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Abstract
Natural flexural armors combine hard, discrete scales attached to soft tissues, providing unique
combinations of surface hardness (for protection) and flexibility (for unimpeded motion). Scaled
skins are now inspiring synthetic protective materials which offer attractive properties, but which
still suffer from limited trade-offs between flexibility and protection. In particular, bending a scaled
skin with the scales on the intrados side jams the scales and stiffen the system significantly, which is
not desirable in systems like gloves where scales must cover the palm side. Nature appears to have
solved this problem by creating scaled skins that can form wrinkles and folds, a very effective
mechanism to accommodate large bending deformations and to maintain flexural compliance.
This study is inspired from these observations: we explored how rigid scales on a soft membrane
can buckle and fold in a controlled way. We examined the energetics of buckling and stability of
different buckling modes using a combination of discrete element modeling and experiments. In
particular, we demonstrate how scales can induce a stable mode II buckling, which is required for
the formation of wrinkles and which could increase the overall flexural compliance and agility of
bioinspired protective elements.

1. Introduction

The need for protection against predation and other
threats in nature has led to high performance pro-
tective systems that evolved over millions of years.
Among natural flexible armor, scaled skins are com-
mon in animals including fish, snakes, lizards, and
armadillos. The main idea in scaled skins is to cover
flexible tissues with hard plates of finite sizes [1–5].
The hard plates provide surface hardness and resis-
tance to puncture and laceration [6–9], while also
maintaining high flexural compliance due to the abil-
ity of discrete scales to move relative to one another.
These systems have been inspiring synthetic scaled
protective systems [1–5], where a central design chal-
lenge is to combine high puncture resistance with
flexural compliance [2, 10–19]. In these systems the
architecture and arrangement of the scales can be
tuned to maximize combinations of compliance and
protection [1–3, 10, 11, 15, 17, 20, 21]. However,
a major challenge remains: it is difficult to achieve
high compliance when hard scales are placed on the
‘intrados’ side of the skin (i.e. inside the curvature)

because at large flexural deformations the scales come
closer together, enter contact and can jam, causing
significant stiffening in flexion [10, 11, 16, 22, 23].
This scenario is not observed in flexible skins made
purely of soft tissues, for example in the skin on
the palm of human hands. When the hand closes
the skin undergoes flexural deformations combined
with compression in the plan of the skin, because the
skin is offset by ∼10 mm from the rotation axes of
the joints. The skin can buckle and form wrinkles to
accommodate deformations (figure 1(a), [24]), which
maintains large compliance even when the hand is
completely closed. In contrast, we recently covered the
palm of Kevlar gloves with alumina scales following a
stretch and release protocol [11]. This glove is imper-
vious to lacerations and sharp punctures, but the
wearer of the glove feels a sharp stiffening as they close
their hands and as the ceramic scales jam together
(figure 1(b)). In this glove the scales completely sup-
press the wrinkling and folding mechanisms which
are so important for the overall compliance of skin
(and also for the compliance of a scale-less protec-
tive glove). Is it possible to create scaled skins that can
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Figure 1. (a) Buckling/folding/flexure of skin at the palm of a hand allows for high compliance; (b) However hard ceramic scales
at the palm of a Kevlar glove suppress these mechanisms: the scales jam and significant stiffening is felt when the hand is closed.
Nature demonstrates that the buckling/folding of scaled skins is possible: (c) Emerald tree boa snake (C. caninus, reproduced with
permission from [25]); (d) Christmas Island chained gecko (L. listeri, reproduced with permission from [26]).

buckle and form wrinkles? This design, which would
be very attractive for regions of high deformation like
the palm of a glove, does not exist in synthetic sys-
tems. Interestingly however, buckling and wrinkling
of scaled skins do exist in nature. Figures 1(d) and (e)
show examples of a snake and a lizard with sections
of their bodies undergoing high flexural deforma-
tions. The intrados side of the scaled skin clearly
forms wrinkles to accommodate for large deforma-
tions without resistance, preventing the scales from
jamming together in these regions of high compres-
sion. Can we duplicate these buckling and folding
mechanisms in synthetic scaled skins? The objective
of this work is to investigate how hard scales on a flex-
ible membrane affect the buckling energy landscape,
and how in certain cases the stability of buckling
modes can be manipulated.

To investigate these mechanisms we used the
discrete element method (DEM), a computational
efficient approach which was initially developed by
Cundall’ and Strack for granular materials [27] and
which was more recently used to model deformation
and fracture in staggered composites such as enamel,
nacre, Bouligand-type structures, and fish-skin-like
material [16, 28–32]. For this study we applied DEM
to the buckling of scaled membranes, and after vali-
dation against experiments, we examined the effect of
the architecture and the arrangement of the scales on
buckling response and stability of different buckling
modes.

2. DEM model setup and validation

The objective of this work is to capture the mechan-
ics of deformation of bioinspired scaled membranes
using 2D models and experiments, focusing on
the interplay between membrane deformation and

scale-scale interactions. These mechanisms involve
contact mechanics and large deformations, mak-
ing them computationally expensive to capture with
traditional modeling approach such as finite ele-
ments. As an alternative we used the DEM, which is
much more computationally efficient for this type of
problem [27]. The main assumption of this model-
ing approach is that the scales are rigid in comparison
to the membrane on which they are attached. Each
scale was therefore modeled as a discrete element with
its own given geometry and three degrees of freedom
(two translations and one rotation). The scales were
perfectly bonded on the surface of a 2D flexible mem-
brane which was modeled with a series of nonlinear
beam elements [16]. While the scales were assumed
to be rigid compared to the membrane, their elas-
tic deformation was taken into account in the case of
direct contact with other scales (more details are pro-
vided below). The membrane was modeled as a linear
elastic material (modulus E) with second moment of
area I (which included the effect of membrane thick-
ness) using nonlinear co-rotational Euler–Bernoulli
beam elements which were allowed to have large rota-
tions. To induce buckling numerically we introduced
an infinitesimally small imperfection in the mem-
brane, in the form of an initial curvature κ∗ = 10−4

(κ∗ = κLm where κ is the curvature of the mem-
brane and Lm is the length of the membrane). Buck-
ling of the membrane was produced by clamping one
end while imposing a clamped-longitudinal compres-
sive displacement δL

∗ = δL/Lm onto the other end
(figure 2(a)). More details on the DEM formulation
we used can be found in [16]. This nonlinear sys-
tem was solved using the iterative Newton–Raphson
method [16, 29]. We first present results from the
DEM modeling of a plain membrane (free of scales),
which we used for validation. The DEM buckling
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Figure 2. (a) Snapshots and schematics of a buckling experiment on a bare polyurethane membrane with fixed-ends conditions
(no rotation); (b) corresponding longitudinal force—longitudinal displacement curves.

model was compared with buckling experiments on
a strip of polyurethane (Young’s modulus = 4.5
MPa, measured in three-point bending) with a length
Lm = 50 mm, thickness tm = 1.4 mm thick and a
width wm = 10 mm. These buckling experiments were
conducted in displacement controlled mode on a dual
column universal testing machine (ADMET, model
eXpert 5000, MA US) which continuously recorded
the axial force FL as δL was increased at a quasi-
static rate. Figure 2 shows two representative snap-
shots of these experiments and a representative FL –δL

curve.
As expected, the initial response is linear up to

a critical force Fcr which marks the onset of buck-
ling. Beyond the point the increasing stresses in the
membranes are offset by the geometric softening of
buckling, so that the force is decreasing with displace-
ment. The DEM model of the bare membrane is in
very good agreement with the experiments in terms
of initial stiffness and critical force at buckling. The
forces in the buckling region are lower than in the
DEM model which we attributed to imperfections in
the membrane [33]. We also compared these results
with Euler’s theoretical critical load of a beam with
identical end conditions given by [34]:

Fcr =
4π2EI

L2
m

. (1)

Using the experimental parameters we computed
a theoretical critical force Fcr = 0.162 (N) which
is also in agreement with the DEM model and
buckling experiments (figure 2(b)). The next step
was to develop DEM models with hard scales per-
fectly bonded onto the membrane (figure 3(a)). We
placed Ns identical scales with normalized length
L/Lm and normalized thickness t/Lm on the elastic
membrane. The scales were uniformly spaced with
a normalized gap distance d/Lm. These geometri-
cal parameters are therefore related by the equation
L/Lm = (1+ (Ns + 1)d/Lm)/Ns. The thickness of the
membrane was on the same order as the thickness of
the scales or thinner, and therefore we assumed that
the segments of the membrane which were bonded
to the scales were perfectly rigid. Only the sections
of the membrane which were ‘free-standing’ between
the scales were allowed to deform. In the model, the
scales could also interact by direct contact. Scale-to-
scale collisions were detected using a shape intersec-
tion algorithm (Sutherland–Hodgman polygon clip-
ping [35]) which detected whether a vertex entered
the contour of the scale. When a scale-to-scale colli-
sion was detected we first established whether inter-
action occurred by ‘sharp contact’ where a corner of a
scale penetrates a flat edge of another scale, or by ‘flat
contact’ where the neighboring edges from contact-
ing scales interpenetrate and make a four-sided-shape

3



Bioinspir. Biomim. 16 (2021) 045002 A Shafiei et al

Figure 3. (a) DEM model of a system of hard scales bonded onto a soft membrane with fixed-ends conditions; Schematic
showing the penetration of two scales for the case of (b) a ‘sharp’ contact and (c) a ‘flat’ contact. For both cases the lines of action
of the contact forces are shown in red; (d) The normalized resultant contact as a function of the normalized penetration for the
models with different incidence angles, which was used to obtain the constants C1 and C2.

overlap (in this case, the shape intersection algorithm
detects two penetrating corners). For the case of a
sharp contact the penetration distance δp was deter-
mined as defined on figure 3(b). δp was then used to
compute the contact force using a model inspired by
a Winkler elastic foundation [16, 36]. Assuming that
the scales are frictionless the contact force Fct for a
‘sharp’ contact is written:

Fct

LwEct
= C1

(
δp

L

)C2

, (2)

where Ect is the contact modulus, and w is the out-
of-plane width of the scales. The interpenetration
of the scales was a streamlined was a streamlined
approach to capturing the localized deformation of
the scales due to contact forces. To calibrate C1 and
C2 we used a 2D finite element model of a sharp con-
tact between two identical square scales (ANSYS, V16
2016, PA, US) where one of the scales was rotated by
φ0 = 45◦ (incidence angle) from the other one. In
this model one scale penetrates the other under con-
trolled displacement [16], and the normalized resul-
tant contact force Fct/LwEct was computed as a func-
tion of the normalized penetration δp/L (figure 3(d)).
These results were then fitted with equation (2) to
determine the constants in model (2): C1 = 1.1 and
C2 = 0.23. We repeated the test with different angles
of incidence for the penetrating scale (figure 3(d)) and
obtained almost identical values for C1 and C2. An
important ingredient in the scale-scale contact model
is the line of action of the contact force Fct , because
it governs the moment generated by Fct on individ-
ual scales, which in turn govern their rotation. Our
definition of the line of action for a ‘sharp’ contact is

shown on figure 3(b): the line of action was defined
as a line perpendicular to the edge of the flat contact
and intersecting the tip of the sharp contacting scale.
The other contact configuration of interest is the ‘flat’
contact, where the domain of intersection between the
scales is four-sided (figure 3(c)). For this case we sim-
ply applied equation (2) twice to compute two contact
forces (and two distinct lines of actions) generated by
the normal penetration δp1 and δp2.

For validation, we compared a full DEM model
of the scaled membrane (including contacts) with
experiments. Buckling experiments were performed
on a strip of polyurethane covered with scales. The
scale dimensions were t = 2.5 mm, L = 7.75 mm,
w = 10 mm and were 3D printed with a high
resolution direct light projector 3D printer (Envi-
sionTech Micro HiRes) which produced fully dense,
isotropic and pore-free scales with a Young’s mod-
ulus of 3 GPa (measured experimentally [16]). The
scales were then glued onto the surface of the mem-
brane using cyanoacrylate and with a gap distance
of d = 0.5 mm. The scaled membrane was placed
into a loading machine and buckled following the
same protocol as for the bare membrane. Since
the scales were only attached to one side of the
membrane, the system was not symmetric and there
were two asymmetric mode I buckling. Follow-
ing a terminology we previously used to character-
ize the flexural response of scaled membrane [11],
we defined the ‘mode I-extrados’ buckling as the
buckling configuration where the scales, placed on
the ‘extrados’ side of the bent membrane, move
apart as bending deformations increase (figure 4(a)).
We defined the ‘mode I-intrados’ buckling as the
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Figure 4. Experimental and DEM buckling test on a scaled polyurethene strip where the system buckles into (a) mode I-extrados
and (b) mode I-intrados; (c) longitudinal force-longitudinal displacement curves showing a good agreement between the
experimental and DEM results; (d) Curvature of the membrane as a function of the position along the membrane in the mode
I-extrados and mode I-intrados configurations at loading point δL = 6 mm.

buckling configuration where the scales, placed on the
‘intrados’ side of the bent membrane, move closer
together and may enter contact as bending increases
(figure 4(b)). To steer the experiments into either
of the mode I-extrados or -intrados, we imposed
a small pre-curvature (κ ≈ 0.0005) to the system.
Figure 4(c) shows the experimental FL –δL curves
for mode I-intrados and mode I-extrados buck-
ling modes, together with the results from the bare
membrane for comparison. As expected the scales
made the membrane significantly stiffer, which also
increased the critical buckling force by a factor of
∼3. The effect of the scales on the initial stiffness
and critical force was identical for the two buckling
modes, and the two buckling responses were iden-
tical until the scales entered contact. For the mode
I-extrados, the scales moved away from one another
and the deformation mechanism was unchanged until
the end of the experiment. On the other hand, for
the mode I-intrados buckling mode and starting at
δL = 1.2 mm the scales started to enter contact in
the mode I-intrados buckling, which added signifi-
cant stiffening to the buckling response. We observed
a transition regime where the scales progressively
entered contact (1.2 < δL < 4.2 mm), followed by an
extremely stiff regime where all scales where in con-
tact (δL > 4.2 mm). In this particular regime, a large
contact force is generated between the scales, balanced
by a large tension in the membrane that predom-
inantly acted as a tensile ligament. This ‘jamming’

effect is what generates unwanted stiffening on bio-
inspired scaled skin, for example at the palm of
gloves (figure 1(b), [11]). Another effect of contacting
scales in the intrados mode is the redistribution and
‘equalization’ of flexural deformations. Figures 4(a)
and (b) show snapshots of the buckled scaled mem-
brane well into the stiffening regime (δL = 6 mm).
Mode I-extrados shows flexural deformations which
are localized at the ends and at the middle of the
membrane. In contrast, the membrane in mode I-
intrados shows more distributed flexural deforma-
tions, so most of the membrane forms an almost per-
fect arc of circle. This effect is better seen by plotting
the local curvature of the membrane as function of
position (figure 4(d)), showing a near-uniform cur-
vature along most of the membrane. The scales can
therefore be used not only to stiffen the membrane
and to increase the buckling critical force, but also to
control the buckled geometry (in the next section we
also explore how the scales can be used to manipulate
the stability of the system).

Finally, figure 4 also shows that DEM predic-
tions are in excellent agreement with the experiments,
except in the mode I-intrados stiffening where the
DEM model overestimates the force (but the onsets of
the transitions are captured accurately). We attributed
this discrepancy with imperfections in the geometry
of the 3D printed scales (imperfect, rounded corners)
and their spacing. Nevertheless, the level of accu-
racy of the DEM model was deemed sufficient to
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Figure 5. Buckling results from DEM on a bare membrane: (a) Buckling profiles, (b) force landscape and (c) strain energy
landscape. To generate this plot a transverse displacement is applied to the mid-point of the membrane.

use it as exploratory tool for the design of the scaled
membranes, focusing on the post-buckling regimes.

3. Post-buckling response

Mode I buckling is the only stable mode for a sim-
ple and uniform column or membrane in compres-
sion. Higher buckling modes exist in theory, but they
are not seen in practice because they are unstable. In
this study we hypothesised that the scales can be used
to manipulate the stability of higher order modes. In
particular, we were interested in promoting mode II
buckling, which can create wrinkles in natural scaled
skin as seen in snake and lizard skins (figure 1). We
first started by investigating the stability of a bare
membrane in buckling. A buckled system tends to stay
in a configuration with the lowest strain energy, there-
fore, the mode shapes which have a local minimum
energy are stable [34]. A possible approach to assess
stability is to disturb the buckled configuration with a

transverse load and to examine the change in energy
and force, and whether these changes induce the sys-
tem to return to the stable configuration when the
disturbance is removed. Here we used the DEM mod-
els to apply a transverse displacement to the buck-
led membrane, while monitoring total strain energy.
Figure 5(a) shows a membrane subjected to a normal-
ized longitudinal displacement of δL

∗ = δL/Lm = 0.1
and buckled in mode I (We kept the longitudinal
displacement δL

∗ = 0.1 constant for this numerical
experiment). Initially the transverse defection of the
midpoint is δT

∗ = -0.19 and the force FT
∗ is equal

to zero (figure 5(b)), and the system is in a sta-
ble equilibrium which occupies a state of minimum
energy. We then imposed a transverse displacement
to the mid-point of the membrane to steer the sys-
tem away from that first stable equilibrium position.
Figures 5(b) and (c) show the corresponding trans-
verse force FT

∗ applied at the mid-point (normalized
by FT

∗ = FTLm
2/EI), and the strain energy of the
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Figure 6. Buckling energy landscape for a bare membrane and a membrane uniformly covered by three, five and six scales with
fixed sizes of t/Lm = 0.05 and L/Lm = 0.15.

Figure 7. Buckling energy landscape for three different scaled membranes: (a) varying scale thickness with a fixed gap distance of
d/Lm = 0.05 and scale number of N s = 3; (b) varying number (and length) of the scales for a fixed gap distance of d/Lm = 0.01
and scale thickness of t/Lm = 0.05. The energy of the bare membrane is also shown for comparison.
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Figure 8. DEM and experimental results on scaled membranes in jammed configurations: with (a) t/Lm = 0.1, N s = 3, d/Lm

= 0.01 and (b) t/Lm = 0.1, N s = 6, d/Lm = 0.01.

Figure 9. (a) Buckling energy landscape for two models symmetric from one another; (b) the two designs are combined to create
a stable mode II.

membrane U∗ (normalized by U∗ = U/U0 where U0

is equal to the strain energy of the bare membrane

in the mode I) during the transverse displacement,

respectively. As the midpoint of the membrane is dis-

placed to the right, FT
∗ increases, and the system then

undergoes a bifurcation at point δT
∗ =−0.18 to tran-

sition from a ‘C” shape to a ‘S” shape deformation

profile. Following this transition FT
∗ decreases as δT

∗

is increased further, to reach FT
∗ = 0 at δT

∗ = 0.

This state of the membrane corresponds to mode

I buckling, another equilibrium solution, which is

unstable. Increasing δT from that point takes the sys-

tem to the symmetric mode I buckling configuration,

following an antisymmetric FT
∗–δT

∗ response and a

symmetric U∗–δT
∗ response. This simple approach

therefore captures the main buckling characteristics

of a bare membrane: by two symmetric and stable

mode I buckling modes, and one unstable mode II
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Figure 10. Buckling energy landscape for membranes covered with scales on both sides: (a) varying scale thickness for fixed gap
distance of d/Lm = 0.05 and scale number of N s = 3; (b) varying scale spacing for fixed scale thickness of t/Lm = 0.04 and scale
number of N s = 3; (c) varying number (and therefore length) of scales for fixed gap distance of d/Lm = 0.03 and scale thickness of
t/Lm = 0.04.

buckling mode. In the next step, we investigated the
effect of the scales in the post-buckling behavior of
the system. Figure 6 shows how scales bonded on the
membrane (in this example the size of the scales was
t/Lm = 0.05 and L/Lm = 0.15) can drastically change
the energy landscape of buckling (if the scales are
close enough). If the scales are far apart (blue line in
figure 6) no contact is made during buckling, and the
only effect of the scales is stiffening (i.e. higher strain
energy in the system). If the scales are close enough
(green and red lines in figure 6), the scales enter
contact during buckling in mode I-intrados, which
greatly increases the strain energy and changes the
shapes in the energy curve, with a significant rise in
energy on the intrados side (right side on the graph).
As a result, the mode II positions are shifted to the
right (but they remain unstable). We also note that
the mode Ii becomes a higher energy mode com-
pared to Ie, and that Ie is more stable (i.e. the energy
barriers around Ii are steeper than around Ie). Reduc-
ing the gap between the scales (which adds more scales
on the membrane) accentuates these effects.

These effects and asymmetries can also be ampli-
fied further with thicker scales and larger numbers of
(shorter) scales, as shown on figure 7.

Figure 7(b) also shows an extreme configura-
tion where the system is completely jammed around
the mode Ie buckling configuration. In this design
the scales generate so much locking with such high
energy barriers that is it not possible to evolve the
system toward mode II and mode Ie buckling. We
also captured this phenomenon in experiments where
two different models were loaded transversely about
a jammed configuration using a wire where one
end was glued to the middle of the membrane and
the other end was pulled horizontally to the right
(figure 8). In these experiments, the only buckling
mode that could be achieved was mode Ie. Increasing
the transverse force instead resulted in the delamina-
tion of the scales from the membrane or failure in the
membrane itself. This type of design can be used to
only trigger and promote mode Ie, while forbidding
the other buckling modes entirely.

4. Buckling of symmetrically scaled
membranes

The results above are representative of a large para-
metric study on scale size and spacing, and while these
parameters can change the buckling energy land-
scape significantly, we did not identify any design
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that could increase the stability of mode II buck-
ling. Additional design explorations however revealed
that bonding scales on both sides of the membrane
could be a powerful approach to stabilizing mode
II. Figure 9(a) shows the energy landscape for mem-
branes with scales (t/Lm = 0.04 and d/Lm = 0.05)
bonded to either the left or the right surface of
the membrane. As expected, the energy results are
asymmetric and both produce higher energy on the
intrados side and an unstable mode II buckling mode.
Figure 9(b) shows the results of ‘superimposing’ these
two designs by bonding the same scales to both
left and the right surfaces of the membrane. This
symmetric design takes advantage of the stiffening
mechanism associated with contacting scales in both
buckling directions, and creates a symmetric energy
landscape. The most interesting feature of this design
is the emergence of a mode II buckling which is stable,
while also preserving the stability of the two modes
I. We could validate this result experimentally, creat-
ing a scaled membrane with a stable mode II buckling
mode (figure 9(b)).

In these symmetric designs, the geometrical
parameters (t/Lm, d/Lm, Ns) can be adjusted to
increase or decrease the stability of mode II. For
example, increasing the thickness of the scale
increases the stability of mode II buckling but only
up to t/Lm = 0.06. Increasing the thickness to
t/Lm = 0.09 made the maximum strain energy shift
to δT

∗ = 0 and, as a result, makes the mode II an
unstable configuration. Figures 10(b) and (c) show
how the spacing of the scales and the number of scales
can be tuned to create a stable model II buckling.

5. Summary

A variety of bio-inspired scaled protective systems
with useful combinations of flexibility and protec-
tion have recently been developed. However synthetic
scaled skins stiffen in mode I intrados bending, which
reduces the flexibility and dexterity or protective ele-
ments like gloves. Nature on the other hand dis-
plays examples of scaled skins that can buckle and
form wrinkles to accommodate large deformations, a
phenomenon which requires higher buckling modes.
Inspired from these observations, we explored how
rigid scales on a soft membrane impact the energetics
of buckling and stability. The main conclusions are as
follows:

• Scales increase the strain energy stored in the
system by stiffening the membrane and by mak-
ing direct contact.

• If the scales (bonded on one side of the mem-
brane) are close enough to go in contact in
the mode I-intrados, this mode creates a higher
energy, and mode I-extrados becomes a more
stable configuration.

• ‘Jamming’ was observed in some designs. This
phenomenon can be used to achieve particular
buckling modes while excluding others.

• By adding scales onto both faces of a membrane
and creating symmetric design, we could create
and manipulate a stable buckling mode II.

Greater control of buckling in bio-inspired scaled
membrane should lead to better designs of syn-
thetic scale-covered systems. This study provides a
strong basis for future designs that guide scaled mem-
brane into specific buckling mode configurations by
judicious design and arrangement of rigid protec-
tive scales. In particular, the creation of stable mode
II buckling configurations can induce wrinkles and
folds which can increase the overall flexural compli-
ance and agility of bioinspired protective elements. A
prime application of these mechanisms is therefore
flexible protection, but there could be other applica-
tions in foldable structures or metamaterials where
high control and programmability over buckling is
desirable. The models we presented here (DEM and
3D printed) are highly idealized and relatively far
from natural scaled skin. There are however many
obstacles to overcome before a comparison between
our model and natural scaled skin can be success-
ful: non-linearities and anisotropies in biological tis-
sues, effect of hydration, rate effects, and last for not
least 3D effects. The current model presented here is
simplified, but it can nevertheless guide the design
of synthetic scales. In addition the design space for
scaled skin is vast, and in this study we only focused
on 2D rectangular scales. Scales with slanted sides
and which overlap, or 3D scales with more complex
geometries are known to have a profound impacts
on scale-scale interactions and on overall mechan-
ical properties [2–4, 37]. It is also highly probable
that buckling is also affect by these additional geo-
metrical features. Further work is needed to exam-
ine how enriching the geometry of the scales can
be used to access additional buckling modes. These
designs may also include non-uniform scales to gener-
ate localized deformation mechanisms or to adapt to
specific combinations of deformation and constraints
[38]. In addition, in this study we only considered
perfectly bonded scales and smooth and continuous
membranes in this study. In the future, designing and
dispersing imperfections in the membrane or incor-
porating partially debonded scales could be combined
to the design of scales for additional tunability of
material response [39].
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