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a b s t r a c t 

Biological materials such as nacre, bone and spider silk boast unusual combinations of 

stiffness, strength and toughness. Behind this performance is the staggered arrangement 

of stiff and elongated inclusions embedded in a softer and more deformable matrix. In 

this study, we use the discrete element method (DEM) to simulate large fracture models 

of staggered composites (up to 450,0 0 0 tablets). The models explore the combined effects 

of tablet arrangement, interface properties and statistical variations on fracture mechan- 

ics: crack deflection, crack bridging, volumetric process zones of different size and shapes, 

transient and steady-state crack propagation regimes, full crack resistance curves. We find 

that moderate statistical variations in the microstructure increases toughness because the 

crack gets pinned into tougher regions. However, higher statistical variations generate very 

weak regions which can be activated far from the main crack, leading to discontinuous 

cohesive zones, sparse process zones, and an overall decrease in toughness. These results 

suggest an important rule for the design of nacre-like materials: microstructural random- 

ness should be minimized to achieve the highest combinations of properties. 

© 2018 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Structural biological materials such as seashells and bones are made of relatively weak small-scale components, but they

are assembled in architectures that lead to remarkable combinations of mechanical properties. In some cases, the amplifi-

cation of their mechanical performance is unmatched by any synthetic material ( Barthelat and Rabiei, 2011 ; Munch et al.,

2008 ). This remarkable amplification can be attributed to the staggered architecture, where elongated mineral inclusions are

aligned in the direction of loading in a “brick-and-mortar” arrangement, and with interfaces composed of soft bio-polymeric

layers. The most common example of a staggered structure is nacre, which consists of aligned aragonite tablets ( ∼95 %

vol) bonded together with a very thin organic layer ( ∼5 % vol) ( Fig. 1 a and b). Another example of a staggered structure

is bone, which is composed of osteons separated by weaker interfaces at the millimeter scale . At smaller scales, collagen

fibrils consist of a staggered arrangement of tropocollagen molecules ( Fratzl et al., 1998 ) and elongated nano-minerals that

can glide on one another under stress ( Gupta et al., 2006 ). Other examples of staggered arrangement include tooth enamel

( Nishikawa, 1992 ) and spider silk ( Keten et al., 2010 ). Interestingly, the staggered architecture has been identified as an op-

timal arrangement to combine stiffness, strength and energy absorption in uniaxial tension ( Barthelat and Mirkhalaf, 2013 ).
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Fig. 1. (a) Schematic of a mollusk shells showing the microstructure of nacre and some of its main mechanisms of fracture. (b) Fracture surface of nacre 

showing statistical variations within the size and arrangement of the tablets (adapted from Barthelat, Tang ( Barthelat et al., 2007 )). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In particular, the best combinations of properties are reached when there is a large contrast of strength between the tablets

and the interfaces ( Barthelat, 2014 ; Barthelat and Mirkhalaf, 2013 ; Begley et al., 2012 ; Guo and Gao, 2006 ; Rabiei et al., 2010 ;

Wegst et al . , 2015 ), and when the deformability of the interfaces in shear is very high to allow for large tablet sliding dis-

tances ( Barthelat and Rabiei, 2011 ; Barthelat et al., 2016 ). In recent years, several synthetic materials inspired by nacre were

proposed. These materials were fabricated using a variety of methods including self-assembly ( Bonderer et al., 2008 ), freeze

casting ( Deville et al., 2006 ), filtration ( Liu et al., 2011 ), sedimentation ( Behr et al., 2015 ), doctor blading ( Mirkhalaf and

Barthelat, 2016 ) or directed mineralization ( Mao et al., 2016 ). In these “nacre-like” microstructures, the precise control of

the arrangement of microscopic tablets over large volumes is difficult and still presents formidable challenges. As a result of

limitation in the fabrication methods, statistical variations and randomness in the microstructure of synthetic nacre are still

much greater than what is observed in natural nacre ( Bai et al., 2016 ). 

The impact of these significant statistical variations on the fracture toughness of nacre-like materials is still not clear.

A recent study by Pro, Lim ( Pro et al., 2015 ) showed that fracture toughness decreases substantially with statistical varia-

tions. However, this study did not consider strain hardening and only simulated running bond-type nacre (50% overlap) and

only considered initiation toughness. Other studies suggest that small random variations in the microstructure can increase

toughness ( Barthelat et al., 2007 ). For example Hossain, Hsueh ( Hossain et al., 2014 ) simulated crack propagation in brittle

materials with tough and weak periodic layers and showed that the resistance to crack growth could increase or decrease

depending on the location of the crack tip. Needleman and Tvergaard ( Needleman and Tvergaard, 1991 ) and Srivastava, Pon-

son ( Srivastava et al., 2014 ) have examined the effect of uniform and non-uniform distributions of voids and inclusions in

front of a crack propagating in a ductile material. They showed that non-uniform distributions results in the crack being

pinned in tougher regions, leading to higher toughness. The exact effects of statistics on the fracture toughness of staggered

composites therefore remains an open question, with important implications in the design of bio-inspired materials. 

A significant challenge in modeling the fracture of composites at large scales is to manage the high computational cost

associated. There are multiple toughening mechanisms that act together during crack propagation at multiple length scales

( Mayer, 2005 ), some of them involving large volumes of material. The size of the process zone can be up to two orders of

magnitude larger than the base constituents themselves ( Rabiei et al., 2010 ), a mechanism similar to that found in ductile

metals ( Tvergaard and Hutchinson, 1992 ) and toughened rubbers ( Evans et al., 1986 ). Several numerical simulations have

been presented in the past for nacre-like materials. With these numerical approaches, large volumes of material with non-

linear response, containing cracks and subjected to complex stress states can be captured to a level of complexity which

analytical models fail to capture ( Askarinejad and Rahbar, 2015 ; Barthelat et al . , 2007 ; Katti and Katti, 2001 ; Pro et al.,

2015 ). However, the majority of numerical models are based on bulk finite elements coupled with cohesive elements, an

approach which can be computationally expensive ( Anup, 2015 ; Barthelat et al., 2007 ; Katti and Katti, 2001 ; Mirkhalaf and

Barthelat, 2016 ; Niebel et al . , 2016 ). Only a few hundred tablets can be modeled at most ( Barthelat et al., 2007 ), which is

not sufficient to capture the effect of statistical variations on the overall performance. Discrete element modeling (DEM)

is an alternative numerical method that has been used recently to model deformation and fracture in staggered compos-

ites at a fraction of the computational cost of finite elements ( Abid et al., 2018 ; Chandler and Cheng, 2018 ; Pro et al . , 2015 ;

Pro et al., 2015 ). In a previous article ( Abid et al., 2018 ), we have used DEM to explore the mechanical response of large rep-

resentative volume elements continuing statistical microstructures. This study showed how seemingly small statistical vari-

ations precipitate strain localization and decrease energy absorption by a large amount. We also found that the detrimental

effects of statistical microstructures can be partially offset by large deformations and strain hardening at the interfaces
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Fig. 2. Overview of the fracture DEM model showing overall model with dimensions, boundary conditions and J -integral contour, and close-up views 

showing tablet arrangement and structural parameters on a unit cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Abid et al., 2018 ), which are features typically observed in the weak structural interfaces within biological materials

( Barthelat et al., 2016 ). In this follow up study we used the DEM approach to capture crack propagation in nacre-like archi-

tectures. The objectives were first to capture the salient mechanisms of fracture in nacre-like composites: crack deflection

at the interfaces, crack bridging, large scale inelastic deformations ahead and behind advancing cracks, process zone tough-

ening, R -curve behavior. A second objective was to systematically explore the effects of microstructure (including statistics)

and interface properties on the fracture of nacre-like materials. 

2. Fracture model setup and validation 

Fig. 2 shows a schematic of the setup for the fracture model. The model generation and DEM formulation is similar to

our previous work on nacre-like materials subjected to uniaxial tension ( Abid et al., 2018 ), but for this study on fracture all

the models contained a deep notch. Tablets of length L and thickness t are arranged in a staggered fashion and are bonded

by an interface with thickness t i < t . The tablets overlap by a length κL with 0 < κ ≤ 0.5 (stagger is generated by shifting

every odd row of tablet by a distance κL ). The resulting nacre-like microstructure can be described by three independent

dimensionless parameters: tablets aspect ratio ρ = 

L 
t , overlap ratio κ and tablet volume concentration φ = 

t 
t+ t i (0 < φ < 1).

The arrangement is repeated in the x and y directions to form a two dimensional periodic tiling made of N x by N y tablets

(typical dimensions were N x = 1,500, N y = 300 for a total of 450,0 0 0 tablets). 

The tablets were assumed to be rigid compared to the interfaces, an assumption which is acceptable for materials like

nacre or bone where the contrast of stiffness and strength between matrix and inclusion is in the order of 100–1000

( Barthelat, 2015 ; Pro et al., 2015 ). We also neglected the rotation of individual tablets and their displacement along the

x direction (direction of crack propagation, Fig. 2 ), which saved significant computational time. This assumption is based on

experimental observations on nacre where the shearing of the interface due to tablet sliding dominates, while the contri-

bution of the other degrees of freedom appears to be negligible in comparison ( Barthelat et al., 2007 ). We have validated

this assumption by running an additional set of simulations that included all three degrees of freedom and comparing the

steady state toughness to the uniaxial model. We observed less than a 2.1% difference of in predicted toughness between

the models, indicating that neglecting rotations and displacements along the x direction is acceptable. The effect of the mul-

tiaxial stress state ahead of the crack is of higher order and does not alter the computed fracture properties significantly in

this model, in consistence with recent stress calculations on nacre-like models ( Pro et al., 2015 ). Combining these assump-

tions implies that the distribution of shear stress at the interfaces is uniform, and that there are no peeling stresses. As

a result, the interaction between individual tablets can be modeled by a single nonlinear spring element. The mechanical
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response of the interfaces is governed by a nonlinear shear stress-strain law and by the length of the overlapping interface

between two adjacent tablets. The interfaces depicted on Fig. 2 are perfectly flat, whereas, in natural nacre interfaces are

wavy ( Barthelat et al., 2007 ). However, since the DEM approach idealizes each interface as a nonlinear element, the exact

morphology of the interface does not need to be captured. The added shear resistance generated by tablets waviness or by

nano-asperities can simply be taken into account by increasing the strength and the hardening rate of the nonlinear spring

element using to model the response of the interface. The global response of large assemblies of tablets was computed using

a DEM scheme on Matlab ( Mathews and Fink, 2004 ), with the classical Newton-Raphson method ( Press et al ., 2007 ) and

with continuous stiffness and Jacobian updates to solve the nonlinear system. Details on the DEM code and model valida-

tions can be found in our previous report ( Abid et al., 2018 ). A deep notch was created across the direction of the tablets by

simply removing the discrete (cohesive) elements along the crack line, so that the initial tip of the notch was centered on

the model ( Fig. 2 ). A linear spatial distribution of displacement boundary conditions was applied on the upper and lower

boundaries of the models ( Fig. 2 ). The upper displacement followed the linear distribution: 

u (x ) = u max 

(
1 

2 

− x 

N x L 

)
(1)

where u max is the maximum displacement (at x = −N x L/ 2 ). The lower boundary was subjected to the equivalent sym-

metric distribution. This particular type of non-uniform distribution of displacement boundary conditions promotes stable

crack propagation in the system ( Pro et al . , 2015 ; Tada et al., 1973 ) and is compliant to that of the Hill-Mandel condition

( Nguyen et al . , 2012 ). Left and right boundaries ( x = ±N x L/ 2 ) were free surfaces. During the simulation u max was progres-

sively increased and the boundary condition were increased following Eq. (1 ) to propagate a mode I crack through the

model. Stable crack propagation could be achieved in all simulations, as verified by numerical convergence for small incre-

mental crack advances to a new stable equilibrium state as the loading was ramped. At each loading step, the length of the

crack was measured and the J -integral ( Rice, 1968 ) was computed along an integration contour taken as the outer boundary

of the model ( Fig. 2 ) using: 

J = 

∫ 
�

(
W n 1 − t i 

∂ u i 

∂ x 1 

)
d� (2)

where W is the strain energy density, n 1 is the 1st component of the normal vector to the contour, t i is the traction vector,

u i is the displacement vector and � is the contour path. Because the top and the bottom edges of the integration contour

were taken through the tablets and the integration contour of the other two edges (left and right) were taken through the

interfaces, the J -integral ( Eq. 2 ) simplified to only the strain energy density of the interfaces and the net reaction forces and

displacements of the tablets on which the boundary conditions were applied. The J -integral may become path dependent

if the material system is discrete, or when significant unloading occurs ( Kolednik et al., 2014 ; Rice and Rosengren, 1968 ;

Simha et al . , 2008 ). However, several reports have shown that if the plastic unloading is relatively small and the integration

contour is taken far away from the crack tip, the J -integral can be path independent ( Kolednik et al., 2014 ; Simha et al.,

2008 ). In our models we ensured that the J -integral was path independent by making the model size very large (in this

case the model was 1500 by 300 tablets) and by taking the J -integral contour near the outer edges ( Fig. 2 ). For a given

model size, we also verified that different contours led to the same J value (not shown here). As discussed below, our

model and the J -integral calculation setup could recover analytical solutions where fracture is dominated by tablet bridging.

The main outcome for each simulation was the crack resistance curve for a particular set of staggered microstructure and

cohesive law. We explored three types of staggered microstructures: running bond, columnar and sheet nacre. In the running

bond microstructure, the tablets overlap by half of their length ( κ = 1 / 2 ). In columnar nacre the tablets partially overlapped

with 0 < κ < 0.5. Finally in sheet nacre, each row of tablets was randomly shifted by a distance rL , where r is a uniformly

distributed random number between 0 and 1. 

3. Toughness and cohesive length using triangular interface laws 

Fig. 3 shows a close up view of a simulation with columnar nacre ( κ = 0.25, ρ = 4, N x = 1,0 0 0, N y = 20 0). In this model

we used a triangular shear stress strain law shown in Fig. 3 a defined by an initial elastic region with shear modulus G up

to a shear stress τ 0 , followed by a post-peak softening region up to complete failure of the interface at γ = γ u . The shear

stress-strain curve was converted into a cohesive law by computing the sliding distance 	u = γ t i , and the toughness of the

interface is given by: 

J i = t i 

∫ γu 

0 

τdγ (3)

The evolution of the crack as the applied displacement was increased is shown in Fig. 3 b. Initially, all the interfaces

deformed elastically until the highest stressed interfaces just ahead of the crack tip reached the yield strength, and imme-

diately entered the softening region of the interface law (these interfaces are highlighted in red on Fig. 3 b). As the applied

displacement increased further, more interfaces softened, creating a narrow process zone in front of the crack tip (snapshot

2). Once the interface just ahead of the notch reached the ultimate strain γ u , its cohesive traction vanished, and the crack

propagated by a distance t (thickness of one tablet). Increasing the applied displacements resulted in stable crack propaga-

tion across the model (snapshot 3 in Fig. 3 b). We defined the steady state cohesive length λ as the strip of interfaces that
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Fig. 3. (a) Example of triangular interface law (here γu / γs = 4 ); (b) Sequence of deformation and crack propagation (these magnified snapshots only 

represent about 3% of the full model). (c) Corresponding crack resistance curve. 

Fig. 4. (a) Crack resistance curves for three models with triangular interface law with different combinations of κ and ρ . (b) Com parison of the dimen- 

sionless cohesive length, λ/ t , with J ss E / σ 2 
s t for the triangular interface law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

has reached the softening region in the steady state crack propagation regime. For example on Fig. 3 , the cohesive length

is λ= 3 t . Fig. 3 c shows the computed J -integral as a function of crack propagation (crack resistance curve). J progressively

increases as the cohesive zone develops and reaches a steady state value when the crack propagates. For comparison we

use the simple tablet bridging model ( Barthelat and Rabiei, 2011 ): 

J B = κρJ i (4) 

where J i is the toughness of the interface defined above ( Eq. 3 ). On Fig. 3 c the toughness is normalized using J / J B as a

function of dimensionless crack extension 	a / t . In the steady-state regime, the DEM model properly recovers the analytical

solution for all increments in crack advance (which is the bridging model ( Barthelat and Rabiei, 2011 )) with J ss = J B which

serves as a benchmark. We note that a minimum model size is required to achieve this result. For this particular model,

N x and N y were progressively increased until the crack resistance curve was model size independent. For all of the results

presented in this report we verified that model size independence was achieved (typically convergence required a model size

of about N x = 1,500 and N y = 300 for a total of 450,0 0 0 tablets). We also ensured that the J values were path independent

by computing about different contours. We also note that in the particular case of a triangular cohesive law, the steady state

cohesive length λ can also be obtained by measuring 	a at the onset of stable crack propagation (on the example of Fig. 3 ,

	a = 3 t ). The DEM fracture model therefore captures the main features of fracture of nacre-like materials when a triangular

interface law is used. 

To further explore the effect of the key parameters on bridging toughness using triangular interface laws, we ran a

large number of columnar models with various combinations of J i , κ and ρ . Fig. 4 a shows three examples crack resistance

curves where κ and ρ were varied. As expected, all models recovered the theoretical solution J ss = J B . However, different

combinations of parameters lead to different transient regimes and different steady state cohesive lengths. The relationship

between the cohesive length λ and the applied energy release rate has been well documented for a variety of elementary
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cohesive laws ( Barenblatt, 1959 ; Dugdale, 1960 ; Hillerborg et al., 1976 ; Rice, 1979 ) and all indicate the direct scaling: 

λ ∼ J ss E 

σs 
2 

(5)

where J SS is the steady state toughness, E is the Young’s modulus and σ s the tensile strength. For a staggered composite

with rigid tablets the modulus and strength can be obtained with ( Abid et al., 2018 ): 

E = 

φ2 

1 − φ2 
κ(1 − κ) ρ2 G (6)

and 

σs = φκρτs (7)

For the case of a triangular interface law the steady state toughness is: 

J ss = κρJ i (8)

Fig. 4 b shows the normalized cohesive length λ/ t as a function of J ss E 

σs 
2 t 

for various combinations of J i , κ and ρ . We

verified that the relationship is linear, with a slope of 0.65. For comparison, Lawn ( Lawn, 1993 ) reported a slope of 0.392 for

isotropic brittle materials. This value is in the same order but lower, because of the different nature of the materials (Lawn

( Lawn, 1993 ) considered only homogeneous, isotropic brittle materials). When bridging is the only fracture mechanism, our

nacre-like DEM models therefore recover the theoretical fracture toughness as well as the fundamental scaling laws for the

cohesive length. In the next section we enrich the interface law and explore the effect on toughness and increasing process

zone size. 

4. Toughening from wide process zones: models with trapezoidal interface law 

We now enrich the simple triangular interface law with a plateau region of constant shear stress to form a trapezoidal

interface law. In this region, the plastic shear strain is defined as γ (p) = γ − τ/G , and softening starts at a plastic shear

strain γ (p) = γ (p) 
s . This type of interface constitutive law is typically used for modeling deformable engineering adhesives

( Chalkley and Chiu, 1993 ) and bio-polymers ( Smith et al., 1999 ), including the interfaces in nacre-like materials ( Abid et al.,

2018; Barthelat et al . , 2007; Pro et al., 2015 ). The slope in the intermediate regime can be easily modified to capture strain

hardening in the interfaces ( Fig. 5 a), where τ = τy + H γ (p) with H > 0. For simplicity, we assumed that any unloading in

the interfaces from a strain 0 < γ < γ u occurs along a segment of slope G, which allows for residual plastic strain in the

interfaces. We also use the terms "yield point", "hardening" and "ductile" which are typically associated with the mechanics

of metals, even if the materials in natural or bio-inspired composites may not be metallic. In the DEM fracture models,

switching from a triangular to trapezoidal interface law produced a wider process zone, with inelastic deformation spreading

away from the crack line. The material “yields” in the region of high stresses at the crack tip – a mechanism similar to

ductile metals ( Tvergaard and Hutchinson, 1992 ) and toughened rubbers ( Evans et al . , 1986 ). Fig. 5 shows an example of a

450,0 0 0 tablet DEM fracture model that uses a trapezoid interface law with strain hardening ( H/G = 0.05, Fig. 5 a). In this

typical example, when the applied displacements were increased a nonlinear region appeared and grew in size ahead of the

crack tip (shown as yellow interfaces on Fig. 5 b). Near the crack tip, most interfaces yielded. Further from the crack tip (but

still within the process zone), yielding only occurred in the smaller overlapping interfaces. As crack propagation commenced

the tip entered the nonlinear region, shifting the regions of high stress and the inelastic region, and leaving a wake of

inelastically deformed material (shown as white interfaces on Fig. 5 b). The crack resistance curve for this model is shown in

Fig. 5 c. In this example, the steady-state toughness was reached when 	a = 29 t . The steady state toughness was in general

much greater than the toughness produced by bridging only, an indication of the powerful toughening effect of the inelastic

region. Crack propagating through this microstructure involves the inelastic loading and unloading of a large volume of

material, which consumes a large amount of mechanical energy. These mechanisms duplicate experimental observations on

biological columnar nacre, the “stress whitening” regions corresponding to regions where tablet sliding take place ( Fig. 5 d

and e). These observations are also qualitatively consistent with the salient features of the theoretical fracture model of

Barthelat and Rabiei ( Barthelat and Rabiei, 2011 ). However, there are major differences in the two models regarding process

zone shape, unsteady process zone, and distribution of damage and residual strain in the wake of the crack. In previous

analytical models these parameters were estimated and served as input. In the present DEM models, these quantities are a

natural outcome of the simulations. 

The type of cohesive law used for the interfaces has profound impact on the size of the inelastic region and on the

crack resistance curve. Fig. 6 shows the results of three simulations obtained with three different cohesive law. In the first

case ( Fig. 6 a) a triangular law was used which produces a steady state toughness J ss = J B and no inelastic process zone.

When the interface law is enriched into a trapezoidal law a wide inelastic zone (width = 15 t ) appears ( Fig. 6 b), but its

contribution to toughness remains modest with only a 5% increase from the triangular case. The addition of hardening

( H/G = 0.05 ) leads to a wider process zone (width = 27 t ) which is also denser in inelastic deformations ( Fig. 6 b). These

effects lead to a pronounced improvement in toughness (50%) with a longer transient regime thought the hardening was

modest ( H/G = 0.05 ). We ran a series of models to explore the correlations between inelastic zone size, cohesive length and
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Fig. 5. (a) Trapezoidal interface law with strain hardening where τ y / G = 0.09, γs / γy = 10 , γu / γs = 6 and H/G = 0.05. (b) Snapshot showing crack propagation 

and the associated volumetric process zone (here w = 27 t and λ= 29 t ) (c) Associated crack resistance curve. (d) Experimental observations of the process 

zone found in Top shell and in (e) red abalone (adapted from Rabiei, Bekah ( Rabiei et al., 2010 )). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

toughness for different cohesive laws. Fig. 7 a shows the result of ten simulations with different combinations of plateau

length ( γ s / γ y ) and hardening slope. Toughness increased moderately with a trapezoidal cohesive law with H = 0, but it

increased more significantly when hardening H > 0 was used at the interface. This result illustrates that strain hardening is

a key contributor to fracture toughness amplification in both synthetic and natural systems. Hardening can be generated by

a soft adhesive or matrix between the tablets, or by geometric hardening and progressive interlocking using dovetail-like

tablets ( Barthelat, 2010 ; Barthelat and Espinosa, 2007 ). For all calculations we performed, high toughness correlated with a

large process zone. 

The evolution of the cohesive length however appears to be more complex than for the cases of triangular cohesive law

only. Fig. 7 b shows the dimensionless cohesive length, λ / t as a function of 
J SS E 

σs 
2 t 

for a trapezoidal interface law. The results

did not reveal a direct scaling, but rather suggest that the cohesive length falls within a bounded range, a result which is

consistent with previous studies on elastic-plastic solids by Tvergaard and Hutchinson (1992) . The upper bound is defined

by the triangular interface law but there seemed to be no well-defined lower bound. 

5. Effects of statistical microstructures with triangular interface laws 

The DEM models presented so far in this study had perfectly periodic microstructures with no statistical variations. Bio-

logical and synthetic bioinspired staggered composites however show significant statistical variations in their microstructure 

including variations in tablet size and arrangement ( Fig. 1 ). These materials also show variations in their constituent prop-

erties that include material heterogeneities within the tablets and the interfaces. We used the DEM models to capture the

impact of these statistical variations on toughness. Models were first created following the procedure above to generate an

array of initial positions for the center of the tablets. These positions were then perturbed by a random distance that fol-

lowed a normal distribution centered on zero. The position of the ends of the tablets was then determined, each tablet end

being exactly at the midpoint between two adjacent tablet centers. This procedure resulted in arrays of tablets with an aver-

age aspect ratio ρ and a standard deviation 	ρ , and to characterize the amount of statistics in the microstructure we used
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Fig. 6. Three models of columnar nacre where κ = 0.25 and ρ = 4 with different interface laws: (a) triangular, (b) trapezoidal and (c) trapezoidal with 

hardening. For each case we show the shear stress-strain curve, the crack resistance curve and snapshots that show the development of the process zone 

development and crack propagation (The snapshots are magnified, the size of the full models is N x = 1,500 by N y = 300 tablets. 

10

Fig. 7. (a) Effect of the dimensionless process zone width on the dimensionless steady state toughness; (b) Dimensionless cohesive length λ/ t as function 

of J SS E / σ 2 
s t with trapezoidal interface laws. 

 

 

 

 

 

 

 

 

 

 

 

the normalized standard deviation 	ρ/ ρ . Using this method, we could generate microstructure with moderate variations

( 	ρ/ ρ < 0 . 125 ), higher variations leading to some tablets with negative length. To explore larger variations ( 	ρ/ ρ > 0 . 125 ),

we used a log normal distribution which ensured positive tablet length but which could only be applied to sheet nacre (i.e.

only for cases where there is no correlation of position across layers). Further details on the procedure of introducing sta-

tistical variations can be found in our previous study ( Abid et al., 2018 ). Fig. 8 shows a sample of three different types of

microstructures with different amounts of statistical variations, with the thicker black interfaces representing the pre-crack

in the model. 

The first set of calculations was performed using a simple triangular interface law (with τy /G = 0 . 09 and γu / γs = 4 ) on

large DEM fracture models ( N x = 1,0 0 0 by N y = 20 0 tablets). We considered three cases: 	ρ/ ρ = 0 . 0 (columnar nacre model,

no statistical variation, perfectly periodic microstructures), 	ρ/ ρ = 0 . 075 (columnar nacre model, moderate statistical vari-

ations) and 	ρ/ ρ = 0 . 35 (sheet nacre model, large statistical variations). Fig. 9 shows the crack path and the corresponding

crack resistance curve for each three cases. The first case ( 	ρ/ ρ = 0 ) is identical to the case reported in Fig. 3 , with a
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Fig. 8. Close up regions of DEM fracture models with three types of microstructures and three level of statistical variations. The thick black interface 

represents the pre-crack in the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

straight crack propagation and a “flat” crack resistance curve. In the second case 	ρ/ ρ = 0 . 075 , weak and tough regions are

present in the microstructure. If the tougher regions are sufficiently large, the crack is pinned and reinitiating crack growth

requires an increase in the applied J . Crack may then propagate again either through the tougher region as shown on snap-

shot 1 ( Fig. 9 b), or be deflected as shown on snapshot 2 ( Fig. 9 b). Once the crack is unpinned and propagates again, the

cohesive length from the pinning still overlaps with the cohesive length of the crack and therefore it continues to contribute

to crack closure. For this reason, the overall crack resistance only decreases gradually until the next pinning event. There

are also cases where the crack is “easily” deflected and channeled by weak regions, in which case no increase of toughness

as shown on snapshot 3 ( Fig. 9 b). This case illustrates that in general, crack deflection in materials should not be system-

atically associated with an increase in toughness. On the example of Fig. 9 b the crack was pinned and unpinned multiple

times over the course of the simulation, causing the R -curve to fluctuate whereby the overall the crack resistance increase

of about 30% compared to the perfectly period microstructure. Here the fluctuations of the R -curve are not due to plastic

unloading occurring at the crack tip, but rather to the pinning events. Similar fluctuating R -curves have been observed ex-

perimentally ( Davidson and Waas, 2012 ; De Morais and Pereira, 2007 ) and computationally ( Hossain et al . , 2014 ; Roux et al.,

2003 ). A decrease in the R -curve does not indicate that the J -integral becomes path dependent, as was shown in the works

of Hossain, Hsueh ( Hossain et al . , 2014 ). In the last case which had the most statistical variations ( 	ρ/ ρ = 0 . 35 ), the crack

never propagates straight and is consistently deflected, producing a jagged propagation path ( Fig. 9 c). The crack experiences

more pronounced pinning which almost doubles the crack resistance. 

In order to examine a more complete description of how statistics influences the fracture toughness, we performed an

exhaustive parameter study by varying 	ρ/ ρ from 0 to 0.125 for columnar and running bond models, and varying 	ρ/ ρ
from 0 to 0.7 for sheet nacre models. For each value of 	ρ/ ρ , we simulated five realizations of the statistical model with

N x = 1,0 0 0 and N y = 200 tablets. Five realizations per increment was sufficient as the crack was allowed to propagate by a

maximum of 200 tablet thicknesses in each model. Therefore, five realizations sampled enough data points (nearly 10 0 0

units of crack growth or 10 0 0 J values) to accurately capture the toughness of each type of microstructure considered here.

We verified, on models with large statistical variations, that simulating more realizations of the same microstructure did not

affect the statistical variations of the measured toughness. There are several ways to extract a single representative tough-

ness measure of a R -curve including ASTM standards, which is only applicable for a “typical” R -curve ( Srivastava et al . , 2014 ),

corrected beam theory, which is only applicable for double cantilever beam specimens ( Blackman et al., 1995 ; De Morais

and Pereira, 2007 ) and curve fitting, which is good for low fluctuation ( Heide-Jørgensen et al., 2018 ). The majority, on the

other hand, used the maximum, average or minimum of the values on the R -curve to define the toughness despite not

reaching steady state ( Davidson and Waas, 2012 ; Heide-Jørgensen and Budzik, 2018 ; Hossain et al . , 2014 ) and that is the

approach that we have adopted for this study. Therefore, for each realization we determined the maximum toughness,

the minimum toughness, and the average toughness over entire crack resistance curve. We then averaged each of these

values over the five realizations. The results ( Fig. 10 a) show that small amounts of statistical variation increase the tough-

ness in all types of nacre, a phenomenon which is the most pronounced in columnar and sheet nacres. In the case of

running bond microstructures the average toughness is consistently lower than the bridging toughness J B , because this mi-

crostructure produces a stairway type of crack growth, a different failure mechanism where crack bridging is not effective



N. Abid et al. / Journal of the Mechanics and Physics of Solids 124 (2019) 350–365 359 

Fig. 9. Effect of statistics for (a) 	ρ/ ρ = 0 (columnar nacre), (b) 	ρ/ ρ = 0 . 075 (columnar nacre) and (c) 	ρ/ ρ = 0 . 35 (sheet nacre) with a triangular 

interface law where τy /G = 0 . 09 and γu / γs = 4 . The left column shows a close up of the model, and the right column shows the corresponding crack 

resistance curve. The snapshots were cropped to show only a part of the crack. The size of the full model was N x = 10 0 0 by N y = 20 0 tablets. 

Fig. 10. Effect of statistical variations on (a) the normalized toughness and (b) the average normalized interface length ( κ) of all the interfaces together 

and the average of the five toughest interfaces collected along cracks paths in sheet nacre. (c) Typical snapshots of crack propagating through sheet nacre 

models with four levels of statistical variations. Here, a triangular interface law was used with τy /G = 0 . 09 and γu / γs = 4 . Each point on the curve is an 

average of 5 realization. 
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( Rabiei et al., 2010 ). The sheet nacre microstructures could be modeled with larger statistical variations, with a toughness

that decreases when 	ρ/ ρ > 0 . 35 . This initial increase and then decrease of toughness with statistical variations can be

explained by collecting the lengths of the individual fractured interfaces (normalized by ρt). The average length of these

interfaces ( κall ), shown on Fig. 10 b, fluctuates around κ = 0.25 with no apparent effect of statistics. The average of the five

longest interfaces travelled by the crack ( κ5 ) captured the pinning efficacy of the toughest obstacles encountered during

crack propagation. Fig. 10 b shows how κ5 initially increases when statistics is increased, but decreases for 	ρ/ ρ > 0 . 35 ,

which indicates that the pinning sites explored by the crack are weaker for higher statistics. Fig. 10 c shows typical snap-

shots of crack propagating through sheet nacre models with four levels of statistical variations. For small statistical variations

the cohesive zone is compact and concentrated at the crack tip. As statistical variations increase, daughter cracks form ahead

of the main crack, at distances what can be several tablets and which tend to be greater in models with larger random-

ness. Eventually these cracks coalesce to form the main crack, and the phenomenon repeats further into the material. This

observation reveals an interesting mechanism which explains the variations of overall toughness with statistical variations.

Increasing statistical variations generally means that the toughest regions in the model increase in toughness, and the weak-

est regions become weaker. At moderate statistical variations the crack follows the weakest path presented directly ahead

of the tip, which sometimes takes it into a tougher region, where it gets pinned. Moderate increases in statistics generate

tougher region, more intense pinning and therefore increased overall toughness. Large statistical variations generate even

tougher regions, but also very weak regions. In that second regime, the weaker regions are so weak that they can be “ac-

tivated” by the stresses around the crack at some distance of the main cohesive zone, forming daughter cracks as seen on

Fig. 10 c. Importantly, the crack eventually coalesces through these weaker regions and the phenomenon repeats further into

the material. The ability of the crack to “probe” further into the material means that it can find the weakest path more

effectively, that it can avoid large obstacles (hence the decrease in κ5 shown on Fig. 10 b), and that as a result the overall

toughness will be decreased. Statistical variations are therefore beneficial only if the cohesive zone remains compact and

when the crack is more likely to meet strong pinning regions. Higher statistical variations are more likely to activate weaker

paths within larger regions around the main crack, so that tougher regions are more likely to be avoided. 

6. Effects of statistical microstructures with trapezoidal interface law 

In this section we examine the effect of statistics with a trapezoidal interface law with and without strain hardening,

so that the process zone is no longer confined to a narrow region. The interface law parameters were fixed at τy /G = 0 . 09 ,

γu / γs = 4 , γs / γy = 10 and H/G = 0.05. For each level of statistics ( 	ρ/ ρ = 0 , 0.025, 0.05, 0.075, 0.1, 0.125), five realizations

were simulated for each type of microstructures (columnar nacre, running bond nacre and sheet nacre). Crack propagation

was generally stable at the beginning of the simulation, but most models ceased to converge before the crack could com-

pletely fracture the model. Fig. 11 shows the contours of the last loading step for the three types of microstructures with

three levels of statistics ( 	ρ/ ρ = 0, 0.05, 0.125) with a trapezoidal with hardening interface law. For the columnar nacre

with no statistics ( 	ρ/ ρ = 0 ), the crack propagation was perfectly straight, and the process zone was dense and symmetric

(this case is identical to the case shown on Fig. 6 c). In the running bond case with no statistics ( 	ρ/ ρ = 0 ), a triangular

inelastic region initially formed ahead of the notch. The crack then propagated in a “staircase” manner, which can occur

when the overlap between the tablets is relatively uniform (this failure mode is generated by the shear stress field ahead

of the crack, as described in details in ( Rabiei et al., 2010 )). In the case of sheet nacre the crack deflected slightly, and the

process zone was more diffuse with a less well defined shape. When a small amount of statistics is added on the three

types of microstructure, crack deflection occurred more frequently. Generally, the process zone increased in size because

high stresses associated with the crack can “activate” weaker region located further from the crack lines, so that the high

stresses generated by the crack tip have can reach further within the volume of the material. The resulting process zone

was however more sparse and heterogeneous compared to the cases with no statistics, and that the density of energy ab-

sorbed in the wake was not as high as for the perfect microstructures. The process zone of the running bond case when

	ρ/ ρ = 0 . 05 is a dense “v-shaped” which was also observed by Pro, Lim ( Pro et al., 2015 ). Interestingly, for the cases where

the statistical variation was the highest ( 	ρ/ ρ = 0 . 125 ) it was not possible to distinguish between the microstructure types,

because the large statistical disturbances imposed on each of the three types of microstructure completely obscured their

original, distinct characteristics. For this reason, the failure mechanisms were similar across all three types of microstructure

( Fig. 11 ). The process zone had no well-defined shape and only consisted of widespread sparse and disconnected yielded

interfaces. Fig. 12 shows the corresponding crack resistance curves for these models. For each level of statistics, five realiza-

tions were evaluated. Generally the crack resistance curves were rising with crack advance, to levels which are significantly

higher than the toughness from bridging only. As expected the spread in the results increased as statistical variations were

increased. Generally toughness increased when a small amount of statistic was introduced, but decreased for the highest

levels of statistics. 

For each model we computed the minimum, maximum and average toughness from the crack resistance curve, which

is the most appropriate method for relatively large fluctuating R -curves ( Davidson and Waas, 2012 ). A summary of these

results is shown in Fig. 13 , where the average of the five models was again taken for each level of statistics. The results

show that the toughness for hardening interfaces ( H/G = 0.05) is generally higher than when no hardening is used ( H/G = 0),

because interface hardening produces a larger and denser process zone and therefore higher energy dissipation overall. In

general, the overall toughness increases as statistics is introduced up to a peak value in the range 	ρ/ ρ = 0 . 05 − 0 . 075 .
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Fig. 11. Snapshots of DEM simulations for columnar nacre (left column), running bond (middle column), and sheet nacre (right column) at three levels 

of statistical variations. The simulation snapshots are cropped to only show the crack propagation and the process zone. (Full model was N x = 1,500 by 

N y = 300 tablets) . 

 

 

 

 

 

 

 

 

 

 

 

Larger statistical variations beyond these values leading to an overall decrease in toughness. We attributed this behavior to

a competition between process zone size, density, and weakest path for the crack. Moderate amounts of statistical variations

promote toughness because of crack pinning, and increased process zone size. However when the statistic variation become

too large, the crack finds an easy path through the weakest regions in the model, and the process zone become less dense,

resulting in a decrease in toughness. Again, all three microstructures produced nearly the same amount of toughness when

large statistical variation is present ( 	ρ/ ρ = 0 . 125 ) which shows again that the presence of large statistics variations di-

minishes the original characteristics of each microstructure. We acknowledge that there are few R -curves that do not reach

steady state in Fig. 12 due to convergence issues. However, sampling these models out would create an unwanted bias.

These R -curves stopped due to extreme pinning and as result the J value would decrease if the crack were to progress. For

the models that did converge, we simulated larger crack growth and the R -curve seems to fluctuate in a bounded region

and the mean J value remained unchanged. Despite the unsteady R -curves, one can visually see on Fig. 12 that there is an

optimum value of statistics and that large statistics reduces the toughness. 
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Fig. 12. Crack resistance curves for columnar nacre (left column), running bond (middle column), and sheet nacre (right column) at three levels of statistical 

variations. Each graph shows five realizations of the same statistics. 

Fig. 13. Effect of statistical variations on the dimensionless toughness for columnar, running bond, and sheet nacre with (a) trapezoidal, no hardening and 

(b) trapezoidal with hardening interface law where τy /G = 0 . 09 , γu / γs = 4 , γs / γy = 10 and H/G = 0.05. 

 

 

 

 

 

 

 

 

 

A recent study by Pro, Lim ( Pro et al., 2015 ) showed that initiation toughness decreases substantially with statistical vari-

ations for running bond nacre with trapezoidal interface law. In our case, the initiation toughness scales with the minimum

toughness reported in Fig. 13 and we observed that the initiation toughness slightly increased due to statistics but decreased

beyond the optimum level of statistics. The difference in both the studies could arise from the different solvers used and

the assumptions regarding horizontal interfaces, transverse sliding and rotation of tablets, and interface laws. 

Finally, Fig. 14 shows a comparison between the micromechanics of fracture captured with our DEM model and exper-

imental observations on the fracture of columnar and sheet nacre ( Rabiei et al., 2010 ). This comparison is meant to be

qualitative as the experiments may consist of different tablet aspect ratio, statistics, interface properties, etc. Our models

can capture the different types of crack paths possible (relatively straight for columnar nacre, deflected branches for sheet

nacre) and the shape of the process zone (transition region at the edges, compact in columnar nacre and more sparse in

sheet nacre ( Keten et al., 2010 )). 
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Fig. 14. Side by side comparisons between our DEM results and experimental observation on the fracture of (a) a columnar nacre (Top shell) and (b) a 

sheet nacre (Pearl oyster) (adapted from Rabiei, Bekah ( Rabiei et al., 2010 )). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Summary and conclusion 

The staggered architecture is found in high-performance structural biological materials such as nacre, bone, tooth enamel

and spider silk. This architecture produces unique combinations of stiffness, strength and toughness, and for this reason it

is often used as model for developing modern composite materials. In this study we used discrete element modeling to

explore the fracture mechanics of nacre-like staggered materials, with the main conclusions summarized below: 

1 The discrete element models is a powerful, computationally efficient approach that can capture the fracture mechanics of

large volumes of nacre-like materials. The computational cost of running discrete element models is a fraction of that of

other numerical methods such as finite elements. The predicted fracture modes and process zone shapes are qualitatively

consistent with experimental observations on natural nacre. In this study we ran a total of about 180 DEM simulations of

large (1500 × 300 tablets) fracture models. For a given microstructure we evaluated five realizations, which was sufficient

to produce reliable statistics for the overall toughness because for each model a large volume of material is interrogated

through crack propagation. 

2 The fracture models presented here capture the fracture of nacre-like materials: crack deflection, crack bridging, the for-

mation of wide process zone of different size and shapes that depend on the interface and architecture of the material,

as well as transient and steady-state crack propagation regimes while relaxing some of the assumptions of the previous

models regarding process zone, wake of damage and interface properties. The full crack resistance curve can be deter-

mined as function of microstructure and interface properties. The models also capture classical scaling rules in fracture

mechanics. 

3 When the material is stretched along the direction of the tablets, fracture is governed by the axial displacements of

the tablets and their associated interfacial shear stresses. Despite the multiaxial characteristics of the stresses ahead of

the crack tip, the transverse displacements and rotations of the individual tablets have a negligible effect on fracture

mechanics and on overall fracture toughness. 

4 Statistical variations in the microstructure create tougher and weaker regions within the material. Moderate statistical

variations generate obstacles which pin propagating cracks, increasing overall toughness, provided that the cohesive zone

remains compact. For higher statistical variations the weaker regions are so weak that they can be activated far from the

main crack. It then becomes easier for the crack to “probe” larger volumes of materials to find weaker paths. Volumetric

process zones are wider, but sparser and they do not dissipate as much energy. These combined effects lead to decreased

overall toughness for large statistical variations. 

5 In general, crack deflection occurred when it was more advantageous for the crack to deviate and reach weaker regions.

Accordingly we observed more crack deflection for models with larger statistical variations, since they contained a larger
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number of weaker regions. In our models we observed that crack deflection was simply a mean for the crack to follow

the weakest path within the material, with no increase in toughness. In general crack deflection in nacre-like materials

is not necessarily associated with an increase in overall toughness. 

These findings, together with our previous report that focused on uniaxial deformations ( Abid et al., 2018 ), provide strong

evidence that large statistical variations are detrimental to the performance of nacre-like staggered composites. The stag-

ger, size and interfaces of inclusions in these materials should be as uniform as possible to maximize strength, toughness,

deformability and energy absorption. Staggered composites in nature can indeed display remarkable periodicities and reg-

ularities. For example fibers of collagen type I, which serve as the building blocks for bone, tendon or skin, are made of

collagen molecules with a uniform length of 300 nm. The molecules assemble into fibrils by forming highly aligned stag-

gered architectures with a highly uniform overlap length of 67 nm ( Fratzl et al., 1998 ). Individual collagen fibrils are among

the strongest and toughest natural fibers ( Puxkandl et al . , 2002 ; Shen et al., 2008 ). Collagen fibrils bundle into fibers, which

can for example serve as the primary building blocks of tendons, which are virtually impossible to fracture ( Ker, 2007 ).

Natural nacre is another example of a staggered composite with a highly uniform microstructure. The relative statistical

variation ( 	ρ/ ρ) for nacre is about 0.4-0.6 for columnar nacre and 0.5-0.6 for sheet nacre Rabiei, Bekah ( Rabiei et al.,

2010 ). These variations are on the higher end of what we explored in this report, but they are much lower than what is ob-

served in synthetic nacres. Fabrication methods such as self-assembly ( Bonderer et al., 2008 ; Valashani et al., 2015 ), freeze

casting ( Deville et al . , 2006 ), filtration ( Liu et al., 2011 ), sedimentation ( Behr et al . , 2015 ), doctor blading ( Mirkhalaf and

Barthelat, 2016 ) or controlled mineralization ( Mao et al., 2016 ) cannot duplicate to this day the regularity of natural nacre

at the microscale. Only fabrication methods at larger length scales (manual assembly ( Barthelat and Zhu, 2011 ), 3D printing

( Espinosa et al . , 2011 ) or laser engraving ( Chintapalli et al . , 2014 ; Valashani and Barthelat, 2015 ) ) can produce highly regular

materials which can duplicate the mechanisms of deformations and fracture of natural nacre. 

The general findings reported here can possibly be integrated into existing design guidelines ( Barthelat, 2014 ;

Begley et al., 2012 ; Gao, 2006 ) to further increase the performance of bio-inspired composites at the design stage. Finally,

the DEM method described here and applied to large models with statistical variations abstracts the materials as a network

of non-linear springs that can deform and fracture. This type of representation can also be used to capture the fracture of

other types of composite materials, and also of ceramics and metals where the size of the microstructure is in the order

of the size of the cohesive length. The DEM fracture models presented here therefore suggest that, just like in nacre-like

materials, the toughness of ceramics and metals decreases with increased statistical variations in their microstructure. 
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