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High-performance biological materials such as nacre, spider silk or bone have

evolved a staggered microstructure consisting of stiff and strong elongated

inclusions aligned with the direction of loading. This structure leads to

useful combinations of stiffness, strength and toughness, and it is therefore

increasingly mimicked in bio-inspired composites. The performance of stag-

gered composites can be tuned; for example, their mechanical properties

increase when the overlap between the inclusions is increased. However,

larger overlaps may lead to excessive tensile stress and fracture of

the inclusions themselves, a highly detrimental failure mode. Fracture

of the inclusions has so far only been predicted using highly simplified

models, which hinder our ability to properly design and optimize engineered

staggered composites. In this work, we develop a new failure criterion that

takes into account the complex stress field within the inclusions as well as

initial defects. The model leads to an ‘optimum criterion’ for cases where

the shear tractions on the inclusions is uniform, and a ‘conservative’ criterion

for which the tractions are modelled as point forces at the ends of the overlap

regions. The criterion can therefore be applied for a wide array of material be-

haviour at the interface, even if the details of the shear load transfer is not

known. The new criterion is validated with experiments on staggered struc-

tures made of millimetre-thick alumina tablets, and by comparison with

data on nacre. Formulated in a non-dimensional form, our new criterion

can be applied on a wide variety of engineered staggered composites at any

length scale. It also reveals new design guidelines, for example high aspect

ratio inclusions with weak interfaces are preferable over inclusions with

low aspect ratio and stronger interfaces. Together with existing models, this

new criterion will lead to optimal designs that harness the full potential of

bio-inspired staggered composites.
1. Introduction
Composite materials consist of two or more different materials with

complementary properties, which, when properly arranged, can lead to

new and attractive combinations of properties not accessible to monolithic

materials [1]. Various composite configurations are used in engineering, the

most prominent being strong and stiff fibres embedded in a softer matrix.

Composite materials are also common in the natural world. For example,

tendon, intervertebral discs, fish scales or sea anemones are biological-fibre

reinforced-composites based on collagen fibres. Another common configuration

in nature is the staggered structure found in bone [2], spider silk [3], collagen

fibrils [4] and nacre from seashells [5] (figure 1a). In this arrangement, stiff

inclusions of high aspect ratio but finite length are assembled parallel to the

direction of loading, and they overlap over some distance in order to transfer

loads via shear stresses at the interfaces. When a brittle and stiff material is

to be combined with a softer and more ductile matrix, the staggered structure

has been identified as the most optimum configuration to achieve both high

strength and high toughness [6], two properties that are usually difficult to

achieve simultaneously [7]. A well-known example of a staggered composite

is nacre, in which the inclusions are mineral tablets forming a brick-wall-like

three-dimensional structure where softer organic materials serve as
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Figure 1. (a) The microstructure of natural nacre (shown here from the shell Trochus Niloticus); (b) Micromechanics of sliding of the inclusions generate large
deformations at the microscale. In this mechanism, each inclusion is subjected to shear tractions. (Online version in colour.)
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nanometres-thick mortar (figure 1b). Nacre is stiff and strong

compared with other biological materials, but it is its tough-

ness which is the most impressive; it is several orders of

magnitude tougher than the mineral of which it is made

[8]. Specific mechanisms such as crack bridging and process

zone toughening were recently shown to be the main contri-

butors to this tremendous amplification of toughness [8,9].

Such performance is not matched by any engineering

material to this day, and, for this reason, there have been sig-

nificant efforts over the past 10 years towards fabricating

staggered composites [10–13]. The basic micromechanics of

deformation and failure for the staggered structure can be

represented by a ‘tension–shear–tension’ model wherein

the inclusions carry tensile stress and the interfaces channel

loads between inclusions via shear stress [14]. This configur-

ation has been the basis for most models used to predict

modulus and strength [2,6,15–17]. In this model, the

inclusions are predominantly subjected to shear tractions

from the interface as shown in figure 1b. In the ideal case,

the deformation mechanism occurs by ‘sliding’ of the

inclusions on one another once the interface shear strength

is reached, which generates relatively large deformations

and energy dissipation and toughness (figure 1b) [18–20].

In terms of optimizing this structure, all existing models for

staggered composites predict that the modulus, strength

and toughness increase with the amount of overlap between

inclusions. Increasing the overlap length between inclusions

however also increases the tensile stresses carried by the

tablets, which may lead to the fracture of the inclusions

themselves. This failure mode is highly detrimental, because

it suppresses all the mechanisms of energy dissipation and

toughness associated with sliding of the inclusions.

While this design limitation has been recognized for a

while for natural and engineered staggered composites [21],

an accurate criterion to predict the fracture of the inclusions

is still missing. Typically, only the average of the tensile

stress over the cross section of the inclusions is considered,

and compared directly with the tensile strength of the

material to predict failure [11,16,17,21,22]. This simplified cri-

terion may lead to large errors because the stress profile

across the inclusion is far from being uniform [23]. The

inclusions contain stress singularities [22], which must be

taken into account because they are typically brittle and

highly sensitive to stress concentrations. Moreover, the sim-

plified criterion does not incorporate size effects. To this

end, Gao et al. [24] used a fracture mechanics-based approach
to predict the failure of inclusions in staggered composites,

and in hierarchical, self-similar staggered composites [25].

In this model, a pre-existing flaw is considered in the

inclusion, but its effects are simply modelled as a through

crack in an infinite material in uniaxial tension. The inter-

action of flaws with the complex stress field within the

inclusions was not considered in any of the earlier-mentioned

models. In this work, we have developed an improved failure

criterion that addresses the above shortcomings. We con-

ducted experiments on small staggered structures made of

alumina tablets bonded by epoxy and polyurethane, which

highlight the need for an improved criterion. We then devel-

oped a new failure criterion for the inclusions subjected to

uniform and non-uniform shear tractions at the interface.

Our new criterion is compared with the experiments on

alumina tablets and with the mineral tablets in nacre. Finally,

the implication of the new criterion on the design and scaling

of staggered composites is discussed.
2. Experiments
2.1. Tensile tests on staggered structures
The objective of the experiments was to capture the two

different failure modes of tablet fractures and tablet sliding

on small staggered structures of well-defined geometry and

dimensions. The samples consisted of seven alumina tablets

bonded by adhesive (figure 2a). In this configuration, the cen-

tral tablet is subjected only to shear tractions from the

interfaces, and it carries the largest amount of stress. The fail-

ure modes of this small structure are representative of

staggered composites made of a larger number of tablets,

because under the same macroscopic uniaxial tensile loading,

the tablets within a staggered composite would be subjected

to the same shear tractions as the central tablet in the small

model. This small two-dimensional structure was therefore

assumed to capture the failure modes observed in more

complex three-dimensional structures, similar to the two-

dimensional analytical models used to capture the salient

deformation mechanisms of nacre [19,24]. For sample prep-

aration, small tiles of aluminium oxide (CerCo LLC, OH,

USA) were cut into tablets (length ¼ 10 mm, width ¼

3.2 mm, thickness ¼ 0.3–0.5 mm) using a precision diamond

saw. The tablets were then assembled with engineering

adhesives to form three-tablet-thick staggered structures

(figure 2a). Before assembly a small amount of glass spheres

http://rsif.royalsocietypublishing.org/


40(b)

(a) alumina tablets

adhesive layers

junctions (no adhesive)

(c)

polyurethane epoxy

tablet
pullout

Lo

Lo

t

w

t

tablet
pullout

= 2 10

Lo

t
= 10 16

tablet
fracture

tablet
fracture

100 µm

35

30

25

20

15

10

ov
er

al
l s

tr
en

gt
h 

(M
Pa

)

5

0

Figure 2. (a) Configuration of the staggered tablet tensile test; (b) overall strength for two different adhesives and two overlaps; (c) a fractured tablet imaged with
fluorescent microscopy revealed pre-existing edge cracks up to 60 mm deep. (Online version in colour.)
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(0.4% weight), 30 mm in diameter (Polysciences Inc.,

Warrington, PA, USA), was mixed with the glue in order to

obtain a uniform and consistent bond line thickness. This

small concentration of spheres lies within a range that does

not affect the behaviour of the interface: doubling their con-

centration did not affect the interfacial shear strength of the

interfaces. The ends of the specimen were embedded in

cylindrical epoxy pucks, in which holes were drilled to

apply tensile loads. The samples were tested using a minia-

ture loading machine (Ernest F. Fullam, Inc, Latham, NY,

USA) at a rate of 10 mm s– 1. During the tests, each sample

was monitored with a camera in order to identify the failure

mode. Two types of glue were used: a weak and compliant

elastomeric adhesive (polyurethane, PL Premium, Lepage,

Brampton, ON, Canada) and a stiff and strong thermoset

adhesive (EpoThin epoxy, Buehler, Lake Bluff, IL, USA).

For each glue, two different combinations of overlap length

Lo and tablet thickness t were selected to fail the structure

by either tablet sliding or tablet fracture. The overall strength

of the structure was then computed using sS ¼ Fs=3tw; where

Fs is the force at failure, t is the thickness and w is the width of

the tablets. The value obtained would roughly correspond to

the strength of a hypothetical composite made of many of

these staggered tablets. The overall strength for different

combinations of glues and ratios Lo/t are shown in

figure 2b. For both adhesives, small overlaps led to tablet

pullout. This failure mode is identical to what is obtained

from a double shear lap test [26], which can be used to com-

pute the average shear strength of the interface tS ¼ Fs=2Low:
We found tS ¼ 8.2 MPa for epoxy and tS ¼ 4.5 MPa for poly-

urethane. When larger overlaps were selected for each of the

glues, the central strip itself fractured near the junctions

(figure 2a). The apparent strength of the tablets in this con-

figuration can be computed using st ¼ Fs=tw; where t is the
thickness of the tablets. st corresponds to the maximum

value of the average of tensile stress over the cross section.

We found an apparent tensile strength of st � 40–90 MPa

for the alumina tablets.
2.2. Tablet strength and failure prediction
The strength of the alumina strips was also independently

measured by way of four-point bending test. As expected,

the strips failed in a brittle fashion, at a calculated tensile

strength of 275 MPa. This value is consistent with the manu-

facturer’s specification for that ceramic, but it is three to seven

times higher than the apparent tensile strength of the tablets

st calculated earlier. The commonly used criterion for tablet

fracture, which consists of comparing the stress averaged

over the section of the tablet with the strength of the material

[11,16,17,21,22,27], therefore largely overestimates the

strength of the tablets in the staggered structure. This result

was expected, because this simplified criterion does not

take into account stress concentrations. We also compared

our experimental results with another existing fracture

criterion proposed by Gao et al. [24] based on fracture

mechanics, which considers an initial flaw of length 2a
within the tablets [5]. This criterion may be more appropriate

because the tensile strength of brittle ceramics is governed by

the size and configurations of pre-existing flaws as well as the

fracture toughness. To apply this criterion, we estimated the

size of initial flaws in our alumina tablets, assuming a

two-dimensional configuration. The stress intensity factor

for an edge crack in a beam in bending is given by [28]:

KI ¼ s
ffiffiffiffiffiffi
pa
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t
pa

tan
pa
2t

r
0:923þ 0:199(1� sinpa=2t)4

cospa=2t
: ð2:1Þ
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Figure 3. (a) Schematic of an inclusion subjected to shear tractions generated by the interfaces between inclusions; (b) profiles of shear traction for different values
of b; and (c) extreme case where b ¼ þ1: the shear tractions are represented by point forces at the ends of the overlap regions. (Online version in colour.)
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Using the dimensions of the samples, KI ¼ KIC¼

3.9 MPa.m1/2 (fracture toughness of the alumina tablets pro-

vided by the manufacturer) and s ¼ 275 MPa (tensile

strength measured above) leads to an edge crack length of

a ¼ 60 mm. The size and configuration of the flaws were also

verified by direct observation. A group of alumina tablets

was soaked in a fluorescent dye for 24 h, after which the tablets

were fractured. The fracture surfaces were imaged using a

fluorescent microscope, and the green dye revealed the con-

figuration and size of pre-existing cracks consisting of edge

cracks about 60 mm deep (figure 2c). Gao’s criterion for

inclusion fracture predicts the strength of the inclusions

using sG ¼ KIC=
ffiffiffiffiffiffi
pa
p

; which leads to sG ¼ 280 MPa. This cri-

terion also overestimates the actual strength of the inclusions

in the staggered arrangement, by a factor of 3–7. These pre-

liminary results highlight the need for an improved criterion

for the fracture of the tablets. This criterion should take into

account the presence of initial defects in the inclusions, as

well as stress concentrations in the tablets. In particular, the

way in which shear tractions are transmitted to the inclusions

by the interfaces must be considered.
3. Shear transfer through the interfaces
The transfer of loads through the staggered structure can be

represented by the well-known shear-tension chain, where

the inclusions are in tension, and the interfaces are in shear
[14]. Single inclusions are therefore subjected to shear traction

from the interfaces as shown in figures 1b and 3a. These shear

tractions are not necessarily uniform along the overlap

region: in the case where the inclusions and interfaces are

linear elastic, and the interface is thin compared with the

inclusion, a simplified solution for the shear distribution

along the interface is given by [29,30]:

tðxÞ
�t
¼ b

coshðbð2ðx=LoÞ � 1ÞÞ
sinh b

with b ¼ Lo

t

ffiffiffiffiffiffiffiffiffiffiffi
Gi

E
t
ti
;

s
ð3:1Þ

where x is the position along the interface, ti is the thickness

of the interface, Lo and t are the overlap length and thickness

of the inclusion (figure 3a), E is the tensile modulus of the

inclusions and Gi is the shear modulus of the interface. t is

the average shear stress along the overlap region, defined by

�t ¼ 1

Lo

ðLo

0

tðxÞdx ¼ F
2wLo

: ð3:2Þ

This result is standard for shear lap configuration and

staggered composites [15,17,27,29,30], but as opposed to

previous work, we have defined the parameter b as a non-

dimensional number, which makes it easier to interpret the

model. The profile of shear stress along the interface (normal-

ized by the average shear stress) for different values of b is

shown in figure 3b. In general, the shear stress is not uniform

and the stresses are concentrated at the ends of the interface
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region. This effect is more pronounced for higher values of b,

corresponding to relatively stiff interfaces compared to the

substrates (high ðGi=EÞðt=tiÞ ratio) and/or longer normalized

interface length (Lo/t). In the extreme case where b ¼ þ1,

the shear tractions are only transferred near the ends of the

interfaces while the tractions are zero anywhere else, so that

the shear distribution may be represented by pairs of point

forces (figure 3c). This extreme case will be used as a conser-

vative case for the prediction of the failure of the inclusions.

On the other hand, the shear stress is more uniform for small

values of b, which correspond to relatively soft interfaces

and/or short interface length. For b ¼ 0.4 or lower, the

shear stress deviates from its average value by 5 per cent at

most. A uniform shear transfer to the inclusions was recently

shown to be optimum because it maximizes the amount of

elastic energy stored in the structure [27]. b is therefore the

critical factor that determines how the shear is transferred

through the interface. As an example, beta was evaluated

for nacre in the elastic range of the interface. Using

Lo ¼ 1 mm, t ¼ 500 nm, ti ¼ 30 nm, Gi ¼ 0.8 GPa and

E ¼ 100 GPa gives b ¼ 0.7, representing an almost uniform

shear stress along the overlap region.

The shear transfer model can be extended to the case

where the interface undergoes plastic deformation. Once

the ends of the interface reach the yield strength of an

elastic–plastic interface, a plastic region appears and spreads

towards the centre of the overlap region as the stress is

increased [15]. Once the interface is entirely plastic and if per-

fect plasticity is assumed, the shear stress is uniform, which is

equivalent to the case b ¼ 0 described earlier. The distri-

bution of shear tractions can therefore be summarized as

follows: if the adhesive is elastic and much more compliant

than the tablets and/or the overlap is short, then b , 0.4

and the shear tractions are uniformly distributed. This also

applies to the case where the interface is fully plastic (assum-

ing perfect plasticity) regardless of tablet properties and

geometries. For all other cases (including cases where the

interface exhibits strain hardening), the shear traction is

non-uniform, the most extreme case being for b ¼ þ1,
where shear tractions can be represented by pairs of point

forces applied at the ends of the overlap regions. In the rest

of this article and in the criterion we propose, we do not

incorporate the exact behaviour of the interface. Instead,

we use its overall shear strength and we use b as a non-

dimensional parameter which characterizes how the shear

stress is transferred to the tablets. In this approach, the two

extreme cases corresponding to b ¼ 0 and b ¼ þ1 encom-

passes all possible geometry and constitutive laws for

the interface.
4. Stress profiles in an inclusion subjected to
shear tractions

We start by examining the problem of a two-dimensional elas-

tic strip of thickness t and unit width subjected to two pairs of

point forces as shown in figure 4a. The solution of this problem

is obtained by superimposing the solutions provided by

Cheng [31] for an elastic strip subjected to one pair of point

forces (see appendix A for detailed results). The normalized

stress along the mid-plane is displayed in figure 4a for different

values of s. When the application points of these forces are far

apart ðs=t � 1Þ the stresses are uniform and equal to the aver-

age stress �s ¼ 2F=t. When the forces are applied closer to each

other, the stresses concentrate near the surface of the tablets (at

y ¼ 0 and y ¼ t) where they get substantially larger than �s,

while stresses deeper within the tablet approach zero. In the

extreme case, s approaching zero leads to infinite stresses at

(x ¼ 0, y ¼ 0) and (x ¼ 0, y ¼ t).
The stress profile due to a uniform shear traction (figure 4b)

can now be calculated by simply integrating the previous

result over a length Lo along the inclusions (appendix A).

The resulting stress profiles are shown in figure 4b. The results

show very high stresses near the surfaces of the inclusions, and

singularities at the points of coordinates (0, 0) and (0, t), for all

values of Lo/t. Within the tablets, the stresses are more uni-

formly distributed for large overlap ratio Lo/t, approaching a

uniform distribution for Lo/t ¼ þ1. These results are identical
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to those calculated in previous work using finite elements and

cohesive elements to simulate the interface [22]. Predicting the

failure of the inclusion in this case is difficult because of the

stress singularities. A failure criterion based on fracture mech-

anics may be more appropriate, considering that the

singularities occurs because of the junctions at the ends of

the tablets, which act as crack-like features. The fracture pro-

blem is however not well-defined, because the order of the

singularity is not exactly 1
2.
5. Stress intensity factors in cracked inclusions
The presence of pre-existing flaws within the inclusions is

more realistic and should be taken into account for a brittle

material. In particular, we focus on an edge crack located at

x ¼ 0 because it is where the stresses are the highest, and

where fracture occurred in the experiments presented earlier.

The stress intensity factor resulting from two pairs of point

forces is shown in figure 5a (equations are given in appendix B).

The stress intensity factor reaches high values for small s, con-

sistent with the higher local stresses generated when the pair

of point forces are close to each other (figure 5a). This effect is

more pronounced for shorter cracks, because the crack tip is

closer to the regions of high stresses generated by the point

forces (figure 4a). For larger values of s/t, the normalized

stress intensity factor decreases and converges towards the

solution for an edge crack under uniform tension.

We can now integrate this result over the overlap length

to obtain the stress intensity factor resulting from applied

shear tractions (figure 5b):

KI

�s
ffiffiffiffiffiffi
pa
p ¼

ð1

ðx=LoÞ¼0

KðFÞI

ð2F=tÞ
ffiffiffiffiffiffi
pa
p tðxÞ

�t
d

x
Lo

� �
; ð5:1Þ

where �s ¼ 2ðLo=tÞ�t and �t ¼ average shear stress applied. In the

case where the shear stress is uniform ðtðxÞ=�tÞ ¼ 1 in equation

(5.1). The normalized stress intensity factor for this case is

plotted in figure 5b, as function of overlap ratio ðLo=tÞ. The over-

all response is similar to figure 5a. The stress intensity factor is

larger for small aspect ratios, especially for ðLo=tÞ , 2; and

this effect is more pronounced for relatively short cracks
(small a/t). For a large aspect ratio, the stress intensity

approaches the solution for an edge crack in an infinite plate

subjected to uniaxial tension. This result has important impli-

cations in terms of material design. The strength of the

staggered composite is given by the simple relation:

sS ¼
Lo

t
tS: ð5:2Þ

In terms of material design, this equation shows that the ten-

sile strength can be increased by either increasing the overlap

ratio Lo/t or by increasing the shear strength of the interface tS.

Our new failure criterion predicts that increasing the overlap

ratio is a better approach because it tends to reduce the stress

intensity factor and the likelihood of tablet fracture. In the case

of non-uniform shear tractions (b . 0.4), the tractions near the

ends of the overlap regions are larger, with the effect of increasing

the stress intensity factor. In the most extreme case (b¼ þ1),

the shear tractions are represented by pairs of point forces,

and the corresponding stress intensity factor can be computed

by combining the solution of two pairs of point force for the

case s ¼ 0 superimposed with the case s ¼ þ1. This solution

is clearly the worst case scenario in terms of load transfer,

and will be used as a conservative approach in the design of

the microstructure for cases where the shear traction profile

is not known. Finally, we note that while the results above

were developed for a symmetric case where Lo ¼ L/2, they

can also be used for asymmetric or random microstructure

because the force transmitted by shear via the interfaces is uni-

form throughout the structure. For asymmetric cases, the

shorter of the two overlap lengths should be considered as Lo

for failure prediction.
6. New failure criterion and design optimization
We now apply the solutions developed above to the actual

design optimization of staggered inclusions. The stress

intensity factor from equation (5.1) can be written in the

following form:

KI

�s
ffiffiffiffiffiffi
pa
p ¼ f

a
t
;
Lo

t

� �
: ð6:1Þ
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; the inclusions will slide for combinations of fa/t, Lo /tg
below the corresponding curve, and they will fracture for combinations above the curve. (Online version in colour.)
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In order to prevent tablet fracture, one must have KI , KIC,

which leads to:

�s
ffiffiffiffiffiffi
pa
p

KIC
,

1

f ða=tÞ; ðLo=tÞ : ð6:2Þ

This expression can now be used to determine the maxi-

mum average stresses that the tablets can withstand before

failure. This criterion is illustrated in figure 6 for the case of

a short edge crack (a/t ¼ 0.05). The optimum design is the

case where the shear tractions are uniform (b ¼ 0), which cor-

responds to the most efficient shear transfer. In this case,

higher stresses can be achieved for longer overlap ratio Lo/t.
The conservative design is based on shear transfer by point

forces (b ¼ þ1). This is a worst case situation in terms of

shear transfer, and the model predicts, as expected, a lower

maximum stress. In the conservative case, the fracture of the

inclusion becomes independent from Lo/t for Lo/t . 0.6. This

specific criterion is appropriate if the shear traction distribution

is not known for the materials at hand. Intermediate states

(b ¼ 3,b ¼ 10) are also shown in figure 6. Finally, Gao’s simpli-

fied failure criterion is found by letting f ða=tÞ; ðLo=tÞ ¼ 1;

which clearly overestimates the load-carrying capabilities of

the inclusions (figure 6).

Alternatively, and perhaps more conveniently for design

purposes, the failure criterion may be expressed as function
of the shear strength of the interface tS:

2
Lo

t

ffiffiffi
a
t

r
f

a
t
;
Lo

t

� �
,

KIC

tS

ffiffiffiffiffi
pt
p : ð6:3Þ

Once the non-dimensional number KIC=tS
ffiffiffiffiffi
pt
p

and the

initial flaw size are determined for a given set of components

and a given length scale of the microstructure, equation (6.3)

can be used to compute the maximum overlap ratio that will

prevent tablet fracture. A graphical representation of this cri-

terion is shown for the optimum design (figure 7a) and the

conservative design (figure 7b). The lower section of these

graphs represents regions where the tablets will pull out

while the upper sections represent regions where the tablets

will fracture. The transition line between the two failure

models depends on the value of KIC=tS
ffiffiffiffiffi
pt
p

: Tougher

inclusions, weaker interfaces and smaller inclusion size

thereby expand the range of possible values for overlap

ratio and tolerable flaw size. In general, smaller initial defects

allow for a greater overlap ratio, except for the conservative

design case, where cracks shorter than a/t , 0.15 are detri-

mental because the crack tip interacts with the high stresses

generated by the point forces at the crack mouth. For long

cracks a/t . 0.5, the optimum and conservative approaches

lead to the same results: uniform tractions or point forces

have the same effect on the crack tip if it is far enough

http://rsif.royalsocietypublishing.org/
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from the surfaces (in other words any one of these two types

of load is ‘perceived’ as a remote load by the crack tip).

This new criterion can now be compared with the exper-

iments on alumina tablets presented above. Using KIC ¼

3.9 MPa.m1/2 and t ¼ 0.5 mm for the alumina tablets and

tS ¼ 8.2 MPa gives KIC=tS

ffiffiffiffiffi
pt
p

¼ 12 for the alumina/epoxy

structure, which is illustrated in figure 8a. Using KIC ¼

3.9 MPa.m1/2 and t ¼ 0.3 mm for the alumina tablets and

tS ¼ 4.5 MPa gives KIC=tS

ffiffiffiffiffi
pt
p

¼ 28 the alumina/poly-

urethane structure, illustrated in figure 8b. For both cases,

an initial flaw size of a ¼ 60 mm was used as determined ear-

lier. For the epoxy and polyurethane interfaces, exact values

for b are difficult to obtain: Epoxy strain hardens upon yield-

ing, and polyurethane displays nonlinear elastic behaviour.

The two criteria (optimum and conservative) are therefore

shown. Figure 8 shows that our new failure criterion properly

predicts the fracture and survival of the alumina inclusions

for the case of epoxy and polyurethane, depending on the

overlap ratio. For both adhesives, structures with short

aspect ratios are located in the white area of the design

space, representing the area where the tablets remain intact

and the system fail by pullout. Experimental data with

longer aspect ratios fall in the light grey area, where fracture

of the tablets depends on the exact value of b. In this case, a
conservative version of the failure criterion captures the tran-

sition from pullout to tablet fracture properly. The failure

criterion therefore represents a significant improvement

over existing criteria, which can be further refined if the

exact distribution of shear traction on the tablets is known.

Finally, the predictions of the new criterion are compared

with nacre. Nacre from top shell (Trochus niloticus) predomi-

nantly fails by pullout of the tablets (figure 9a), which is

typical to the type of nacre discussed in the literature. Ima-

ging and analysis of this type of nacre revealed an average

overlap ratio of Lo/t ¼ 1.2. We also have identified another

type of nacre, from pen shell (Pinna nobilis) for which the frac-

ture of tablets is prominent (figure 9b). The fragility of this

type of shell is known to shell collectors but the evolutionary

causes for the lower performance of this type of nacre are

unknown. It is possible that pen shell grows nacre of lower

performance because it benefits from another protection:

pen shell partially buries itself in sandy areas. Image analysis

of the pen shell nacreous layer revealed an overlap ratio of

Lo/t¼3.6. For both types of nacres, we take the initial

flaw size as the size of the nanograins within the tablets (a �
40 nm [32]), assuming that potential flaws occupy a grain

boundary. Using KIC¼ 0.39 MPa.m1/2 [33], t � 500 nm for the

mineral tablets and tS ¼ 50 MPa [20] gives KIC=tS

ffiffiffiffiffi
pt
p

� 6:

http://rsif.royalsocietypublishing.org/
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Once again the exact value of b is not known because of strain

hardening at the interface, and therefore both conservative and

optimum criteria are considered. Figure 9c shows the failure cri-

terion and the experimental data from the two types of nacre.

The conservative form of the new criterion predicts the behav-

iour of the tablets remarkably well, considering the complex

three-dimensional arrangement of natural nacre.
lishing.org
JR

SocInterface
10:20120849
7. Conclusions
The staggered composite structure generates unique combi-

nations of strength and toughness in natural materials.

Existing models show that the performance of this type of

composite increases when the overlap between inclusions is

increased, at the expense of higher stresses carried the

inclusions and potential fracture of the inclusions themselves.

This failure mode is highly detrimental, and it must be

considered and predicted in the design of engineered,

bio-inspired staggered composites. In this work, we have

developed the most accurate failure criterion to date for the

prediction of inclusion fracture. The state of stress within

the inclusion is highly dependent on the way shear tractions

are transmitted to the inclusions, which is controlled by a

single parameter b. An ‘optimum’ form of the criterion is

given where the shear tractions are transferred to the

inclusions uniformly (b ¼ 0). For cases where the shear load

transfer is not well known, a ‘conservative’ criterion is also

provided (case b ¼ þ1). This approach is general enough

to be applied to any material or geometry at the interface.

Capturing the exact failure transition between the sliding

and the fracture of the tablet would require a large number

of additional tests to take into account the statistics associated

with flaw distribution in the ceramic or mineral tablets, and

the result would be geometry- and adhesive-specific. Our

new criterion successfully predicts the failure of millimetre-

size alumina tablets bonded by engineering glues, as well

as the failure or survival of mineral tablets in pen shell and

top shell nacres. The criterion also yields useful design
guidelines. For example, large overlap with weak interfaces

should be preferred over short overlaps with strong interfaces

in order to minimize the risk of tablet fracture. While the

model only considers the case where the overlap is half of

the length of the inclusions, the criterion also applies for

any other overlap length Lo , L/2. In terms of size effects,

as emphasized in a previous work [24], nanoscale inclusions

have the highest strength because they become insensitive to

the presence of flaws. Our criterion is consistent with this

finding, but in addition it enables predictions and designs

at larger scales, where initial flaws must be considered.

This is relevant for nacre or, for example, freeze cast materials

[13], which are two of the most successful natural and engin-

eered staggered structures that are both made of microscale

inclusions. The criterion can also be applied to even larger

microstructures in the order of millimetres [12,34]. It can

finally be applied over several length scales simultaneously,

to design and optimize hierarchical materials with staggered

arrangements used over two or more levels of hierarchy [25].

This work was supported by a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada. A.K.D. was par-
tially supported by a McGill Engineering Doctoral Award (MEDA).
Appendix A. Stress distribution along the
midline of an elastic strip subjected to a pair of
point forces
The solution developed by Cheng et al. [31] for one pair of

forces can be superimposed to find the stress profile for

two pairs of forces (as shown in figure 4):

sðFÞyy ð~x; 0Þ ¼
F
pt

4~s3 1

ð~s2 þ ~x2Þ2
þ 1

ð~s2 þ ð1� ~xÞ2Þ2

" #

þ
ð1

0

fð1� aÞGða; ~xÞ þ aHða; ~xÞge�a sina~s da; (A 1)

with ~x ¼ x=t; ~s ¼ s=t and
Gða; ~xÞ ¼ 2
að1� ~xÞ sinha~x� 2 coshað1� ~xÞ þ a~x sinhað1� ~xÞ � 2 cosh a~x

sinh aþ a

and Hða;~xÞ ¼2
að1� ~xÞ cosha~x� 2 sinh að1� ~xÞ þ a~x coshað1� ~xÞ � sinha~x

sinh aþ a

9>>=
>>;: ðA 2Þ
It is convenient to define the average stress along the midline

plane (x ¼ 0) as:
�s ¼ 1

t

ðt

0

sxxð0; yÞdy: ðA 3Þ

The stress profile due to a uniform shear traction (as

shown in figure 4b) can now be calculated by simply integrat-

ing the previous result over a length Lo along the inclusions:
sðtÞxx ð~x; 0Þ ¼
ðLo

0

s
ðFÞ
xx ð~x; 0Þ

F
tdx: ðA 4Þ
Appendix B. Stress intensity factors for an edge
crack in an elastic strip subjected to point forces,
and to shear tractions
Following Cheng et al. [31], an edge crack is introduced on

the strip by imposing tractions to enforce the free surfaces

on the crack faces. We focus on the resulting stress intensity

factor at the edge crack (shown in figure 5a), which can be

written [31] as:

KI ¼ fo
ffiffiffiffiffiffi
pa
p ða=t

0

2

p
ð1� ~xÞð2þ h� 3hxÞ cos�1 gx

1� x

� �h

þgð1� hxÞ 1� gx
1� x

� �2
� �1=2

#
syyð~x; 0Þd~x:

ðB 1Þ
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Where g and h are functions of a/t:

gða=tÞ ¼ ð1� a=tÞ=ða=tÞ

hða=tÞ ¼ ð3=28Þð1� 7a=tÞð1� a=tÞ5=ða=tÞ ðB 2Þ

And fo is the traditional correction factor for an edge crack

(valid for a/t � 0.6):

fo
a
t

� �
¼ 1:12� 0:23

a
t

� �
þ 10:6

a
t

� �2

�21:8
a
t

� �3

þ30:4
a
t

� �4

: ðB 3Þ
We can now integrate this result over the overlap length

to obtain the stress intensity factor resulting from applied

shear tractions (figure 5b):

KI

�s
ffiffiffiffiffiffi
pa
p ¼

ð1

ðx=LoÞ¼0

KðFÞI

ð2F=tÞ
ffiffiffiffiffiffi
pa
p tðxÞ

�t
d

x
Lo

� �
; ðB 4Þ

where �s ¼ 2ðLo=tÞ�t and �t ¼ average shear stress applied. In

the case where the shear stress is uniform ðtðxÞÞ=ð�tÞ ¼ 1 in

equation (B 4).
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