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Real-world problems are often complex and ill defined. For 
instance, imagine that you open the refrigerator to figure out 
what to cook for an unexpected dinner guest, but, to your hor-
ror, you have only potatoes, tomatoes, onions, and eggs. In a 
flash of insight, you figure out the solution—a Spanish omelet! 
From among the many thousands of possible dishes, how did 
you manage to find this solution? And why is it that some peo-
ple are much better than others at finding creative solutions to 
complex problems?

In 1962, S. A. Mednick defined creativity as “the forming 
of associative elements into new combinations, which either 
meet specified requirements or are in some way useful”  
(p. 221). On the basis of this definition, Mednick developed a 
test of creativity called the remote associates test (RAT). Each 
question on the RAT is composed of three apparently unre-
lated cue words that associate to or associate from a fourth 
word, which is the correct answer (e.g., cues: surprise, line, 
and birthday; answer: party). Early work established that RAT 
performance correlates with traditional measures of IQ (M. T. 
Mednick & Andrews, 1967) and predicts originality during 
brainstorming (Forbach & Evans, 1981; although see Kray, 
Galinsky, & Wong, 2006). More recently, the RAT has been 

used to measure the effects of manipulations related to creativ-
ity. For instance, the RAT has been used to study intuition and 
incubation (Bowers, Regehr, Balthazard, & Parker, 1990; 
Topolinski & Strack, 2008, 2009; Vul & Pashler, 2007), the 
role of affect during problem solving (Fodor, 1999; Isen, 
Daubman, & Nowicki, 1987), implicit learning during REM 
sleep (Cai, Mednick, Harrison, Kanady, & Mednick, 2009), 
and the relation between synaesthesia and creativity (Sitton & 
Pierce, 2004; Ward, Thompson-Lake, Ely, & Kaminski, 2008), 
to name just a few examples.

Despite the demonstrated utility of the RAT, there are no 
formal (i.e., computational) models specifying why some peo-
ple perform better than others on the RAT. Here, we report a 
study in which we tested one account of individual differences 
in the search process that takes place while people solve these 
problems. The RAT search process was initially investigated 
in a study of performance evaluation. By interjecting lexical 
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decisions following presentation of the RAT cue words and by 
manipulating various delays, Harkins (2006) determined that 
the threat of performance evaluation increased fixation on 
incorrect words closely associated to the cue words, thus 
blocking access to the correct remote associate. The current 
study built on this work by mathematically formalizing the 
search process within a norm-based semantic space. This 
allowed separate analysis of each RAT question and each indi-
vidual. With this formalization, we tested the hypothesis that 
highly creative individuals, as measured by the RAT, are able 
to access remote associations because they are not biased to 
consider only high-frequency words. It follows that difficult 
RAT questions are ones in which the cue words are associated 
with incorrect high-frequency words, which makes it difficult 
to access the correct answer. We tested this hypothesis empiri-
cally by examining the relation between the word frequency  
of responses, both correct and incorrect, and performance on 
the RAT, and we tested it theoretically by modeling individual 
differences at the level of each participant and each RAT 
question.

Method
To test the role of word frequency, we performed a RAT exper-
iment in which participants had only 30 s for each RAT ques-
tion and were encouraged to guess before the response 
deadline. For this experiment, we wanted RAT questions for 
which the correct answer was easily predicted using only asso-
ciative information without regard to word frequency or other 
factors. By selecting RAT questions in this manner, we defined 
a norm-based model of what people should do, which we con-
trasted with a frequency-biased model of observed behavior.

Norm-based model
Because RAT questions are based on remote associations, 
many of the associations between cues and responses are miss-
ing in Nelson, McEvoy, and Schreiber’s (1998) association 
norms.1 To fill in these missing associations, we used the Word 
Association Space (WAS) of Steyvers, Shiffrin, and Nelson 
(2004). To create the WAS, they compressed the 5,018 words 
contained in the association norms of Nelson et al. into a 
reduced 400-dimensional representation by using singular 
value decomposition (SVD). Although 400 dimensions 
defines a vast space, this number of dimensions is much less 
than 5,018; thus, latent associations are revealed in the WAS. 
For each RAT question, we calculated the euclidean average 
within the WAS for the three cue words and used this cue cen-
troid to define the best guess at an answer. The 5,018 words in 
the association norms were ordered according to their similar-
ity to the cue centroid, and performance of the model was 
measured as the relative position of the correct answer in this 
list (i.e., the percentage of words that were more dissimilar 
from the cue centroid than the correct answer was). As is com-
monly done with semantic spaces based on SVD (e.g., 

Landauer & Dumais, 1997), we used the cosine of the angle 
between points in the WAS to calculate semantic similarity.

Participants
One hundred thirty-two undergraduate students at the Univer-
sity of California, San Diego, were recruited and received 
credit for psychology courses in return for their participation.

Materials
Collecting RAT questions from three different sources (Bowden 
& Jung-Beeman, 2003; Bowers et al., 1990; S. A. Mednick, 
1962), we identified 178 RAT questions for which all three cue 
words and the answer existed in the WAS. For each of these 
questions, the similarity between the cue centroid and each of 
the 5,018 words in the WAS was calculated. The experimental 
stimuli consisted of the 48 RAT questions (see Table S1 in the 
Supplemental Material available online) that produced the 
highest performance for the norm-based model, subject to the 
constraint that no cue word or answer word could appear in 
more than 1 RAT question. By including only these RAT ques-
tions, we ensured that the cue centroid was a good indicator of 
the correct answer for every question. Four additional RAT 
questions were used for practice trials, which were not 
analyzed.

Procedure
For each RAT question, participants were presented with the 
three cue words and asked to find the common associative link 
among them. The cue words were presented horizontally in 
the center of a computer screen, in the same left-to-right order 
as they appear in Table S1 in the Supplemental Material. Par-
ticipants were asked to type their best guess at an answer 
within the allotted time of 30 s. If they provided no response 
within the first 15 s, a string of asterisks appeared over the cue 
words, indicating that only 15 s remained. After a participant 
typed in a response and pressed the “enter” key, the trial was 
stopped regardless of whether the entire 30 s had elapsed. The 
back-space key was enabled so that participants could retype a 
response prior to the end of a trial. Answers were recorded 
whenever the “enter” key was pressed or when 30 s elapsed. 
For each participant, the 48 RAT questions were randomly 
divided into four blocks containing 12 questions each. Between 
blocks, participants performed an unrelated task for 10 min.

Word frequency
In keeping with a recent theory of insight proposed by Topo-
linski and Reber (2010), our account of RAT performance sup-
poses that answers are considered if they spring to mind easily. 
In other words, we propose that responses are biased toward 
words with high fluency. Griffiths, Steyvers, and Firl (2007) 
recently studied word fluency by asking participants to report 
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the first response that came to mind when they were given a 
first letter (e.g., “a” for “apple”). Griffiths et al. applied differ-
ent frequency measures to the results of this experiment, find-
ing that traditional measures of written word frequency, such 
as the Kucera and Francis (1967) norms, failed to explain 
word fluency. In contrast, PageRank values for individual 
words, as determined from the association norms, provided a 
better measure of fluency. For this application, the PageRank 
of a word is the probability of visiting that word during a ran-
dom walk through the associative links between words. How-
ever, a very good approximation to PageRank is the sum of the 
in-links, which in this case meant the sum of the association 
strengths of all the cue words that associate to a particular tar-
get word. Griffiths et al. termed this associate frequency (AF) 
and found it to yield results nearly indistinguishable from 
those obtained with PageRank. Therefore, we used AF as our 
measure of word frequency.

Frequency-biased model
We assumed that solving a RAT question entails three aspects 
of the search process: (a) the order in which candidate words 
are evaluated in the search set, (b) whether the correct answer 
is recognized as being the correct answer if it is evaluated, and 
(c) guessing upon quitting the search process. To capture indi-
vidual differences in the search process, we assumed that the 
order of the search set is biased by word frequency. We imple-
mented this assumption with the weighted similarity measure, 
f(w)F × similarity(w, C), where the similarity between word w 
and the cue centroid, C, is calculated with the cosine angle in 
the WAS, f(w) is the AF of word w, and F is an individual dif-
ference parameter that determines the role of frequency. The 
search set included all 5,018 words in the WAS ordered by 
weighted similarity from high to low. A geometric distribution 
was used to model the probability of quitting the search pro-
cess at each position in the search set; the geometric parameter 
p denotes the probability of quitting after each word in the set. 
For a word with rank i, the probability that the search reached 
that word is given by (1 – p)i–1.

Search evaluates each word to determine whether it is the 
correct answer. If the correct answer is evaluated, it is recog-
nized as being the correct answer with probability R, in which 
case the search process stops. R provides a second measure of 
individual differences, allowing for the possibility that some 
individuals may not carefully consider whether a word meets 
the task requirements. If the correct answer is at rank position 
k, the probability that it is reached prior to termination of the 
search and also recognized as the correct answer is calculated 
as follows:

Precognized = (1 – p)k–1R.

If participants are aware that recognition of the answer is 
less than perfect, a good guess may lie among words already 
evaluated and rejected. More specifically, participants may 

recognize one or two of the associations between an evaluated 
word and the cues, but fail to appreciate all three. Thus, we 
assume that participants are biased to guess on the basis of the 
direct associations between previously evaluated words and 
the cues. Across the three cues for a RAT question, the com-
bined associative strength of a word with rank i (denoted as 
Wi) is as follows:

C i A W A Wj i i j
j

( ) ( ) ( )
, ,

= + → + →
=
∑ε Cue Cue
1 2 3

,

where Cuej denotes the jth cue for the RAT question and A 
denotes the associative strength (with direction) based on the 
association norms. A small fixed offset, ε (set to 10–5), is added 
to make C(i) nonzero for words that do not associate with any 
of the cues.

The probability of guessing a word with rank i is propor-
tional to the product of the combined associative strength and 
the probability that quitting did not occur prior to search reach-
ing that word:

Pguess(i) ∝ (1 – p)i–1C(i)q,

where q is a parameter reflecting the relative importance of the 
cue associations in the guessing process. Because a guess is 
needed only if the correct answer is not recognized, the prob-
ability of guessing word i is as follows:

                                     (1 – p)i–1C(i)q

Pguess(i) = (1 – Precognized) 
                                   ∑

j=1..N
(1 – p)j–1C(j)q    

,

where N is the total number of words in the lexicon (5,018 
in this case). All incorrect words (i ≠ k) are produced only 
via guessing, whereas the probability of reporting the correct 
answer is given by

P(k) = Precognized + Pguess(k),

which captures the possibility that the correct answer might 
be given as a guess. Collectively, these equations define a dis-
crete probability distribution for responding with any word in 
the lexicon.

The parameters p and q were estimated by fitting the exper-
imental data reported in Table S1 (i.e., both correct and incor-
rect responses). These values were optimized to maximize the 
log likelihood (LL), which is computed as follows:

LL =  ∑
r =1..48

  ∑
i=5,018   

Or(i) log[Pr(i)].

LL thus ranges over the 5,018 possible responses to each of  
the 48 RAT questions. For RAT question r, Pr(i) denotes the 
predicted response probability of the word with rank i, accord-
ing to the equations of the frequency-biased model we just 
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outlined, and Or(i) denotes the observed response probability 
for that word.

Results
Experimental results

Table S1 shows all responses to all 48 RAT questions. The 
questions received an average of 35 different responses (SD = 
9.93), and there were large accuracy differences across the 48 
questions (M = .32, SD = .21). Accuracy varied greatly across 
participants as well (M = .32, SD = .12). The mean response 
time until the first key press was 11,913 ms (SD = 4,113) for 
correct responses and 15,301 ms (SD = 2,258) for incorrect 
responses.

According to our theory, individuals who perform poorly 
on the RAT should be biased to give high-frequency responses. 
As predicted by this account, there was a negative correlation 
across individuals between average accuracy and average AF 
of the words given as responses, r(130) = -.45, p < .01. How-
ever, this correlation is potentially misleading because the 
average AF of responses by people with high accuracy largely 
reflects the frequency of the correct answers, and the average 
AF of the correct answers was 2.31, which is relatively low. 
The key question was whether there was a correlation across 
individuals between average accuracy and average AF of 
incorrect responses specifically. According to our hypothesis, 
the reason that people perform poorly is that they are biased to 
consider high-frequency incorrect words, which blocks access 
to low-frequency correct answers (i.e., the correct answer is 
further down the search list). As predicted, there was a nega-
tive correlation across individuals between average accuracy 
and average AF of incorrect responses, r(130) = -.26, p < .01. 
This result supports the claim that a tendency to consider high-
frequency words impairs performance on the RAT.

Results for the norm-based model
Figure 1 summarizes the performance of the norm-based 
model for the 178 RAT questions for which all three cues and 
the correct answer were in the association norms. Specifically, 
the graph shows the distribution of questions for a perfor-
mance measure based on similarity to the average of the three 
cues (i.e., the cue centroid). Performance for each question 
was the percentage of the 5,018 words in the association norms 
that produced lower similarity values than the similarity value 
of the correct answer. As the figure shows, for the majority of 
the RAT questions, no more than 5% of the words in the WAS 
were closer to the centroid than was the correct answer. Aver-
age performance of the norm-base model was 91.1% across all 
178 RAT questions and 99.5% for the 48 RAT questions used 
in our experiment. Because the answer to a RAT question is 
associatively related to each of the cue words, it is possible 
that a single randomly chosen cue word from the set of three 
cue words might yield even better performance than the  
cue centroid. To test this possibility, we calculated the model’s 

performance on each question for each of the three cues sepa-
rately and found that average performance dropped to 83.1%. 
Thus, a very good strategy when performing the RAT is to use 
the cue centroid as the basis for identifying the answer to each 
question.

Results for the frequency-biased model
We assumed that individual differences arise from the param-
eters F and R, which respectively capture the extent to which 
individuals are biased to consider high-frequency words and 
the ability of individuals to recognize the correct answer if it is 
reached during the search process. In particular, individuals 
with a high value of F are those who place high-frequency 
words closer to the top of their search list compared with low-
frequency words, and consequently tend to have insufficient 
time to consider a low-frequency correct answer. Figure 2 
shows a specific example of how this reordering of candidate 
words can affect response probabilities. This example con-
cerns the question that was the most difficult (2% accuracy): 
the one with panel as the correct answer in response to the 
cues jury, door, and side. If an individual uses the cues without 
regard to word frequency (F = 0), then panel is near the top  
of the search list, as indicated by the solid line in the figure. 
However, panel is a very low-frequency word (AF = 0.10), 
and, as shown by the dotted line, the observed response prob-
ability was lower for panel than for several other answers, 
which suggests that panel was placed farther down the search 
list than those other words. In contrast, the word room associ-
ates to some of the cue words and is much higher in frequency 
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Fig. 1. Results for the norm-based model for 178 remote associates test 
(RAT) questions. The model’s performance was based on the average 
of the semantic positions of the three cue words (i.e., the cue centroid) 
within the Word Association Space (WAS) created by Steyvers, Shiffrin, and 
Nelson (2004). All 5,018 words contained in the norms of Nelson, McEvoy, 
and Schreiber (1998) were ordered according to their similarity to the cue 
centroid (i.e., the cosine of the angle between the cue centroid and each word 
in the WAS). Performance of the model was measured as the percentage of 
the 5,018 words that had lower similarity values than the similarity value of 
the correct answer. The graph shows the frequency distribution of the 178 
questions for this performance measure.
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(AF = 3.83). Thus, for individuals with a frequency bias (F > 
0), room is placed toward the top of the search list, which 
results in a higher probability that room is given as a guess.

Individual differences contributing to the group data in 
Table S1 were modeled by allowing a range of values across R 
and F. All combinations of four values of R (.2, .4, .6, and .8) 
and four values of F (0, 1, 2, and 3) were used to create 16 
hypothetical individuals. The model produced response prob-
abilities for all 5,018 words in the lexicon for each hypotheti-
cal individual on each of the 48 RAT questions. These 
probabilities were averaged across the hypothetical individu-
als to produce a response distribution across words for each 
RAT question. A comparison between predicted and observed 
response probabilities was then made for all of the 547 differ-
ent words in Table S1 that also appear in the association norms. 
The same values of p (.002) and q (0.43), as determined by a 
maximum likelihood fit of the data, were used for all 16 hypo-
thetical individuals. These parameters, respectively, captured 
search depth and how strongly the guessing process was driven 
by association with specific cues. Figure 3 is a scatter plot 
showing the relation between observed response probabilities 
and the model’s response probabilities for the 48 correct 
answers, as well as the 499 different incorrect responses. The 
percentage of variance accounted for across both correct and 
incorrect responses was 65%; across the correct responses 
specifically, the percentage of variance accounted for was 
21%. The log likelihood of the model was –171, which corre-
sponds to a chi-square of 180, an impressively good fit (p = 1) 

considering that this is a fit of 547 different categories of 
response with only two free parameters.

Model comparison
By itself, an impressive fit does not constitute evidence in 
favor of a model (e.g., Roberts & Pashler, 2000), and consid-
eration of alternative models is a critical component of formal 
modeling. Thus, we compared the frequency-biased model 
with one that included individual differences in neither R nor 
F or in only the R parameter. The former is equivalent to the 
norm-based model when F is set to 0 and R to 1 (i.e., an indi-
vidual who is unbiased by frequency and who never fails to 
recognize the correct answer when it is considered). For this 
model, with these F and R parameter values, the optimal val-
ues of p and q were .003 and 0.34, respectively. This model 
produced a chi-square of 328—an increase of 148 over the 
chi-square for the frequency-biased model, even though the 
two models have the same number of free parameters. As 
noted, the frequency-biased model accounted for 21% of the 
variance for the 48 correct answers. However, only 2% of the 
variance for the correct answers was accounted for when F 
was set to 0. Given that the frequency-biased model becomes 
the norm-based model as regards the 48 correct answers when 
F is 0,2 this result indicates that similarity to the cue centroid 
does not explain why some RAT questions are easy and others 
are difficult.

To allow nested model comparisons, we considered a 
model with 4 hypothetical individuals for whom F was set to 
0 and R was set to .2, .4, .6, or .8. This model produced a chi-
square of 204—an increase of 24 over the chi-square for the 
frequency-biased model, but a decrease of 124 compared with 
the norm-based model. This result is evidence that individuals 
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Fig. 2. Illustration showing how a bias toward high-frequency words affects 
performance on the remote associates test (RAT). Response probabilities are 
shown for the most difficult RAT question in the experiment: with the cues 
jury, door, and side, and the answer panel. The words along the x-axis are a 
representative selection of the words near the top of a search list based on 
similarity to the cue centroid (i.e., the norm-based value that should be used 
to order the search list). The solid line is proportional to the words’ similarity 
to the cue centroid, and the dotted line is proportional to the observed 
response probabilities for these same words. The values for the solid and 
dotted lines are rescaled in the figure to place them on the same y-axis. The 
difference between these two lines (dashed arrows) can be accounted for by 
the frequency-biased model. In this model, the frequency values for candidate 
words are used to reorder the search list, with high-frequency words placed 
toward the beginning of the list. The rank-order position of the words in 
this list is the important determinant of performance. Thus, because panel is 
very low frequency, the observed response probability for this word is low 
even though this word is very similar to the cue centroid; in contrast, room is 
very high frequency, so this word’s observed response probability is high even 
though this word is not as similar to the cue centroid.
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Fig. 3. Scatter plot showing the relation between observed response 
probabilities and the frequency-biased model’s response probabilities for the 
48 correct responses and the 499 incorrect responses that were contained 
in the association norms (results averaged across all individuals). The model 
parameters p and q were fit to the data using maximum likelihood. The model 
was at least 10% correct for all 48 RAT questions, and so the 48 correct 
answers are represented by the 48 points with model response probabilities 
greater than .1.
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differ both in their ability to recognize the correct answer and 
in their tendency to consider high-frequency responses. We 
note that there may be different specific model implementa-
tions of these two effects that are equally compatible with our 
theory. For instance, consider a model in which participants all 
place high-frequency words at the top of their search list (i.e., 
high F), but differ in their latency to reject incorrect responses, 
which determines whether they will have time for the search 
process to reach low-frequency words further down the search 
list. We implemented this alternative by assuming different 
values for the search parameter (p) while a single F value was 
optimized to the data. This alternative was nearly identical  
to the frequency-biased model that included individual dif-
ferences in F and fit the data nearly as well. However, this 
alternative is merely a different technique for implementing 
individual differences in the proportion of high- versus low-
frequency words that are considered within the allotted time, 
and so this is also a frequency-biased model.

Individual differences
Although there were insufficient data to apply the frequency-
biased model to each individual’s responses, we examined indi-
vidual differences by looking at the relation between average 
accuracy and average frequency. Figure 4 plots these individual 
differences along with corresponding values for the 16 hypo-
thetical individuals of the frequency-biased model. As the figure 
shows, the range of observed individual differences roughly 
fills in the same triangular region of individual differences 
hypothesized by the frequency-biased model. An individual’s 
observed average accuracy and average frequency can be used 
to estimate that individual’s R and F values using a linear 
approximation (see Fig. 5). As the figure shows, the chosen a 
priori range of F values for the 16 hypothetical individuals 
underestimated the range of observed F values (i.e., some peo-
ple were even more strongly biased to give high-frequency 
answers than the a priori range allowed for). The range of F in 
the model could be increased, and presumably this would 
improve the model’s fit. However, this would be a post hoc 
adjustment, in which case the range of F values should be 
thought of as a free parameter.

To summarize, the frequency-biased model provided the 
best account of the data. According to this model, individuals 
who perform poorly on the RAT might or might not be biased 
to consider high-frequency words (i.e., there are individual 
differences in F). If they are biased to consider high-frequency 
words, they will produce incorrect guesses that are high- 
frequency words. If they are not biased to consider high- 
frequency words, their low accuracy is explained by low R 
(failure to recognize that the correct answer satisfies the task 
requirements). However, to perform well, they must have both 
a high value of R and a low value of F. That is, they must be 
able to recognize that a potential answer meets the specified 
requirements, and, more important, they must not be biased to 
consider only high-frequency candidate answers.
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Fig. 5. Scatter plot of the R and F values estimated for each of the 132 
participants. The graph also shows the R and F values of the 16 hypothetical 
individuals in the frequency-biased model, as well as estimates of these 
values. Estimates were based on a linear approximation calculated from 
average accuracy and average frequency, which are plotted in Figure 4.  
(A comparison of the actual and estimated values for the hypothetical 
individuals indicates the accuracy of the linear approximation.) The following 
equations were used: average frequency = a + (b × F) and average accuracy = 
R/(1 + (c × F)). A least squares fit based on the 16 hypothetical individuals 
determined the values of the parameters: a = 2.06, b = 0.63, and c = 0.19. 
Negative values of F are theoretically possible, and indicate an individual who 
is biased to consider low-frequency responses.
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Conclusions
Using the RAT as a test of creativity, we tested the hypothesis 
that creative solutions require avoidance of high-frequency 
candidate answers. We performed this test by conducting an 
experiment in which participants responded quickly, giving 
many incorrect responses. As predicted, individuals who per-
formed poorly responded with high-frequency incorrect 
words. We modeled both correct and incorrect responses with 
a high-dimensional word association space created from asso-
ciation norms. This model performed well on all of the RAT 
questions, whereas human participants found some questions 
much more difficult than others. We modeled individual dif-
ferences by assuming that the process of searching for the cor-
rect answer is biased by word frequency and that the correct 
answer may not be recognized even when considered. This 
model provided a good account of all responses, and it 
explained why some RAT questions are more difficult than 
others. It is unclear whether these results will generalize to 
creative solutions of nonlinguistic problems, but we hope that 
this well-specified process model of creative problem solving 
will promote additional tests of this account in other domains.
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Notes

1. Throughout all of the reported analyses, the only association 
norms used were those of Nelson et al. (1998).
2. Because the R parameter serves only to rescale the response prob-
ability for correct responses versus the incorrect responses, the per-
centage of variance for correct responses that is accounted for is 
independent of R.
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