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Highlights

Vibration-assisted assembly is an

efficient fabrication method for

granular matter

Vibrations can crystalize

polyhedral grains into large 2D

panels

Vibration amplitude and

frequency are critical parameters

in the assembly process

The states of blocks are

characterized into three regimes

and two phase transitions
Block-based architectured materials are made by polyhedral blocks and joined by

weaker interfaces and can display remarkable mechanical performance. The

widespread use of these materials is limited by fabrication challenges. A rapid and

low-energy pathway can be self-assembly using vibration and gravity. We showed

that the cubic grains can be self-crystalized using this technique and used as a free-

standing architectured component. We assessed the mechanics and physics

underlying this process to provide guidelines for optimizing the assembly of

complex materials.
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Vibration-driven fabrication
of dense architectured panels

Aram Bahmani,1 J. William Pro,1 Florent Hannard,1,2 and Francois Barthelat1,3,4,*
Progress and potential

Architectured materials are an

emerging class of material with

unusual structural behavior, which

can surpass the performance of

traditional materials. Fully dense

architectured materials are based

on blocks that must be assembled

into materials and structures,

which represents challenges that

hamper the broader application of

these materials. An underused yet

promising fabrication pathway is

vibration-assisted assembly at the

macro-scale, a process where

individual building blocks are

organized into a pre-designed

and ordered structure.

Understanding and optimizing the

vibration+assisted assembly of

these material systems can be

used as guidelines in the physics

and mechanics of other complex

granular media. We propose a

vibration-induced assembly route

enabling scalable, rapid, low-

energy fabrication of these

materials. The self-assembly

applications of these materials

include armor and protective

suits; transformable and freeform

structures; and biomedical,

aerospace, and astronautics

materials.
SUMMARY

Self-assembly at the macro-scale is a promising pathway for fabrica-
tion, but the assembly process and mechanisms are still poorly un-
derstood. We examine the vibration-induced assembly of hard cubic
grains as a potential route for the rapid fabrication of architectured
materials and structures. We performed assembly experiments with
various combinations of vibration amplitudes and frequencies to
map the different states of the system. The results show that the ac-
celeration normalized by gravity cannot fully capture the phase tran-
sitions or the mechanisms governing cubes packing and that ampli-
tude and frequency must be considered independently. We used
discrete element modeling to duplicate experiments and then sin-
gle-grain models to find the effective mechanisms involved in the
packing and phase transition of cubes. Both cube rotation and
bouncing govern packing, while bouncing has an additional role in
the phase transition. These findings provide guidelines for the as-
sembly of complexmaterials, for example, topologically interlocked
materials.

INTRODUCTION

Novel and innovative fabrication methods have recently been proposed for the

fabrication of complex materials with highly tuned architectures, morphological

features, and interfaces at meso-scale (between grain size and the whole compo-

nent).1–3 Examples of these methods include freeze casting,4,5 3D printing,2 laser

engraving,6,7 and centrifugation.8 Some of these fabrication methods were specif-

ically developed to duplicate natural materials, such as nacre or bone, which can

be interpreted as complex assembly of hard building blocks bonded by softer bio-

polymers (proteins and/or polysaccharides).9 Interestingly, the concept of building-

block-based materials joined by weaker interfaces is also used in topologically

interlocked materials,10 which can turn brittle components like ceramics or glasses

into tough, impact-resistant systems11,12 or materials with tunable mechanisms,

precise structural responses, and functionalities not ordinarily found in monolithic

solids.12–18 The assembly of the building blocks presents special challenges.

Example of the proposedmethods include pick-and-place assembly, parallel assem-

bly, magnetic assembly, 3D printing, and segmentation.8,18 A promising pathway to

fabricating these materials is self-assembly.9,19 Self-assembly has importance in

chemistry, biology, and engineering, among other fields.20–24 The majority of theo-

retical and experimental studies on self-assembly, however, focuses on nano- and

microscale structures, for example, dense packing of colloids.25–29 Several numeri-

cal methods, including Monte Carlo and molecular dynamics, have also been used

to study phase transitions and crystallization in thermal equilibrium systems.30–33

At this point, it is useful to highlight analogies between building-block-based mate-

rials and granular materials. Both systems are athermal and far from thermodynamic
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equilibrium,34,35 and frictional and inertial forces are prominent. Interestingly, grains

can be assembled or ‘‘crystallized’’ using mechanical stimuli, such as shearing or vi-

brations.35–45 However, most reports on granular crystallization have focused on the

packing and phase transition of spherical grains,34–36,42–45 and much fewer reports

have considered the assembly of polyhedral building blocks.37–41,46–48 Several

mechanisms in packing and phase transitions of granular matter have been

described in the literature.37–47 For example, the intensity of the mechanical excita-

tion has often been described with a single parameter: the maximum acceleration

normalized by the gravitational acceleration,49,50 but the details of the mechanisms

involved in each regime have yet been established, especially for cases where the

grains (or building blocks) are non-spherical. A better understanding of the mecha-

nisms that govern vibration-induced assembly of non-spherical blocks is therefore

needed so that method can be used for the large-scale fabrication of complex ma-

terials. In this work, we examine a vibration-induced self-assembly method to rapidly

fabricate dense segmentedmacro-scale materials and/or structures based onmeso-

scale cubic grains.We explore the effects of vibrations on the possible states of gran-

ular hard cubes (including crystallization), with particular attention to the decoupling

of vibration amplitude and frequency responses. In parallel, we duplicate the exper-

iments using discrete element modeling (DEM), and we use DEM to predict and

study the physics and mechanics underlying vibration-induced assembly of architec-

tured panels.
1Department of Mechanical Engineering, McGill
University, Montreal, QC H3A 0C3, Canada

2Institute of Mechanics, Materials and Civil
Engineering, UCLouvain, Louvain-la-Neuve,
Belgium

3Department of Mechanical Engineering,
University of Colorado, 427 UCB, 1111
Engineering Drive, Boulder, CO 80309, USA

4Lead contact

*Correspondence:
francois.barthelat@colorado.edu

https://doi.org/10.1016/j.matt.2022.01.002
RESULTS AND DISCUSSION

Experiments

The goal of the experiments was to explore the vibration-induced assembly, or

‘‘crystallization,’’ of a 2D panel from stiff, cubic building blocks or ‘‘grains.’’ We

focused on cubical blocks for this study because they are one of the simplest regular

volumes that can tessellate a thick panel. While more advanced geometries can

generate interlocking between the blocks, many of these geometries are actually

variations of the cubical shape (truncated tetrahedra and tetrahedra12). Our objec-

tive was to work at themillimeter scale to ensure that the granular systems were athe-

rmal. Then, blocks about 5 mm in size were chosen because they are relatively easy

to fabricate with a high geometrical control. We fabricated 4.83 4.83 4.8mm cubes

of calcium sulfate using a replica-casting method (described in Mirkhalaf et al.12).

Calcium sulfate (also known as gypsum or plaster of Paris) is a ceramic that is rela-

tively easy to work with because it can be formed and cast at room temperature.

In addition, the interpretation of the results and comparisons with models is made

easier by the absence of plastic yielding and relatively high hardness compared

with polymers. For this work, we used the strongest type of calcium sulfate plaster

(type V from Suprastone, Kerr Dental, Charlotte, NC, USA) with an optimized casting

method that maximizes density and strength.51 The density (r) of our calcium sulfate

was 2.3 g/cm3, the measured modulus E = 11 GPa, and the measured compressive

and tensile strength 90 and 31 MPa. Finally, we chose calcium sulfate

because the lowest resonant frequency of the blocks (approximated by

ðp =lÞ ffiffiffiffiffiffiffiffi
E=r

p � 1:43 MHz) was orders of magnitude higher than the frequency of the

vibrations we used for assembly (order of 1 kHz). Themodulus and density of the ma-

terial also govern the timescale of the contact interactions,52 which we wanted to be

much smaller than other characteristic timescales in the problem. The experimental

setup used to assemble the calcium sulfate cubes consisted of a polymethylmetha-

crylate (PMMA) square platform with walls (5 mm high) on each side, glued onto a

voice coil with either a 45 W/60 W RMS/peak power capacity and a frequency

response range of 45 Hz–4 kHz or a 120 W/240 W RMS/peak with a frequency
2 Matter 5, 1–12, March 2, 2022
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Figure 1. Experimental setup for the vibration-driven assembly of granular blocks

(A) Schematic of the vibration-induced self-assembly process, which is integrated with a high-

speed camera and laser vibrometer. An assembly platform is glued on a voice coil, and the voice

coil is fixed on a tilting angle platform and controlled by a signal generator and amplifier.

(B) Hard cubes are randomly dropped on the tilted platform while it is vibrating.

(C) Example of the image acquired from the experiments, overlaid with the bounding contour used

to measure the steady-state packing factor.
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response range of FO �1 kHz (depending on which particular range of amplitudes

and/or frequencies we explored in the experiments). The voice coil assembly plat-

form was mounted on a tilting angle platform set to an angle of 10� directed along

a direction aligned with the diagonal of the assembly platform (i.e., the lowest point

of the platform was a corner of the platform). A laser vibrometer was used to cali-

brate the amplitude and frequency of the platform, and a high-speed camera was

used to monitor the trajectory of the cubes during assembly. We explored the

assembly response of the cubes subjected to a broad range of amplitude

(1–100 mm) and frequency (10–1,000 Hz). Sixty-four cubes were fed onto the

vibrating platform in a way that was continuous but with random time intervals

(0.1–1 s) for the drops and landing spots (Figure 1). The tilt of the platform and

the friction were such that the cubes did not move without vibrations.

Figure 2 shows an example of a successful assembly where we used image analysis to

track individual cubes. The cubes moved toward the lowest corner of the platform

from the combined action of vibrations and gravity. The evolution of packing effi-

ciency (Figure 2D) was measured at each video frame by computing the packing fac-

tor, which we measured using image analysis: the images were first binarized and

then the boundary and projected top surface area of cubes were measured by the

sum of white pixels area. We defined the steady-state packing factor as the sum of

the projected top surface area for each cube divided by the bounding contour

area (Figure 1), which is the closest outer boundary of the assembly of cubes. The

bounding contour was computed using a ‘‘boundary’’ function similar to a convex

hull function but allowing for concave contours that could closely match the domain

of the cubes. For this study, we focused on the packing factor of the assembly,

measured once all 64 cubes were dropped and once a steady state (i.e., the cubes

did not move anymore) was reached in the system. A broad range of combinations
Matter 5, 1–12, March 2, 2022 3



Figure 2. Example of results obtained on nine cubes dropped on a vibrating platform (A = 10 mm

and f = 600 Hz)

(A) Trajectories of individual cubes by video recording and tracking the trajectory; (B) packed

position of each cube; (C) instantaneous and average (filled color markers) speed of each cube; (D)

evolution of packing factor versus duration of the vibrations.
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of vibration amplitude and frequency was explored experimentally. For each combi-

nation of parameters, we repeated the experiment five times, and we computed an

average packing factor from these experiments. The results were quite repeatable,

and the deviation from the mean never exceeded 5% of the mean value, indicating

that the system at steady state is not dependent on the initial conditions and there-

fore memoryless. In addition, Figure 2 shows that, while the cubes have different tra-

jectories and speeds, their average speed is almost equal, which suggests a com-

mon underlying mechanism driving their phase transition.

Depending on the vibration parameters for the platform, the cubes did not always

assemble in a crystalline structure. We identified three main regimes for this system

(Figure 3): at low vibration amplitude and/or frequency, the cubes did not move on

the platform. In this ‘‘static’’ regime, the applied energy originating from vibrations

was not sufficient to overcome frictional forces. At higher amplitude and/or fre-

quency, the cubes bounced on the surface, which overcame friction and enabled

more mobility. The general trajectory of the cubes was towards the lowest corner

of the assembly platform, where they assembled into a 2D crystal. At higher combi-

nations of amplitudes and frequencies, the system entered a ‘‘fluttering’’ regime,

where the cubes bounced indefinitely in a chaotic fashion that precluded assembly.

Figure 3A shows an experimental map of these different regimes as a function of a

normalized frequency f
ffiffiffiffiffiffiffiffiffiffi
l=2g

p
and amplitude 2A/l, where f is applied frequency, l

is the size of cubes (edge length), g is the gravitational acceleration, and A is the vi-

bration amplitude. The size of the block is an important parameter for vibration-

induced assembly. For this reason, the vibration amplitude and the frequency

were normalized using the size of the blocks l as the characteristic length. A color-

map in the assembly region represents the measured packing factors for the assem-

bly at steady state. Within this region, the packing factor increased progressively as

amplitude and/or frequency was increased from the static-packing transition line
4 Matter 5, 1–12, March 2, 2022



Figure 3. Experimental phase

diagram showing the different

states of the cubes as a function of

dimensionless frequency and

dimensionless amplitude

This map shows three main

regimes: static; packing

(contoured region showing final

packing factor); and fluttering. The

two green lines show the

predictions from fitted relative

acceleration models.
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and reached a maximum of 1 (i.e., perfect packing) near the packing-fluttering tran-

sition line. The assembly process can be interpreted as a competition between vibra-

tion of the platform and friction between the blocks and the platform. For example,

we expect that decreasing friction between cubes and the platform can shift the

static-packing phase transition toward lower amplitudes and frequencies. Figure 3

also shows snapshots of the cubes at each regime.

The packing of granular matter subjected to vibrations has often been predicted as a

function of dimensionless relative acceleration G = Au2/g (u = 2pf and A is the vibra-

tion amplitude),40,49,50 where there is an ‘‘irreversibility point,’’ after which the pack-

ing factor was led to the steady-state condition.40,49,50 We fitted this model to our

experiment, which predicted a critical acceleration for the static-packing boundary

at G = 3.8 and for the packing-fluttering boundary at G = 21. However, these empir-

ical values have no obvious physical significance, and the model did not capture the

entire static-packing and packing-fluttering phase transition lines. These two phase

transitions do have two different slopes, implying that there could be a distinctive

mechanism governing each boundary. G also depends on the shape of the grain

and experimental protocol, making this model inadequate for assessing the individ-

ual effect of amplitude and frequency on the phase transition and packing re-

gimes.40,49,50 For example, Jaeger and coworkers reported G z 3 for spherical

beads,49,50 while Neudecker et al.40 reported various values (G z 1.5–5) for tetra-

hedra. These values are empirical, and therefore, the relative acceleration model

provides limited insight into the mechanics of assembly.

Discrete element modeling

For a better understanding of the assembly process, we used DEMs with the open-

source C++/Python DEM solver Granoo, which is particularly well suited to the

modeling of polyhedral grains.53,54 The parameters for the DEM simulations were

taken directly from the experiments: the cubes were 4.8 3 4.8 3 4.8 mm with

modulus 11 GPa and mass density (r) 2.3 g/cm3, and the PMMA platform had a

modulus of 3 GPa. A contact model that explicitly captures surface roughness was

not used here. Rather, we assumed a standard Coulomb friction model. The contact

model used in DEM simulations is linear and is based on the Gilbert-Johnson-Keerthi

(GJK)-expanding polytope algorithm (EPA).55,56 This algorithm detects collision and

computes penetration distance between colliding blocks, fromwhich a contact force

is computed. Here, we used a linear contact model where the contact is governed by

a single contact stiffness, which is acceptable for intermittent contacts (this
Matter 5, 1–12, March 2, 2022 5



Figure 4. Assembly map predicted by DEM and compared with experiments

(A) DEM phase diagram showing the different states of the cubes as a function of dimensionless

frequency and dimensionless amplitude. This map shows three main regimes: static; packing

(contoured region showing final packing factor); and fluttering. The two green lines show the

predictions from fitted relative acceleration models.

(B) Comparisons between experimental and DEM assembly maps are shown; the contoured region

shows the percent error between experimentally measured packing factor and packing factor

predicted from DEM simulation.
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approximation of the contact also led to good agreements with the experiments).

We measured the coefficients of friction using the ASTM D1894 standard. The

cube-on-cube static and dynamic friction coefficients were 0.4 and 0.33, and the

cube-on-platform static and dynamic friction coefficients were 0.38 and 0.27. To

measure contact stiffnesses, we compressed a cube located on another cube or a

PMMA plate and then measured the slope of linear force-deflection responses.

These experiments gave cube-on-cube contact stiffness of 150 kN/mm and a

cube-on-platform contact stiffness of 700 kN/mm. To measure the coefficient of

restitution (CR), we simply dropped a cube vertically from a calibrated height onto

a calcium sulfate or PMMA plate and then measured the bouncing height by a

high-speed camera. These experiments revealed CR = 0.3 for cube on cube and

CR = 0.4 for cube on platform. The coefficient of restitution was then calculated

by (bounce height/drop height)0.5.57 We first used our DEM models to compare

with the experiments for validation. Sixty-four 4.8 3 4.8 3 4.8 mm cubes were

randomly generated and dropped onto a vibrating platform with a tilt angle of

10�. The system was subject to gravity and to a sinusoidal displacement applied

vertically to the rigid platform. The duration for each simulation was 100 s—enough

time to capture static, steady-state packing and fluttering regimes for any applied

amplitude-frequency responses. The numerical time step was small enough to sta-

ble and converge the dynamic explicit solution. A broad range of combinations of

vibration amplitude and frequencies was applied in the simulations, and the

steady-state packing factor was measured using the same method as in experi-

ments. Figure 4A shows the DEM-generated map of the different regimes as a func-

tion of vibration amplitude and frequency. The average packing factor in the DEM

models was repeatable and memoryless, with a deviation of the packing factor of

less than 10% across five different initial conditions for the cubes. Figure 4A also

shows snapshots of the cubes in the DEM models at each regime. The contours

represent the variation of the steady-state average packing factor. The highest pack-

ing factor region (i.e., 1) is in low-range frequencies and/or higher range amplitudes,

an observation that is consistent with the experiments. Figure 4B overlays the assem-

bly map predicted by DEM with the assembly map measured experimentally. There

is good overall agreement between the two contours, although the DEM simulation
6 Matter 5, 1–12, March 2, 2022
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slightly overestimates the combinations of amplitudes and frequencies required to

achieve assembly. Figure 4B also displays the error between experimental and

DEM packing factors, which remains within about 10%.

In the following section, we sought mechanics-based models for the interaction of

single grains with the substrate to gain a more fundamental understanding of the

assembly process. The findings can inform more sophisticated models for the

transitions and assembly of the granular system and in turn be used to optimize

the material assembly process.
Bouncing of individual grains

The assembly process and Figure 2 suggest that the bouncing of individual cubes

can be a key mechanism to overcome friction and enable the motion of cubes on

the assembly platform. Therefore, we considered a model based on the bouncing

of one particle on the platform, with critical bouncing height and critical bouncing

time as potential criteria for the phase-transition lines in the assembly process. Pre-

dicting the bouncing height and time of a particle on a vibrating platform is not a triv-

ial problem, and it generally leads to chaotic behavior.58–60 For this study, we have

used DEM simulation to predict average bouncing characteristics as a function of vi-

bration parameters (see Note S1). These models produced a time-averaged bounce

height of the sphere ChD as a function of dimensionless amplitude and frequency that

can be estimated with

ChD
l

= 7:5

�
2A

l

�2
 
f

ffiffiffiffiffiffi
l

2g

s !2:1

; (Equation 1)

where l is the diameter of the sphere, g is gravitational acceleration, A is vibration

amplitude, and f is vibration frequency. We also computed the average bounce

duration of the bouncing sphere CtD as a function of dimensionless amplitude and fre-

quency (see Figure S1F). Likewise, the average bounce duration can be estimated

with

CtD

ffiffiffiffiffiffi
2g

l

r
= 1:4

�
2A

l

�0:21
 
f

ffiffiffiffiffiffi
l

2g

s !0:29

: (Equation 2)

We also assessed the non-dimensionalized average bounce height and duration as a

function of the dimensionless relative acceleration (G) of the platform (see Figures

S1G and S1H). The fitted curves to these two datasets show that the R-square for

bounce height and duration versus G is 0.92 and 0.62. These values are much lower

than the R-square of fitted surfaces (see Figures S1E and S1F), showing that bounce

height and duration cannot be predicted by relative acceleration only. The contribu-

tions of amplitude and frequency must therefore be considered individually in the

context of a vibration-induced assembly.
Rotation model

In addition to bouncing, the assembly process and Figure 2 suggest that the rota-

tion of individual cubes is also an effective packing and assembly mechanism al-

lowing cubes to better fill available vacancies as well as promoting interactions

among cubes. To explore this mechanism, we used a 4.8 3 4.8 3 4.8 mm sin-

gle-cube DEM model with an initial rotation angle (q) at the corner of a 10� tilted

rigid platform (Figure 5A). The system was subject to gravity and to a sinusoidal

displacement applied vertically to the rigid platform. Before applying vibration,

the rotated cube initially was in a static equilibrium condition due to friction with
Matter 5, 1–12, March 2, 2022 7



Figure 5. Rotation of single cubical grain as a function of different vibration parameters

(A) Schematic of the single-cube DEM model rotating due to the vibration of the rigid platform; q is

the initial cube rotation angle; (B) cube rotation map as a function of dimensionless relative

acceleration and its initial rotation angle. The rotation map shows the three main regimes: static;

rotating; and fluttering regimes.
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the walls. This condition duplicates a local configuration where a cube is in contact

with its neighbors (or with the assembly platform) but where it is jammed in a mis-

rotated position. Our objective was to capture the conditions in which individual

cubes rotate from a static equilibrium condition to properly align and assemble.

These rotation-based mechanisms can be assessed as a function of initial rotation

angle, friction, amplitude, and frequency using the single-cube model. We ran

9,000 models for different combinations of these parameters. Each simulation

captured 5 s of physical interactions between the cube and the corner walls—

enough time to capture the rotation of the cube for any applied amplitude-fre-

quency response of the rigid platform. Since there were many parameters and

combinations, we used the actual physical parameters that were experimentally

measured on calcium sulfate cubes. Figure 5B shows the result, in the form of a

rose plot showing the state of the cube (static, rotating to assemble, or fluttering)

as a function of G and the initial mis-rotation angle of the cube q. At low G magni-

tudes and/or high initial mis-rotation angles (q), the cube did not rotate (static). At

higher G magnitudes and/or lower initial mis-rotation angles, the cube rotated

(rotating). At high G magnitudes, the system entered a fluttering regime. The

rose plot displayed a rotation symmetry that reflects the symmetry of the cube.

While the transition from static to rotating depended on the mis-rotation angle

of the cube q, the rotating-fluttering transition only depended on G. From

these DEM results, the static-rotating transition can be fitted with Equation 3 at

q = 45�, which is the least favorable initial angle to assembly.

A

l
= 0:015

 
f

ffiffiffiffiffiffi
l

2g

s !�0:94

(Equation 3)

The rotating-fluttering transition at q = 45� can be captured with

A

l
= 0:035

 
f

ffiffiffiffiffiffi
l

2g

s !�1:03

: (Equation 4)

Equations 3 and 4 are compared with the many-cube experiments in the next

section.
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Figure 6. Comparison between

experimental phase transition

boundaries (i.e., static-packing and

packing-fluttering) and packing

regime with relative acceleration,

bounce height, bounce duration,

and rotation models
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Predicting many-cube transition lines with single-grain models

Figure 6 shows the experimental assembly map presented in Figure 3 with the addition

of the four models described above (relative acceleration, bounce height, bounce dura-

tion, and rotation). The relative acceleration model properly captured the upper side

(high amplitudes) of the static-packing boundary, but not the lower side (low ampli-

tudes). The bounce height model has the advantage to be a phenomenological model

based on grain motion. This model captured the lower side of both the static-packing

and packing-fluttering transitions, but it shows some discrepancies with the upper

side of these boundaries. The bounce duration model produced predictions with the

largest errors, which suggest that bounce duration is not an effective metrics for phase

transition and packing. Finally, the rotation model could capture some of the lower sec-

tions of the phase transitions but was less accurate for the upper sections. However,

considering that this model has no fitting parameter, rotation captures the overall tran-

sitions reasonably well. In addition, the overlap between rotation and bounce height

model in high packing factor regions suggests that both rotation and bouncing are

the key mechanisms for vibration-driven assembly.

In summary, the relative acceleration model and the bounce-height model could

properly capture the slope of phase transitions, but their main weakness is that

empirical parameters must be used to fit the experiments. The rotation model cap-

tures the phase transitions relatively well, with the main advantage to be a purely

phenomenological model.
CONCLUSIONS

In this study, we used vibrations and gravity to assemble hard cubes into free-stand-

ing crystalline monolayers. The assembly map of these cubes was experimentally

and numerically characterized into three regimes and two phase transitions. We

complemented these experiments with DEM models to explore in more detail the

mechanisms governing the packing and phase transitions of cubes. Our main con-

clusions are as follows:

� Polyhedral grains can be self-crystalized and/or assembled into large panels.
Matter 5, 1–12, March 2, 2022 9



Figure 7. The self-crystalization and/or assembly process of hard cubes into dense free-standingmonolayer as a large-piecematerial and/or structure
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� The maximum relative acceleration is not a sufficient parameter to characterize

mechanical excitation in the vibration-driven assembly of grains. The contribu-

tions of vibration amplitude and frequency must be considered independently.

� The phase transitions followed two distinctive slopes and mechanisms. A part of

the static-packing boundary was best captured by the relative accelerationmodel,

while the remaining transitions were better captured by the bounce-height model.

The relative acceleration model captured some regions of packing-fluttering, and

the other regions in this boundary were partially captured through the bounce-

height and/or rotation model. Both of these models involve a fitting parameter.

� The individual-cube-rotation model captures the onset of frictional rotation

and fluttering. It is a phenomenological model that captures the overall phase

transition relatively well.

� The phase transition can be described by the combination of grain mechanisms

and vibration parameters (bouncing mechanism and relative acceleration);

however, packing was driven by the grain mechanisms (bouncing and/or

rotating) only.

� We experimentally and numerically demonstrated that, within the packing re-

gion, optimum packing occurred near the packing-to-fluttering transition.

Vibration-induced fabrication and/or assembly configuration is an efficient proced-

ure to study physics and mechanics underlying athermal far-from-equilibrium sys-

tems as well as other fabrication processes, such as freeze casting. In addition, it

could offer new routes enabling scalable, rapid, and low-energy fabrication of dense

architectured materials and/or structures in different environments and atmo-

spheres, for example, topologically interlocked materials (TIMs).10–17,61,62 For

instance, Figure 7 shows that the self-assembled and/or crystallized cubes can be

released from the assembly platform and used as a dense architectured panel.

The vibration-induced assembly method in this study can also be used to generate

anisotropic and/or hybrid TIMs using building blocks with different material proper-

ties and/or with slight statistical variations in their geometry (the assembly of more

complex shapes is currently under investigation).63 In addition, TIMs tolerate local

failures and remain stable when they miss several building blocks. These missed

building blocks can be replaced, and the material and/or structure can be healed us-

ing the self-assembly technique proposed in this study.
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note S1, bouncing of individual grains  

We considered a single-sphere bouncing on a harmonic vibrating rigid platform (Figure. S1A) to predict the 
bouncing height and bouncing duration, and to explore how they are governed by vibration parameters and 
other key properties. We used a spherical geometry because the cube itself can create more nonlinearities 
and obscure the effect of physical parameters due to its angular features and harder to predict bouncing 
directions. The bouncing of a sphere on a vibrating substrate is a seemingly simple problem, but in fact, it 
is a complex and difficult phenomenon that generally leads to chaotic behavior1-3. Here we studied this 
phenomenon using the discrete element method to be consistent with the other modeling approaches. More 
than 6000 combinations of sphere contact stiffness, coefficient of restitution, density, and applied amplitude-
frequency were examined. The total time in these models was set at five seconds, which was sufficient to 
measure an average height of the bounce. We used the actual physical parameters that were 
experimentally measured by a calcium sulfate cube. Figures. S1B-D show the trajectory of the bouncing 
sphere for different combinations of the relative acceleration Γ=Aω2 /g. For Γ≤1, the sphere bounces a few 
times and then stays in contact with the platform (Figure. S1B). At higher Γ(Γ≥1), the sphere takes off from 
the platform is a seemingly periodic fashion (Figure. S1C). At yet even greater platform acceleration (Γ>>1), 
the sphere enters a chaotic regime of bouncing, which can be characterized as an athermal far-from-
equilibrium state (Figure. S1D). These results are consistent with previous models for bouncing objectsS1-

3. Next, we used these DEM results to compute the dimensionless time-averaged height of the bouncing 
sphere as function of dimensionless amplitude and frequency (Figure. S1E). A 3D regression in MATLAB 
was used to fit a surface on these results with the R-square of 0.98. We also computed the average bounce 
duration of the bouncing sphere as function of dimensionless amplitude and frequency (Figure. S1F). The 
R-square for obtained equation from 3D regression based on non-dimensionalized average bounce 
duration was 0.93. In addition, we assessed the non-dimensionalized average bounce height and duration 
as function of the dimensionless relative acceleration (Γ) of the platform (Figures. S1G and S1H). The fitted 
curves to these two data sets show that the R-square for bounce height and duration versus Γ was 0.92 
and 0.62. These values are much lower than the R-square of fitted surfaces (Figure. S1E and S1F), showing 
that bounce height and duration cannot be predicted by relative acceleration only. The contribution of 
amplitude and frequency must be considered separately in the context of a vibration-induced assembly.  

 

 

 

 

 



 

 

Figure S1. Bouncing of single spherical grain as function of different vibration parameters. (A) 
Schematic of an individual sphere bouncing on a vibrating rigid platform; (B-D) predictions from the DEM 

model under various regimes; (E and F) DEM-predicted average bounce height  and bounce duration

for the sphere as function of amplitude and frequency with fitted 3D surfaces; (G and H): Bounce height 

and bounce duration as function of Γ, together with curve fit.  
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