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Natural materials such as nacre, bone, collagen and spider silk boast unusual combinations of stiffness,
strength and toughness. Behind this performance is a staggered microstructure, which consists of stiff
and elongated inclusions embedded in a softer and more deformable matrix. The micromechanics of
deformation and failure associated with this microstructure are now well understood at the ‘‘unit cell’’
level, the smallest representative volume for this type of material. However, these mechanisms only
translate to high performance if they propagate throughout large volumes, an important condition which
is often overlooked. Here we present, for the first time, a model which captures the conditions for either
spreading of deformations or localization, which determines whether a staggered composite is brittle or
deformable at the macroscale. The macroscopic failure strain for the material was calculated as function
of the viscoplastic properties of the interfaces and the severity of the defect. As expected, larger strains at
failure can be achieved when smaller defects are present within the material, or with more strain
hardening at the interface. The model also shows that strain rate hardening is a powerful source of large
deformations for the material as well, a result we confirmed and validated with tensile experiments on
glass–polydimethylsiloxane (PDMS) nacre-like staggered composites. An important implication is that
natural materials, largely made of rate-dependent materials, could rely on strain rate hardening to
tolerate initial defects and damage to maintain their functionality. Strain rate hardening could also be
harnessed and optimized in bio-inspired composites in order to maximize their overall performance.

� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

High-performance natural materials such as nacre, teeth, bone
and spider silk boast outstanding combinations of stiffness,
strength and toughness which are currently not possible to achieve
in engineering materials. For example, dragline silk from spiders
surpasses the strength and toughness of the most sophisticated
engineering steels [1], while collagenous tissues such as bone, ten-
dons or fish scales display powerful toughening mechanisms over
multiple length scales [2,3]. Nacre from mollusk shells is 3000
times tougher than the brittle mineral it is made of [4], and it is
the toughest materials amongst other mollusks shell materials [5]
and other highly mineralized stiff biological materials such as tooth
enamel [6]. An examination of the structure and mechanics of these
materials reveals a ‘‘universal’’ structural pattern consisting of stiff
and hard inclusions embedded in a softer but more deformable
matrix. The inclusions are elongated and are parallel to each other,
and aligned with the direction of loading (Fig. 1). This structure is
particularly well suited to uniaxial or biaxial tensile loads [7]. In
one-dimensional fibers and ‘‘ropes’’ such as spider silk or tendons,
uniaxial tension is the only loading configuration. More ‘‘bulky’’
materials, such as nacre and bone, undergo multi-axial loading
modes but, since these materials are quasi-brittle, tensile stresses
are always the most dangerous stresses. Increasing tensile
strength is therefore critical to the performance of these materials.
The fundamental mechanism of tensile deformation is the gliding
or sliding of the inclusions on one another. In this mechanism the
inclusions remain linear-elastic, but the interface dissipates a large
amount of energy through viscous deformation. The resulting
stress–strain curves display relatively large deformation before
failure [8,9] and, as a result, the material can absorb a tremendous
amount of mechanical energy (area under the stress–strain curve).
Energy absorption is a critical property for materials like bone,
nacre and spider silk, which must absorb energy from impacts
without fracturing. Interestingly, the staggered structure has
recently been shown to be the most efficient in generating opti-
mum combinations of stiffness, strength and energy absorption
[10,11].
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Fig. 1. Examples of staggered composites in nature: (a) nacre, (b) bone, (c) spider silk.

Fig. 2. Strain concentration and localization in staggered composites leads to brittle
behavior. Spreading of deformation leads to higher strain and energy absorption
(which generates toughness).
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The sliding mechanism of the inclusions was observed
experimentally in nacre and bone using direct imaging methods
or X-ray diffraction [8,12,13]. This mechanism was also captured
in models using closed-form solutions and finite elements
[10,14–17]. These models can predict the modulus, strength and
energy absorption as functions of the properties of the constituents
and the morphology of the microstructure (aspect ratio of the
inclusions, arrangement and interface thickness). Materials such
as nacre and collagen fibrils display remarkable periodicities at
the nano- and microscales, and therefore the general approach
for micromechanical models is usually based on the mechanical
response of a periodic unit cell. This ‘‘representative volume ele-
ment’’ (RVE) approach greatly simplifies computations, and it is
based on the assumption that the mechanics and properties of
the unit cell are representative of the entire material. However,
the powerful mechanisms observed at the unit cell level can trans-
late to the macroscale only if these mechanisms spread over large
volumes within the material, which requires some type of harden-
ing mechanism (Fig. 2). When a material is deformed, nonlinear
deformations may accumulate near initial defects, flaws and other
stress concentrators within the material. A hardening mechanism
ensures that further deformations within these regions require
an increasing amount of stress, so that other regions of the material
may also start accumulating nonlinear deformations. Hardening
mechanisms therefore promote the spreading of nonlinear defor-
mations, and maximize the effect of beneficial mechanisms such
as energy dissipation. Without some type of hardening mecha-
nism, the benefits of nonlinear deformations would be confined
to small volumes within the material. In this localization scenario,
a unit cell taken within the defect region behaves differently from a
unit cell outside of the defect region, so that the assumption of the
unit cell being representative of the material breaks down. In
effect, high strain concentration and early localization lead to small
macroscale strain and to a brittle mechanical response for the
material (Fig. 2).

The sliding mechanism of the inclusions on one another also has
implications in terms of fracture mechanics. If the interfaces
between the inclusions are sufficiently weak, propagating cracks
will be deflected and will circumvent the inclusions. The subse-
quent pullout of the inclusions produces toughening by way of
crack bridging, the tablets exerting a closure force on the crack
faces. In a material like nacre, however, it was demonstrated that
bridging only provides a small fraction of the overall toughness
[11], a larger portion of toughening coming from the spreading of
nonlinear deformations over large volumes. This mechanism dissi-
pates a tremendous of energy, which contributes to the toughness
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of the material [11]. Here again, the formation of a large process
zone around propagating cracks relies on some type of hardening
mechanism in the material. In summary, even if the mechanisms
of tablet sliding is optimized and produces attractive properties at
the level of the unit cell, these mechanisms will only translate to
a poor material if they do not propagate throughout the material.

In natural nacre, an important mechanism for the spreading of
nonlinear deformations is associated with the microscopic wavi-
ness of the inclusions, which generates progressive locking and
‘‘geometric strain hardening’’ at the local scale [16]. However, in
other material systems, such as collagen fibrils and spider silk,
the inclusions are relatively flat and do not display any waviness,
and the origin of hardening and large deformations in these mate-
rials therefore remains elusive. Some of the proteins present at the
interfaces of nacre or bone show remarkable deformation mecha-
nisms and large deformations [18,19], but it is unclear whether
these proteins can produce enough strain hardening to translate
to large deformations at the macroscale. What is known, however,
is that that the proteins and biopolymeric matrices found in natu-
ral materials are rate sensitive, exhibiting viscoelastic and visco-
plastic responses [20–22].

In this work we explore the idea that strain rate hardening at the
interfaces in biological materials can be a powerful mechanism for
generating large inelastic deformations and high material perfor-
mance. Strain rate hardening materials require more stress to
deform at higher rates of deformations, with implications on
spreading deformation which are similar to strain hardening. When
a concentration of strain appears at initial defects, the rate of defor-
mation increases faster than in the rest of the material, which in
turn requires more stress. As a result, other regions of the material
will also accumulate nonlinear deformations, which then spread
over large volumes. Strain rate hardening has already been demon-
strated, theoretically and experimentally, to be a potent mechanism
to delay necking instabilities in ductile metals [23–25].

In this work, the conditions for large deformations in staggered
composites are derived, incorporating the effects of strain harden-
ing and strain rate hardening at the interfaces. The effects of strain
rate hardening are then illustrated and verified with a ‘‘model
material’’ made of staggered hexagonal glass plates bonded by an
ultraviscous Newtonian fluid.

2. Representative volume element modeling: viscoplastic
response

The shear-tension model shown on Fig. 3, based on shear lag
models for composites [26], is typically used to predict the
mechanical response of biological and biomimetic composites
[14,15]. In this two-dimensional model, the inclusions (referred
to hereinafter as ‘‘tablets’’, to be consistent with the terminology
used for nacre) are aligned with the direction of loading, and as a
result they carry stress in tension while the interfaces undergo
Fig. 3. RVE (a) at rest and (b
shear stresses and channel the loads between tablets. For simplic-
ity, we focus on the case where the tablets overlap over half of their
length. The tablets are modeled as linear-elastic and the interface
is modeled as linear elastic or as elastic-perfectly plastic [15]. Here
we consider a more general case where the interfaces are made
of a viscoplastic material with rate dependence which follows
the general constitutive equation [27]:

s ¼ Kcm _cn ð1Þ

In Eq. (1), s and c are the true shear stress and true shear strain
at the interface, and _c denotes the time derivative of the shear
strain, or the shear strain rate. K is the strength index, m is the
strain hardening coefficient and n is the strain rate sensitivity
(K, m and n are material properties). This general model can cap-
ture strain hardening as well as rate effects, and it can capture
the behavior of a large variety of materials, including plastic solids
and rheological fluids. The tablets are typically much stiffer than
the interfaces, and therefore they are modeled as rigid. This
assumption is reasonable, considering that the inclusions in biolog-
ical and biomimetic composites are typically at least one order of
magnitude stiffer than the interface (the assumption of rigid tab-
lets will also be verified in the experimental section). A direct
implication of this assumption is that the distribution of shear
stress and shear strain along the interface is uniform [28], and that
the only non-zero strain at the interface is the shear strain c. As the
tablets slide and pull out, and as the relative sliding of the tablets
u/L increases, the load-carrying surface of the tablets decreases.
The viscoplastic interfaces flow to accommodate this effect and
maintain the cohesion between tablets, albeit over a reduced
length L�u (Fig. 3b). This geometric softening is similar to the
reduction of the load-bearing area from plastic deformations
occurring in metals under tension.

The overall tensile stress is then simply given by considering
the equilibrium of a half-tablet. The tensile force carried by each
the tablet is:

F ¼ 2ðL� uÞs ð2Þ

where F is the tensile force, 2L is the length of the tablet, u is the
sliding distance at each interface and s is the shear stress transmit-
ted through each interface. The macroscopic tensile stress per unit
width of the composite is then

r ¼ F
2ðtt þ tiÞ

ð3Þ

where tt and ti are the thicknesses of the tablets and interfaces.
Using the volume fraction of the tablets / ¼ tt

ðttþtiÞ
(0 < / < 1), the

overlap ratio of the tablets q ¼ L
tt

(q > 0)) and the average shear
stress per unit width at the interface s ¼ F

L, Eqs. (2) and (3) become:

r ¼ /q 1� u
L

� �
s ð4Þ
) deformed in tension.
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Meanwhile, the deformation of the RVE can be easily captured,
recalling that tablets are considered rigid and that the interfaces
are in a state of uniform simple shear. The true shear strain is given
simply by:
c ¼ u
ti

ð5Þ

In order to characterize the tensile deformation of the RVE, we
use the engineering strain definition (true strains could have also
been used, without changing the main results of the model). Since
the tablets are assumed to be rigid, the tensile strain of the RVE is
then written as:
e ¼ u
L
¼ ti

L
c ¼ 1� /

/

� �
1
q

c ð6Þ

Combining Eqs. (4) and (5), we can also write the stress as:
r ¼ /q 1� eð Þs ð7Þ

To model the tensile response of a material deformed at a con-
stant rate, we write the strain as e = _et, where _e is the constant
macroscopic tensile strain rate imposed on the material and t
denotes time. Combining Eqs. (1), (6) and (7) gives the general
mechanical response of the RVE:
r ¼ K/
/

1� /

� �mþn

qmþnþ1ð1� eÞem _en ð8Þ

Eq. (8) shows that macroscale tensile stress results from two
competing effects: an intrinsic material effect where the interface
produces more stress as deformation is increased and a geometri-
cal softening effect where the tablets lose contact as deformation
increases. To illustrate this result, Fig. 4 shows the qualitative
response of the RVE with three different types of materials at the
interface. For the cases where m = 0 (no material strain hardening),
the geometric softening effect always prevails and the stress
decreases linearly with strain until the tablets lose contact at
e = 1. This case includes rate-independent plastic solids (n = 0)
and viscous fluids (for n > 0). When strain hardening is present at
the interface (m > 0 and n P 0), strain hardening at the RVE level
initially prevails until a maximum value for stress, after which soft-
ening from the geometric effects overcome material effects. This
case corresponds to a strain hardening solid with rate dependence
(if n > 0) or with rate-independent plasticity (if n = 0).
Fig. 4. Qualitative response of an RVE with different types of materials at the
interface.
3. Modeling real materials: strain concentration and
localization at pre-existing defects

The model presented in the previous section assumes that a sin-
gle microstructural element, or unit cell, is representative of the
entire material. This assumption is typically made to model nacre,
bone and other similar natural or biological materials [14,15]. In
reality, these materials contain defects which can raise stresses
locally and generate strain concentrations, which may eventually
turn into localization, large cracks and macroscopic brittle behav-
ior. In the event where strain concentration or localization occurs,
using a simple unit cell as an RVE is not appropriate since the
deformations in the defect region have become significantly larger
than anywhere else in the material. Localization and failure may be
delayed by strain hardening, as seen in the previous section, but
the single-cell RVE model also shows how softening rapidly pre-
vails when large deformations are considered. In this section, we
capture the strain concentration at defects by considering a larger
RVE which is made of a chain of N unit cell models, where N� 1
for a typical material (Fig. 5). The RVE contains a defect, which
we model as a region where the overlap between the tablets is
smaller than everywhere else in the material (L0 < L). The RVE is
periodic along the vertical direction (across the direction of the
tablets) so that the defect it contains actually represents a line
defect within the material. This approach to capturing the effect
of strain concentration is similar to models previously developed
to predict the onset of instability due to necking in metals
[23,24]. As a result of the defect, stretching the model by a macro-
scopic strain e will result in tensile strains e0 > e in the defect
region (Fig. 5b). When stretching is continued, the material eventu-
ally fails at the defect (Fig. 5c), where the tablet is entirely pulled
out and e0 = 1. The strain in the rest of the material is then emax < 1,
and represents its macroscopic strain at failure emax. emax can
therefore be used as a measure of the brittleness or ductility of
the material. The objective of this model is now to predict emax

as a function of the severity of the defect and of the material
behavior at the interface.

We first define the overlap ratios:

q0 ¼
L0

tt
and q ¼ L

tt
ð9Þ

The relative difference of overlap lengths between the defect
and the rest of the material provides a non-dimensional measure
of the severity of the defect, which is written:

g ¼ q� q0

q
with 0 6 g 6 1 ð10Þ

In Eq. (10), g ¼ 0 represents a material with no defect and g ¼ 1
represents the extreme case where the defect splits the material
before it is even loaded. For continuity of tensile stress between
the defect and the rest of the material, one must have:

r0 ¼ r or ðL0 � u0Þs0 ¼ ðL� uÞs ð11Þ

where s0 is the shear stress at the interface in the defect region and
s is the shear stress in the rest of the interfaces. The engineering
tensile strains in each of the regions are given by:

e0 ¼
u0

L0
and e ¼ u

L
ð12Þ

Combining Eqs. (11) and (12) gives:

ð1� e0Þs0 ¼
1

1� g
ð1� eÞs ð13Þ

Note that initially, the deformations are small and e � e0 � 0, so
that s0 � 1

1�g s, and therefore s0 P s. As expected, yielding and flow
will therefore occur first at the interfaces located at the defect.



Fig. 5. (a) Chain of N unit cells with overlapcontaining an initial ‘‘defect’’ where the overlap is L0 < L; (b) under tension, the strain is higher at the location of the defect; (c)
eventually the model fails at the defect (e0 = 1), while the rest of the material undergoes a maximum strain emax < 1.
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In the absence of strain hardening or strain rate hardening (perfect
plasticity), only the defect region will yield and the material will
localize at the central region of the model. This is a detrimental
case which leads to a brittle mechanical response. We now exam-
ine the conditions necessary to delay or even suppress localization
in the presence of the defect. Following the previous section, the
interfaces are modeled with a viscoplastic hardening material:

s ¼ Kcm _cn

s0 ¼ Kcm
0 _cn

0

ð14Þ

with the shear strains and strain rates at the interfaces defined as:

c ¼ u=ti

c0 ¼ u0=ti
ð15Þ

These can also be written:

c ¼ /
1�/ qe

c0 ¼ /
1�/ q0e0

(
and

_c ¼ /
1�/ q _e

_c0 ¼ /
1�/ q0 _e0

(
ð16Þ

Combining Eqs. (10), (13), (14) and (16) gives:

ð1� eÞem _en ¼ ð1� gÞmþnþ1ð1� e0Þem
0

_en
0 ð17Þ

In order to eliminate the strain rate terms, we use _e ¼ de
dt and

_e0 ¼ de0
dt to obtain the incremental form:

ð1� eÞ1=nem=nde ¼ ð1� gÞ
mþnþ1

n ð1� e0Þ1=nem=n
0 de0 ð18Þ

Eq. (18) is then integrated using the initial conditions e(0) and
e0(0) = 0:Z e

0
ð1� sÞ1=nsm=nds ¼ ð1� gÞ

mþnþ1
n

Z e0

0
ð1� sÞ1=nsm=nds ð19Þ

Eq. (19) can be used to compute the tensile strain e in the bulk
of the material as a function of the tensile strain e0 in the defect
region. Note that for the extreme case g = 0 there is no defect
and Eq. (19) correctly predicts e = e0. On the other hand, g = 1 cor-
responds to the case where the defect splits the material in half
before any load is applied, and in this case Eq. (19) predicts e = 0.
Finally, we note that Eq. (19) does not contain any rate-dependent
terms, with the important implication that the strain at failure is
rate independent. Eq. (19) was integrated numerically to compute
the tensile strain in the bulk of the material e as a function of the
strain in the defect region e0, and Fig. 6 shows the effects of m, n
and g on the evolution of strains. Failure occurs in the defect region
and therefore when the material is stretched to failure the strain at
the defect goes from e0 = 0 (initial configuration) to e0 = 1 (failure at
the defect region). The results show that in the early stages of
deformation the strains in the defect and in the rest of the material
are the same, but they eventually diverge from one another with
e < e0 as the deformations localize. Fig. 6a shows the response of
the material in the presence of a relatively large defect (g = 0.1)
and with strain rate hardening (n = 0.1). As expected, the strain
at failure increases with interfaces with more strain hardening.
Fig. 6b shows that strain rate hardening has a similar effect on dis-
tributing strains and can be a powerful approach to increasing the
ultimate strain of the material. This result will be further devel-
oped and discussed in the rest of the article. Finally, Fig. 6c shows
the effect of the severity of the defect g. For g = 0 the strain is uni-
form throughout the material (no strain concentration) and e = e0.
However, the ultimate strain for the material drops significantly
when a defect is introduced: the model shows that, for the set of
material properties shown here (m = n = 0.1), g as small as 10�4

results in a �50% loss of strain at failure for the material.
The maximum value of e therefore represents the strain at fail-

ure for the entire material, and can be used to assess whether the
material is brittle or ductile. Fig. 7 shows emax as a function of m
and n and for a relative defect size g = 0.1 (results for other defect
sizes are not shown here, but they show the same trends as the
functions of m and n).

For m = 0 and n = 0, localization is immediate and the material
does not produce any deformation (emax = 0), which corresponds to
brittle behavior. The ultimate strain can be increased by increasing
the strain hardening and/or by increasing strain rate hardening at
the interface, the highest strains at failure occurring when both
mechanisms operate simultaneously. High strains at failure can
be obtained, as expected, from pure strain hardening (m > 0,
n = 0) but also, more unexpectedly, from pure strain rate harden-
ing (m = 0, n > 0). This result implies that an interface behaving
as a viscous rheological fluid may produce sufficient strain rate
hardening to spread deformations in the presence of defects. The
values m = 0 and n > 0 correspond to a viscous fluid, which is dilat-
ant for n > 1 and thinning for n < 1. The case m = 0 and n = 1 repre-
sents a Newtonian fluid where K is the viscosity. Interestingly, if
m = 0, a closed form solution for the ultimate strain can be
obtained from (17):



Fig. 6. Tensile strain in the material as function of strain in the defect region: effects of m, n and g.

Fig. 7. Ultimate strain as a function of m and n and for g = 0.1.
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ð1� e0Þ _en
0 ¼

1

ð1� gÞnþ1 ð1� eÞ _en ð20Þ

which, after some manipulations, can be written as:Z e0

0
ð1� tÞ1=ndt ¼ 1

ð1� gÞ
nþ1

n

Z e

0
ð1� tÞ1=ndt ð21Þ

Straight integration gives:

e ¼ 1� 1� ð1� gÞ
nþ1

n 1� ð1� e0Þ1þ1=n
h i� � n

nþ1 ð22Þ

The material fails when e0 ¼ 1 and therefore the maximum
strain in the material is:

emax ¼ 1� 1� ð1� gÞ
nþ1

n

h i n
nþ1 ð23Þ

Note, again, that emax = 1 only if g = 0 (no defect). For a Newto-
nian liquid with n = 1, Eq. (23) simplifies to:

emax ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2� gÞ

p
ð24Þ

Eq. (24) predicts that a complex rheological behavior is not
required to achieve strain rate hardening, and that a simple
Newtonian fluid at the interfaces is sufficient to spread deforma-
tions over large volumes. For example, Eq. (24) predicts that a
material with Newtonian fluid at the interfaces and containing a
relatively large defect with g = 0.1 has a strain at failure emax = 0.56.
More generally, the results above highlight strain rate hardening as
a powerful mechanism for staggered composites, with profound
implications in the mechanics of natural and biomimetic staggered
composites. Natural materials such as nacre, bone and spider silk
exhibit significant rate dependence, because their interfaces are
rich in rate-dependent proteins [1,13,20,29]. Strain rate hardening
could therefore play a significant role in generating large deforma-
tions and damage tolerance. It is, however, difficult to assess the
role of strain rate hardening in these materials, because elastic
and strain hardening components also contribute to the overall
response. In this work we therefore took another approach to val-
idate the results of our model, where we fabricated and tested a
‘‘model staggered composite material’’. The experiments focused
exclusively on the effects of strain rate hardening, and therefore
a viscous fluid was used as the interfaces.
4. A model composite material with viscous interfaces:
fabrication, testing and modeling

The goal of this section was to confirm experimentally that
strain rate hardening is by itself sufficient to spread deformations
over large volumes and to promote energy dissipation. To this end,
we fabricated a model material with a nacre-like microstructure
made of millimeter size glass tablets held together by a highly vis-
cous polydimethylsiloxane (PDMS) at the interface. An ultrahigh-
molecular-weight PDMS (UHMW-PDMS) was purchased from
Clearco Products Co. (Bensalem. Inc. PA, USA). This PDMS is made
of very long polymeric chains which are not cross-linked, so the
material behaves like a fluid with very high viscosity [24]. PDMS
also has a good chemical affinity with glass, ensuring good adhe-
sion between the PDMS film and the glass tablets. The viscosity
of the UHMW-PDMS was measured using a TA Instruments AR
2000 parallel plate rheometer under a controlled shear rate with
a frequency sweep of 0.02–100 Hz, corresponding to a range of
shear rates of 3 � 10�4–10�1 s�1. The radius of the parallel plates
was 12.5 mm and the gap between the plates was set to 1 mm
for all tests. The tests were performed at a temperature of 25 �C.
The result of the rheological tests (Fig. 8a) show a viscosity in
the 20 kPa s range, with a slight decrease in viscosity with shear
rate (‘‘shear thinning’’ behavior). The viscosity l ¼ s= _c was fitted
with a power law over the strain rates examined (10�3–10�1 s�1),
giving l = 15,345 _c�0:05 (with R2 = 0.84). The parameters for the
constitutive Eq. (1) were then K = 15,345, m = 0 and n = 0.95. The
uncross-linked PDMS therefore exhibits a quasi-Newtonian



Fig. 8. (a) Viscosity as function of shear rate at room temperature (25 �C) for the UHMW-PDMS used here; (b) sample geometry; (c) actual sample mounted in the loading
machine.
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behavior over this range of strain rates. The hard tablets were fab-
ricated by cutting hexagonal patterns in thin borosilicate glass
slides (22 � 40 mm, 150 lm thick) with a three-dimensional laser
engraver (Vitromark, Germany), following a method described in
Ref. [30]. Periodic patterns of hexagons with a size D = 2 mm were
engraved across the width of the glass slide, as shown in Fig. 8b.
The assembly of the model material started by applying a small
amount of PDMS mixed with microscopic glass beads 30–50 lm
in diameter (99 wt.% PDMS and 1 wt.% beads) between two
engraved glass slides. The assembly was pressed together, and
the glass beads in the PDMS ensured that the interface was of uni-
form and well-controlled thickness. Independent experiments (not
shown here) showed that 1 wt.% of glass beads was sufficiently
small not to affect the mechanical response of the interface. The
engraving and the assembly of the two glass slides was designed
to generate overlap between the hexagons of the upper and lower
slides, generating a staggered arrangement for the hexagonal plate
(Fig. 8b and c). Two pinholes were finally cut with the laser at the
ends of the sample, in order to transmit tensile forces with the
miniature tensile testing machine. The final sample (Fig. 8c) con-
sisted of a two-layer nacre-like structure with stiff hexagonal glass
tablets of thickness tt/2 = 150 lm held together by a ti = 45 ± 3 lm
thick layer of UHMW-PDMS. The corresponding tablet concentra-
tion was / = 0.87.

The nacre-like glass–UHMW-PDMS composite samples were
tested under tension using a miniature loading stage (Ernest F. Ful-
lam Inc., Latham, NY) equipped with a linear variable differential
transformer and a 0.2 N load cell. During the test, high-resolution
images of the samples were captured at regular time intervals.
Samples were tested at a ‘‘slow’’ strain rate of _e ¼ 3� 10�4 s�1

and a faster strain rate of _e ¼ 3� 10�3 s�1. Fig. 9a shows a set of
tensile stress–strain curves obtained at these two different strain
rates. The curves initially show a rapid rise in stress with strain
up to a peak stress, followed by a gradual decrease to zero stress
at emax � 1, which we considered to be the failure point for the
material. The initial sharp increase in the stress was attributed to
a possible transient response of the interface and to the PDMS
flowing within the junctions between the tablets (gaps between
the hexagonal tablets belonging to the same layer). As the tablets
separated, the junctions played a lesser role and the response
was dominated by the interfaces. Stresses were higher for the sam-
ples tested at higher strain rates because the response of the com-
posite is governed by the viscous response of the interface. The
overall shape of the curve was however the same at the slow and
fast strain rates. The stress-softening behavior observed on the
stress–strain curves following the transient peak stress is consis-
tent with the model (Fig. 4, viscous fluid case) and can be explained
by geometric softening. However, despite this continuous decrease
in stress, snapshots of deforming samples at two different strain
rates (Fig. 9b and c) clearly show that the sliding of the tablets
spread over the entire sample, ensuring a quasi-uniform distribu-
tion of deformation within the material. To compare the experi-
mental results with the model, we use Eq. (25), since the
interface is a Newtonian fluid. Eq. (25) predicts emax ¼ 1 since
g ¼ 0 (defect-free material), in agreement with the experiment.
Moreover, the amount of spreading in the material does not appear
to change with strain rate, which is also consistent with the predic-
tions of the model. We finally verify that in these experiments the
glass tablets can be considered rigid compared to the PDMS inter-
faces. The maximum stress experienced by the composite material
is 20 kPa (Fig. 9a). Considering that the tensile stress in the tablets
is roughly twice the tensile stress in the tablets (Fig. 3), the maxi-
mum stress experienced by the glass tablets is �40 kPa. Consider-
ing the modulus of glass at �60 GPa, the maximum strain in the
glass tablets is �7 � 10�7. Now looking at the interfaces, using
Eq. (6) with e � 0.05 (tensile strain at the peak stress), / = 0.87
and q � 13 from the geometry of the hexagon gives c � 4, which
are very large strains since the PDMS essentially behaves like a
fluid at the interface. The deformations at the interfaces are there-
fore seven orders of magnitude larger than in the glass tablets, so
that the tablets can be assumed to be rigid compared to the
interfaces.
5. Model composite material with a defect

Our final experiment was to investigate the tensile behavior of a
staggered composite governed by a viscous response and contain-
ing a large defect of controlled size and geometry. The type of sam-
ple we used was the same as above, but we introduced a large



Fig. 9. (a) Stress–strain curves of staggered composite with g = 0 (no defect); (b, c) sequential images of the sample (top view) showing the deformation mode at two different
strain rates.
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defect by removing one tablet from the top layer (Fig. 10b and c).
These samples were tested in tension using exactly the same pro-
cedure as above. The corresponding stress–strain curves had
shapes similar to the sample with no defect, but the strength
was slightly less (because of the stress concentration at the defect)
and the strain at failure was significantly lower (because of the
strain concentration at the defect).

Imaging of the deforming sample (Fig. 10b and c) showed a lar-
ger strain in the area of the defect, but also showed that large
strains were not confined to the defect region, but instead spread
throughout the entire sample. This experiment confirmed that
strain rate hardening can lead to large deformations even in the
presence of a large defect. This behavior was observed at both
the slow and fast loading rates, confirming that the evolution of
strain around and away from the defect is a rate-independent pro-
cess. Referring to Fig. 9, the intact sample tested here contained
seven overlap regions across the width. After removing the hexa-
gon there are only six overlap regions across the width in the
defect region, corresponding to a defect severity of
g ¼ ð7� 6Þ=7 ¼ 0:14. With the value n = 0.95 from the parallel
plate experiment, Eq. (25) predicts emax ¼ 0:49. Referring to
Fig. 5, the number of unit cells along the RVE is N. As discussed
above, N� 1 for actual materials where the microstructure size
is much smaller than the size of the component, but this condition
does not apply to our model material where N = 10. In this case, the
contribution of the defect region to the total elongation of the
sample uT must be taken in account, with:

uT ¼ Nuþ u0 ð25Þ

where u is the elongation of each unit cell in the bulk of the material
and u0 is the elongation at the defect region. Using Eq. (25) together
with Eqs. (10) and (12) gives the macroscopic strain in the material:
eT ¼
e

1þ ð1� gÞ=N
þ e0

1þ N=ð1� gÞ ð26Þ

The macroscopic strain at failure eT max was computed using Eq.
(26) with e ¼ emax and e0 ¼ 1:

eT max ¼
emax

1þ ð1� gÞ=N
þ 1

1þ N=ð1� gÞ ð27Þ

Using emax = 0.49, g = 0.14 and N = 10 gives eTmax = 0.52. This
predicted value is very close to the strain at failure measured
experimentally (Fig. 10). The assumption that the PDMS behaves
as a Newtonian fluid (i.e. constant viscosity and n = 1) leads to very
similar results: Eqs. (26) and (27) predict eTmax = 0.53, which differs
from the result above by only 2%. The slight shear thinning behav-
ior of the PDMS we used at the interface therefore had little impact
on the strain at failure for the composite. The combination of
model and experiments therefore confirms that strain rate harden-
ing is a powerful mechanism to minimize the impact of defects as
well as to increase the strain at failure and energy dissipation. No
particular rheology is required at the interface, and the strains at
failure were rate-independent.
6. Summary and conclusions

Nacre, bone and spider silk possess remarkable combinations of
strength, toughness and hardness. In particular, the staggered
structure of these materials generates unique nonlinear mecha-
nisms which lead to large deformations, energy absorption and
toughness [4,11,13,22,31]. The question of how the mechanisms
occurring at the nano- and microscales spread over large volumes
to translate into high performance at the macroscale is of tremen-
dous importance, yet it has so far received little attention. Here we



Fig. 10. (a) Stress–strain curve of staggered composite with g = 0.14; (b, c) sequential images of the sample (top view) at two different strain rates showing deformation with
increasing strain.
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have developed a model which examines the conditions for large
deformations in staggered composites. In particular, the model
predicts the macroscopic tensile strain at failure for the material
as a function of the viscoplastic parameters at the interface and
of the size of the defect. As expected, larger strains can be achieved
with strain hardening at the interface. More unexpectedly and
interestingly, the model suggested that strain rate hardening can
also be a powerful source of large deformations for staggered com-
posites. The model assumes that the tablets are rigid compared to
the interfaces, with the implication that the shear strain is uniform
along the overlap area. This assumption is verified for natural nacre
[28] and for the model material we presented here. It should also
be generally valid or at least acceptable for biological and biomi-
metic staggered composites, since their interface is generally
significantly softer and weaker than the tablets [20,28,29]. Incor-
porating the elastic deformations of the tablets in the model may
increase its accuracy, but will probably not change our results
significantly since the main source of strains for natural and biomi-
metic composites comes from the sliding of the tablets on one
another. The accuracy of the model may also be improved by con-
sidering the three-dimensionality of the real staggered structures
and of the defect they contain. These models would rely on accu-
rate descriptions of the three-dimensional configurations of the
defects, and would probably require numerical approaches to cap-
ture the three dimensional strain fields around these defects. The
simple one-dimensional model we present here is however
probably sufficient to inform the choice of viscoplastic material
for the interfaces in relation to existing defects in the material.
Experiments with a glass–PDMS nacre-like staggered composite
confirmed that strain rate hardening at the interface can be suffi-
cient to generate large deformations even in the presence of
defects, and validated the model in terms of strength and strain
at failure. Notably, no special rheology such as shear thickening
is required at the interface to achieve this behavior (the PDMS
we used, although highly viscous, behaves almost like a simple
Newtonian fluid), and the phenomenon is rate independent. This
finding has important implications for collagen, bone, nacre and
spider silk. These materials are all composed of stiff and elongated
inclusions (single proteins, mineral plates or stiff protein crystals)
embedded in softer matrices. They display strong rate-dependent
mechanical responses [22,32,33], and strain rate hardening could
therefore play an important role in delaying failure in these mate-
rials. While these materials display a powerful mechanism at the
level of the unit cell, it is the distribution of strains which trans-
lates these micromechanisms into high properties at the macro-
scale: energy absorption, large deformation at failure, toughness
and tolerance to initial defects and to damage accumulated from
excessive or repeated loadings. Strain rate hardening should also
be harnessed and optimized in bio-inspired composites, in order
to maximize their overall performance.
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Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 1–10, are diffi-
cult to interpret in black and white. The full colour images can
be found in the on-line version, at http://dx.doi.org/10.1016/
j.actbio.2014.08.027.
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