
International Journal of Solids and Structures 241 (2022) 111498

Available online 9 February 2022
0020-7683/© 2022 Published by Elsevier Ltd.

3D mechanics of scaled membranes 

Ali Shafiei a, Francois Barthelat a,b,* 

a Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada 
b Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States   

A R T I C L E  I N F O   

Keywords: 
Bioinspiration 
3D discrete element method 
Segmented hard material 
Puncture resistance 
Flexural compliance 

A B S T R A C T   

Scale-covered skins are excellent examples of natural flexible protective systems. With segmented hard scales 
bonded or embedded onto a deformable skin, these natural structures provide useful combinations of puncture 
resistance and flexural compliance. The interaction of the scales with the substrate and the scales themselves is 
the key to such high-performance systems. In this work we investigate the 3D mechanics of puncture and flexion 
for a range of designs for scale-covered systems, using validated discrete element models (DEM) of the scales. The 
scales are orders of magnitude harder and stiffer than the substrate, so that they can be considered rigid for the 
purpose of mechanical modeling. Our main findings are that scales with no slant angles positioned in arrays 
increase puncture resistance compared to isolated scales, but only by way of interactions through the substrate 
and with much less extent by direct contact between scale. Direct scale-scale interaction can however be much 
improved by slanting the scales which we also examined in this work. We also examined the in-plane kinematics 
of scales, and identified interlocking mechanisms between rows of scales that further increase toughness. Dart- 
and hexagon-shape scales combined all these mechanisms in the most effective way among the designs we 
explored here. This study provides new insights into the effect of the base shape and the slant angle of the scales 
on the mechanical behavior of scale-covered systems, which in turn can help in the design and optimization of 
improved protective systems.   

1. Introduction 

Natural materials often combine very hard and very soft compo-
nents, in specific architectures that generate outstanding mechanical 
performance (Wegst, 2014; Chen et al., 2012; Rajabi et al., 2016; Chen 
et al., 2011; Barthelat, 2015). For example the skin of fish, armadillos or 
crocodiles consist of discrete hard scales which are orders of magnitude 
stiffer than the surrounding tissues and bare skin (Chen et al., 2011; 
Chintapalli et al., 2014; Zhu et al., 2012). This specific construction 
enables high surface hardness and protection, while minimizing hin-
drance and enabling agile locomotion (Chen et al., 2011; Yang et al., 
2013; Vernerey and Barthelat, 2014; Rudykh and Boyce, 2014). Indi-
vidual scales can also interact with each other by direct contact, which 
increases puncture resistance (Yang et al., 2013; Szewciw and Barthelat, 
2017; Vernerey et al., 2014). In fish skin, the scales are slanted and have 
overlaps which promote scale-scale interactions (Vernerey and Barthe-
lat, 2010; Ghosh et al., 2014; Ghosh et al., 2016). These contacts pro-
mote the distribution of highly localized puncture forces over wider 
areas, which can prevent blunt trauma to underlying tissue (Martini and 

Barthelat, 2016; Zhu et al., 2013; Browning et al., 2013; Tatari et al., 
2020). The construction and mechanics of fish scales and other dermal 
armors have been the focus of numerous studies on the effect of the 
geometry and arrangement of the scales on the mechanical performance, 
with a strong focus on puncture resistance and on flexural compliance, 
two mechanical properties which have been shown to be mutually 
exclusive (Chintapalli et al., 2014; Vernerey and Barthelat, 2014; 
Rudykh and Boyce, 2014; Vernerey et al., 2014; Martini and Barthelat, 
2016; Browning et al., 2013; Funk et al., 2015; Martini et al., 2017; 
Rudykh et al., 2015; Shafiei et al., 2021). Failure of a scaled skin may 
occur in one of two ways: by fracturing or puncturing individual scales, 
or by unstable tilting of the scales (Yang et al., 2013; Martini and Bar-
thelat, 2016; Martini and Barthelat, 2016; Connors et al., 2019). Frac-
turing individual scales is delayed by the strength and toughness of 
individual scales (Ghods et al., ; Murcia et al., 2015; Ghods et al., 2019), 
while unstable tilting can be delayed by direct contact between the 
scales (Browning et al., 2013; Martini et al., 2017; Shafiei et al., 2021) 
(in particular for configurations where scales overlap (Yang et al., 2013; 
Martini and Barthelat, 2016; Shafiei et al., 2021). To this effect, 
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experiments suggested that the shape and the arrangement of the scales 
had a significant effect on the puncture resistance and flexural compli-
ance of the system (Yang et al., 2013; Martini et al., 2017; Rudykh et al., 
2015; Connors et al., 2019). Experimental studies on 3D designs are 
however limited in terms of the geometries explored, so that the effect of 
the shapes and the arrangement of the scales on the mechanical 
behaviour of the system is not fully understood yet. The interaction of 
the scales in 3D may also be captured with numerical models, but typical 
method such as finite elements require a large number of contact ele-
ments and a multitude of contact pairs which are computationally 
expensive and which can even prevent numerical convergence (Shafiei 
et al., 2021; Dugué et al., 2013; Ghosh et al., 2017). In our recent work 
(Shafiei et al., 2021), we developed a 2D DEM model to investigate the 
mechanical performance of scale-covered-structures. While these 
models could capture some basic mechanisms of scale-scale interaction 
and scale-substrate interaction, they could not capture the effect of the 
3D shapes of the scales, the 3D arrangement and the slant angle of the 
scales and the interlocking mechanism between the neighboring scales 
on surface of the skin. Here we developed and explored 3D models of the 
scale to capture these effects and mechanisms. We used a three- 
dimensional formulation of the discrete element method (DEM) where 
individual scales are assumed to be rigid, with linear springs used to 
model the interactions of the scales with the substrate (Shafiei et al., 
2021; Abid et al., 2018; Abid et al., 2019; Pro and Barthelat, 2020; 
Bolander and Saito, 1998). After validating with experiments, we 
investigated the mechanical behaviour of scale-covered system with a 
variety of scale shapes and arrangements. 

2. Modeling and validation 

For this study, we investigated the puncture resistance of a 3D model 
of identical hard scales fully bonded onto a soft substrate which was 
modeled as a linear elastic half-space (Young’s modulus Es, Poisson’s 
ratio νs). We first modeled some of the configurations examined exper-
imentally in our previous study (Martini et al., 2017): Slanted square 
scales arranged in a square array and with overlap generated by the 
slandered sides of the scales (Fig. 1). Each scale was constructed from a 
square base with the size 2L × 2L, extruded in the out-of-plane direction 
by a thickness t and following a slant angle α0 towards the x-direction. 
This approach to creating the scales was in line with our previous ex-
periments (Martini et al., 2017) where different scale geometries were 
generated based on simple variations a simple cubic scale. The advan-
tage of this approach is that the geometry of the scales can be easily by 
characterized by the geometry of the base surface, slant angle and 
thickness. The scales were arranged in a square array with a uniform gap 
distance d (Fig. 1). To fully cover the substrate with the scales we 
assumed the gap distance to be very small compared to the sizes of the 
scales (d/L = 0.005, to avoid convergence issues one must have d > 0). 
The objective was to model stiff scales, which are several orders of 

magnitude stiffer than the substrate, and therefore the scales were 
modeled as rigid blocks (Zhu et al., 2012; Shafiei et al., 2021). The sharp 
puncture experiment on the scaled system was duplicated in the model 
by applying a vertical displacement into the center of central scale in the 
model (red arrow in Fig. 1). 

We used the 3D discrete element modeling capability of ABAQUS/ 
CAE to capture the puncture mechanics of this system. Individual scales 
consisted of six faces where each face was made of a 4-node discrete 
rigid element R3D4. The displacement and rotations of the six face el-
ements were defined in relation to a reference framework centered on a 
reference point associated with each scale which we placed at the 
centroid of the basal face of the scale (point RP on Fig. 1). The reference 
points were given five degrees of freedom: translation in x-, y-, z-di-
rections, and rotation about the x- and y-axes. Since experiments mainly 
showed scale rotations about the x- and y-axes and negligible rotation 
about the z-axis (out of plane axis), that rotation was maintained to zero 
during the simulations to facilitate numerical convergence. To apply 
puncture forces to individual scales, a node was created on the top 
surface of the punctured scale as the loading point. A rigid connector 
then was defined between the loading point and the reference point of 
the scale, and a controlled vertical displacement was applied to the 
loading point (red arrow in Fig. 1). Through the rigid connector, the 
applied displacement and the resulting force were transferred to the 
reference point of the punctured scale. The model captured the inter-
action of individual scales with the substrate with a system of linear 
springs (Fig. 2). Some of the springs captured the elastic interaction of 
individual scales with the substrate, and other captured the elastic in-
teractions of each scale with its neighbors through the substrates. The 
scales can indeed interact through the substrate. For example displacing 
an individual scale deforms the substrate, which can in turn displace 
other neighboring scales. This interaction between neighboring scales 
(which may not necessary enter contact) depend on the distance be-
tween the scale and on the elasticity of the substrate. The system of 
springs was set as follows: The reference point of each scale was con-
nected to the ground (a reference plane “far below” the surface of the 
substrate) by two-node connector element CONN3D2 with extensional 
and rotational stiffness coefficients K0x, K0y, K0z, K0ϕx and K0ϕy. Neigh-
bouring scales were connected by their reference points by a two-node 
connector element CONN3D2 with “interaction” stiffness coefficients 
K1x, K1y, K1z, K1ϕx and K1ϕy. We then calibrate the stiffness coefficients 
using Boussinesq’s and Cerruti’s closed-form solutions for point forces 
on an elastic half-space (Shafiei et al., 2021; Barber, 2002; Okumura, 
1995). For example, to obtain the coefficients K1x and K0x, we applied a 
tangential displacement ux to the central scale while keeping all other 
scales immobile. The distributed shear load qx(x,y) on the surface of the 
substrate underneath the scales in x-direction was computed using 
(Shafiei et al., 2021): 

ux =
1+νs

πEs

∫ ∫
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Fig. 1. Typical system considered in this study: 5 × 5 Array of hard scales 
bonded to a soft substrate and subjected to puncture. Key dimensions for in-
dividual scales are shown. 

Fig. 2. Setup of linear springs captures the interactions of individual scales 
with the substrate, and also the interactions between neighboring scales 
through the substrate. 
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where ζ and γ are the integral variables in x- and y-directions, respec-
tively. We then integrated the shear load qx(x,y) over the area of the 
scales to get the shear force on each scale including the middle and the 
neighboring scales (the integration is calculated over the areas of the 
substrate underneath the scales on the intervals of [0, 2L], [2L + d, 4L +
d] and [4L + 2d, 6L + 2d] in both x- and y-directions), which divided by 
the applied displacement of ux produced the stiffness coefficients K0x 
and K1x. The same approach was used to calibrate K0y and K1y, except we 
applied a displacement uy to the central scale to compute the shear load 
qy(x,y) in the y-direction. To obtain K0z and K1z,we imposed a normal 
displacement uz to the central scale and computed the normal distrib-
uted load p(ζ,γ) on the surface of the substrate underneath the scales 
using (Shafiei et al., 2021): 

uz =
1 − ν2

s

πEs

∫∫

p(ζ, γ)
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − ζ)2
+ (y − γ)2

√ dζdγ (2) 

We applied a rotation ϕx about the x-axis to the central scale, used 
equations (1) and (2) to obtain the distributed shear and normal loads 
(qy(x,y) and p(x,y)), and calculated the resultant moment for each scale 
(Shafiei et al., 2021). We divided the moment on the central scale and on 
the neighbouring scales by the imposed rotations about either x-axis or 
y-axis to obtain the stiffness coefficients K0ϕx; K1ϕx, K0ϕy and K1ϕy 
respectively. Fig. 1 

In addition to interacting through the substrate, scales can also 
interact by direct contact with their neighbors. For our model we 
defined a frictionless contact with a linear penalty method where the 
contact force is proportional to the interpenetration distance between 
the scales. Once the model was in place and all parameters calibrated, 
we compared its predictions with our previous experiments (Martini 
et al., 2017) which consisted of a series of puncture tests on ABS scales 
attached onto a soft polyurethane substrate. The geometry and sizes of 
the scales (L = 2 mm, t = 2 mm and two different slant angles of α0 =

0 and α0 = 63.4◦) as well as the material properties of the substrate (Es =

150 KPa) were identical to those used in the experiments (Martini et al., 
2017). In the experiments the elastic modulus of the scales (EABS = 3 GPa 
(Martini et al., 2017) was four orders of magnitude greater than the 
substrate. While these values probably differ from the stiffness of the soft 
tissues surrounding scales in natural dermal armor, they are adequate 
for the assumption of rigid scales compared to membrane and substrate. 
We considered the four different configurations shown on Fig. 3a: An 
isolated scale, and three different 5 × 5 arrays of scales with small gap 
distances (d/L = 0.005). Each of these models was subjected to a 
puncture displacement, and the corresponding reaction force was 
collected to generate a puncture force displacement curve (Fig. 3b). We 
found good agreement between the model and the experiments in terms 
of puncture stiffness. The only numerical parameter we calibrated from 
the puncture experiments was the critical tilt angle which was defined as 
follows: By puncturing the top surface of the middle scale, the scale 
started to tilt, and at a critical force the needle starts sliding off the scale 
into the substrate which is considered as a failure in the system (Shafiei 
et al., 2021). In the experiments, this event causes a sudden drop in the 
puncture force on the curve (Fig. 3b). In the numerical model, failure 
occurs at the end point of the curve where the maximum tilting angle of 
the top surface of the punctured scale reaches the critical tilting angle. 
Our previous experiments using an ABS indenter on ABS scales (Martini 
et al., 2017) indicated a critical angle of ϕc = 13◦ for this set of materials, 
a values which we therefore also used in the model. 

3. Puncture resistance of isolated 3D scales 

In the following sections of this report we used these validated 
models to systematically investigate the effects of the 3D scale geometry 
and arrangement on the response of the system. For this study we 
focused on scaled skins made of identical scales that were designed to 
cover a soft substrate entirely. Therefore we only considered scale ge-
ometries that tessellate the plane, focusing on the regular triangle, 
square, isosceles trapezoid, symmetric darts and regular hexagons. To 

Fig. 3. (a) Snapshots of experiments and models for a puncture test on four different designs; (b) Corresponding puncture force–displacement curves showing a good 
agreement between models and experiments. 
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isolate the effect of shape, we kept the surface area for the individual 
scales constant across all models. We first examined the puncture 
resistance of individual, isolated scales with no slant angle (Fig. 4). Our 
previous experiments showed that the critical force strongly depends on 
the location of the puncture on the surface of the scale (Martini et al., 
2017). For this study we adopted a conservative approach where for 
each geometry we puncture the scale at the “worst possible” location, i. 
e. the location leading to the least puncture resistance. This study 
therefore provides lower bounds for the puncture resistance of each 
scaled skin design. For each shape, the “worst case” indentation points 
produce the longest moment arm δc of the puncture force (normalized by 
δc* = δc/L) from the centroid of the scale, and they are generally located 
at the corners of the upper surface of the scale (indicated by red dots on 
Fig. 4). 

Fig. 4 shows the puncture resistance Fc normalized by Fc* = Fc(1-υs
2)/ 

EsL2 for these five geometries. Closer examination revealed that the 
puncture resistance is governed by two parameters: the moment arm δc 
created by the indentation force, and the rotational stiffness Kϕ which is 
a function of the substrate elasticity and the scale geometry and size 

(normalized by Kϕ* = Kϕ(1-υs
2)/EsL3). The moment caused by the crit-

ical force on the punctured scale is equal to M *=Fc*× δc*, which can 
also be expressed as M *= Kϕ*× ϕc. By combining these two equations, 
the puncture resistance therefore is obtained as Fc*= ϕc (Kϕ*/ δc*) which 
shows that the puncture resistance is proportional to the ratio of the 
rotational stiffness over the moment arm. Fig. 4 indeed shows a near- 
proportional relationship between Kϕ*/ δc* and puncture resistance. 
The dart and hexagon shapes show the highest puncture resistance. 

4. Puncture resistance of arrays of scales 

In the next steps, we considered the puncture resistance of arrays of 
scales. Fig. 5 shows the different combinations of base shapes and ar-
rangements which we examined. For the shapes of triangle, square and 
trapezoid, we considered two possible arrangements: “arrayed scales” 
and “staggered scales”. Other shapes like the dart and the hexagon only 
had one possible tiling configuration. The corresponding 3D arrays of 
scales for these designs were created by extruding the 2D patterns along 
the out-of-plane direction by a distance equal to the thickness of the 
scales, while creating very small gaps (d/L = 0.005) between the 3D 
scales to avoid convergence issues. 

Fig. 6a compares the puncture resistance of systems with different 
base shapes and different arrangements of scales. To emphasize the ef-
fect of scale-scale interactions, we normalized the puncture resistance of 
each array of scales by the puncture resistance of one isolated scale with 
the same geometry. As expected, the array of scales produced a signif-
icantly increased puncture resistance compared to isolated scales, with 
improvements by factors of 4 to 8. The highest improvements were for 
the hexagonal and dart scales, which were 20–30% higher than the rest 
of the designs. Closer examination of the models made it evident that 
surrounding the indented scales with other scales stabilizes the indented 
scale. More specifically, the interactions of the scales by direct contact 
and through the substrates increase the rotational stiffness of the 
indented scales, with the effect of delaying tilting and increasing 
puncture resistance. To highlight these effects, we ran additional models 
where we turned off the contact algorithm, that is scale-to-scale inter-
penetrated without producing any contact force. The scales could still 
however interact elastically through the substrate. Even when direct 
contact was turned off, scales directly neighboring the indented scales 
(marked by orange dots on Fig. 6a) still had a significant stabilizing 
effect on the indented scale, while scales further away had negligible 
effects. These effects were assessed by examination of the coupling 

Fig. 4. Puncture resistance of isolated scales with five different base shapes as 
function of rotational stiffness. All the scales have an equal base area. 

Fig. 5. Eight designs for the base shape and arrangements we considered in this study.  
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stiffness for each neighboring scales, where a coupling stiffness larger 
than K1i / K0i > 0.01 was considered effective. The designs that pro-
moted effective neighbour interactions in terms of number of in-
teractions and configuration produced higher puncture resistances (blue 
columns on Fig. 6a). Dart- and hexagon-shape scales were the most 
effective in this regard, increasing the puncture resistance by almost six 
times of magnitude compared to the isolated-scale models. To further 
establish the various contributions to puncture resistance, we ran a third 
set of models where this time direct scale-to-scale contact was enabled, 
but where the scale to scale interaction stiffness through the substrate 
mostly turned off (the corresponding stiffness terms were reduced to 4% 
of their original value, further reductions creating convergence issues). 
In this set of models the scales therefore mainly interacted by direct 
contact. Fig. 6a (grey columns) shows that all puncture resistances in 
this this set of models are significantly lower than the other sets, with 

puncture resistance barely above the puncture resistance of isolated 
scales. This indicates an important and unexpected feature of the 
puncture mechanism: neighboring scales stabilize the indented scale 
predominantly by elastic interaction through the substrate, but by a 
much lesser extent by direct contact between the scales (at least with 
non-slanted sides). Finally, we note that scale-scale interactions not only 
delay the tilting of the indented scale, but also distributes the load over a 
larger area (Fig. 6b). Because mechanical interactions were more pro-
nounced for dart- and hexagon-shape scales, the re-distribution of the 
puncture load over wide area was more effective for these geometries. 
Fig. 7.Fig. 8.Fig. 9. 

By examining the displacements of the scales near the puncture site 
we identified another mechanism where the scales generate inter-
locking, preventing the collective motion of groups of scales in the in- 
plane direction. The interlocking mechanism functions differently in 

Fig. 6. (a) Puncture resistance for eight difference scale arrays normalized by the puncture resistance of an isolated scale with the same geometry. For each design, 
results with full interaction and only partial interaction through substrate or through direct contact are shown. The punctured scales are marked with red dots, and 
the effective neighboring scales are marked by orange dots; (b) the displacement distribution in the complete model at the point where the punctured scale reached 
the critical tilting angle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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different in-plane directions. Fig. 7a shows examples where in some 
models a row of scales in y-direction can easily slide against the 
neighbouring rows with no constraint from contact. On the other hand, 
shown in Fig. 7b, a row of scales in x-direction hinders the movement of 
the neighboring rows in this direction by contact (scales are inter-
locked). These mechanisms are illustrated for triangular and square 
scales, but they were also observed for trapezoid scales, hexagonal scales 
and dart scales. This interlocking mechanism engages a larger number of 
scales, which therefore can improve the puncture resistance of the sys-
tem. In the “arrayed square scales” model, the free motion of the rows of 
scales is seen in both x- and y-directions, while the interlocking mech-
anism occurs along the diagonal (x = y) of the scale. In the “dart scales” 
and “hexagon scales” models, the interlocking mechanism exists in any 
in-plane directions, which is considered as an advantage in terms of 
resistance against tilting (will be discussed next). 

5. Effects of slant angles in arrays of scales 

The previous section discusses how the effects of direct contact for 
the case of non-slanted scales with straight sides is small, but this effect 
can be increased by slanting the sides of the scales. In this section we 
explored the mechanics of arrays of scales with a slant angle towards 
three possible directions (Fig. 8): a slant angle of α0 = 60◦ towards the x- 
direction, a slant angle of α45 = 60◦ towards the diagonal (x = y) di-
rection, and a slant angle of α90 = 60◦ towards the y-direction. 

Fig. 9a displays results from models with full interaction and shows 
that slanting the scales towards any of the three directions (α0, α45 and 
α90) roughly doubles the puncture resistance. This added stabilization 
effect can be explained by the slant angle changing the direction of the 
contact force towards the vertical direction, so this force generates a 
higher moment about the center of the scale. Slanted designs also result 

in more scales involved in the puncture mechanism through direct 
contact mechanism. The results show that slant angle in specific di-
rections are more effective than others. Giving a slant angle to the scales 
toward the x-direction promotes interlocking, which results in a high 
puncture resistance. The “arrayed square scales” model with α45 = 60◦

shows the highest resistance against tilting compared to the other slant 
angles (α0 and α90), since the interlocking mechanism occurs along the 
diagonal (x = y) of the scale. Finally, Fig. 9a and 9b show that the dart 
shape and hexagon shapes have a superior puncture resistance because 
the interlocking mechanism occurs over multiple directions and be-
tween a large number of scales. 

6. Flexural response 

In addition to puncture resistance, flexural compliance is another 
important criterion for flexible protective system. In this section, we 
created numerical models to investigate the effect of the base shape, the 
arrangement and the slant angle of the scales on the overall flexural 
compliance of the scaled skin. We used the same modeling configuration 
as in section 2 to create the scales, but this time the scales were bonded 
onto a membrane composed of linear elastic 8-nodes brick elements 
(since the membrane is too thick to be considered as a shell, it is not 
valid to replace it with simple springs.). The elements (type C3D8R) 
were assigned a modulus Em and a Poisson’s ratio νm, and the model was 
assigned a very small gap distance of d/L = 0.005 (Fig. 10a and b). We 
built a 10L × 10L × 1.5L membrane placed in a three-point bending with 
a support span length of 8L. Our first task were to duplicate our flexural 
experiments (Martini et al., 2017) and for this purpose we used Em =

700 kPa, νm = 0.5, L = 2 mm and t = 2 mm. The scaled membrane was 
loaded in flexion by a narrow rigid plate (Fig. 10a and b) aligned either 
with the x-direction (Fig. 10a) or with the y-direction (Fig. 10b). 

The model predictions in terms of force–deflection are compared 
with the experiments (from (Martini et al., 2017) in Fig. 11. No fitting 
procedure or calibration of parameters was used for this comparison, 
and the predicted force–deflection curves show a good agreement with 
the experimental results (Fig. 11b and d). 

The flexural model can now be extended to other base shapes. Fig. 12 
shows the normalized flexural compliance Cf* (normalized by Cf* = Cf 
EmIm/L3 where Im is the second moment of the area of the membrane) for 
the models with different combinations of base shapes, slant angles and 
arrangements. 

Compared to an isolated scale because of the very small gap distance 
between the scales and also the direct contact, the scales limit the flexion 
of the membrane, and as a result the flexural compliance in all the scaled 
systems decreases by 85% − 93%. The dart is the shape with the largest 
geometrical size, and therefore for this shape the stiffening in flexion 
was more pronounced than for the other shapes. Moreover, the inter-
locking mechanism which is more pronounced in the “dart scales” was 
beneficial to puncture performance, but our results show that it is 

Fig. 7. In-plane sliding of rows of scales may be (a) kinematically allowed by 
the shape and arrangement of the scales or (b) prevented because of 
interlocking. 

Fig. 8. Starting from scales with straight faces, we considered 60◦slant angles towards three different directions.  
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detrimental to flexural compliance. This observation, along with similar 
trends from other scale geometries, confirms that puncture resistance 
and flexural compliance are mutually exclusive (Yang et al., 2013; 
Martini and Barthelat, 2016; Browning et al., 2013; Martini et al., 2017; 
Rudykh et al., 2015; Shafiei et al., 2021). The results (Fig. 12) also show 
that for design purpose, the orientation that we set the three-point 
bending configuration must be considered, because depending on the 
orientation, the models show different flexural response. If the direction 
of the slant angle is parallel to the orientation of the line load the system 
shows a higher flexural compliance, while the lowest flexural 

Fig. 9. (a) Puncture resistance of arrays of scales (Note that the normalization used here is different from the one used in Fig. 6). Within each design the effect of slant 
angle is also shown; (b) In-plane displacement maps for these designs. The red arrows show the direction of the slant angle. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Configuration for the three-point bending (experiments and models). 
We considered two orientations for the loading pin (load line): (a) parallel to x- 
direction and (b) parallel to y-direction. 
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compliance happens when the slant angle direction is perpendicular to 
the line load orientation. 

7. Summary 

In this study we explored the mechanisms of puncture and flexural 
deformation in soft substrates and membranes covered with rigid scales 
of various shapes and arrangements. The discrete element modeling 
approach we used for this work was validated with puncture and flex-
ural experiments. This modeling method brought more insights than the 
experiments, because a broader range of geometries and interaction 
parameters could be used, and the mechanisms involved in puncture and 
flexion could be explored with greater details. Our main findings are as 
follow:  

• For scales with no slant angles, the puncture resistance increases 
mainly by elastic interactions through the substrate, and with much 
less extent by direct contact between the scales.  

• The interlocking mechanism between rows of scales plays an 
important role in engaging a larger number of scales during loading, 
which results in a higher puncture resistance  

• Slant angle towards any directions improve the puncture resistance 
of the system, however, a slant angle towards the direction with 
interlocking mechanism makes the effect of the slant angle more 
pronounced.  

• Dart- and hexagon-shape scales show the best performance in terms 
of puncture resistance compared to the other models  

• To have a better flexural performance, the direction of the slant angle 
must be considered parallel to the orientation of the three-point 
bending configuration 

This exploration of mechanisms finally produced a comparative 
database of the flexure- compliance performance of various designs, 
which can be conveniently summarized using the Ashby chart showed 
on Fig. 13. 

Isolated scale (with any base shapes) shows the highest flexural 
compliance but the puncture resistance is the lowest. Covering the 
substrate with scales improves the puncture resistance, but, at the cost of 
low flexibility. Simple system of “arrayed square scales” with no slant 
angles (α = 0) increases the puncture resistance by five times. By only 
giving a slant angle of α45 = 60◦ to the scales, we can improve the 
puncture resistance even more by about three times of the model with no 
slant angle. Changing the base shape of the scales also has a significant 

Fig. 11. (a) Three-point flexural tests (diagrams and DEM results) on arrays of scales bonded onto a soft membrane where the line load is parallel to x-direction and 
(b) corresponding force deflection curves from experiments and DEM models, showing good agreements; (c) Same test with the line load parallel to y-direction with 
(d) corresponding force deflection curves from experiments and DEM models also showing good agreements. 
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effect on puncture resistance. When all these effects and mechanisms are 
combined, the puncture resistance of “dart scales” model with α0 = 60◦

slant was about 42 times higher than an isolated scale with the same 
geometry. This puncture resistance only comes at the cost of a small 
decrease in compliance compared to the other designs. The “banana 
shape” of Fig. 13 illustrates the mutually exclusive character of puncture 
resistance and flexural stiffness, a trend also observed in other studies 
(Yang et al., 2013; Browning et al., 2013; Rudykh et al., 2015; Shafiei 
et al., 2021). Although we cannot generalize this result, it is likely that 
the mutual exclusiveness of puncture resistance and flexural compliance 
is a universal features of flexible armor, including in natural scales. For 
example ancient, near extinct fish with ganoid scale were probably 
replaced by modern fish with thinner and more flexible scales, to gain 
maneuverability and higher evasive capabilities at the expense of 
protection. 

This study provides new insights into the effect of the base shape and 
the slant angle of the scales on the mechanical behavior of a scale- 
covered system and the interlocking mechanism of the scales, which 
in turn can help in the design and optimization of improved protective 

systems. In this study we considered a range of convex and angular 
geometries for the scales which we kept relatively simple to control the 
scope of the exploration and gain basic insights into scale interactions in 
3D. Using the same modeling approach, these geometries could be 
further enriched with rounded edges or concave features that could 
further promote interlocking. Complex geometries such similar to nat-
ural ganoid scales are beyond the scope of this study, but could also be 
captured using this modeling approach to capture interlocking and 
collective deformation mechanism in this natural armor. Another 
parameter of potential interest is friction between the scales. In the 
models presented here we used frictionless contact in order to focus on 
geometrical effects that could resist the relative motion of the scales. 
Adding friction to the contact interaction would impede scale-scale 
sliding further, but major effects and trends related to geometry would 
probably be unchanged. In practice friction could be increased by 
manipulating the surface of the scales, which could be considered in 
future models. Future work could include nonlinear substrate and fric-
tion between the scales, which would allow to capture more extreme 
deformations, possibly revealing additional mechanisms of interaction 

Fig. 12. Flexural compliance of arrays of scales on soft membrane with different combinations of base shapes, slant angles and arrangements and where the line load 
is applied (a) parallel to the x-direction and (b) parallel to the y-direction. 
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between scales and substrate, and potentially leading to additional in-
sights into this system. 
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