layers (e.g., center-surround or oriented Gabor). The computa-
tional model explains various illusions of numerosity percep-
tion, including the area coherence illusion and the orientation 
coherence illusion. These two illusions appear to describe the 
same phenomenon; an array with less coherent (i.e., heteroge-
neous) items is underestimated compared to an array with more 
coherent (i.e., homogeneous) items. However, the model suggested 
otherwise, and this prediction was confirmed by the EEG data. 

In the calculation of divisive normalization, there is both self-
normalization (i.e., self from a single item’s perspective) as well as 
local neighborhood normalization. These two aspects of divisive 
normalization underlie different kinds of underestimation for 
arrays of heterogeneous items. First, self-normalization of center-
surround filters underlies the area coherence effect. Heteroge-
neous area arrays were constructed such that some items were 
smaller and other items were larger than the items in the homo-
geneous array, while maintaining the same total area across the 
arrays. Thus, because of the nonlinear saturation effect with self-
normalization, the resulting increase in output to larger items was 
smaller than the decrease in output to smaller items, producing 
a net reduction of the total response across the items. 

In contrast, our simulation results suggest that the orientation 
coherence illusion reflects local neighborhood normalization 
rather than self-normalization. Unsurprisingly, the original 
center-surround divisive normalization model was unable to 
simulate the underestimation of heterogeneously oriented 
arrays. However, in the layer of oriented Gabor filters, neurons 
representing different orientations within the same retinotopic 
region are modeled to be competitive (i.e., cross-orientation 
suppression), which resulted in greater normalization for arrays 
of heterogeneously oriented rectangles than homogeneously ori-
ented rectangles. It should be noted that other assumptions about
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Fig. 4. Neural activity in response to homogeneous and heterogeneous arrays in the area and the orientation conditions. A) Brain waves from the 
medial occipital channel (Oz) indicate that the effect of coherence (homogeneous versus heterogeneous) is present at an earlier time point in the 
area condition (first observed at 88 ms) than in the orientation condition (first observed at 188 ms). The difference waves (dotted lines) are computed 
from homogeneous minus heterogeneous waves, and the black horizontal lines indicate the time points when the difference wave is significantly 
different from zero (corrected for multiple comparisons across time points using FDR). B) Posterior-view topographic maps of difference waves across 
time bins with a width of 50 ms (e.g. time 0 ms includes data from −25 to 25 ms, and time 25 ms includes data from 25 to 75 ms). These topomaps 
demonstrate the earlier and centralized effect of the area coherence effect and the later and lateralized effect of the orientation coherence effect. 
C) Identical to panel A, except the brain waves illustrate the average signal from the four bilateral channels from Oz (PPO7h, PPO8h, POO7h, and 
POO8h). The effect of orientation heterogeneity in these bilateral channels was first observed at 110 ms. 

orientation-dependent normalization, unsurprisingly, resulted in 
different patterns of results. The significance of our simulations, 
however, is that the center-surround contrast filters are not capa-
ble of capturing any differences in the neural activities in response 
to homogeneously versus heterogeneously oriented arrays. Thus, 
our computational model predicts that orientation coherence 
illusion must be captured by another form of normalization after 
the center-surround layer. Within the scope of our current work, 
our focus was not to test the specifics of the orientation-tuned 
normalization. Nevertheless, the current results invite exciting 

future research on the modeling of orientation-tuned normal-
ization that seems to exhibit, according to the literature, both 
cross-orientation suppression and iso-orientation suppression 
depending on the brain region and the extent of overlap between 
receptive fields ( Hubel and Wiesel 1962; Meese et al. 2007; Brouwer 
and Heeger 2011; Coen-Cagli et al. 2015). 

The result from the augmented divisive normalization model 
suggests that the orientation coherence illusion arises in a 
downstream brain region, predicting that the effect of orientation 
heterogeneity on number perception should occur with a
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longer delay and likely with a different topography than area 
heterogeneity. Confirming this novel prediction with EEG, the 
modulatory effect of orientation heterogeneity was found in 
bilateral occipital sites later than the modulatory effect of 
area heterogeneity in medial occipital sites. Such differences 
in timing and topography for the two different illusory effects 
provide strong credence to the divisive normalization model as a 
mechanistic explanation for numerosity perception. 

Several of our previous works have demonstrated that visually 
evoked potentials in response to dot arrays ranging systematically 
across number, size, and spacing are uniquely sensitive to number 
starting from as early as 75 to 100 ms in the medial occipital chan-
nel and again from 175 to 250 ms in the bilateral occipital chan-
nels (Park et al. 2016; Fornaciai et al. 2017). The “earlier” activity 
has been suggested to reflect part of the C1, a component thought 
to be generated from feedforward processing in early visual areas 
(Jeffreys and Axford 1972; Clark et al. 1994; Di Russo et al. 2003; 
Ales et al. 2010, 2013; Kelly et al. 2013a, 2013b). An EEG experiment 
with a manipulation in the visual field of stimulus presentation 
and an fMRI study indeed suggested that the anatomical source of 
this early numerosity-sensitive activity is in V2 and V3 (Fornaciai 
et al. 2017; Fornaciai and Park 2018a). The second activity pattern 
resembles the P2p, which has traditionally been associated with 
numerical thinking broadly sourced in the bilateral middle occip-
ital gyri or the inferior parietal lobule (Dehaene 1996; Pinel et al. 
2001; Libertus et al. 2007; Hyde and Spelke 2012). 

The timing and topography of the two heterogeneity effects in 
the current study resemble these previous findings. The hetero-
geneity effect of area at 88 ms in the medial occipital channel 
coincides with the previously documented early neural sensitivity 
to numerosity at 75 to 100 ms. This suggests that the mecha-
nism which initially encodes numerosity is the same mechanism 
that drives underestimation in area coherence illusion. Given 
the current computational model, this explanation makes sense 
because the encoding of numerosity is explained by normaliza-
tion within local regions and the heterogeneity effect of area is 
explained also by normalization within local regions, although a 
much narrower scope (i.e., self-normalization). On the other hand, 
the previously documented later neural sensitivity to numeros-
ity at 175 to 250 ms coincides with the heterogeneity effect of 
orientation. This suggests that the involvement of downstream 
cortical patches could distort the representation of numerosity 
due to normalization across activity of cells with different types 
of receptive fields. 

It should be noted that in a previous study with both fMRI and 
EEG, we identified V3 at a “later” latency (180 ms) as the source of 
the connectedness illusion (Franconeri et al. 2009; He et al. 2009; 
He et al. 2015; Fornaciai et al. 2016), and thus argued that the “ear-
lier” latency activity does not directly give rise to the perception 
of numerosity (Fornaciai and Park 2018a). However, unlike that 
previous claim of ours, the current results do indicate that the 
earliest visual representation of numerosity can be behaviorally 
relevant in the case of the area coherence illusion. At the same 
time, the illusory effect of orientation coherence was associated 
with a later time point in the visual stream. 

As noted in the introduction, divisive normalization exists in 
many brain regions, leading to the hypothesis that encoding of 
numerosity information may happen in multiple brain regions 
depending on how well the region is suited to identify the ele-
ments that make up the numerosity, and that the strength of 
encoding depends on the contextual information of the stimuli 
(Park et al. 2021). If the objects vary in orientation, orientation-
selective brain regions may be engaged. In contrast, if the objects 

vary in size, then center-surround brain regions may be best suited 
to the task. However, one limitation of the current model is that 
it does not specify the nature of this “read out” process. Never-
theless, behavioral studies indicate that numerosity estimation 
is influenced by a variety of different sensory factors reflecting 
different levels of visual processing, such as spatial frequency 
(Bonn and Odic 2024), color and pitch (Grasso et al. 2022), and 
motion (Fornaciai and Park 2017). These findings suggest that 
multiple stages in the visual hierarchy can contribute to numeros-
ity representations and can remain susceptible to illusory effects. 
Future work could begin to study how participants use attention 
or learning to read out the appropriate neural response from 
different brain regions, such as by examining the influence of 
previous trials in an experiment in which different trials use 
different kinds of displays and judgment tasks. 

One of the most puzzling problems in numerosity perception 
is how the brain encodes discrete magnitude in a rapid manner 
when the primary means of neural computation, such as firing 
rates and population codes, is continuous in nature. Theoretically, 
this can be achieved via a mechanism for serially accumulating 
continuous information with some kind of discretization process 
(Leslie et al. 2008). A thematically relevant idea has been 
suggested from an empirical study that demonstrated a positive 
relationship between the number of visual fixations during 
numerosity estimation and the performance in the task (Cheyette 
and Piantadosi 2019). However, our model assumes instantaneous 
perception from a single fixation. Moreover, the duration of stim-
ulus presentation was <50 ms in our psychophysics experiment, 
which is assumed as the time for perceiving several dots in 
parallel within the parafoveal region (Cheyette and Piantadosi 
2019). Thus, within a single fixation, parallel accumulation of the 
elements in an array may underlie numerosity even if additional 
information may be accumulated across fixations. 

The success of the divisive normalization model for numerosity 
perception provides a firm framework for understanding how 
numerosity is encoded and represented in the brain. Accord-
ing to the current study and our prior work (Park and Huber 
2022), neural sensitivity to numerosity arises as a byproduct of 
the canonical neural structure (i.e., convolutional filter layers) 
and computation (i.e., divisive normalization). The model is not 
“counting” the number of dots or projecting each individual items 
as one unit of activation and summing them up (Dehaene and 
Changeux 1993; Leslie et al. 2008). The model simply normalizes 
size and spacing information, which happens to make its output 
activity most correlated with the number of items in the array. 
Thus, strictly speaking, this process results in a representation 
of something like a number (i.e., a sensitivity to numerosity) but 
cannot be said to produce a representation of precise number 
consistent with modern human cultures (although see Clarke and 
Beck 2021 for an alternative view). 

The current work has implications for neuroscience research 
broadly and suggests new exciting directions. The proposed 
mechanism represents a biologically plausible framework for 
vertebrate and invertebrate visual number perception, given the 
ubiquity of center-surround cells and divisive normalization 
in visual systems (Allman et al. 1985; Carandini and Heeger 
2012). Importantly, our model only demonstrates a computational 
mechanism for extracting numerical features in the environment; 
across the phylogenetic tree, there may be many different “neural 
codes,” or neural representations, of number (Kobylkov et al. 2023). 
Comparing and contrasting features of numerosity perception 
across various species in light of our model may further generate 
and test new hypotheses about mechanisms for magnitude
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perception and neural encoding. Beyond visual number pro-
cessing, the divisive normalization model may also be able to 
account for perceived number or magnitude in other sensory 
modalities. Center-surround receptive fields can be found in the 
earliest stages of auditory and somatosensory processing (Waite 
1973; Knudsen and Konishi 1978; Krupa et al. 1999). If divisive 
normalization is indeed a canonical neural computation, then it 
may be possible to use the current model with some modifications 
to explain number perception in other sensory modalities, or even 
mechanisms for an amodal representation of numerosity and 
magnitude (Feigenson et al. 2004; Togoli and Arrighi 2021). 

The current findings demonstrate that a seemingly identical 
perceptual phenomenon can arise from normalization in differ-
ent brain regions. Previous work on coherence illusions in the 
visual number sense has demonstrated that participants sys-
tematically underestimate heterogeneously sized, oriented, and 
colored arrays compared to homogeneous ones (Lee et al. 2016; 
DeWind et al. 2020; Qu et al. 2022). However, our evidence sug-
gests that these coherence illusions cannot be isolated to one 
single processing stage. Instead, self-normalization at early visual 
processing stages appears to be responsible for the area coher-
ence illusion, while neighborhood normalization at later visual 
processing stages appears to be responsible for the orientation 
coherence illusion. These findings emphasize the importance 
of computational modeling for generating and confirming novel 
testable predictions for advancing knowledge in neuroscience. 

In sum, these results provide additional support for the hypoth-
esis that divisive normalization within visual brain regions under-
lies the number sense. More specifically, the current findings 
demonstrate that seemingly identical perceptual phenomenon 
can arise from normalization in different brain regions. Divisive 
normalization is a general mechanism of neural processing, and 
it exists throughout the brain. Thus, this hypothesis predicts 
that numerosity can be represented in multiple processing stages 
depending on the nature of the visual display (e.g., the visual 
properties that vary in number) and task demands (e.g., the aspect 
of numerosity that is needed for the task). While previous work 
on coherence illusion has demonstrated that participants sys-
tematically underestimate heterogeneously sized, oriented, and 
colored arrays compared to homogeneous ones (Lee et al. 2016; 
DeWind et al. 2020; Qu et al. 2022), our evidence suggests that 
these coherence illusions cannot be isolated to one single process-
ing stage. Instead, self-normalization at early visual processing 
stages appears to be responsible for the area coherence illu-
sion, while neighborhood normalization at later visual processing 
stages appears to be responsible for the orientation coherence 
illusion. In both cases, neural sensitivity to numerosity is achieved 
as divisive normalization systematically removes effects of size 
and spacing. Together, these findings emphasize the importance 
of computational modeling for generating and confirming novel 
testable predictions for advancing knowledge in neuroscience. 
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Bowers JS, Malhotra G, Dujmović M, Llera Montero M, Tsvetkov C, 
Biscione V, Puebla G, Adolfi F, Hummel JE, Heaton RF, Evans BD, 
Mitchell J, Blything R Deep problems with neural network models 
of human vision. Behav Brain Sci. 2023:46:e385, e385. https://doi. 
org/10.1017/S0140525X22002813. 

Brouwer GJ, Heeger D. Cross-orientation suppression in human 
visual cortex. J Neurophysiol. 2011:106:2108–2119. https://doi. 
org/10.1152/jn.00540.2011. 

Burr D, Ross J. Report a visual sense of number. Curr Biol. 2008:18: 
425–428. https://doi.org/10.1016/j.cub.2008.02.052. 

Butterworth B, Gallistel CR, Vallortigara G. Introduction: The origins 
of numerical abilities. Philos Trans R Soc B Biol Sci. 2018:373:1740. 
https://doi.org/10.1098/rstb.2016.0507. 

Carandini M, Heeger DJ. Normalization as a canonical neural com-
putation. Nat Rev Neurosci. 2012:13:51–62. https://doi.org/10.1038/ 
nrn3136. 

Cheyette SJ, Piantadosi ST. A primarily serial, foveal accumu-
lator underlies approximate numerical estimation. Proc Natl 
Acad Sci USA. 2019:116:17729–17734. https://doi.org/10.1073/ 
pnas.1819956116.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/10/bhae418/7831712 by U

niv of C
olorado Libraries user on 27 January 2025

https://osf.io/4rwjs/
https://osf.io/4rwjs/
https://osf.io/4rwjs/
https://osf.io/4rwjs/
https://doi.org/10.1016/j.neuroimage.2012.09.009
https://doi.org/10.1016/j.neuroimage.2012.09.009
https://doi.org/10.1016/j.neuroimage.2012.09.009
https://doi.org/10.1016/j.neuroimage.2012.09.009
https://doi.org/10.1016/j.neuroimage.2012.09.009
https://doi.org/10.1016/j.neuroimage.2010.05.016
https://doi.org/10.1016/j.neuroimage.2010.05.016
https://doi.org/10.1016/j.neuroimage.2010.05.016
https://doi.org/10.1016/j.neuroimage.2010.05.016
https://doi.org/10.1016/j.neuroimage.2010.05.016
https://doi.org/10.1146/annurev.ne.08.030185.002203
https://doi.org/10.1146/annurev.ne.08.030185.002203
https://doi.org/10.1146/annurev.ne.08.030185.002203
https://doi.org/10.1146/annurev.ne.08.030185.002203
https://doi.org/10.1146/annurev.ne.08.030185.002203
https://doi.org/10.1177/0301006615602599
https://doi.org/10.1177/0301006615602599
https://doi.org/10.1177/0301006615602599
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.3758/s13414-023-02798-y
https://doi.org/10.3758/s13414-023-02798-y
https://doi.org/10.3758/s13414-023-02798-y
https://doi.org/10.3758/s13414-023-02798-y
https://doi.org/10.3758/s13414-023-02798-y
https://doi.org/10.1017/S0140525X22002813
https://doi.org/10.1017/S0140525X22002813
https://doi.org/10.1017/S0140525X22002813
https://doi.org/10.1017/S0140525X22002813
https://doi.org/10.1017/S0140525X22002813
https://doi.org/10.1152/jn.00540.2011
https://doi.org/10.1152/jn.00540.2011
https://doi.org/10.1152/jn.00540.2011
https://doi.org/10.1152/jn.00540.2011
https://doi.org/10.1016/j.cub.2008.02.052
https://doi.org/10.1016/j.cub.2008.02.052
https://doi.org/10.1016/j.cub.2008.02.052
https://doi.org/10.1016/j.cub.2008.02.052
https://doi.org/10.1016/j.cub.2008.02.052
https://doi.org/10.1098/rstb.2016.0507
https://doi.org/10.1098/rstb.2016.0507
https://doi.org/10.1098/rstb.2016.0507
https://doi.org/10.1098/rstb.2016.0507
https://doi.org/10.1038/nrn3136
https://doi.org/10.1038/nrn3136
https://doi.org/10.1038/nrn3136
https://doi.org/10.1038/nrn3136
https://doi.org/10.1073/pnas.1819956116
https://doi.org/10.1073/pnas.1819956116
https://doi.org/10.1073/pnas.1819956116
https://doi.org/10.1073/pnas.1819956116


14 | Cerebral Cortex, 2024, Vol. 34, No. 10

Clark VP, Fan S, Hillyard SA. Identification of early visual evoked 
potential generators by retinotopic and topographic analy-
ses. Hum Brain Mapp. 1994:2:170–187. https://doi.org/10.1002/ 
hbm.460020306. 

Clarke S, Beck J. The number sense represents (rational) num-
bers. Behav Brain Sci. 2021:44:e178, e178. https://doi.org/10.1017/ 
S0140525X21000571. 

Coen-Cagli R, Kohn A, Schwartz O. 2015. Flexible gating of contextual 
influences in natural vision. Nat Neurosci. 2015:18:1648–1655. 
https://doi.org/10.1038/nn.4128. 

Dehaene S. The organization of brain activations in number 
comparison: event-related potentials and the additive-factors 
method. J Cogn Neurosci. 1996:8:47–68. https://doi.org/10.1162/ 
jocn.1996.8.1.47. 

Dehaene S. The number sense: how the mind creates mathematics. USA: 
Oxford University Press; 2011. 

Dehaene S, Changeux JP. Development of elementary numerical 
abilities: a neuronal model. J Cogn Neurosci. 1993:5:390–407. 
https://doi.org/10.1162/jocn.1993.5.4.390. 

Delorme A, Makeig S. EEGLAB: an open source toolbox for anal-
ysis of single-trial EEG dynamics including independent com-
ponent analysis. J Neurosci Methods. 2004:134:9–21. https://doi. 
org/10.1016/j.jneumeth.2003.10.009. 

DeWind NK, Adams GK, Platt ML, Brannon EM. Modeling  the  
approximate number system to quantify the contribution of 
visual stimulus features. Cognition. 2015:142:247–265. https://doi. 
org/10.1016/j.cognition.2015.05.016. 

DeWind NK, Bonner MF, Brannon EM. Similarly oriented objects 
appear more numerous. J Vis. 2020:20:4–4. https://doi.org/10. 
1167/jov.20.4.4. 

Di Russo F, Martinez A, Hillyard SA. Source analysis of event-
related cortical activity during visuo-spatial attention. Cereb 
Cortex. 2003:13:486–499. https://doi.org/10.1093/cercor/13.5.486. 

Feigenson L, Dehaene S, Spelke E. Core systems of number. Trends 
Cogn Sci. 2004:8:307–314. https://doi.org/10.1016/j.tics.2004.05. 
002. 

Fischer J, Whitney D. 2014Serial dependence in visual perception. Nat 
Neurosci. 201417:5:17:738–743. 

Fornaciai M, Park J. Distinct neural signatures for very small and 
very large numerosities. Front Hum Neurosci. 2017:11:21. https:// 
doi.org/10.3389/fnhum.2017.00021. 

Fornaciai M, Park J. Early Numerosity encoding in visual cortex is 
not sufficient for the representation of numerical magnitude. 
J Cogn Neurosci. 2018a:30:1788–1802. https://doi.org/10.1162/jocn_ 
a_01320. 

Fornaciai M, Park J. Serial dependence in numerosity perception. 
J Vis. 2018b:18:15. https://doi.org/10.1167/18.9.15. 

Fornaciai M, Park J. Disentangling feedforward versus feedback pro-
cessing in numerosity representation. Cortex. 2021:135:255–267. 
https://doi.org/10.1016/j.cortex.2020.11.013. 

Fornaciai M, Cicchini GM, Burr DC. Adaptation to number operates 
on perceived rather than physical numerosity. Cognition. 2016:151: 
63–67. https://doi.org/10.1016/j.cognition.2016.03.006. 

Fornaciai M, Brannon EM, Woldorff MG, Park J. Numerosity process-
ing in early visual cortex. NeuroImage. 2017:157:429–438. https:// 
doi.org/10.1016/j.neuroimage.2017.05.069. 

Franconeri SL, Bemis DK, Alvarez GA. Number estimation relies on 
a set of segmented objects. Cognition. 2009:113:1–13. https://doi. 
org/10.1016/j.cognition.2009.07.002. 

Gebuis T, Reynvoet B. The interplay between nonsymbolic number 
and its continuous visual properties. J Exp Psychol Gen. 2012a:141: 
642–648. https://doi.org/10.1037/a0026218. 

Gebuis T, Reynvoet B. Continuous visual properties explain neural 
responses to nonsymbolic number. Psychophysiology. 2012b:49: 
1649–1659. https://doi.org/10.1111/j.1469-8986.2012.01461.x. 

Gebuis T, Cohen Kadosh R, Gevers W. Sensory-integration system 
rather than approximate number system underlies numerosity 
processing: a critical review. Acta Psychol. 2016:171:17–35. https:// 
doi.org/10.1016/j.actpsy.2016.09.003. 

Grasso PA, Anobile G, Arrighi R, Burr DC, Cicchini GM. Numerosity 
perception is tuned to salient environmental features. iScience. 
2022:25:1–13. https://doi.org/10.1016/j.isci.2022.104104. 

Halberda J, Mazzocco MMM, Feigenson L. Individual differences in 
non-verbal number acuity correlate with maths achievement. 
Nature 2008 455:7213. 2008:455:665–668. https://doi.org/10.1016/ 
j.isci.2022.104104. 

He L, Zhang J, Zhou T, Chen L. Connectedness affects dot numerosity 
judgment: implications for configural processing. Psychon Bull 
Rev. 2009:16:509–517. https://doi.org/10.3758/PBR.16.3.509. 

He L, Zhou K, Zhou T, He S, Chen L. Topology-defined units 
in numerosity perception. Proc Natl Acad Sci USA. 2015:112: 
E5647–E5655. https://doi.org/10.1073/pnas.1512408112. 

Heeger DJ. Nonlinear model of neural responses in cat visual cortex. 
In: Landy MS, Movshon JA, editors. Computational models of visual 
processing. Cambridge, MA: MIT Press; 1991. pp. 119–133 

Hellström Å. The time-order error and its relatives. Mirrors of cog-
nitive processes in comparing. Psychol Bull. 1985:97:35–61. https:// 
doi.org/10.1037/0033-2909.97.1.35. 

Hellström Å, Rammsayer TH. Time-order errors and standard-
position effects in duration discrimination: an experimental 
study and an analysis by the sensation-weighting model. Atten 
Percept Psychophys. 2015:77:2409–2423. https://doi.org/10.3758/ 
s13414-015-0946-x. 

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and 
functional architecture in the cat’s visual cortex. J Physiol. 
1962:160:106. https://doi.org/10.1113/jphysiol.1962.sp006837. 

Hyde DC, Spelke ES. Spatiotemporal dynamics of processing non-
symbolic number: an event-related potential source localiza-
tion study. Hum Brain Mapp. 2012:33:2189–2203. https://doi. 
org/10.1002/hbm.21352. 

Jeffreys DA, Axford JG. Source locations of pattern-specific compo-
nents of human visual evoked potentials. I. Component of striate 
cortical origin. Exp Brain Res. 1972:16:1–21. 

Katzin N, Rosenbaum D, Usher M. The averaging of numerosi-
ties: a psychometric investigation of the mental line. Atten 
Percept Psychophys. 2021:83:1152–1168. https://doi.org/10.3758/ 
s13414-020-02140-w. 

Kelly SP, Schroeder CE, Lalor EC. What does polarity inversion of 
extrastriate activity tell us about striate contributions to the 
early VEP? A comment on Ales et al. (2010). NeuroImage. 2013a:76: 
442–445. https://doi.org/10.1016/j.neuroimage.2012.03.081. 

Kelly SP, Vanegas MI, Schroeder CE, Lalor EC. The cruciform model 
of striate generation of the early VEP, re-illustrated, not revoked: 
a reply to Ales et al. (2013). NeuroImage. 2013b:82:154–159. https:// 
doi.org/10.1016/j.neuroimage.2013.05.112. 

Kim G, Jang J, Baek S, Song M, Paik SB. Visual number sense in 
untrained deep neural networks. Sci Adv. 2021:7:1–9. https://doi. 
org/10.1126/sciadv.abd6127. 

Klímová M, Bloem IM, Ling S. The specificity of orientation-tuned 
normalization within human early visual cortex. J Neurophysiol. 
2021:126:1536–1546. https://doi.org/10.1152/jn.00203.2021. 

Knudsen EI, Konishi M. Center-surround organization of auditory 
receptive fields in the owl. Science (1979). 1978:202:778–780. 
https://doi.org/10.1152/jn.00203.2021.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/10/bhae418/7831712 by U

niv of C
olorado Libraries user on 27 January 2025

https://doi.org/10.1002/hbm.460020306
https://doi.org/10.1002/hbm.460020306
https://doi.org/10.1002/hbm.460020306
https://doi.org/10.1002/hbm.460020306
https://doi.org/10.1017/S0140525X21000571
https://doi.org/10.1017/S0140525X21000571
https://doi.org/10.1017/S0140525X21000571
https://doi.org/10.1017/S0140525X21000571
https://doi.org/10.1017/S0140525X21000571
https://doi.org/10.1038/nn.4128
https://doi.org/10.1038/nn.4128
https://doi.org/10.1038/nn.4128
https://doi.org/10.1038/nn.4128
https://doi.org/10.1162/jocn.1996.8.1.47
https://doi.org/10.1162/jocn.1996.8.1.47
https://doi.org/10.1162/jocn.1996.8.1.47
https://doi.org/10.1162/jocn.1996.8.1.47
https://doi.org/10.1162/jocn.1993.5.4.390
https://doi.org/10.1162/jocn.1993.5.4.390
https://doi.org/10.1162/jocn.1993.5.4.390
https://doi.org/10.1162/jocn.1993.5.4.390
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.cognition.2015.05.016
https://doi.org/10.1016/j.cognition.2015.05.016
https://doi.org/10.1016/j.cognition.2015.05.016
https://doi.org/10.1016/j.cognition.2015.05.016
https://doi.org/10.1016/j.cognition.2015.05.016
https://doi.org/10.1167/jov.20.4.4
https://doi.org/10.1093/cercor/13.5.486
https://doi.org/10.1093/cercor/13.5.486
https://doi.org/10.1093/cercor/13.5.486
https://doi.org/10.1093/cercor/13.5.486
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.3389/fnhum.2017.00021
https://doi.org/10.3389/fnhum.2017.00021
https://doi.org/10.3389/fnhum.2017.00021
https://doi.org/10.3389/fnhum.2017.00021
https://doi.org/10.1162/jocn_a_01320
https://doi.org/10.1162/jocn_a_01320
https://doi.org/10.1162/jocn_a_01320
https://doi.org/10.1162/jocn_a_01320
https://doi.org/10.1162/jocn_a_01320
https://doi.org/10.1167/18.9.15
https://doi.org/10.1167/18.9.15
https://doi.org/10.1167/18.9.15
https://doi.org/10.1016/j.cortex.2020.11.013
https://doi.org/10.1016/j.cortex.2020.11.013
https://doi.org/10.1016/j.cortex.2020.11.013
https://doi.org/10.1016/j.cortex.2020.11.013
https://doi.org/10.1016/j.cortex.2020.11.013
https://doi.org/10.1016/j.cognition.2016.03.006
https://doi.org/10.1016/j.cognition.2016.03.006
https://doi.org/10.1016/j.cognition.2016.03.006
https://doi.org/10.1016/j.cognition.2016.03.006
https://doi.org/10.1016/j.cognition.2016.03.006
https://doi.org/10.1016/j.neuroimage.2017.05.069
https://doi.org/10.1016/j.neuroimage.2017.05.069
https://doi.org/10.1016/j.neuroimage.2017.05.069
https://doi.org/10.1016/j.neuroimage.2017.05.069
https://doi.org/10.1016/j.neuroimage.2017.05.069
https://doi.org/10.1016/j.cognition.2009.07.002
https://doi.org/10.1016/j.cognition.2009.07.002
https://doi.org/10.1016/j.cognition.2009.07.002
https://doi.org/10.1016/j.cognition.2009.07.002
https://doi.org/10.1016/j.cognition.2009.07.002
https://doi.org/10.1037/a0026218
https://doi.org/10.1037/a0026218
https://doi.org/10.1037/a0026218
https://doi.org/10.1037/a0026218
https://doi.org/10.1111/j.1469-8986.2012.01461.x
https://doi.org/10.1111/j.1469-8986.2012.01461.x
https://doi.org/10.1111/j.1469-8986.2012.01461.x
https://doi.org/10.1111/j.1469-8986.2012.01461.x
https://doi.org/10.1111/j.1469-8986.2012.01461.x
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.1016/j.isci.2022.104104
https://doi.org/10.3758/PBR.16.3.509
https://doi.org/10.3758/PBR.16.3.509
https://doi.org/10.3758/PBR.16.3.509
https://doi.org/10.3758/PBR.16.3.509
https://doi.org/10.1073/pnas.1512408112
https://doi.org/10.1073/pnas.1512408112
https://doi.org/10.1073/pnas.1512408112
https://doi.org/10.1073/pnas.1512408112
https://doi.org/10.1037/0033-2909.97.1.35
https://doi.org/10.1037/0033-2909.97.1.35
https://doi.org/10.1037/0033-2909.97.1.35
https://doi.org/10.3758/s13414-015-0946-x
https://doi.org/10.3758/s13414-015-0946-x
https://doi.org/10.3758/s13414-015-0946-x
https://doi.org/10.3758/s13414-015-0946-x
https://doi.org/10.3758/s13414-015-0946-x
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1002/hbm.21352
https://doi.org/10.1002/hbm.21352
https://doi.org/10.1002/hbm.21352
https://doi.org/10.1002/hbm.21352
https://doi.org/10.3758/s13414-020-02140-w
https://doi.org/10.3758/s13414-020-02140-w
https://doi.org/10.3758/s13414-020-02140-w
https://doi.org/10.3758/s13414-020-02140-w
https://doi.org/10.3758/s13414-020-02140-w
https://doi.org/10.1016/j.neuroimage.2012.03.081
https://doi.org/10.1016/j.neuroimage.2012.03.081
https://doi.org/10.1016/j.neuroimage.2012.03.081
https://doi.org/10.1016/j.neuroimage.2012.03.081
https://doi.org/10.1016/j.neuroimage.2012.03.081
https://doi.org/10.1016/j.neuroimage.2013.05.112
https://doi.org/10.1016/j.neuroimage.2013.05.112
https://doi.org/10.1016/j.neuroimage.2013.05.112
https://doi.org/10.1016/j.neuroimage.2013.05.112
https://doi.org/10.1016/j.neuroimage.2013.05.112
https://doi.org/10.1126/sciadv.abd6127
https://doi.org/10.1126/sciadv.abd6127
https://doi.org/10.1126/sciadv.abd6127
https://doi.org/10.1126/sciadv.abd6127
https://doi.org/10.1126/sciadv.abd6127
https://doi.org/10.1152/jn.00203.2021
https://doi.org/10.1152/jn.00203.2021
https://doi.org/10.1152/jn.00203.2021
https://doi.org/10.1152/jn.00203.2021
https://doi.org/10.1152/jn.00203.2021
https://doi.org/10.1152/jn.00203.2021
https://doi.org/10.1152/jn.00203.2021
https://doi.org/10.1152/jn.00203.2021


Croteau et al. | 15

Kobylkov D, Zanon M, Perrino M, Vallortigara G. Neural  coding  of  
numerousness. Biosystems. 2023:232:104999, 104999. https://doi. 
org/10.1016/j.biosystems.2023.104999. 

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with 
deep convolutional neural networks. Adv Neural Inf Process Syst. 
2012:25:1–9. https://doi.org/10.1016/j.biosystems.2023.104999. 

Krupa DJ, Ghazanfar AA, Nicolelis MAL. Immediate thalamic sen-
sory plasticity depends on corticothalamic feedback. Proc Natl 
Acad Sci. 1999:96:8200–8205. https://doi.org/10.1073/pnas.96.14. 
8200. 

Lee H, Baek J, Chong SC. Perceived magnitude of visual displays: 
area, numerosity, and mean size. J Vis. 2016:16:12. https://doi. 
org/10.1167/16.3.12. 

Leibovich T, Henik A. Comparing performance in discrete and 
continuous comparison tasks. Q J Exp Psychol. 2014:67:899–917. 
https://doi.org/10.1080/17470218.2013.837940. 

Leibovich T, Katzin N, Harel M, Henik A. From “sense of number” 
to “sense of magnitude”: the role of continuous magnitudes in 
numerical cognition. Behav Brain Sci. 2017:40:e164, e164. https:// 
doi.org/10.1017/S0140525X16000960. 

Leslie AM, Gelman R, Gallistel CR. The generative basis of natural 
number concepts. Trends Cogn Sci. 2008:12:213–218. https://doi. 
org/10.1016/j.tics.2008.03.004. 

Libertus ME, Woldorff MG, Brannon EM. Electrophysiological evi-
dence for notation independence in numerical processing. Behav 
Brain Funct. 2007:3:1–15. https://doi.org/10.1186/1744-9081-3-1. 

Linares D, López-Moliner J. 2017. quickpsy: An R package to fit 
psychometric functions for multiple groups. 

Lopez-Calderon J, Luck SJ. ERPLAB: an open-source toolbox for 
the analysis of event-related potentials. Front Hum Neurosci. 
2014:8:75729. https://doi.org/10.3389/fnhum.2014.00213. 

Lourenco SF, Aulet LS. A theory of perceptual number encoding. Psy-
chol Rev. 2022:130:155–182. https://doi.org/10.1037/rev0000380. 

Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond B Biol Sci. 
1980:207:187–217. 

Meese TS, Summers RJ, Holmes DJ, Wallis SA. Contextual modulation 
involves suppression and facilitation from the center and the 
surround. J Vis. 2007:7:7. https://doi.org/10.1167/7.4.7. 

Nasr K, Viswanathan P, Nieder A. Number detectors spontaneously 
emerge in a deep neural network designed for visual object 
recognition. Sci Adv. 2019:5:1–10. https://doi.org/10.1126/sciadv. 
aav7903. 

Park J. Flawed stimulus design in additive-area heuristic stud-
ies. Cognition. 2022:229:104919, 104919. https://doi.org/10.1016/j. 
cognition.2021.104919. 

Park J, Huber DE. A visual sense of number emerges from divisive nor-
malization in a simple center-surround convolutional network. 
elife. 2022:11:1–16. https://doi.org/10.7554/eLife.80990. 

Park J, Dewind NK, Woldorff MG, Brannon EM. Rapid and direct 
encoding of numerosity in the visual stream. Cereb Cortex. 
2016:26:748–763. https://doi.org/10.1093/cercor/bhv017. 

Park J, Godbole S, Woldorff MG, Brannon EM. Context-dependent 
modulation of early visual cortical responses to numerical and 
nonnumerical magnitudes. J Cogn Neurosci. 2021:33:2536–2547. 
https://doi.org/10.1162/jocn_a_01774. 

Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, 
et al. PsychoPy2: Experiments in behavior made easy. Behav Res 
Methods. 2019:51:195–203. 

Piazza M, De Feo V, Panzeri S, Dehaene S. Learning to focus 
on number. Cognition. 2018:181:35–45. https://doi.org/10.1016/j. 
cognition.2018.07.011. 

Pinel P, Dehaene S, Rivière D, LeBihan D. Modulation of pari-
etal activation by semantic distance in a number compari-
son task. NeuroImage. 2001:14:1013–1026. https://doi.org/10.1006/ 
nimg.2001.0913. 

Qu C, DeWind NK, Brannon EM. Increasing entropy reduces per-
ceived numerosity throughout the lifespan. Cognition. 2022:225: 
105096, 105096. https://doi.org/10.1016/j.cognition.2022.105096. 

Starr A, Libertus ME, Brannon EM. Number sense in infancy pre-
dicts mathematical abilities in childhood. Proc Natl Acad Sci USA. 
2013:110:18116–18120. https://doi.org/10.1073/pnas.1302751110. 

Starr A, DeWind NK, Brannon EM. The contributions of numerical 
acuity and non-numerical stimulus features to the develop-
ment of the number sense and symbolic math achievement. 
Cognition. 2017:168:222–233. https://doi.org/10.1016/j.cognition. 
2017.07.004. 

Stoianov I, Zorzi M. Emergence of a “visual number sense” in 
hierarchical generative models. Nature Neurosci. 2012:15:194–196. 
https://doi.org/10.1038/nn.2996. 

Testolin A, Zou WY, McClelland JL. Numerosity discrimination in 
deep neural networks: initial competence, developmental refine-
ment and experience statistics. Dev Sci. 2020:23:e12940, e12940. 
https://doi.org/10.1111/desc.12940. 

Togoli I, Arrighi R. Evidence for an A-modal number sense: numeros-
ity adaptation generalizes across visual, auditory, and tactile 
stimuli. Front Hum Neurosci. 2021:15:713565, 713565. https://doi. 
org/10.3389/fnhum.2021.713565. 

Togoli I, Fornaciai M, Bueti D. The specious interaction of time and 
numerosity perception. Proc R Soc B. 2021:288:20211577. https:// 
doi.org/10.1098/rspb.2021.1577. 

Waite PME. Somatotopic organization of vibrissal responses in the 
ventro-basal complex of the rat thalamus. J Physiol. 1973:228: 
527–540. https://doi.org/10.1113/jphysiol.1973.sp010098. 

Wilkey ED, Ansari D. Challenging the neurobiological link between 
number sense and symbolic numerical abilities. Ann N Y Acad 
Sci. 2019:1464:76–98. https://doi.org/10.1111/nyas.14225.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/10/bhae418/7831712 by U

niv of C
olorado Libraries user on 27 January 2025

https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1016/j.biosystems.2023.104999
https://doi.org/10.1073/pnas.96.14.8200
https://doi.org/10.1167/16.3.12
https://doi.org/10.1167/16.3.12
https://doi.org/10.1167/16.3.12
https://doi.org/10.1080/17470218.2013.837940
https://doi.org/10.1080/17470218.2013.837940
https://doi.org/10.1080/17470218.2013.837940
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1016/j.tics.2008.03.004
https://doi.org/10.1016/j.tics.2008.03.004
https://doi.org/10.1016/j.tics.2008.03.004
https://doi.org/10.1016/j.tics.2008.03.004
https://doi.org/10.1016/j.tics.2008.03.004
https://doi.org/10.1186/1744-9081-3-1
https://doi.org/10.1186/1744-9081-3-1
https://doi.org/10.1186/1744-9081-3-1
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.1037/rev0000380
https://doi.org/10.1037/rev0000380
https://doi.org/10.1037/rev0000380
https://doi.org/10.1037/rev0000380
https://doi.org/10.1167/7.4.7
https://doi.org/10.1167/7.4.7
https://doi.org/10.1167/7.4.7
https://doi.org/10.1126/sciadv.aav7903
https://doi.org/10.1126/sciadv.aav7903
https://doi.org/10.1126/sciadv.aav7903
https://doi.org/10.1126/sciadv.aav7903
https://doi.org/10.1126/sciadv.aav7903
https://doi.org/10.1016/j.cognition.2021.104919
https://doi.org/10.1016/j.cognition.2021.104919
https://doi.org/10.1016/j.cognition.2021.104919
https://doi.org/10.1016/j.cognition.2021.104919
https://doi.org/10.1016/j.cognition.2021.104919
https://doi.org/10.7554/eLife.80990
https://doi.org/10.7554/eLife.80990
https://doi.org/10.7554/eLife.80990
https://doi.org/10.7554/eLife.80990
https://doi.org/10.1093/cercor/bhv017
https://doi.org/10.1093/cercor/bhv017
https://doi.org/10.1093/cercor/bhv017
https://doi.org/10.1093/cercor/bhv017
https://doi.org/10.1093/cercor/bhv017
https://doi.org/10.1162/jocn_a_01774
https://doi.org/10.1162/jocn_a_01774
https://doi.org/10.1162/jocn_a_01774
https://doi.org/10.1162/jocn_a_01774
https://doi.org/10.1162/jocn_a_01774
https://doi.org/10.1016/j.cognition.2018.07.011
https://doi.org/10.1016/j.cognition.2018.07.011
https://doi.org/10.1016/j.cognition.2018.07.011
https://doi.org/10.1016/j.cognition.2018.07.011
https://doi.org/10.1016/j.cognition.2018.07.011
https://doi.org/10.1006/nimg.2001.0913
https://doi.org/10.1006/nimg.2001.0913
https://doi.org/10.1006/nimg.2001.0913
https://doi.org/10.1006/nimg.2001.0913
https://doi.org/10.1016/j.cognition.2022.105096
https://doi.org/10.1016/j.cognition.2022.105096
https://doi.org/10.1016/j.cognition.2022.105096
https://doi.org/10.1016/j.cognition.2022.105096
https://doi.org/10.1016/j.cognition.2022.105096
https://doi.org/10.1073/pnas.1302751110
https://doi.org/10.1073/pnas.1302751110
https://doi.org/10.1073/pnas.1302751110
https://doi.org/10.1073/pnas.1302751110
https://doi.org/10.1016/j.cognition.2017.07.004
https://doi.org/10.1038/nn.2996
https://doi.org/10.1038/nn.2996
https://doi.org/10.1038/nn.2996
https://doi.org/10.1038/nn.2996
https://doi.org/10.1111/desc.12940
https://doi.org/10.1111/desc.12940
https://doi.org/10.1111/desc.12940
https://doi.org/10.1111/desc.12940
https://doi.org/10.3389/fnhum.2021.713565
https://doi.org/10.3389/fnhum.2021.713565
https://doi.org/10.3389/fnhum.2021.713565
https://doi.org/10.3389/fnhum.2021.713565
https://doi.org/10.1098/rspb.2021.1577
https://doi.org/10.1098/rspb.2021.1577
https://doi.org/10.1098/rspb.2021.1577
https://doi.org/10.1098/rspb.2021.1577
https://doi.org/10.1113/jphysiol.1973.sp010098
https://doi.org/10.1113/jphysiol.1973.sp010098
https://doi.org/10.1113/jphysiol.1973.sp010098
https://doi.org/10.1113/jphysiol.1973.sp010098
https://doi.org/10.1113/jphysiol.1973.sp010098
https://doi.org/10.1111/nyas.14225
https://doi.org/10.1111/nyas.14225
https://doi.org/10.1111/nyas.14225
https://doi.org/10.1111/nyas.14225

	 The divisive normalization model of visual number sense: model predictions and experimental confirmation
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgments
	Author contributions
	Funding
	Data availability


