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Abstract
Interaction of cytoskeletal filaments, motor proteins, and crosslinking proteins drives important cellu-
lar processes such as cell division and cell movement. Cytoskeletal networks also exhibit nonequilibrium
self-assembly in reconstituted systems. An emerging problem in cytoskeletal modeling and simulation is
spatiotemporal alteration of the dynamics of filaments, motors, and associated proteins. This can occur due
to motor crowding, obstacles along the filament, motor interactions and direction switching, and changes,
defects, or heterogeneity in the filament binding lattice. How such spatiotemporally varying cytoskeletal
filaments and motor interactions affect their collective properties is not fully understood. We developed
the Cytoskeleton Lattice-based Kinetic Simulator (CyLaKS) to investigate such problems. The simulation
model builds on previous work by incorporating motor mechanochemistry into a simulation with many
interacting motors and/or associated proteins on a discretized lattice. CyLaKS also includes detailed bal-
ance in binding kinetics, movement, and lattice heterogeneity. The simulation framework is flexible and
extensible for future modeling work and is available on GitHub for others to freely use or build upon. Here
we illustrate the use of CyLaKS to study long-range motor interactions, microtubule lattice heterogeneity,
motion of a heterodimeric motor, and how changing crosslinker number affects filament separation.

1 Introduction

The cellular cytoskeleton performs important biologi-
cal roles [1], including mitosis [2] and cytokinesis [3]
in cell division and cell movement [4,5]. Key cytoskele-
tal components include filaments, motor proteins, and
other associated proteins such as crosslinkers. Actin
and microtubules are the best-studied filaments [1].
Assemblies of actin and myosin motors participate in
cytokinesis [3,6], cell motility [7–9], and muscle contrac-
tion [10–12]. Networks of microtubules, kinesin motors,
and dynein motors function in mitotic spindle assem-
bly [2,13–16] and chromosome segregation [17–20], and
beating of cilia and flagella [21–23]. The remarkable
ability of the cytoskeleton to dynamically reorganize
and exert force is not fully understood [1,4]. Theory
and simulation are used to study how basic interactions
of filaments, motors, and associated proteins can lead
to the variety of cytoskeletal structures and dynamics
found in cells and reconstituted systems [24–34].

A particular challenge in cytoskeletal theory and
modeling is how to study motor and crosslinker behav-
ior that is spatiotemporally altered. For example,
kinesin motor activity can change in dense regions
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along microtubules [35,36] in ways that differ for dif-
ferent types of motors [36]. These effects may be in
part due to short-range interactions between motors
[37,38]. Additionally, patchy obstacles created by other
proteins binding to the microtubule lattice can alter
kinesin and dynein movement [39]. Kinesins that regu-
late microtubule length and dynamics typically show
altered motility at microtubule ends [40–49]. Some
kinesin-5 motors can switch their direction of motion
along microtubules [50–54], an effect that is not well
understood but may be regulated by crowding on the
microtubule lattice [54]. Molecular crowders in solution
can inhibit the diffusion of kinesin-1 motor domains and
slow stepping [55]. All of these examples illustrate how
motor stepping can be altered by the local spatial envi-
ronment.

In addition, microtubules themselves can have sig-
nificant spatial and temporal variation. Microtubules
can be heterogeneous at the tubulin dimer level if
they contain a mixture of tubulin isoforms or are
post-translationally modified [56–58]. Motor and non-
motor microtubule-associated proteins (MAPs) appear
to alter microtubule lattice structure and induce defects
[59–62]. Such changes can alter the binding of kinesin-
1 motors [63,64], an effect that might be explained
by elastic anisotropy [65]. Our recent work found that
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long-range interactions between kinesin-4 motors can
explain both changes in motor processivity and veloc-
ity at low density and dense accumulation of motors
and microtubules ends [34]. How spatiotemporally vary-
ing cytoskeletal filaments and motor interactions affect
collective motor behavior remains incompletely under-
stood.

Several methods and packages for molecular simula-
tion of filaments and motors are widely used, including
Cytosim [66], MEDYAN [67], AFINES [68], and oth-
ers [69]. These packages were designed for cystoskeletal
assemblies, typically dozens of filaments (or more) with
associated proteins that form a larger structure or net-
work. As a result, the models are are coarse-grained
to be tractable for these systems. Effects typically
neglected in current software packages include steric
exclusion between proteins bound to filaments, explicit
modeling of discrete binding sites, and mechanochem-
istry such as the stepping cycle of motors. Here we
build on these methods and develop the Cytoskele-
ton Lattice-based Kinetic Simulator (CyLaKS) [70].
CyLaKS is designed to facilitate modeling and sim-
ulation of cytoskeletal filaments (represented as long,
thin rods with a lattice of binding sites for motors
and other proteins), motor proteins, and other filament-
binding proteins for problems in which spatiotemporal
variation of motor or filament properties is significant.
CyLaKS uses kinetic Monte Carlo–Brownian dynamics
(kMC-BD) methods [71–79]. A primary goal in devel-
oping CyLaKS was to build on previous work model-
ing the mechanochemical cycle of individual motor pro-
teins [80–86] by incorporating the motor ATP hydrol-
ysis cycle in a simulation in which many motors can
interact along filaments. Explicitly modeling motor
mechanochemistry allows results such as nontrivial
force–velocity and force–processivity relations [87]. In
addition, we implemented detailed balance in binding
kinetics and movement for a physically motivated treat-
ment of force-dependent protein binding/unbinding and
diffusion. Finally, we have structured the simulation in
a flexible, extensible framework, making it straightfor-
ward to elaborate the model to include spatially varying
effects such as heterogeneity in the lattice and short-
and long-range interactions between motors.

Here we describe the model components and simu-
lation techniques and then illustrate how CyLaKS can
be used to study long-range motor interactions, fila-
ments with heterogeneous binding lattices, motion of
a heterodimeric motor, and filament separation due to
force from crosslinkers. Examples of these simulations
are available as demos on the CyLaKS GitHub page
[70]. Additionally, CyLaKS is hosted on Dockerhub to
facilitate broad access without the requirement that the
code be locally compiled.

2 Model and simulation

Building on our previous work, CyLaKS implements
Brownian dynamics to model physical movements in

solution and a kinetic Monte Carlo algorithm to model
state changes (such as protein binding and unbinding)
and chemical reactions (such as ATP hydrolysis) [71–
79]. Proteins in CyLaKS are not modeled while free in
solution, i.e., when not bound to a filament, and there-
fore do not undergo Brownian dynamics. Similarly, fil-
aments in CyLaKS currently do not undergo any kind
of state change, e.g., dynamic instability, and there-
fore are not subject to kinetic Monte Carlo. Thus, the
BD substep only affects filaments and the kMC sub-
step only affects proteins. However, this is straightfor-
ward to extend in the future. Each simulation timestep
includes first a kinetic Monte Carlo (kMC) substep and
then a Brownian dynamics (BD) substep. The simu-
lation alternates between these substeps until it has
reached the specified total run time.

We implement the kMC substep with a hybrid tau-
leaping algorithm [88], which samples from the binomial
and Poisson distributions to predict the number of kMC
events that will occur in a timestep. The binomial dis-
tribution is used for events with a constant probability
throughout the simulation, such as ATP hydrolysis by
a motor head or protein binding (these probabilities
are constant in time and identical for every site in the
absence of long-range coupling) [72]. For events with
a probability that varies, we sample the Poisson dis-
tribution. This can occur, for example, when protein
unbinding is force dependent, or if long-range motor
coupling gives different binding kinetics to each lattice
site. We compute the pairwise partition function of each
object that an event can act on to calculate the average
number of events in the timestep [72]. We then sample
the Poisson distribution to choose the number of events
that occur. Events are executed in random order on
randomly selected members of the appropriate popula-
tion. Multiple events can target the same object, e.g.,
binding of the second head and unbinding of the first
head for a protein with one head bound. We enforce
that no two events can act on the same object in the
same timestep, a good approximation if the timestep
is sufficiently small. Each kMC substep implements the
following algorithm:

1. Loop over all active objects and sort into appropri-
ate populations.

2. If appropriate, check equilibration status of each
protein species. This is done by finding the average
number of proteins bound for each species in a time
window tc. If the change in number bound between
two windows is less than twice their standard devi-
ations added in quadrature, the protein species is
considered equilibrated. Once all species are equili-
brated, the simulation is considered equilibrated.

3. Sample the appropriate statistical distribution for
each possible event. If the event has a constant prob-
ability, use the binomial distribution. If the event
has a probability that can change in space or time,
sum all relevant pairwise partition functions and use
them to sample the Poisson distribution.

4. If two or more events target the same object, discard
at random until only one remains. The probability
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of each event determines the relative weight when
sampling to discard.

5. Execute each event in a random order on random
members from the appropriate population.

The position of filaments are updated during the
BD substep. Due to the relatively large net force that
can act on filaments, we run NBD iterations for every
kMC iteration that runs. This allows the filaments to
reach mechanical equilibrium given the positions of
bound motors/crosslinker. To do this, we use a smaller
timestep tBD = dt/NBD during the substep. The BD
substep implements the following algorithm:

1. Update associated protein positions.
2. Sum to find the net systematic (non-random) force

and torque acting on each filament.
3. Calculate the translational displacement of each fil-

ament’s center of mass due to the systematic force.
Movement is projected into parallel and perpendic-
ular directions relative to the long axis of the fila-
ment.

4. Calculate the rotational displacement of each fil-
ament’s orientation vector due to the systematic
torque. The direction of this displacement is always
perpendicular to the long axis of the filament.

5. Calculate the random center of mass displacements
and random reorientation due to thermal noise.

6. Apply the displacements and update filament posi-
tions.

CyLaKS is written in C/C++ and uses a combina-
tion of templated functions and class inheritance to
achieve modularity while retaining reasonable perfor-
mance. Basic molecular components such as binding
and catalytic heads, linear and angular springs, and
discrete binding sites all inherit from a common Object
class. This allows us to take advantage of class poly-
morphism, a property of C++ classes that allows con-
tainers such as vectors or arrays to hold different data
structures, as long as they inherent from each other.
Additionally, we can define the same function differ-
ently for different inheritance classes. Using these two
properties together allows us to hold all active molecu-
lar species in one container, then iterate through it and
call an Update function for each member that will do
different things depending on the species it belongs to.
This structure decouples the main kMC-BD algorithm
from the details of the species. This allows for the addi-
tion of new species or mechanisms without modifying
the majority of the code. Furthermore, classes that are
specialized versions of others inherit directly from the
more general class by design; for example, a catalytic
head is a specialized version of a binding head. This
design allows us to re-use common code between classes
while adding additional components needed by the spe-
cialized class. This improves code readability and ease
of validation since algorithms only need to be written
once despite how many times they are re-used.

To increase overall performance, proteins in CyLaKS
are not explicitly modeled while in solution, i.e., when
all binding heads are unbound. They are instead drawn
from a reservoir list when they first bind to an object.
Additionally, unbound springs and/or unbound heads
of of partially bound proteins are not explicitly mod-
eled. We assume their motion averages out due to dif-
fusion when using distances to calculate kinetic rates.
Finally, all interactions (springs, long-range potentials,
etc.) have a cutoff distance to avoid modeling low-
probability events that would largely waste computa-
tional resources.

2.1 Filaments

The current filament model in CyLaKS is based on a
microtubule idealized as a rigid single protofilaments
where each tubulin dimer corresponds to a discrete
binding site on a 1-D lattice (Fig. 1a). Binding sites are
modeled individually and the data structure tracks each
site’s lab-frame position, neighboring sites, and index
in the 1-D lattice array of the parent filament. As a
result, extensions to the filament model to incorporate
a semi-flexibility with rigid sub-units that can hinge
at their joints would be straightforward. Similarly, the
data structure allows us to easily expand the 1-D lattice
to greater dimensions. CyLaKS thus could model both
actin filaments and multi-protofilament microtubules
relatively easily.

We implement the Brownian dynamics algorithm of
Tao et al. [89], as in our previous work [71–79]. The
microtubule center-of-mass position −→r evolves accord-
ing to

−→r (t + δt) = −→r (t) + Ξ−1(t) · −→
F S(t)δt + δ−→r , (1)

where Ξ−1 is the inverse friction tensor of the fila-
ment,

−→
F S is the deterministic (systematic) force act-

ing on the filament, kBT is the thermal energy, and
δt is the timestep. Diffusion occurs due to the random
displacement δ−→r , which is anisotropic and Gaussian-
distributed with variance 2kBTΞ−1(t)δt. The inverse
friction tensor Ξ−1(t) is

Ξ−1(t) = γ−1
‖ û(t) ⊗ û(t) + γ−1

⊥ [I − û(t) ⊗ û(t)] (2)

where γ‖ and γ⊥ are the translational friction coeffi-
cients for motion parallel and perpendicular to the axis
of the filament, respectively, and û(t) is the filament ori-
entation vector at time t. The operators û(t)⊗ û(t) and
I − û(t) ⊗ û(t) project onto directions that are parallel
and perpendicular to the filament, respectively.

Filament rotation is described by the time evolution
of the orientation vector û,

û(t + δt) = û(t) + γ−1
r

−→
T S(t) × û(t)δt + δû (3)

where γr is the orientational friction coefficient of the
filament,

−→
T S(t) is the deterministic torque on the fil-
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ament about its center of mass at time t, and δû is a
random reorientation that is anisotropic and Gaussian-
distributed with variance 2kBTγ−1

r [I − û(t) ⊗ û(t)].
The filament friction coefficients are

γ‖ =
2πηL

ln(L/2R)
, (4)

γ⊥ = 2γ‖, (5)

γr =
πηL3

3[ln(L/2R) − 4/5]
, (6)

where η is the viscosity of the fluid, L is the length of
the filament, and R is the radius of the filament [90].

2.2 Binding kinetics

Protein binding to filaments has an associated free-
energy change, which includes the binding energy and
the energy in a connected spring if it is stretched
or compressed. The energy change upon binding is
denoted as ΔU0 = Ubound − Uunbound. Then the associ-
ation (binding) and dissociation (unbinding) rates can
be written

ka = k0
a exp[−β(1 − λ)ΔU0], (7)

kd = k0
d exp[βλΔU0], (8)

where β = 1/kBT is the inverse thermal energy and λ a
dimensionless constant with 0 ≤ λ ≤ 1. Here λ weighs
how strongly the interaction affects binding or unbind-
ing. A value of λ = 1/2 sets the energy dependence
of binding equal to that of unbinding and is typically
used as a baseline in modeling, absent other information
[91]. Lower values of λ mean that the interaction affects
binding more than unbinding, and increasing λ means
that the interaction affects unbinding more than bind-
ing. If λ = 0 or λ = 1, the interaction affects only bind-
ing and unbinding, respectively. We typically assume
λ = 1/2 in the absence of experimental measurements.
Note that the equilibrium behavior described by the
dissociation constant Kd = kd/ka = K0

d exp{2βΔU} is
independent of λ.

The change in free energy upon binding can depend
on the state of the system, e.g., when proteins coop-
eratively bind, the effective free energy of the bound
state depends on nearby proteins that are also bound.
If such a state change makes the new binding-energy
difference Ubound−Uunbound = ΔU , the association and
dissociation rates change accordingly. As an example,
consider an attractive cooperative interaction that low-
ers the free energy of the bound state. This will lower
ΔU relative to ΔU0 in Eqs. (7) and (8), resulting in the
association rate ka increasing and dissociation rate kd

decreasing.

2.3 Crosslinkers

Non-motor crosslinking proteins (crosslinkers) are mod-
eled as two independent binding heads connected by

a linear spring (Fig. 1b). We assume that each head
binds separately, so crosslinkers bind one head (enter-
ing the one-head-bound or singly bound state) before
the second (entering the two-heads-bound or crosslink-
ing state). As currently implemented, we require that
the second head cannot bind to the same filament as
the first. Additionally, when in the two-head-bound
state, each crosslinker head diffuses and unbinds inde-
pendently. Crosslinkers are not explicitly modeled while
in solution (when both heads are unbound) and are
drawn from a reservoir list when their first head binds
to an unoccupied site. This occurs at rate Nkoncbulk,
where N is the number of unoccupied sites available,
kon the per-site crosslinker association rate, and cbulk

is the concentration of unbound crosslinkers in solution.
We assume an infinite reservoir of crosslinkers are avail-
able so that cbulk is constant throughout the simulation.
Singly bound crosslinkers can unbind at rate koff,1, or
diffuse to adjacent unoccupied sites at rate 2D1/Δ2,
where D1 is the one-head-bound diffusion coefficient
and Δ is the length of a lattice site (approximately 8
nm for tubulin dimers).

Singly bound crosslinkers can also form crosslinks
by binding their second head to unoccupied sites on
adjacent filaments. At physiological concentrations, this
occurs at a much higher rate than the initial binding
of the first head from solution [92,93]. We assume the
binding chemistry (and thus kon) of the first and sec-
ond head with respect to filaments are identical since
crosslinkers are homodimers [45]. The second head is
constrained near the adjacent filament by the already-
bound first head, which results in the observed higher
binding rate. To model this, we implement an effective
concentration for the second head. The second head
then binds to unoccupied sites on adjacent microtubules
at a per-site rate of k∗

on,2ceff , where k∗
on,2 is the energy-

dependent on-rate of the second head (which changes
based on the spring extension required to reach a given
site) and ceff is the effective concentration of the sec-
ond head. In most cases, this effective concentration is
not experimentally measured, but we can estimate it as
outlined in Sect. 2.6.

Once a crosslink forms, the crosslinker spring energy
is

Es =
1
2
ks(r − r0)2, (9)

where ks is the spring constant, r the length of the
crosslinker as currently bound, and r0 the unperturbed
length. We expect crosslinker states with higher energy
to form less often and unbind more frequently once they
form. This behavior is reflected in the kinematic rates
of crosslinkers via the Boltzmann factors described by
Eqs. (7) and (8). In this scenario, association cor-
responds to the second head binding and forming a
crosslink, and dissociation corresponds to the second
head unbinding and reverting the crosslinker to the
one-head-bound state. Following this, we can obtain the
energy-dependent binding rate k∗

on,2 and unbinding rate
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Fig. 1 CyLaKS model components a microtubules. Micro-
tubules (filaments) are modeled as single protofilaments,
where each tubulin dimer corresponds to a discrete site
on a 1-D lattice. Each microtubule has a plus- and minus-
end. Associated proteins exert force and torque on filaments,
causing 2-D translation and rotation about each filament’s
center of mass. b Crosslinkers. Each crosslinker head can
independently bind to, unbind from, and diffuse on the fil-
ament lattice. The relative probability of the second head
binding to each sites is represented by dotted circles of differ-
ent thickness. The relative probability of heads diffusing is

represented by arrow length. Steric exclusion prevents more
than one crosslinker head from occupying the same bind-
ing site. Crosslinker heads cannot diffuse off filament ends.
c Motor proteins. Motors can bind to, unbind from, and
step toward the plus-ends of filaments. Inset, mechanochem-
ical cycle. Motor heads can be bound to ADP (D), ATP
(T), ADP·Pi (DP), or nothing (empty). Red coloring labels
head which cannot bind to the microtubule due to internal
tension. Arrow thickness represents the relative probability
of each transition. Steric exclusion prevents more than one
motor head from occupying the same binding site

k∗
off,

k∗
on,2 = kon exp

[
−1

4
βks(r − r0)2

]
, (10)

k∗
off,2 = k0

off,2 exp
[
1
4
βks(r − r0)2

]
, (11)

where we have set λ = 1/2 and used ΔU = Es given by
Eq. (9). As discussed earlier, we use the same kon for
both the first and second head binding since crosslink-
ers are homodimers [45]. However, we do not rule out
the possibility of some mechanism that may alter the
off-rate when both heads are bound. Thus we use a sep-

arate base off-rate k0
off,2 for two-head-bound crosslink-

ers.
Each head of two-head-bound crosslinkers diffuses

independently with a diffusion coefficient D0
2 that is

scaled by the appropriate Boltzmann factor for the
change in spring extension during a diffusive step. A dif-
fusive step that stretches/compresses the spring is ener-
getically unfavorable and
occurs at lower rate, while a diffusive step that relaxes
the spring stretch/compression is energetically favor-
able and occurs at higher rate. Therefore, in this case,
we consider association to be diffusing towards rest and
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dissociation to be diffusing away from rest, giving us

D2,to = D0
2 exp

[
−1

2
βΔEs,to

]
, (12)

D2,fr = D0
2 exp

[
1
2
βΔEs,fr

]
, (13)

where ΔEs,to denotes a change in energy of a step that
relaxes the spring and ΔEs,fr is the change in energy of
a step that extends/compresses the spring. To obtain
Eqs. (12) and (13), we have again set λ = 1/2, i.e.,
set the energy-dependence equal between diffusing away
from spring rest and diffusing towards spring rest.

Steric interactions prevent two crosslinker heads from
occupying the same lattice site.

2.4 Motors

CyLaKS was designed to facilitate studies of many
interacting motors while also incorporating molecular
details such as stepping via a mechanochemical cycles
[80–86]. We implement motors as two coupled catalytic
heads. Each head can bind to and unbind from the
filament as a passive binding head would. However,
they can also bind a ligand and transition through
a nucleotide hydrolysis cycle based on the kinesin-
1 stepping cycle (Fig. 1c) [87,94–99]. Details of this
cycle may differ between motor species, but any basic
mechanochemical cycle that facilitates asynchronous
binding and unbinding of two binding heads can lead
to similar stepping behavior [96,100].

Like crosslinkers, motors are not explicitly modeled
while in solution (when both heads are unbound).
Motor heads bind to filaments at rate Nkoncbulk, where
N is the number of unoccupied sites available, kon the
per-site motor-microtubule association rate, and cbulk

the motor concentration in solution. As with crosslink-
ers, only one head can bind at a time. Furthermore,
we assume that the first motor head to bind is always
the leading head, i.e., closer to the plus-end for plus-
end-directed motors. The biochemical states possible
for each motor head are bound to ATP, APP, ADP·Pi,
or no ligand (empty).

We assume that any motor not attached to a micro-
tubule has both motor heads bound to ADP. Upon
binding to the microtubule, the motor head releases
ADP, becoming empty. While empty or ATP-bound,
motor heads are strongly bound and cannot unbind
from the microtubule. ATP binding to the empty
head at rate kATP induces a conformational change
that swings the second (unbound) head forward, par-
tially docking the motor. The first (bound) head then
hydrolyzes ATP to ADP·Pi at rate khydro, which fully
docks the motor. Next, the motor can either unbind its
first (bound) head at rate koff,1, which terminates its
run, or bind its second (unbound) head at rate konceff,
continuing its run. The ratio between koff,1 and konceff

determines how many steps occur on average before the
motor unbinds. While the motor is doubly bound, the
rear head unbinds with rate koff,2 and the front head

cannot unbind. Upon rear head unbinding, the motor
has completed one ATP hydrolysis cycle and moved for-
ward one site.

Both the run length and velocity of motors depend
on the force being applied, e.g., from an optical trap or
molecular load [87]. Andreasson et al. found that this
force dependence could be properly accounted for by
a 3-state model, where ATP binding and hydrolysis is
condensed into one step. The rate of ATP binding while
in the singly bound state is modified as

kATP =

{
k0
ATP exp[βFextδATP], Fext < 0

k0
ATP, Fext ≥ 0

(14)

where Fext is the external force acting on the motor and
δATP is a distance parameter that controls the strength
of force dependence. External force is negative if applied
in the opposite direction of motor stepping and positive
if in the stepping direction. The rate of unbinding while
in the fully docked state is modified as

koff,1 =

{
k−
off,1 exp[−βFextδ

−
off,1], Fext < 0

k+
off,1 exp[βFextδ

+
off,1], Fext ≥ 0

(15)

where ± superscripts correspond to assisting and hin-
dering loads, respectively. In this form, forces always act
to enhance the unbinding rate of motors while in the
docked state. However, this enhancement does not nec-
essarily have to be symmetric. In our simulations, we
typically set k+

off,1 = k−
off,1 and δ+

off,1 = δ−
off,1. Finally,

we also modify the rear-head unbinding rate of doubly
bound motors as

koff,2 = k0
off,2 exp[β(Fext + F int)δoff,2], (16)

where Fint is the internal necklinker tension of the
motor, estimated to be approximately 26 pN for
kinesin-1 [87].

2.5 Cooperative binding and movement

CyLaKS can model both short- and long-range coop-
erative interactions between motors and crosslinkers
bound to a filament [34]. Based on previous work [38],
we implemented a model of short-range binding coop-
erativity as an attractive nearest-neighbor interaction.
The interaction energy when one motor (or crosslinker)
head binds near an adjacent bound head is −εkBT ,
assuming an interaction range of one lattice site. When
implementing this interactions, we set λ = 1, leading to

kon = k0
on, (17)

koff = k0
off exp[−nε], (18)

where n = 0, 1, 2 is the number of neighbors. Note that
Eqs. (17) and (18) do not differ for singly and doubly
bound unbinding rates because both are affected in the
same way.
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As currently implemented in CyLaKS, each type of
protein (crosslinkers and motors) can have a different
value of ε for interactions with proteins of the same
type or different types. We assume that binding heads
belonging to the same protein (for example, the two
binding heads of a given motor) do not interact with
each other.

Long-range binding cooperativity between proteins is
currently modeled as an attractive potential E(x−xm),
where

E(x − xm) =

⎧⎨
⎩

−E0

[
1 − (

x−xm
D

)2
]
, |x − xm| ≤ D

0, |x − xm| > D

(19)
which is negative up to the cutoff distance D and zero
beyond that distance. Here x is the distance along lat-
tice, xm is the position of the motor that is inducing the
interaction, and E0 is the strength of the interaction
energy. The curvature of the potential is determined
by 2E0/D2, and we currently assume that the interac-
tion induced by multiple motors can superimpose up a
maximum of E∗. We set λ = 1/2 in Boltzmann factors
involving long-range cooperativity, giving

kon = k0
on exp

[
1
2
β min{∑

i

−E(x − xi),E∗}
]

, (20)

koff = k0
off exp

[
−1

2
β min{∑

i

−E(x − xi),E∗}
]

,

(21)

where the sum is over bound motors. Note that Eqs.
(20) and (21) do not differ for singly and doubly bound
unbinding rates because both are affected in the same
way.

Based on fitting to our collaborators’ data, we believe
the long-range attractive interaction (Eq. 19) also
affects the motor stepping cycle [34]. There are many
possible mechanisms for how a long-range interaction
could achieve this. We choose necklinker tension as a
potential candidate, extending on the model proposed
by Andreasson et al. for kinesin-1 [87]. In their model,
the necklinker between the two motor heads can exert
∼ 26 pN of tension when motors are doubly bound.
This tension affects kinematic rates of transitions in the
motor stepping cycle, and by changing the necklinker
tension, the rates change as well. We considered a model
in which the long-range interaction can reduce the inter-
nal necklinker tension of doubly bound motors. This
allows us to introduce a new transition in the model
(doubly bound to partially docked) that has a negli-
gible probability of occurring under normal conditions
[34]. This transition occurs with rate

kATP,2 = k0
ATP exp[−β(Fint + Fext)δATP], (22)

where δATP is a distance parameter that controls
how strongly front-head ATP binding is affected by
force. If ATP binds to the front head, the rear head

detaches from the microtubule and swings forward,
skipping the singly bound state. Using parameters pre-
viously estimated for kinesin-1 (Table 1), the dou-
bly bound off- and ATP-binding rates are 2375 and
1.1810 × 10−9 s−1, respectively. As necklinker ten-
sion (Fint) is reduced by the long-range interaction
(Eq. 19), the doubly bound unbinding rate (Eq. 16)
decreases and the doubly bound ATP-binding rate (Eq.
22) increases. We implement this reduction of tension
by multiplying the doubly bound ATP binding and
motor unbinding rates by exp[β/2min{∑i −Ei, E

∗}]
and exp[−β/2min{∑i −Ei, E

∗}], respectively.

2.6 Parameters

Parameters and their sources are summarized in Table
1. Here we discuss the estimation of parameters not
directly constrained by experiments. The effective con-
centration of singly bound proteins is estimated as the
concentration of a confined single molecule: For singly
bound crosslinkers, we assume the second head explores
a half-sphere of radius r0 = 32 nm, the measured rest
length of PRC1 crosslinkers [93]. We choose a half-
sphere because crosslinkers can only bind to adjacent
microtubules, not the microtubule barrel to which they
are already bound. Then ceff is

c =
1

V1/2

=
3

2πρ3
= 1.5 × 1022 m−3 = 0.024 mol/m3 ≈ 25 µM.

(23)
For motors, we use r0 = 7.5 nm as the length between
bound and unbound heads. We also assume the head
only explores a quarter-sphere on average, i.e., above
the microtubule and in front of the already-bound head.
This gives ceff ≈ 4 mM.

The off-rate of crosslinking PRC1 heads has not
been experimentally measured. However, it has been
observed that PRC1 binds at least 28 times more
strongly to anti-parallel microtubule overlaps (i.e., the
common area between overlapping microtubules that
are aligned along their longitudinal axes) versus single
or parallel microtubules [92]. The effective concentra-
tion increase due to binding (summarized in ceff) par-
tially accounts for this. However, we found that decreas-
ing koff,2 by a factor of 10 compared to koff,1 could give
the overlap enhancement found experimentally.

Both the one-head-bound and crosslinking diffusion
coefficient of PRC1 have been measured experimentally
[102]. We directly use the value for singly bound heads.
To determine the diffusion coefficient when crosslink-
ing, we take into account the effects of force dependence
into account. A simulation diffusion coefficient of 0.065
µm2 s−1 leads to an effective crosslinking diffusion coef-
ficient of 0.021 µm2 s−1, as measured [102].

For motors, the hydrolysis rate khydro is deter-
mined by the average velocity expected for the motor
because ATP hydrolysis is the rate-limiting step of the
mechanochemical cycle (Fig. 1c). For Kif4A, a hydroly-
sis rate of 95 s−1 yields an average velocity of 600 nm/s.
For kinesin-1, a hydrolysis rate of 110 s−1 yields an aver-
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age velocity of 800 nm/s. The value of koff,1 controls the
processivity because motors can only unbind while in
the fully docked state. For model Kif4A, a singly bound
off rate of 8 s−1 yields an average processivity of 1.5 µm.
For kinesin-1, a singly bound off rate of 10 s−1 yields
an average processivity of 1.2 µm.

For the Kif4A model, we fit the parameters of the
short- and long-range interaction to data on low-density
Kif4A motility. We implemented this using the nonlin-
ear least-squares optimization routine from the SciPy
python library [104]. The fit estimated the six param-
eters ε, D, E0, E∗, δoff,2, and δATP; final parameters
were determined by hand adjustment.

2.7 Validation

To validate the simulations, we compared simulation
results to theory for microtubule, crosslinker, and motor
movement (Fig. 2). For microtubules (Fig. 2a–c), we
predicted and measured the diffusion parallel and per-
pendicular to the filament long axis. In the absence of
applied force, the center of mass diffuses with 〈x2〉 =
2Dt (Fig. 2b). Under a constant applied external force−→
F s, the filament velocity is −→v = Ξ−1(t) · −→

F S(t)
(Fig. 2c).

For crosslinkers, we measured both crosslinker dif-
fusion and formation of a crosslink when one bound
head is fixed (Fig. 2d–f). The PRC1 diffusion coefficient
when one head is bound matches experimental results
[102]. The measured diffusion coefficient of crosslinking
PRC1 is 0.024 ± 0.003 µm2s−1 [102]. A slightly larger
bare simulation diffusion coefficient of 0.0655 µm2s−1

gives an effective PRC1 diffusion coefficient of 0.021
µm2 s−1 because of force-dependent diffusion (Fig. 2e).
For crosslink formation when one head is bound and
fixed in place, the occupancy of a site on the other fil-
ament is

n̄ =
c

Kd + c
, (24)

where n̄ is the average fractional occupancy of the site,
c is the concentration of the binding head, and Kd =
kd/ka is the dissociation constant. We use c = ceff when
measuring the occupancy of the crosslinking head. The
dissociation constant varies for each lattice site because
of the crosslinker spring extension according to Eqs. (7)
and (8), giving

Ki
d = K0

d exp
[
β

2
ks(ri − r0)2

]
, (25)

where ri is the crosslinker extension for binding at site i.
This matches the simulated occupancy for fixed micro-
tubule position (Fig. 2f).

For motors, we compared to previous measurements
and model of kinesin-1 movement under hindering load
[87] (Fig. 2g–i). The force dependence of both the run
length (Fig. 2h) and velocity (Fig. 2i) in our simula-
tions match previous work. These simulations use the
kinesin-1 parameter set (Table 1), with a motor con-

centration of 50 pM and microtubule length of 80 µm,
with results averaged over 4 independent simulations.

3 Results

Here we illustrate the types of simulations that can be
done in CyLaKS using four examples. First, we build
on our previous work to show how long-range interac-
tions between Kif4A motors can lead to microtubule-
length-dependent accumulation at plus-ends [34]. Sec-
ond, inspired by previous work on heterogeneity in the
microtubule lattice [56–58], we show how motor motil-
ity changes if the lattice contains a random mixture of
sites with different motor binding affinity. Third, build-
ing on previous work on heterodimeric kinesin motors
[105–110], we create a toy model of a heterodimeric
motor in which one head is immobile while bound
while the other head can diffuse while singly bound.
The model demonstrates the expected crossover from
directed to diffusive motility as the diffusion coefficient
of the second head increases. Fourth, we demonstrate
how varying the number of crosslinkers between two
microtubules can change the equilibrium microtubule
separation.

3.1 Length-dependent end-tags

In recent work, we used CyLaKS to study how col-
lective motor behavior can change due to long-range
interactions [34]. Kif4A is a human kinesin-4 motor
that accumulates densely on microtubule plus-ends,
forming end-tags. Previous work found that end-tag
length increases linearly with the length of the micro-
tubule on which they form [45]. This length depen-
dence persists for microtubules up to 14 µm long, even
though single Kif4A motors have a run length of 1
µm. We found that this surprising result could not
be explained by a conventional motor model with only
short-range interactions between motors. A combina-
tion of short- and long-range cooperative interactions
between motors allowed length-dependent end-tags to
form in our model [34] (Fig. 3).

Previous work found that bound kinesin-1 motors can
increase the binding rate of other motors up to 6 µm
away [63]. We therefore implemented a long-range inter-
action as a Gaussian increase in binding affinity up to a
distance D (Eqs. 20 and 21). We found that long-range
interactions that only affect binding kinetics only par-
tially explain the data. Our experimental results showed
that motor velocity significantly decreases as motors
bind [34]. To predict this, the long-range interaction in
our model must affect motor stepping in addition to
binding. Since we lack direct experimental evidence on
how the interaction might alter motor mechanochem-
istry, we modeled one plausible mechanism by which
this might happen. We assumed that the long-range
attractive potential could reduce the internal tension of
the necklinker. This reduces rear-head unbinding from
the microtubule and increases front-head ATP binding
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Fig. 2 Simulation validation. a–c, Microtubules. a
Schematic of 2D microtubule movement. b Plot of mean-
squared-displacement (MSD) of microtubule center of mass
as a function of time delay τ for varying microtubule length,
for movement parallel (circles) and perpendicular (squares)
to the filament long axis. Theory is the prediction from
1D diffusion. Data were averaged from six independent
simulations; error bars show standard error of the mean
and are smaller than the points. c Plot of velocity of
microtubule center of mass as a function of applied force
for varying microtubule length, for movement parallel
(circles) and perpendicular (squares) to the filament long
axis. Theory is the prediction from constant-force motion.
Data were averaged from six independent simulations;
error bars correspond to standard error of the mean and
smaller than the points. d–f Crosslinkers. d Schematic.

Two microtubules are fixed with a vertical separation of
32 nm, the length of the crosslinkers. The top microtubule
is horizontally displaced by the offset distance, where an
offset of 0 nm means the lattices of each microtubule are
aligned. e Plot of crosslinker mean-squared-displacement
(MSD) versus time delay τ . The diffusion coefficient is
determined from a linear fit (0.121 µm2 s−1 for one head
bound; 0.0213 µm2 s−1 for crosslinking). f Plot of average
second head occupancy versus relative lattice displacement
for two different values of the microtubule offset. Theory
is the prediction from statistical mechanics (see text).
g–i Motors. g Schematic. Motors move under a constant
hindering force. Plots of run length (h) and velocity (i)
versus applied force. Experimental data and model from
previous work [87]. These runs used the kinesin-1 parameter
set of Table 1

while doubly bound (Eqs. 16 and 22). We fit ε, D, E0,
and E∗ to experimental data on Kif4A at low density
and found good agreement [34]. Without any changes
to these model parameters, our model quantitatively

matches the length-dependent end-tags found experi-
mentally at higher motor concentration.

Here we extend our previous work by examining
how the range of the motor interaction affects end-
tag length (Fig. 3a–e). The interaction range must
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Fig. 3 Kif4A end-tag formation due to long-range motor
interactions. a Schematic of the motor interaction model.
Motors interact by short- and long-range cooperativity, and
the long-range interaction affects both binding and step-
ping. b Plot of end-tag length versus potential range for
varying microtubule length. c Simulated kymograph of end-
tag formation. 67% of simulated motors are fluorescently
labeled. Scale bars are 2.5 µm and 30 s. d Schematic of the
microtubule ablation simulation. After an end-tag forms,
the microtubule is split in half. A new end-tag forms on
the new microtubule, while the old end-tag shrinks. e Simu-

lated kymograph of microtubule laser ablation. 67% of simu-
lated motors are fluorescently labeled. Scale bars are 2.5 µm
and 30 s. f Snapshot created from CyLaKS post-processing
graphics program for a 2 micron-long microtubule at steady
state after end-tag formation. (Inset) Zoom-in of micro-
tubule plus-end at initial time t0 = 90 s, 10 s later, and 50 s
later. Prior to t0, only 1 or 2 motors are transiently bound to
the microtubule at any given time. Once 3 or more motors
are bound, the long-range binding cooperativity triggers a
cascade of further motor binding. For these parameters, full
end-tag formation requires ∼ 300 s

be at least 1 µm to begin to approach the experi-
mental values (Fig. 3b). We also find that for end-
tag formation specifically, length saturates at a range
of 2.5 µm. To illustrate the dynamics of end-tag for-
mation, we generated a simulated motor kymograph
(Fig. 3c). Our model predicts that breaking a micro-
tubule in two would cause the original end-tag to
shrink while a new end-tag forms at the plus-end of
the new microtubule (Fig. 3d). Both of these pre-
dictions are matched by our simulations (Fig. 3e).

3.2 Tubulin heterogeneity

The molecular details of motor and MAP interaction
with tubulin affect binding movement, causing differ-
ent tubulin isomers and post-translational modifica-
tion to influence protein binding and motor movement
[111–113]. Previous work found that differences in the
tubulin carboxy-terminal tail (CTT) were associated
with a decrease in the run length of kinesin-1 while
leaving velocity unaffected [111]. However, these same
CTT mutants reduced both the velocity and run length
of kinesin-2. These raises the possibility that hetero-
geneous microtubules made up of a mix of different
tubulin isoforms or modifications could cause dimer-

specific variation in motor or MAP behavior. To model
these effects in CyLaKS, we allow each lattice site to
have different interactions with a motor or MAP. Here,
we illustrate the effects of specifying site-specific bind-
ing affinity ζi for site i, which scales the dissociation
constant for binding as

Kd,i = ζ2
i K0

d, (26)

where K0
d is the original value of the dissociation con-

stant. The parameter ζi is squared in this expression
because we currently implement it by dividing the bind-
ing rate and multiplying the unbinding rate by the same
factor.

We then examined the effects of introducing a vari-
able, randomly located fraction of weak-binding sites
with ζ = 3 for a high-processivity motor (Fig. 4). We
varied the fraction of weak-binding sites from 0 to 1.
As expected, the average motor run length and lifetime
drop as the fraction of weak-binding sites increases,
while the motor velocity is unchanged. Remarkably,
when just 5% of sites on a 1000-site lattice are weakly
binding, the processivity and lifetime of motors are both
significantly affected (Fig. 4b). We also see that when
all sites are weakly binding, the motor processivity and
lifetime decreases by a factor of 9, as expected. Simu-
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Fig. 4 Effects of modeling heterogeneous tubulin with a
mix of strong- and weak-binding sites. a Model schematic.
A fraction of tubulin sites (dark gray) are weakly binding. b
Plots of motor run length, lifetime, and velocity as a func-
tion of the fraction of sites with weak binding. Here, ζi = 3
and c = 50 pM. Motor processivity has been increased by an

order of magnitude from the reference parameter set. Data
points are the average of five independent runs. Error bars
correspond to the standard error of the mean and are typi-
cally smaller than the points. c Simulated kymographs with
varying fraction of weak-binding tubulin with all motors flu-
orescently labeled. Here c = 150 pM

lated kymographs show a dramatic reduction in motor
activity as the fraction of sites with weak binding is
increased (Fig. 4c).

3.3 Heterodimeric motors

Some kinesin motors in cells are heterodimeric, for
which the two motor heads that make up the dimer have
different behavior [105–110]. Engineered kinesin het-
erodimers can been created with differences in catalysis
between the two heads [114–116]. The explicit model-
ing of motor mechanochemistry in CyLaKS makes sim-
ulated heterodimers straightforward to model.

To illustrate this capability, we created a
heterodimeric motor with one head that can diffuse
when singly bound (Fig. 5). One (normal) head is
immobile while singly bound, while the other (mutant)
can diffuse along the lattice while singly bound. We
assume that the normal catalytic head is always the
first to bind and is leading. With our typical parameter
set, the heterodimer spends about 5% of its time in a
state that can diffuse. To see when one-head diffusion
might have a significant effect, we decreased the effec-
tive concentration of the second motor head by a fac-
tor of 40. This increases the amount of time the motor
spends in the a diffusible state to about 40% of the
cycle. To keep overall motor processivity constant, we
decreased the off rate of docked motors by a factor of
40.

With these parameters, we observe significant
changes in motor activity as we increase diffusion coef-
ficient of the second head (Fig. 5b). For low diffusion
coefficient, processive runs still occur and motors pause
at the ends of microtubules. For intermediate diffu-
sion coefficient, the effects of diffusion are noticeable as
fluctuations about the mean velocity during a proces-
sive run. For high diffusion coefficient, both processive
movement and end pausing are reduced by the diffu-
sion.

3.4 Filament separation

In assemblies of many microtubules such as the mitotic
spindle and reconstituted microtubule bundles, the
spacing between microtubules can vary due to inter-
actions defined by crosslinking motors and MAPs [93,
117–120]. While crosslinking motors and crosslinkers
are typically 30–50 nm long [93,121], the lateral separa-
tion between the surface of microtubules in the fission
yeast spindle is typically 5–15 nm [117,119]. This sug-
gests that additional physical effects beyond just the
length of motors or crosslinkers may be important for
microtubule spacing in the spindle.

We developed a model of crosslinker-mediated con-
trol of the spacing of a pair of microtubules and stud-
ied it both analytically and in CyLaKS (Fig. 6). Two
filaments can change their lateral separation h but are
otherwise fixed in position. A fixed number of crosslink-
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Fig. 5 Kinesin heterodimer simulations. a Model
schematic. Kinesin heterodimers are constructed of
one normal head (blue) and one mutant head (purple)
which diffuses while singly bound. b Simulated kymographs
of kinesin heterodimer for D = 0.01, 0.1, 1, and 10 µm2 s−1.
All simulated molecules are fluorescently labeled

ers can diffuse along the lattice, and force exerted
by the crosslinkers determines the filament separation.
Crosslinkers that bind at an angle between the filaments
are typically stretched (Fig. 6a), inducing force that
pull the filaments closer together than the crosslinker
length.

For relatively short microtubules (up to 20 sites), the
free energy of crosslinker binding and average separa-
tion can be computed by explicit enumeration of all
possible binding states. To do this computationally, we
first insert a single crosslinker in all possible binding
states and note the crosslinker spring energy of each as
well as possible binding states of additional crosslink-
ers. Then a second crosslinker is added and the proce-
dure is iteratively continued to many crosslinkers, while
ignoring crosslinker permutations. In this procedure, we
enforce steric interactions so that only one crosslinker
can bind to each lattice site, and crosslinker crossing is
not allowed. The crosslinker partition function is then

Z(h) =
∑

i

e−βEi , (27)

where Ei is the crosslinker spring energy for a particular
configuration i and the sum is over all possible arrange-
ments of crosslinkers for a given separation h. The total
free energy is then

Fh = −βln[Z(h)] + UWCA(h + σ), (28)

where UWCA is the Weeks–Chandler–Anderson repul-
sive potential between microtubules, which acts on the
microtubule centers separated by a distance h + σ,
where σ is the microtubule diameter (Fig. 6b). The
average separation is then

〈h〉 =
∑

i hie
−βF (hi)∑

i e−βF (hi)
. (29)

Simulations in CyLaKS accurately sample the Boltz-
mann distribution as microtubule separation varies
(Fig. 6c). Here we used crosslinkers 32-nm long, as
found for PRC1 [93]. When we vary crosslinker num-
ber for microtubules with 13 or 100 sites, we find that
microtubule separation is typically smaller than 32 nm,
with a particular drop for smaller crosslinker number
(Fig. 6d, e). Altering the model to neglect crosslinker
steric exclusion or discrete sites along the microtubule
tends to predict slightly lower separation (Fig. 6d).

The crosslinker tilt (the average angle between the
crosslinker axis and the normal between the two micro-
tubules, θ) decreases as the number of crosslinkers
increases (Fig. 6g, h). This is caused both by steric
interactions and changes in the scale of the free energy.
First, as crosslinker number increases, steric exclusion
prevents crosslinkers from tilting at high angle because
other crosslinker heads are bound on adjacent sites. Sec-
ond, as more crosslinkers bind, the overall magnitude of
the free energy increases because each bound molecule
adds a contribution to the free energy. This makes the
potential increase more rapidly about the minimum
(a separation around 30 nm). Since this minimum-
free-energy separation is close to the crosslinker rest
length, the crosslinkers will be more perpendicular to
the microtubules as crosslinker number increases.

4 Discussion

We developed the the Cytoskeleton Lattice-based
Kinetic Simulator (CyLaKS) to facilitate modeling of
cytoskeletal systems in which spatiotemporal changes
and heterogeneity of the filament, motors, and/or asso-
ciated proteins are significant. We built on previous
theory and modeling of single motor mechanochemistry
[80–86] by incorporating a model of motor ATP hydrol-
ysis into a simulation with many interacting motors.
This extends the approach of existing cytoskeletal sim-
ulation packages [66–69] to include a more detailed
motor model. CyLaKS also implements detailed bal-
ance in binding kinetics and movement, to model force-
dependent protein binding/unbinding and diffusion.
It is also designed to model spatiotemporally vary-
ing interactions and structure, such as filament lattice
heterogeneity and short- and long-range interactions
between motors. The framework is flexible and extensi-
ble, making it straightforward to elaborate the model.

In this paper, we have shown examples of prob-
lems that CyLaKS can model. End-tags of kinesin-
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Fig. 6 Change in microtubule separation with varying
crosslinker number. a Snapshot created from CyLaKS post-
processing graphics program from simulations with vary-
ing number of crosslinkers bound to a pair of microtubules.
Each microtubule contains 13 crosslinker binding sites.
Microtubule separation increases with the number of bound
crosslinkers. b Schematic of the model. The microtubule
separation h varies due to forces from crosslinkers. c Plot
of free energy as a function of microtubule separation for
13-site microtubules with 4 32-nm-long crosslinkers, from
semi-analytic theory. d Probability as a function of micro-
tubule separation for 13-site microtubules with 4 32-nm-long
crosslinkers from semi-analytic theory (red) and simulation
(blue). e Average microtubule separation as a function of
number of crosslinkers for 13-site microtubules, comparing

full semi-analytic theory (red), simulation (blue), and the-
ory neglecting steric exclusion (green) and both steric exclu-
sion and discrete lattice sites (gold). f Average microtubule
separation as a function of number of crosslinkers for 100-
site microtubules. g Average angle between the crosslinker
axis and the normal between the filaments, as defined in
b, as a function of number of crosslinkers for the 13-site
and 100-site microtubule pairs. h Probability distribution of
crosslinker angle θ for 1, 5, and 9 crosslinkers bound to 13-
site microtubules. Crosslinkers are often bound at an angle
of exactly zero, but never for small θ near zero due to the
discrete binding sites. Therefore for θ = 0 data, we plot the
probability of a bound crosslinker, not the probability den-
sity: For this point, we have increased the width in the plot
to make it visible

4 motors can form due to long-range interactions
between motors. These end-tags depend on microtubule
length, and dynamically adjust if the microtubule is
ablated into two filaments. Implementing a hetero-
geneous microtubule lattice with a randomly located
fraction of weak binding dimers shows that motor
run length and lifetime decrease as the fraction of

weak-binding sites increases, because motors unbind
more quickly from the weak sites. Because CyLaKS is
designed to model explicit motor stepping, it is straight-
forward to model an artificial motor heterodimer in
which one head is fixed in place when singly bound,
while the other head can diffuse. The overall motor
movement then shows a crossover from directed runs
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to diffusion as the second head diffusion coefficient
increases. Finally, we used both CyLaKS and analytic
theory to show that crosslinker forces can lead to an
equilibrium microtubule separation shorter than the
crosslinker length.

CyLaKS can be used to model motor and crosslinker
behavior that is spatiotemporally altered. Problems
including short-range interactions between motors [37,
38] and motor response to patchy obstacles [39] are
straightforward to simulate. Closely related are changes
in motor behavior due to crowding, both crowding along
the filament lattice [40–45,54] or due to crowders in
solution [55], and motor direction switching [50–54].
Changes in the filament lattice, for example due to
heterogeneous isoforms or post-translational modifica-
tion [111–113] or lattice structure changes or defects
[59–64] can be modeled in CyLaKS. The implementa-
tion of molecularly detailed spatiotemporal variation in
CyLaKS facilitates models using mechanisms suggested
by experiments, rather than more coarse-grained mod-
els. This can allow a closer integration between model-
ing and experiments that can guide future work. Future
biological applications could include motor traffic along
microtubules in cells, which can play a role in neurode-
generative diseases.

Extensions to CyLaKS to include additional mecha-
nisms are straightforward and would be of interest in
future work. The source code is available on GitHub [70]
for download and modification. The current major lim-
itations of CyLaKS are that it is only two-dimensional,
microtubules are modeled as single protofilaments and
have no dynamic instability, and visualization is cur-
rently achieved through post-processing in MATLAB.
Incorporating dynamic instability is straightforward
because changes to microtubules only require altering
the filament-specific code. Similarly, extending the fil-
ament model to include semi-flexibility (for example,
to model actin) would be relatively easy as discussed
above. However, modeling the full microtubule bar-
rel and subsequently transitioning to three-dimensional
space will be more challenging. Parallelizing the code
could also help retain reasonable performance with
larger three-dimensional systems.
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