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Abstract    
Natural materials such as bone, tooth and nacre achieve attractive properties through the “staggered structure”, which 

consists of stiff, parallel inclusions of large aspect ratio bonded together by a more ductile and tougher matrix. This seemingly 
simple structure displays sophisticated micromechanics which lead to unique combinations of stiffness, strength and toughness. 
In this article we modeled the staggered structure using finite elements and small Representative Volume Elements (RVEs) in 
order to explore microstructure-property relationships. Larger aspect ratio of inclusions results in greater stiffness and strength, 
and also significant amounts of energy dissipation provided the inclusions do not fracture in a brittle fashion. Interestingly the 
ends of the inclusions (the junctions) behave as crack-like features, generating theoretically infinite stresses in the adjacent 
inclusions. A fracture mechanics criterion was therefore used to predict the failure of the inclusions, which led to new insights 
into how the interfaces act as a “soft wrap” for the inclusions, completely shielding them from excessive stresses. The effect of 
statistics on the mechanics of the staggered structure was also assessed using larger scale RVEs. Variations in the microstructure 
did not change the modulus of the material, but slightly decreased the strength and significantly decreased the failure strain. This 
is explained by strain localization, which can in turn be delayed by incorporating waviness to the inclusions. In addition, we 
show that the columnar and random arrangements, displaying different deformation mechanisms, lead to similar overall prop-
erties. The guidelines presented in this study can be used to optimize the design of staggered synthetic composites to achieve 
mechanical performances comparable to natural materials. 

Keywords: biological materials, biomimetics, representative volume element, fracture mechanics, finite element analysis  
Copyright © 2012, Jilin University. Published by Elsevier Limited and Science Press. All rights reserved. 
doi: 10.1016/S1672-6529(11)60145-5 

 

1  Introduction 

Structural biological materials boast remarkable 
mechanical performances[1,2], and they now serve as 
model for the development of novel bio-inspired engi-
neering materials[3–6]. Natural materials such as bone, 
teeth, seashells or spider silk are of interest because of 
their unique and attractive combinations of stiffness, 
strength and toughness. The building blocks of these 
materials are inherently weak, in the sense that they have 
a low strength and a large brittleness. The properties of 
these ingredients are, however, amplified by finely tuned 
microstructures, in order to achieve structural perform-
ance at the macroscale[7]. Fig. 1 summarizes some key 
properties for bone and nacre, both made of organic 
materials “reinforced” by minerals. The modulus of 
these materials is lower than the stiff minerals, but their 
strength is similar or greater than that of the constituents. 
The most impressive improvement in bone and nacre is 

 

Fig. 1  Modulus, strength and toughness of (a) nacre and (b) bone, 
and of their “building blocks”. Data compiled from Refs. [2, 
11–19]. 
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toughness, which is several orders of magnitude higher 
than that of each of the constituents. It is therefore 
critical to characterize the microstructures of these ma-
terials and their associated deformation and failure 
mechanisms. Interestingly, evolutionary processes have 
converged to a “universal pattern”[8,9] in these materials, 
consisting of stiff inclusions of high aspect ratio (fibers 
or tablets) aligned along a single direction and overlap-
ping over a fraction of their length (Fig. 2). This stag-
gered structure has been shown to be optimum to 
achieve both stiffness and energy absorption[10]. This 
seemingly simple structure displays sophisticated mi-
cromechanics which also leads to high toughness[11]. 

The effect of the shape, size, aspect ratio and ar-
rangement of these inclusions has been studied for nacre, 
the inner layer of some mollusks shells including bi-
valves, gastropods and cephalopods[10,11,20–23] and/or for 
bone[15,24–28], spider silk[8] and diatom[29]. The effect of 
the staggered structure is perhaps the most prominent in 
nacre, which is composed of 95% vol. of mineral inclu-
sions forming a three-dimensional brick wall bonded by 
thin layers of proteins and polysaccharides[30,31]. In nacre 
the mineral inclusions have the shape of polygonal mi-
croscopic tablets, which overlap each other by a 
well-defined distance in columnar nacre or randomly in 
sheet nacre (Fig. 2)[12,13]. 
 

 
(a) 

 
(b) 

Fig. 2  Tablets arrangement for (a) columnar and (b) sheet na-
cres[12,13]. 

Under tensile loading along the direction of the 
tablets the stresses are channeled through tension in the 
tablets and shear at the softer interfaces[13,15]. As the 
applied load increases, the interfaces yield in shear and 
tablets start to slide on one another over large volumes in 
the material. This key mechanism enables large defor-
mations and energy dissipation[32], making nacre 3000 
times tougher than the mineral (in energy terms)[2,33]. 
The sliding mechanism is very stable in these materials, 
because it is resisted by several mechanisms and features: 
the organic material which acts as tough adhesive[32,34], 
mineral nanoasperities on the surface of the tablets 
which produce roughness[35], and mineral bridges acting 
as reinforcements at the interface[36]. The surfaces of the 
tablets also show significant waviness which impedes 
sliding where the adjacent tablets have to climb over one 
another, hence generating strain hardening, dissipating 
energy over larger volumes and delaying localization[12]. 
An important requirement to achieve these properties is 
that the tablets must not fracture. Indeed, a successful 
staggered composite like nacre predominantly deforms 
by sliding of the tablets on one another, with limited 
occurrence of brittle fracture of the tablets[13].   

Interestingly, the staggered structure also exists in 
bone at the nanoscale, where hydroxyapatite platelets 
form a staggered array of reinforcing particles within 
individual collagen fibrils[24]. The fibrils themselves 
form a staggered structure, and in-situ X-ray experi-
ments have suggested that, similar to nacre, the sliding 
of the fibrils on one another is generating the large ine-
lastic strains observed in bone at the macroscale[24]. The 
staggered structure is also reminiscent of layered com-
posites[37], while some of the mechanisms associated 
with the high aspect ratio of each tablet are similar to 
those found in fiber composites[38,39]. However, the 
unique mechanism of sliding and energy dissipation is 
only found in nature, and is virtually absent in engi-
neering materials. The prospect of materials with en-
hanced stiffness, hardness and toughness has motivated 
the development of several “artificial nacres” with 
promising fabrication techniques[40–44]. Improvements in 
mechanical performance were achieved in these mate-
rials, mostly benefiting from crack deflection. However, 
the highly controlled collective tablet sliding and the 
associated energy dissipation could not be duplicated, 
except in large scale model materials made of millimeter 
size tablets[4,42]. 
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In order to fully harness the unique mechanisms 
associated with the staggered structure in engineering 
materials, design and optimization are essential[40]. To 
this end, models that capture the effect of the staggered 
microstructure on modulus and strength are required. In 
addition, detrimental failure modes such as tablet frac-
ture must be accurately predicted so they can be pre-
vented at the design stage. Some of these questions have 
partially been answered for nacre and bone[45–47]. These 
models typically involve two-dimensional Representa-
tive Volume Elements (RVEs)[15,22] to capture the load 
transfer from shear at the interface to tension in the 
tablets. Proper scaling of the staggered structure is also 
critical. According to the Griffith criterion of fracture 
mechanics, decreased flaw size results in high tensile 
strength for a brittle component. Since any given com-
ponent can only contain flaws that are smaller than its 
dimension, the Griffith criterion predicts that smaller 
objects are stronger. Following these principles Cur-
rey[48] put forth the idea that the size of the defects in the 
minerals cannot be greater than the small size of the 
mineral inclusions, which therefore makes them stronger. 
More recently, the idea was further developed by Gao 
and co-workers[20], who argued that nanoscale tablets 
approach the theoretical strength of the mineral.  

The aim of this article is to provide a full picture of 
the effect of inclusion aspect ratio, shape and size on the 
sliding mechanism of the inclusions. This work com-
pletes studies on collective sliding mechanisms and 
toughening effects that have been published previ-
ously[11,13,49], providing unified guidelines for the design 
of engineering materials based on the staggered con-
figuration. First, the mechanical response of small two- 
dimensional RVEs of the staggered structure is studied 
through analytical solutions and finite elements. Detailed 
parametric studies on key structural parameters and their 
effects on the modulus and the strength reveal the “de-
sign maps” useful in the design of artificial biomimetic 
materials. The issue of tablet fracture as a detrimental 
failure mode is examined, where detailed stress analysis 
leads to a novel scaling law for these materials. Finally, 
the effect of inclusion morphology (waviness and nano-
asperities) on the stress-strain curve is explored. 

2  Staggered flat inclusions 

A basic two-dimensional RVE can be used to obtain 
the basic properties of the staggered structures[15,22]  

(Fig. 3). In this section we review the main analytical 
models for modulus, strength and energy absorption, and 
we compare them with a finite element model. The 
model is two-dimensional based on plane strain as-
sumption. Periodic boundary conditions[12] are imposed 
on the edges of the model. The RVE contains linear 
elastic tablets (modulus Et, Poisson’s ratioC, length L, 
thickness t) which are staggered and overlap the tablets 
of the next layer by a length L0. The tablets are bonded 
by thin interfaces of a softer and more ductile material 
(tensile modulus Ei, shear modulus Gi, shear strength �i, 
thickness ti). The ends of the tablets also meet along 
vertical lines called junctions. The junctions are free 
surfaces in the first case we considered, whereas in the 
second case the interface material is also present at the 
junctions (“cohesive junctions” case). The model was 
then placed in uniaxial tension along the direction of the 
tablets. This RVE therefore captures the load transfer 
from tension in the tablets to shear at the interface, and 
the tensile load carried at the junctions for the models 
with cohesive junctions. 

A large number of finite element models of the RVE 
with various combinations of structural parameters were 
automatically generated using MATLAB (Version 
R2009a, The MathWorks Inc.) and executed using 
ABAQUS (Version 6.8-3, ABAQUS, inc. Providence RI). 
Nacre served as model for the properties used in these 
models. Each tablet was modeled as linear elastic (Et = 
100 GPa[12] and C = 0.2, a typical value for ceramics and 
minerals), with linear plane strain elements. Plane strain 
was chosen to be consistent with a thick slab of material, 
theoretically infinite in the out-of-plane direction. While 
quantitative results may be slightly different if plane 
strain assumption is changed to plane stress, the qualita-
tive effects of the microstructure on the overall per-
formance will follow the same trends. To model the in-
terfaces, cohesive elements were inserted between the 
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Fig. 3  Schematic of a RVE showing the microstructure dimen-
sions (adapted from Refs. [21,22]). 
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tablets using the ABAQUS user element subroutine UEL. 
The associated cohesive law was previously used for 
natural nacre[12]: A short linear elastic region was fol-
lowed by a long plateau at a constant strength (�i = 25 
MPa) and a progressive decrease down to complete ex-
tinction of the cohesive force at 600 nm (Fig. 4a). Note 
that the behavior of the thin interface is assumed to be 
dominated by stretching of molecules[32] which behave as 
independent springs across the interface[12]. In order to 
avoid the interpenetration of the tablets, a compressive 
traction-separation law was superimposed[12]. The mod-
els were periodic in both the longitudinal and transverse 
directions, while an average strain was imposed along the 
longitudinal direction to simulate uniaxial tension along 
the directions of the tablets. Fig. 4b shows a typical 
stress-strain response of the RVE, which, as expected, 
closely follows the shape of the cohesive law. The initial 
linear elastic region (elastic modulus Ec) is followed by a 
long plateau (strength �s). Sixty finite element models 
were constructed to explore various combinations of L/t 
(from 4 to 24) and L0/L (from 0.05 to 0.5). 
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Fig. 4  (a) Cohesive law at the interface[12], the horizontal axis was 
broken so that the end of the elastic region (0.9 nm) and the failure 
openings (250 nm and 600 nm) appear on the figure; (b) Stress 
strain response of an example RVE where L/t = 20, L0/L = 0.2, ti/t 
= 0.06, Ei/Gi = 2, Ei/Et = 0.015 and � = 0.2. 

 

2.1  Elastic modulus 
Kotha et al. [22] derived the elastic modulus for this 

RVE, but only for the case where L0 = L/2 and with free 
junctions. Here we used a more general expression that 
includes cases where 0 ) L0 ) L/2 and that for cohesive 
(k = 1) or free (k = 0) junctions[50]. The modulus Ec of the 
RVE is given by 
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The maps of modulus are displayed in Fig. 5 for a 
fixed value of ti / t = 0.06 (i.e. fixed mineral concentra-
tion). The modulus increases with the aspect ratio L/t 
and overlap ratio L0/L. Interestingly the modulus be-
comes almost independent of the overlap ratio when the 
overlap ratio becomes greater than 0.25. Comparing  
Fig. 5a and 5b, the addition of cohesive junctions clearly 
stiffens the composite by about 75% to 100%. The 
agreement between analytical and finite element results 
is reasonable, the two predictions being the closest for 
smaller tablet aspect ratios. The analytical prediction for 
the modulus therefore provides an adequate guideline to 
design a staggered composite for stiffness.  
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Fig. 5  Maps of elastic modulus from the analytical and finite 
element models for various combinations of L/t and L0/L (ti / t = 
0.06, Ei / Gi = 2, Ei / Em = 0.015 and � = 0.2), (a) free junctions, (b) 
cohesive junctions. 
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2.2  Strength 
The tensile strength was assumed to be reached 

when the junctions and the overlap region of the inter-
face have entirely failed, which is consistent with failure 
criteria used for ductile engineering materials. Assuming 
a constant strength in the post-yield region, the shear 
stress at the interfaces and the tensile stress at the junc-
tions are uniform, and the strength of the composite 
S is 
found by applying a simple force balance 

0 ,s i
L k
t

� � � �� �� �� �
                              (2) 

where k = 1 is for the case of cohesive junctions and k = 
0 is for the case of free junctions. The tensile strength 
and the shear strength of the ductile material are as-
sumed to be the same, consistent with a model of the 
adhesive consisting of springs in parallel[12]. 

Fig. 6 shows the predicted tensile strength of the 
composite with free and cohesive junctions. The pre-
dictions between analytical and finite element models 
are identical, which indicates that Eq. (2) is exact. 
Similar to modulus, the strength increases with the as-
pect ratio and/or the overlap ratio of the tablets. Cohe-
sive junctions also strengthen the composite, as indi-
cated by Eq. (2) and Fig. 6. 
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Fig. 6  Normalized tensile strength of the composite for various 
combinations of L/t and L0/L (ti / t = 0.06, Ei / Gi = 2, Ei / Em = 0.015 
and � = 0.2), (a) free junctions (dotted lines) and (b) cohesive 
junctions (solid lines). 

 
2.3  Energy absorption 

The advantage of the staggered structure is to 
combine stiffness, strength and energy absorption si-
multaneously. The energy absorbed per unit volume in 
the organic interface can be found from the area under 
the cohesive law divided by the thickness of the interface. 

Since softening leads to strain localization, practically 
no energy can be dissipated by the interface in the sof-
tening region. For this reason we only consider the area 
under the cohesive law up to the interface separation at 
softening 6s. Neglecting elastic deformations this cal-
culation leads to 
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In turn, the energy per unit volume absorbed by the 
staggered structure can be written (neglecting elastic 
deformations and without considering the softening 
region): 

,C s sU � �2                                 (4) 

where �s is the strain at softening. Using �s  2 6s /L and  
Eq. (2) leads to  
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Eq. (5) shows that the density of energy absorbed 
by the composite is smaller than that of the organic 
material. For example, for the typical values L/t = 20, 
L0/L  = 0.2, ti/t = 0.06 and k = 1 (cohesive junctions), one 
finds UC/Ui 2 0.015. Eq. (5) shows that for a given en-
ergy absorption at the interface, larger energy absorption 
for the composite may be achieved by increasing the 
volume fraction of organic material (higher ti/t) and 
increasing the overlap ratio L0/L. For the case with co-
hesive junctions (k = 1), small aspect ratios L/t lead to 
higher energy absorption for the composite. 

3  Tablet fracture 

The models developed above show that increased 
overlap ratios L0/L lead to higher strength, higher 
modulus and higher energy absorption. However, this 
also leads to higher tensile stress carried by the tablets, 
which may lead to their premature fracture. This failure 
mode is highly detrimental and should be avoided, be-
cause it is essential that the interfaces yield in order to 
make the most of their ductility and energy absorption 
capabilities.  

For the failure analysis, regions of high tensile 
stresses were sought using finite elements. Fig. 7a shows 
that the tensile stresses in the tablets are the highest near 
the ends of the junctions, largely dominating any other 
region in the tablets. The accuracy of the analysis was 
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refined by refining the mesh in these areas, which led to 
ever increasing stresses with no apparent mesh conver-
gence. This indicates that these points are actually stress 
singularities (infinite stresses), and that the junction 
(whether free or cohesive) act as crack-like features in 
the structure. 

Fig. 7b shows the profile of the axial stress ahead of 
a crack-like junction. The stress is infinite at the tip of 
the junction (x = 0) and rapidly decreases for x > 0. The 
three plots clearly show the effect of the interfaces on the 
stress distribution within the tablets. In the case of rigid 
interfaces (i.e. the tablets are fused along their longer 
interfaces, but not at the junctions) the stresses for x > 0 
are consistent with the asymptotic field for a mode I 
crack[51]. When softer interfaces (i.e. lower �i) are in-
troduced, the stresses still display a singularity at x = 0, 
but the magnitude for x > 0 greatly decreases. Overall 
the stresses are more uniformly distributed across the 
thickness, and as a result become higher than the rigid 
interface case for x /t > 0.1. Interestingly, Chan et al.[37] 
studied a similar effect in multilayered ceramics bonded 
by ductile interfaces. Yielding of the interface, however, 
limits the amount of shear transferred and reduces the 
stress intensity factor in the tablets. In this context the 
ductile interfaces act as a “soft wrap” around each tablet, 
protecting them from excessive stresses since the highest 
possible stresses transmitted to the tablets are limited by 
the low strength of the interface. The stress singularity 
and the crack-like behavior of the junctions imply that a 
fracture mechanics criterion should be used to predict 
the brittle failure of the tablets. In this configuration the 
J-integral is path-dependant, because the tip of the 
junction intersects a softer interface, and the local stress 
field deviates slightly from a square root singularity. 
Nevertheless, fracture must be predicted in this case, and 
therefore the stress profiles ahead of the tip (Fig. 6b) 
were fitted with the asymptotic solution for a mode I 
crack[51] in order to estimate KI, the mode I stress inten-
sity factor in the tablets. The resulting normalized stress 
intensity factor � as a function of L0/t is shown in Fig. 8. 
The case of rigid interfaces (i.e. fused tablets) corre-
sponds to the geometrical factor � for the case of a 
two-dimensional array of cracks. For small L0/t the 
cracks are close enough to interact and the stress inten-
sity factor is magnified. For L0/t > 2 the system reduces 
to non-interacting one-dimensional arrays of collinear 

cracks for which the theoretical geometrical factor is 
1.13[52]. Fig. 8 shows that when soft interfaces are in-
troduced the decrease of stress intensity factor is sig-
nificant for all values of L0/t, which demonstrates how 
soft interfaces provide a soft, protective wrap around the 
tablets. The stress intensity is even further reduced by 
introducing cohesive junctions, which exert closure 
tractions on the crack-like junctions and shield the tab-
lets from remotely applied stresses. For L0/t > 3, how-
ever, the normalized stress intensity factor is almost 
identical with free and cohesive junctions. 

The stress intensity factor from Fig. 8 can be pre-
dicted with the following simple equations 

0.58I iK t��   (free junctions),                    (6) 
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Fig. 7  (a) Contour plot of the axial stress in the RVE with flat 
tablets and free junctions, plotted at the beginning of the plateau 
region, when the applied stress is the highest (L0/t = 20, L0/L = 0.2, 
ti /t = 0.06, Ei /Gi = 2, Ei /Et = 0.015 and � = 0.2); (b) axial stress 
distribution ahead of the junction, normalized by the applied stress 
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Fig. 8  Normalized stress-intensity factor in the tablets as function 
of L0/t. 
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Note that mode I fracture is expected to be promi-
nent for the tablets because of their brittleness, and 
therefore only this mode is considered to predict their 
failure. Eqs. (6) and (7) are extremely useful to deter-
mine the conditions that will prevent the fracture of the 
tablets (i.e. KI KIC , the fracture toughness of the 
tablets). This condition leads to  

0.58 IC

i

Kt
�

(   (free junctions),          (8) 

0

0

/
0.58

/ 1
IC

i

L t Kt
L t �

! "
(# $�% &   (cohesive junctions).   (9) 

Eqs. (8) and (9) were arranged so that the left hand 
sides contain information on microstructure while the 
right hand sides contain information on mechanical 
properties. From Eq. (8) it becomes evident that the 
fracture of the tablets can be prevented by using tough 
(high KIC) and/or thin (small t) tablets, in combination 
with weak interfaces (low �i). Introducing cohesive 
junctions is also beneficial, but only if L0/t is smaller 
than about 3. 

4  Larger RVEs with statistics 

While small RVEs are convenient to estimate basic 
mechanical properties, actual biological structures can 
display significant variations in microstructures, which 
naturally generates heterogeneities, weaker regions and 
stress concentrations. In this section the effect of statis-
tics on the properties and micromechanics of the stag-
gered structure is examined. Fig. 9 shows a large RVE of 
a staggered microstructure which was generated using 
Matlab (The MathWorks, Inc, USA). The model is 
composed of tablets with uniform thickness t = 0.5 �m 
but with lengths following a normal distribution with 
mean L = 10 �m and standard deviation �L = 1 �m. The 
tablets were shifted from one layer to the next in order to 
generate a columnar arrangement with an overlap ratio 
of L0/L=0.25 (Fig. 9). As a result of the statistical varia-
tions on tablet length, the overlap between the tablets 
also follows a statistical distribution. Cohesive elements 
with behavior similar to the previous section (Fig. 4a) 
were inserted at the interface and junctions. A uniaxial 
tension was then imposed on the RVE and simulated 
using ABAQUS on a supercomputing cluster 
(CLUMEQ, Montreal, Canada). Because of the sto-
chastic nature of the model, different small RVEs ran-

domly generated could lead to different overall proper-
ties. For this reason, the size of the RVE was increased 
until several randomly generated models led to the same 
overall stress-strain curve. Sufficiently large RVEs 
could therefore properly capture the statistic of the mi-
crostructure.  
 

Lx= 20 inclusions

 
Fig. 9 Example of a large RVE with 20 inclusions by 100 layers 
where the inclusion lengths are normally distributed with mean 
and standard deviation L*= 10D1 �m and where the inclusions are 
stacked into columns with an overlap L0/L = 0.25. 
 

In addition to the columnar arrangement, another 
type of structure was obtained by modifying the algo-
rithm used for model generation. The size of the inclu-
sions was unchanged, but the overlap was achieved by 
randomly shifting the tablets from one layer to the next. 
This procedure led to a sheet arrangement, where the 
overlap L0/L follows a uniform distribution: 0� L0/L �0.5. 
The average overlap ration was therefore L0/L = 0.25, the 
same as for the columnar case. 

Fig. 10a shows the resulting stress-strain curve, 
which is similar in overall shape to the small RVE, 
where a linear elastic region is followed by inelastic 
deformation. The statistics, however, generates more 
“rounding” of the curve compared to those from the 
small RVE. The modulus for the columnar and sheet 
large RVE models is the same, and it is consistent with 
the value predicted by a small RVE model (E = 89 GPa). 
The strength is slightly lower because failure occurs 
along the weakest cross-section in the model. In that 
sense, introducing statistics inevitably decreases the 
strength of the structure. The strain at failure (�f  = 0.0035) 
is also much smaller than the value predicted by a small 
RVE model (�S 2 0.025 for softening and �u 2 0.06 for 
ultimate failure). As soon as the strength of the model is 
reached, the inelastic deformations in the large RVE 
localize in a band perpendicular to the direction of 
loading (“columnar failure”, Fig. 10b). Failure strain and 
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energy absorption are therefore expected to be small for 
this configuration. The sheet model, which shows simi-
lar modulus, strength and strain at failure compared to 
the columnar model, follows a “stair” failure mode 
where the localization is more jagged because of the 
combination of high overlap and local shear stresses (Fig. 
10c, as described and modeled in Ref. [13]). 

Strain localization can be delayed by incorporating 
hardening in the cohesive law or by geometrical means 
through incorporating waviness to the tablets. Based on 
the two large RVEs described above a tablet waviness 
following a normal distribution was introduced using 
piecewise half-sinusoidal function with an amplitude of 
75 D 15 nm ( a = a0 ± �a) and a wavelength of 10.0 D 1.5 
�m (� = �0 ± ��). 
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Fig. 10  (a) Comparison between the tensile response of the large 
RVEs with columnar and random (sheet) arrangements. Both 
configurations have an average overlap ratio of L0/L = 0.25.  
(b and c) Plots of the failed cohesive elements at a strain �xx = 
0.0025; (b) columnar with L0/L = 0.25; (c) random (sheet). Both 
configurations have an average overlap ratio of L0/L = 0.25. 

Fig. 11 shows the resulting stress-strain curves with 
snapshots of the corresponding microstructures. Inter-
estingly the modulus and initial strength remained un-
changed with the inclusion of the waviness. However, 
the post yield region showed that the strain hardening 
and localization observed for the flat tablet case was 
delayed. In the post yield region, the inelastic strains are 
more evenly distributed in the models (Fig. 12), which 
has implication for overall energy absorption, and also 
for the formation of large “process zones” of energy 
dissipation ahead of large cracks[11]. 
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Fig. 11  Tensile response for columnar and sheet models with 
statistics in the length and waviness of the inclusions. 
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Fig. 12  Contours of the horizontal displacements ux (along the 
loading direction) for (a) columnar and (b) sheet models. (c) 
Displacements ux along the lower boundary of the models show 
different failure patterns (each step on this plot corresponds to a 
pair of inclusions separating). All data plotted at 0.35% macro-
scopic strain[13]. 



 
Journal of Bionic Engineering (2012) Vol.9 No.4 454 

 

5  Discussion and conclusion 

Natural materials demonstrate how staggered 
composites can lead to attractive combinations of stiff-
ness, strength and toughness. A high performance mate-
rial like nacre is made of relatively poor ingredients and 
largely relies on the staggered arrangement of the 
structure to achieve attractive combinations of stiffness 
and toughness. The staggered structure is currently not 
used to its full potential in engineering materials, and the 
present study provides elements of designs for this 
powerful arrangement. Inclusions with high aspect ratio 
and with high overlap lead to the increase in the strength 
and modulus. These properties can be further enhanced 
by incorporating cohesive junctions at the ends of the 
inclusions. The overall tensile strength that can be 
achieved is, however, limited by the fracture of the in-
clusions. Eqs. (5) and (6) show the “soft-wrap” effect 
which protects the inclusions from excessive stresses. 
The interface must be sufficiently weak in order to 
achieve this effect. Slight statistical variations within the 
microstructure do not have a significant impact on 
modulus, but slightly lower strength and significantly 
decrease the strain at failure compared to the predictions 
from small RVEs. This demonstrates how the prediction 
of small RVEs can be deceived, because they are not 
capable of predicting localization. The potency of tablet 
waviness to delay localization is also highlighted in 
these models. Recent works have shown that nacre-like 
artificial structures can lead to interesting mechanical 
properties[42]. The unified guidelines presented here can 
be utilized to optimize the design of similar staggered 
composites with high stiffness, strength and toughness, 
with great potential for actual engineering applications. 
The models can also be refined to incorporate mixed 
fracture modes at the interfaces and how they impact 
strength, energy dissipation and the fracture of the tab-
lets themselves. Finally, structural hierarchy is well 
documented for other natural staggered composites, 
such as bone for example[53], and recent studies show the 
profound impact of hierarchy on toughness[10,29,54]. As 
such, the benefits of the staggered structure can be in-
corporated over several hierarchical length scales of the 
artificial designs, thereby achieving even further im-
provements in material properties. 
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