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The toughness of fiber-reinforced composites largely relies on crack bridging. More specifically, intact
fibers left behind the tip of a propagating crack are progressively pulled out of the matrix, dissipating
energy which translates into toughness. While short fibers are traditionally straight, recent work has
showed that they can be shaped to increase the pullout strength, but not necessarily the energy to pull-
out. In this work we have modeled, fabricated and tested short fibers with tapered ends inspired from a
high-performance natural material: nacre from mollusc shells. The main idea was to duplicate a key
mechanism where a slight waviness of the inclusion can generate strain hardening and energy dissipa-
tion when the inclusion is pulled out. We have incorporated a similar feature to short fibers, in the form
of tapered ends with well defined opening angles. We performed pullout tests on tapered steel fibers in
epoxy matrices, which showed that the pullout of tapered fiber dissipates up to 27 times more energy
than straight fibers. The experimental results also indicated the existence of an optimum taper angle
to maximize work of pullout while preventing the brittle fracture of the matrix. An analytical model
was developed to capture the pullout mechanism and the interaction between fiber and matrix. The ana-
lytical model can guide the design of tapered fibers by providing predictions on the influence of different
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1. Introduction

Stiffness, toughness and strength are highly desirable properties
for structural materials. In short-fiber reinforced composites
(SFRCs), these properties are largely controlled by the interfaces
between the fibers and the matrix. These interfaces must be strong
enough to transfer stresses between the matrix and the fibers to
promote high modulus and strength, yet weak enough to allow
for fiber debonding and fiber pullout, which are critical for tough-
ness [1,2]. The toughness of well-designed short-fiber composites
is mainly produced by fiber pullout. In the ideal scenario, when
the material endures extreme stresses a crack may propagate in
the matrix and will intersect some fibers which remain intact be-
hind the crack front, exerting a closure force on the crack. As the
crack faces spread apart these fibers debond from the matrix,
and energy is dissipated through frictional sliding of the fiber on
the matrix [3]. The amount of frictional force is a function of the
friction coefficient and of the normal force at the matrix-fiber
interface, which is provided by residual compression in the matrix
from the curing and cooling process. Successful toughening is
therefore conditional on these mechanisms, which will only occur
with proper design of the material (alignment and density of the
fibers, aspect ratio of the fibers, interfacial strength, and residual
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stresses) [4,5]. Ultimately the improvement in toughness is con-
trolled by the energy dissipated in the pullout process, which is
typically measured from a single fiber pullout test [6,7].

Careful design of the fiber-matrix interface is therefore critical
and it can be achieved, for example, by fiber sizing or chemical
functionalization [8,9]. Another approach to tailoring the pullout
response of individual fibers is fiber shaping. Residual compressive
stresses in the matrix impose a normal pressure on the interface,
which generate frictional forces that are partially controlled by
the surface roughness of the fibers [10]. Another approach is to al-
ter the macroscopic shape of the fiber by introducing enlarged
ends [1,11,12], flat and ripple ends [13,14] which effectively an-
chor the fibers in the matrix and enhance their overall mechanical
performance. Fracture mechanics applied to composite materials
demonstrates that the energy to pullout of individual fibers has a
direct impact on the overall toughness of a composite made of such
fiber. This principle has been demonstrated experimentally in the
past, including for shaped fibers. For example, Zhu et al. [15] stud-
ied polyethylene fiber/polyester matrix systems and found that
composites with shaped fibers were 9 times stronger and 17 times
tougher than composites with straight fibers. Likewise, Bagwell
and Wetherhold [16] conducted four-point bending tests on an
end-shaped copper fiber/epoxy matrix composites and found an
improvement in fracture toughness of 49% compared to straight fi-
ber composites. These two studies demonstrated how shaped
fibers, by altering the transfer of load between fiber and matrix,
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can significantly improve the overall strength and toughness of
composites. The most interesting feature is the observed pullout-
hardening, which is defined as the slope of the load-displacement
curve after debonding. The steeper the slope the more the fiber re-
sists pullout at a crack plane and therefore exhibits crack-bridging
and crack-closure forces that reduce the stress intensity factor at
the crack tip [17]. The displacement over which the hardening oc-
curs is also of great importance, as it determines the pullout-dis-
tance that the fiber can travel without complete pullout leading
to failure of the material. However, a too large end-shape can have
deteriorative effects, since the fiber ends have a tendency to initi-
ate matrix cracks [15]. If properly designed, intact tapered fibers
can transfer sufficient load after first cracking to allow the compos-
ite to undergo multiple cracking and spread debonding and pullout
over larger volumes [18]. This would allow a significant amount of
deformation before a crack localizes and the composite fails. In
these systems the geometry of the fiber was significantly altered,
which firmly anchored the fiber to the matrix and increased the
pullout force. However, the locking between fiber and matrix is
so strong that sliding and energy dissipation was limited. Interest-
ingly, a similar design problem was solved in nature in mollusk
shells, a five million year old natural composite material. In partic-
ular, nacre (mother of pearl) is made of microscopic mineral tablets
which provide stiffness and hardness. Under tensile stress the tab-
lets can slide and pullout from one another, dissipating a tremen-
dous amount of energy which translates into toughness: Nacre is
3000 times tougher than the mineral it is made of [19]. An impor-
tant requirement for this behavior is hardening. As tablets slide a
mechanism must make it slide further so that tablet sliding
spreads over large volumes. The structural feature which generates
strain hardening in nacre was recently identified as dovetail-like
features at the ends of tablets (Fig. 1a) [20]. This feature generates
progressive locking as the tablets are pulled out (Fig. 1b), which
generates hardening, makes pullout stable and generates tough-
ness at the macroscale [20].

The waviness of the tablets - a very simple geometrical feature -
is therefore a key mechanism for the high toughness of nacre, lead-
ing to stable crack propagation and crack-arresting capabilities. This
type of insights into the performance of natural materials can inspire
similar designs in engineering materials, through a process called
biomimetics [21]. For example, in recent work the waviness of the
tablets has been successfully implemented into macro-composites
which duplicated the remarkable behavior of nacre in tension
[22,23]. Inthis work we applied the concepts of dovetail, progressive
locking, hardening and energy dissipation to short fibers.

2. Tapered fiber geometry: overview and impact on toughness

Incorporating short fibers with tapered ends into a ductile ma-
trix is expected to alter the deformation and fracture mechanisms

significantly (Fig. 2). In the presence of a macroscale crack the ta-
pered fibers bridging the crack will pull out of crack faces and
“plow” through the ductile matrix, adding viscoplastic energy dis-
sipation to frictional dissipation. In terms of force response the ta-
per is expected to greatly increase the force and energy to pullout,
which will result in enhanced toughness at the macroscale. In addi-
tion, the pullout force will rise progressively to its maximum value
as the pullout distance increases, generating deformation harden-
ing. As a result, fibers will start debonding in other sites in the
neighborhood ahead of the main crack, generating secondary
cracks. In the optimum case, we anticipate that the locking of the
fiber can be strong enough to develop a “process zone” ahead of
the main crack, consisting of micro-cracks that are stabilized by
the tapered fibers. While such material is not available yet in engi-
neering form, a natural material like nacre demonstrates that this
mechanism is feasible.

3. Pullout experiments

As a first step to developing the material described above, we
performed pullout tests on short stainless steel fibers with differ-
ent tapered angles. Millimeter size stainless steel shaft and hollow
truncated cones with five different opening angles (0°, 2°, 5°, 10°
and 20°) were machined. The ends of the shafts and the inner cav-
ity of the cones were threaded so the cones were mounted at the
ends of the shafts to form the required tapered fibers. This two-
step fabrication process was found to be the most efficient and
accurate approach to machine small fibers with high aspect ratio,
with dimensions showed in Fig. 3a. The fibers were cleaned with
acetone prior to embedding in the matrix.

The matrix was prepared from a two component room-temper-
ature cure epoxy (Miapoxy 100/95, MIA Chemicals Inc., Avon, Ohio,
USA) mixed in a weight ratio 100:24 and stirred thoroughly until
the resin appeared clear and transparent. The mixture was sub-
jected to vacuum at room temperature for 10 min for degassing,
and was immediately poured into cylindrical molds with a diame-
ter of 26 mm. The fiber was then partially embedded in the matrix
over a length of about 8 mm, and positioned with a custom-made
holder to ensure that the axis of the fiber was aligned with the axis
of the cylindrical matrix. The system was cured at 24 °C + 2 °C for
24 h, followed by applying a post cure at 65°C+2°C for 6 h to
achieve full cure. The resulting samples consisted of an epoxy cyl-
inder with a partially embedded fiber emerging perpendicularly to
the top surface. The embedded length was measured on each sam-
ple and was found to be 8.3 mm + 0.2 mm. The sample was then
extracted from the mold and mounted in a universal testing ma-
chine (MTS Insight, 5 kN load cell, MTS Systems Corp., USA). The
epoxy cylinder was held with a custom-made aluminum fixture,
while the lower end of the fiber was mounted in a coupling nut
and in the jaws of the loading machine (Fig. 3b). The upper cross-
head was moved at a constant speed of 1 mm/min, while pullout
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Fig. 1. (a) SEM-picture of nacre revealing the waviness of the aragonite tablets. Under tensile load (b) this geometry creates compressive stresses that prevent further sliding

of the platelets and delay crack-localization.
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Fig. 2. Schematic depiction of the crack-bridging capacities of tapered fibers
exhibiting a closure force on the crack through interlocking with the matrix.
Although the schematic shows aligned fibers, similar mechanisms can be expected
for fibers with random orientation.
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Fig. 3. (a) Dimensions of the tapered fiber; and (b) single fiber pullout testing setup.

force and displacement were recorded by a digital data acquisition
system (MTS TestWorks® Software). In addition, a digital camera
mounted on a tripod was used to capture pictures of the sample
during the experiment. In order to assess the effect of friction be-
tween tapered fiber and epoxy matrix on the pullout behavior, an-
other set of fibers was coated with a release agent (Chemlease® 15
Sealer/70-90 Release Agent, Chem-Trend L.P., Howell, USA) prior to
embedding in order to reduce the friction between fiber and matrix
[24,25]. The resulting pullout force-displacements curves for trea-
ted and untreated fibers are shown in Fig. 4a and b.

As expected, the maximum pullout force increased significantly
with taper angle. The interfaces of straight fibers (0 = 0°) failed at a
pullout force of 600 N (untreated) and 100 N (treated), which was
followed by a continuous decrease of the pullout force until com-
plete pullout (at a displacement equal to the embedded length,
about 8 mm). In the 0 = 0° cases the frictional force which provides
resistance, is generated by the normal pressure on the interface
from residual compression in the matrix due to shrinkage during
the curing stage. The normal pressure on the interface being
constant and the contact area between fiber and matrix decreasing
linearly with pullout distance, the pullout force also decreased lin-
early (Fig. 4). Pullout forces were lower with treated fibers since
the interface coefficient of friction was lower. While the initial
stiffness and the debonding force of tapered fibers were similar

to those of the straight fibers, the introduction of the tapers altered
the shape of the curve dramatically (Fig. 4). The force kept increas-
ing with pullout distance even after debonding. Driving the ta-
pered fiber “plowed” the deformable matrix and enlarged the
initial cavity in the matrix, as seen on some of the snapshots of
Fig. 5. The stresses required to deform the matrix translated into
an additional normal force on the interface, and therefore to addi-
tional frictional resistance and pullout force. This powerful mech-
anism generated the hardening associated with pullout, as well
as the high maximum pullout force. Meanwhile, the contact area
between fiber and matrix decreased as the fiber was pulled out,
so that at a pullout distance of about 2.5 mm the pullout force
reached its maximum value and decreased, until complete pullout.
This progressive locking effect and maximum pullout force was
magnified with greater taper angle and higher friction coefficient
(Fig. 4). However, instances of premature matrix failure occurred
as taper angle was increased. Fig. 5a shows pictures taken during
the pullout of a 5° taper angle fiber, where a penny crack appeared
and progressively grew to eventually fracture the matrix entirely.
Fig. 5b shows another example of a 10° taper angle fiber where
the matrix catastrophically failed after a short pullout distance.
These cases of matrix failure are detrimental because all the bene-
ficial mechanisms of energy dissipation are terminated prema-
turely. For those cases matrix failure interrupted the pullout
force-displacement curves (Fig. 4a and b). The ends of short fibers
generate stress concentrations in the matrix, which weaken the
system even for the case of straight fibers. Tapered fibers, because
of their geometry, may increase the severity of these stress concen-
tration. Hasebe and lida [26] established relations between the
stress intensity factor of the corner with an arbitrary angle and
the stress concentration factor. According to their results, the in-
crease of stress concentration factor is less than 10% when the cor-
ner angle decreases by 20°. The tapered fibers tested in this work
therefore did not significantly increase stress concentrations in
the matrix.

In one 20° sample with untreated fibers the pullout was not
completed because the loading machine reached its maximum
load capacity (this data was excluded from further analysis).
Fig. 4a and b were used to compute the maximum pullout force
(Fmax) as well as the work of pullout (WOP), which is the area un-
der the force-displacement curves up to the point where either the
fiber pulls out or the matrix fails. Fig. 6a shows how the maximum
pullout force continuously increased with taper angle. One the
other hand, Fig. 6a shows a different trend for the WOP. The
WOP increased with taper angle up to a maximum of about 10]
for a 5° taper angle, as a result of enhanced energy dissipation in
the matrix. However, the WOP decreases thereafter because of pre-
mature matrix failure. For this set of materials and overall fiber
dimension an angle of 5° is therefore the optimum angle for energy
dissipation, which is 10-27 times higher than the energy dissi-
pated by a straight fiber of similar dimensions (depending on
whether the fiber was treated or not). As emphasized in the intro-
duction this type of improvement in pullout energy is expected to
directly translate into enhanced toughness.

Our results also confirm that friction coefficient has a significant
effect on Fh.x and WOP. For all tested angles, the results of the un-
treated fibers were higher than those of their treated counterparts,
indicating a higher interfacial bonding strength and coefficient of
friction. The application of a release agent resulted in a WOP reduc-
tion of 65% for straight fiber, but only resulted in a reduction of
14-20% for tapered fibers. This indicates that the WOP of tapered
fibers is less sensitive to coefficient of friction. Likewise, the pullout
energy for the 5° case is about 10 times the energy dissipated for a
straight fiber when both straight and tapered fibers are untreated.
For the case of treated fibers with lower friction coefficient,
5° tapered fibers dissipated on average 27 times the energy
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Fig. 5. (a) Pullout process of a 5° taper angle fiber. Initial cracks developed at the embedded fiber tip, propagated and formed a complete cross-sectional crack before failure.

(b) Pullout process of a 10° taper angle fiber with catastrophic matrix failure.
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Fig. 6. (a) Maximum pullout force and (b) work of pullout (WOP) versus taper angle for untreated and treated fibers. The data points show the average values and the bars

show the range for each tested angle.

dissipated in the pullout of a straight fiber. The benefits of tapering
fibers are therefore more pronounced for interfaces with low
coefficient of friction. While the frictional resistance is the most
important factor contributing to WOP for straight fibers [11],
elastic and plastic deformation of the matrix due to fiber-matrix
interference gain more importance during the pullout of tapered
fibers. These findings are confirmed by experimental results from
Wetherhold and Lee [12], who found that the advantage of
end-shaped fibers over unmodified fibers to be higher for weaker
interfaces.

4. Analytical model

In order to better understand the mechanics and critical param-
eters involved in the pullout of a tapered fiber we have developed a
simplified analytical model. The model relies on the simplifying
assumptions that (i) the interaction fiber-matrix is dominated by
the interference between fiber and matrix, (ii) the fiber is rigid
compared to the matrix, and (iii) this interference problem can
be treated as the “sum” of two-dimensional plane strain problems
with the out-of-plane axis coinciding with the axis of the fiber,
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following [27,28]. Fig. 7a shows the end of a tapered fiber, modeled
here as a rigid truncated cone of root radius Rg, length L, and taper
angle 0. In the steady state regime of fiber pullout, the cone plows
through the matrix along a pre-existing cavity of radius Ry, which
would contain the central shaft of the fiber in the actual system. In
this process, the rigid cone “forces” the matrix cavity to enlarge its
radius by a distance ¢ called interference (Fig. 7b), which is a func-
tion of the taper angle and position z along the cone axis. The
deformation imposed on the matrix by the interference results in
a distribution of interfacial pressures P;, which will in turn generate
(i) additional resistance along the direction of the fiber and (ii)
additional frictional forces. These two effects combined give raise
to the pullout force F (Fig. 7b). Given the large interference dis-
tances developed in this process the matrix is likely to undergo
plastic deformations, which was also considered in the model
(Fig. 7b). After plowing, the taper leaves a cavity in the matrix, of
radius equal to the maximum radius of the taper.

The interference, elastic-plastic deformation of the matrix,
interface pressure and stress transfer to the tapered fiber end were
all captured in a simplified model detailed in Appendix. The main
result from this model is the average axial stress in a section of the
fiber as function of position z:

L 2

| RyTztand 6P,-(f+ tan 0)dz (1)

0,(2)=—
where f is the coefficient of friction, and Ry, L; and 0 are the dimen-
sions of the taper (Fig. 7a). P;, the pressure at the interface fiber—
matrix, takes a different form depending on whether the matrix is
elastic or elastic-plastic at that section (see Appendix for details).
Once the stress distribution is computed the pullout force is given
by:

F = R ,(z = 0) (2)

The shrinkage of the matrix can be incorporated by adding an
interference Roes to the model, where &5 is the shrinkage strain. This
simple model captures the salient mechanisms of a tapered fiber
pulling out of a deformable matrix, and can be used to assess the
effect of key parameters for the fiber-matrix system. Fig. 8 shows
the effect of the friction f, strength to stiffness ratio ¢,/E* and
shrinkage strain 5 on the normalized steady state pullout force,
which was taken as the pullout force divided by the pullout force
for a straight fiber. Fig. 8 therefore provides a snapshot of how
the taper “amplifies” pullout forces for various sets of parameters.

The reference values chosen to plot these results are close to the
actual value of the system: f was evaluated at about 0.2, 6,/E* is
about 0.02 and the shrinkage strain of epoxy matrix used in the
experiments is about —0.01 (obtained by shrinkage test using a
modified rheology method [29]). In all cases, Fig. 8 shows how
the pullout force significantly increases as the taper angle is in-
creased. Fig. 8a shows that the force amplification gained by ta-

Matrix cavity
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region
L = FElastic
region
Deformable |
Matrix
Matrix cavity

(b)

Fig. 7. Schematic diagrams of (a) the rigid truncated cone as a model for the
tapered end of a fiber and (b) mechanics of plowing of this cone through an elastic-
plastic matrix.

before plowing

pered ends is the most dramatic for lower coefficient of friction,
which confirms our experimental observations. This can be ex-
plained by Eq. (1), where the term tan 0 has more effect for lower
values of f. Likewise, Fig. 8b shows that the force amplification is
more pronounced for harder materials (higher g,/E*). In the actual
system the matrix undergoes plastic deformations, and therefore
stronger matrix will provide more resistance to deformation and
to plowing by the tapered fiber. Finally Fig. 8c shows that the force
amplification is more pronounced when the curing shrinkage
strain is smaller (in absolute value). Shrinkage generates an initial
“pre-stress” on the interface fiber-matrix whose effects are added
to those of plowing. In terms of energy, the model would generate
the same trends as for maximum forces, since the pullout energy
can be roughly estimated as %LmeaX. While our simplified model
could not match the experimental values because of our simplify-
ing assumptions, the trends it predicts are consistent with experi-
ments, and the model can therefore be valuable for the future
design of tapered fibers.

5. Summary and conclusions

The impact of bio-inspired tapers at the ends of fibers on max-
imum pullout force and energy dissipation was examined in this
work. As in natural nacre which served as a “biomimetic” inspira-
tion, the fibers generate highly stable pullout, with hardening lead-
ing to much higher maximum pullout force and energies
dissipation than those of straight fibers of equivalent length and
radius. An analytical model was developed, which also served as
a tool for optimizing the tapered fiber shape in order to maximize
the work of pullout. The current study provided the following
results:

(1) The tapered fiber geometry was found to have a positive
effect on Fy,x and WOP. It exceeds the results for straight
fiber pullout 4-9 and 10-27 times respectively, and per-
forms significant pullout-hardening.

(2) The experimental results indicate the existence of an opti-
mum geometry to maximize WOP while preventing prema-
ture matrix failure.

(3) While it was not possible to directly compare our model
with experiments because of the simplifying assumptions
required to derive an analytical solution, the analytical
model gives predictions which are consistent with the
experiments, and which highlight the contribution of differ-
ent parameters on the steady state pullout force. The tuning
parameters are the taper angle 0, the tapered length L, the
coefficient of friction f, and the mechanical properties (o,
and E*) of the matrix.

Even though the idea of a tapered fiber seems remote from nat-
ural nacre, the concepts in terms of structure and mechanisms are
identical. In both nacre and fiber reinforced composites the frac-
ture process is largely dominated by the pullout of stiff inclusions
with high aspect ratio (fibers in fiber reinforced composites, min-
eral tablets in nacre). In both nacre and short fiber composites,
the force required to initiate fiber pullout and the energy dissi-
pated in the pullout process are controlled by mechanisms occur-
ring at the interfaces between reinforcements and matrix. For
example, the roughness of the reinforcement (fibers or tablets in
nacre) has been shown, for both materials, to improve mechanical
performance. Interestingly, the models developed by Evans and co-
workers that capture the effect of asperities in nacre [30] were in-
spired by similar models developed 10 years earlier by the same
author, for fiber composites [10]. In nacre, recent work [20]
showed the importance of the profile of the tablets (waviness) to
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Fig. 8. Effect of the design parameters on the normalized steady state pullout force: (a) friction coefficient; (b) strength to stiffness ratio of epoxy matrix; (c) shrinkage strain.

generate progressive locking, hardening and energy dissipation. In
this work we have “abstracted” this structure and mechanisms
from natural nacre to implement it into fibers for reinforcements.
Even though the structure may seem remote from natural nacre
it is still a “bio-inspired” or “biomimetic” composite since it uti-
lizes a key structure and mechanisms directly inspired from nacre.

The actual impact of the tapered geometry on overall toughness
of the composite material is beyond the scope of this initial work
and will be the topic of future research. Nevertheless, since energy
to pullout has direct impact on toughness, multiplying the energy
to pullout by a factor of 10 would lead to tremendous toughening
effects. While it is difficult to predict how much toughness can be
achieved until we actually fabricate a composite made of short ta-
pered fibers, natural materials like nacre demonstrate the impres-
sive performance that can be realized by well-defined and
optimized microstructures and micromechanics.
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Appendix A
A.1. Interference

As the rigid, tapered fiber is pulled from the matrix it forces the
matrix cavity to enlarge. More specifically, the radius of the cavity
is increased by the so-called interference 6, which is a function of
fiber pullout distance U and of position along the fiber z (Fig. 7b).
In the steady state (U > L;), the interference is § = z tan 0.

A.2. Elastic regime

The Lamé solution for an infinite, linear elastic matrix in plane
strain can be used to predict the interface pressure P; for a cavity
or radius R subjected to an increase of radius J:

p—E2 E

R where E" = 1w (A1)
The radial and hoop stresses are then:
2
G = —Ou = - (?) P (A2)

In particular, the highest stresses are at the interface r = R:

L0
0r(R) =—-09(R) =—-Pi=-E"5

= (A3)

A.3. Condition for yielding

With sufficient stresses, yielding will start in the matrix near
the interface with the fiber. Using the maximum shear stress crite-
rion and assuming o, < 0 and g4y > 0:
o = |%m = 0w _ O =0 _ Oy

mx T2 2 2
where o, is the yield strength of the matrix. Combining Egs. (A.3)
and (A.4), provides the interference required to initiate yielding:

(A4)

- 1p

FRE (A-5)

A.4. Elastic-plastic regime

To model this regime we assumed perfect plasticity. For 6 > §y,
the plastic region propagates around the fiber and over a region
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R < r < Rp, while for r > Rp the matrix remains elastic. In the elastic
region (r > Rp) the stresses are given by:
Rp

0 =~y = ~Pep 7

where P, is the pressure at the interface between the plastic and
elastic regions. The elastic stresses must satisfy the yielding condi-
tion at r = Rp, which gives:

(A.6)

1
Pe, = 50y (A.7)
The displacements in the elastic region are then:
. 1R o
u(r) =5 "o (A.8)

In the yielded region, stress equilibrium in polar coordinate and
yield criterion (A.4) can be combined to produce:
9o _ 0y

o r

(A9)

Integrate Eq. (A.9) and applying the boundary condition
o.{(r=R)=—P; leads to:

o =g,In (%) -P, (A.10)
oh = ay[1+1In (%)} - P, (A11)

At the elastic-plastic interface ¢¢.(Rp) = 0%.(Rp), combining Egs.
(A.6), (A.7), and (A.10) gives:

Re ) (A12)

R
The displacements in the plastic regime can now be calculated.
Neglecting the elastic strains over the plastic strains incompress-
ibility can be written:

Pi:ay<%+ln

ou, u
&r+&p=0 or 8—r’+7r:0 (A13)
The solution is
uP(r) = %uw (A14)

where u,, is radial displacement at elastic-plastic interface.
For continuity at the elastic-plastic interface uP(Rp)=u®(Rp),
which with Eq. (A.8) gives:
2
_1Ry 0y

=37 E

and in particular the interference at interface is

5_ 1R oy
2 RE

Then transform Eq. (A.16) into

(A.15)

(A.16)

Re_ o

R R, (A17)

Substitute Eq. (A.17) into Eq. (A.12), the interference pressure in
elastic—plastic regime is given by:

1 6 E
AECEICT)

A.5. Solution of the steady state case

(A18)

A force balance on a thin section of fiber of thickness dz provides
the equilibrium equation:

002

T (A.19)

2
= —EP,-(f+ tan 0)
where G, (z) is the average axial stress over a section of the fiber at a
distance z from the root of the taper, and R = Ry + z tan 0 is the fiber
radius. Integrating Eq. (A.19) gives

Lt 2

Gp=—[ -
= o Ro+ztano

Pi(f + tan 0)dz (A.20)
In the elastic regime, the interference pressure is given by Eq.

(A.1) and the interference is § = '—, so the boundary between

ztan 0

elastic and elastic-plastic regime is defined by:

Ro

“TRE 1)ano (A21)
(ZU—y - 1) tan 0
For z < z,, the stress is
G * 2 ztan 0
= * A22
o /o R, iztangt R U tan0)d (A22)

In the elastic-plastic regime (L, > z > z.), the interference pres-
sure is determined by Eq. (A.18), and the stress is

L 1
g — _ -
“ Jz, Ro+2ztan 0

oyl 1+In ZZtanei (f +tan 0)dz
R oy

(A23)

So the steady state pulling force is determined by multiplying
the stress with the cross-section area of the fiber (nRé),

Q

F = TtR3G 20 (A.24)

A.6. Curing shrinkage

The shrinkage of the matrix can be incorporated by simply add-
ing an initial interference Roes to the model, where &5 is the abso-
lute value of the shrinkage strain.
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