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a b s t r a c t

Enamel, the hard surface layer of teeth, is a three-dimensional biological composite made of crisscrossing
mineral rods bonded by softer proteins. Structure-property relationships in this complex material have
been difficult to capture and usually require computationally expensive models. Here we present more
efficient discrete element models (DEM) of tooth enamel that can capture the effects of rod decussation
and rod-to-interface stiffness contrast on modulus, hardness, and fracture resistance. Enamel-like
microstructures were generated using an idealized biological growth model that captures rod decussa-
tion. The orthotropic elastic moduli were modeled with a unit cell, and surface hardness was captured
with virtual indentation test. Macroscopic crack growth was also modeled directly through rupture of
interfaces and rods in a virtual fracture specimen with an initial notch. We show that the resistance
curves increase indefinitely when rod fracture is avoided, with the inelastic region, crack branching,
and 3D tortuosity being the main sources of toughness. Increasing the decussation angle simultaneously
increases the size of the inelastic region and the crack resistance while decreasing the enamel axial mod-
ulus, hardness, and rod stress. In addition, larger contrasts of stiffness between the rods and their inter-
faces promote high overall stiffness, hardness, and crack resistance. These insights provide better
guidelines for reconstructive dental materials, and for development of bioinspired hard materials with
unique combinations of mechanical properties.

Statement of Significance

Enamel is the hardest, most mineralized material in the human body with a complex 3D micro-
architecture consisting of crisscrossing mineral rods bonded by softer proteins. Like many hard biological
composites, enamel displays an attractive combination of toughness, hardness, and stiffness, owing to its
unique microstructure. However few numerical models explore the enamel structure-property relations,
as modeling large volumes of this complex microstructure presents computational bottlenecks. In this
study, we present a computationally efficient Discrete-element method (DEM) based approach that cap-
tures the effect of rod crisscrossing and stiffness mismatch on the enamel hardness, stiffness, and tough-
ness. The models offer new insight into the micromechanics of enamel that could improve design
guidelines for reconstructive dental materials and bioinspired composites.

� 2019 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
1. Introduction

Enamel is the thin layer of material at the surface of teeth that is
anisotropic and heterogeneous [1–9]. Like many natural materials
such as fish scales and nacre, the architecture of enamel has
evolved to generate micro-mechanisms and mechanical properties
to fulfill specific functions (structural support, protection, mastica-
tion) [10]. Contrary to hard biological materials such as bone, the
enamel microarchitecture is highly dependent on species and ulti-
mately linked to dietary requirements [11]. In humans, the enamel
micro-architecture mainly consists of tightly packed (�96% vol.)
hydroxyapatite rods, making it the most mineralized and hardest
material in the body (a critical requirement for the cutting, crush-
ing, and tearing of aliments). Individual hydroxyapatite rods are 4–
8 lm in diameter and run across the entire thickness of enamel (in
the order of millimeters, Fig. 1a). The interfaces between the rods
are thin (�0.1 lm) and consist mostly of water with possible rem-
nant proteins from post-maturation [11]. In the deeper regions of
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Fig. 1. (a) The microarchitecture of tooth enamel and (b) typical crack resistance for a crack propagating from the surface of enamel and into the decussation region. Crack
resistance taken from [2] and converted to energetic terms using Irwin’s relation [21].
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enamel, the rods and interfaces are intertwined in a complex, 3D
decussating arrangement (Fig. 1a). Decussation is evident in many
other species [2,12,13] (although not all), and while it differs in
basic structure and location within the enamel thickness, the
underlying mechanical function of decussation is arguably
straightforward: to promote crack resistance (Fig. 1b) by creating
obstacles for the crack, which ultimately serves to prevent chip-
ping and spallation from the underlying living tissue. The role of
decussation on the enamel toughness, hardness, and stiffness is
of critical importance in dental medicine and bioinspired materials
design [1–6,8,14–19]. Nanoindentation experiments have shown
that both the enamel axial modulus and hardness decrease by
nearly 50% going from the free surface to the dentine-enamel junc-
tion (DEJ) [14–16], with imaging suggesting this drop is due to
changes in chemical composition and the presence of rod misalign-
ment (decussation) that occur in the deeper regions of enamel.
Fracture toughness in enamel has been measured mostly from
nanoindentation tests [18,19], but the results are difficult to inter-
pret because of frictional effects, anisotropy and the inability to
monitor subsurface cracks [20]. More recently, fracture tests in
compact tension have revealed a direct correlation between rod
decussation (inner enamel) and rising R-curve behavior (Fig. 1b)
[1–6,8]. As the crack entered the decussating region, it interacted
with the microstructure and a variety of toughening mechanisms
were activated including microcracking, bridging, and deflection
[1,2]. No steady state crack resistance was observed, although
the specimen sizes were rather small (8x6x2 mm) and therefore
restricted the range of measurable crack growth. Larger, mixed-
mode conventional fracture specimens were used in the work of
Bechtle et al. [8] (albeit from bovine incisors), but no correlation
was made with the presence of decussation and steady-state crack
resistance was not observed.

It is clear from experiments that the enamel microstructure
governs its toughness, hardness, and modulus, yet there are no
models that quantify these structure-property relationships in a
unified fashion. The numerical models of enamel proposed to date
often rely on homogenization of the complex enamel microstruc-
ture. For example, XFEM (Extended Finite Element Modeling, a
numerical approach that can capture crack growth without
remeshing) enamel models homogenized the spatial distribution
in toughness and modulus [22]; while useful in tracking crack
growth, this approach overlooks the explicit effect of microstruc-
ture on crack resistance. Other non-homogenized approaches have
been used in enamel that model its microstructure directly but did
not consider non-parallel (decussating) rods [9] or capture only
deformation [23]. More recent approaches such as phase field
models have not been used in enamel but have captured fracture
in nacre [24], another type of highly mineralized biological com-
posite. However, the volume of microstructure that can be cap-
tured with phase field models is limited. The main challenge in
modeling the micromechanics of tooth enamel is to capture the
mechanical response of large volumes of its complex three-
dimensional microstructure. Model generation in itself can present
challenges due to the complex shapes and arrangements of the
enamel rods. This problem can be tackled using biological growth
models proposed by Cox and co-workers [12] to capture the salient
geometrical patterns observed in the enamel microstructure [2].
Modeling fracture in enamel presents additional obstacles as mul-
tiple toughening mechanisms often work together but at different
length scales to resist crack growth [2] (similar to other natural
composites [25]), and moreover large models are required to
enforce small scale yielding conditions [21]. In this regard, the dis-
crete element method (DEM) offers a powerful modeling alterna-
tive and is attractive for modeling enamel as it can handle large
volumes of material efficiently [26] by only tracking center-to-
center interactions. DEM has proven particularly useful in large
scale fracture models in other hard biological composites and
recovers many known fracture mechanics based scaling laws
[26–30].

The aim of this work is to quantify systematically the role of rod
decussation and stiffness on the enamel toughness, hardness, and
modulus, incorporating specific geometric details of enamel archi-
tecture from biological growth models [12,31] into large scale
mechanics based DEM models in a unified approach. The orthotro-
pic enamel moduli were first captured with a minimum unit-cell
elastic model. Hardness and crack growth were then modeled with
virtual tests that explicitly captured the rupture of nonlinear inter-
faces that connect the rod elements, providing new insights into
the deformation and fracture of this complex biological composite.

2. Material model

We adopted an idealization of the 3D enamel morphology that
captures rod decussation using a simplified biological growth
model inspired from Cox et al [12,32]. In our idealized approach
we assumed that the ameloblasts follow straight but nonparallel
trajectories that periodically alternate in direction from one row
to the next which produces a periodic material in the y-direction
(Fig. 2). While this assumption is not directly based on any biolog-
ical growth mechanics considerations, it captures enamel rod
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Fig. 2. Growth fields for (a) hD = 0� (no decussation) and (b) hD = 10�. The generated 3D microarchitectures are shown alongside cross section slices for the respective growth
fields. The rod diameter is denoted as d for the general case, and d0 for the case when hD = 0�.
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decussation (largely responsible for crack resistance) on a basic
geometrical level. Therefore, this simplified approach serves as a
shortcut to generate different enamel configurations without rely-
ing on complex growth models. In order to isolate the role of
decussation, we neglected the effect of rod waviness, DEJ curva-
ture, and morphology changes within the enamel layer [12,32];
these features are beyond the scope of this work but could be
implemented by combining more complex and multi-scale models
of organogenesis [12,31] with the DEM approach. The model gen-
eration starts with an array of equidistant triangular seeds on a
base xy-plane. A standard 2D Voronoi tessellation contour is then
computed using these seed points as inputs, which produces a reg-
ular tiling of hexagons. Each hexagon represents the initial amelo-
blast cell and surrounds the initial cross-section of each enamel
rod. The initial seeds and their associated ameloblasts are then
migrated along the general growth (+z) direction by an increment
+Dz and moved transversally along the x-axis by an increment
Dx = ±Dz tan hD, where hD is the rod decussation angle. The
updated positions of the seeds are then used as inputs to generate
a new Voronoi contour in a translated base plane. This process is
iterated for all successive increments in seed motion which pro-
duces a full 3D space filling architecture (shown in Fig. 2 for
hD = 0� and hD = 10�) that is fully characterized by the average rod
diameter d and the decussation angle hD. The decussation wave-
length kD is defined as the vertical distance between the crossing
points of the growth lines, expressed as kD ¼ d=sin hDð Þ.
The generated 3D geometry was used to create a discrete ele-
ment (DE) mesh consisting of nodes and element connectivity
(Fig. 3). The nodes of the DE mesh were computed as the centroids
of the polygonal cross sections of the individual rods, which were
not necessarily aligned with the seed points. 3D Bernoulli-Euler
beam elements (elastic, isotropic, and homogeneous; see Appendix
B for detailed formulation) were placed between every pair of adja-
cent nodes within every rod, which captured the axial, torsional,
and flexural deformation of the individual enamel rods. The
enamel rods themselves follow a hierarchical structure and are
composed of HAP-nanocrystallites and of a small amount of
organic tissue at the crystalline level [9]. For simplicity we assume
a homogenized elastic response and strength of the enamel rods.
The nanostructure of the rods probably impacts their modulus
and strength, but these effects were not explicitly captured the
models presented here, which focus on micromechanisms. As such,
all rod elements were assigned the same modulus Er. The height of
the rod elements is denoted as he (Fig. 3b) and controls the model
resolution. The shape of the true rod cross section was computed
by projecting the cross section in the xy-plane (shown in Fig. 3b)
onto a plane whose normal is aligned with the rod neutral axis.
The rod principal second area moments (Ixx, Iyy, and Izz) were then
computed from the true rod cross section shape. In our model the
cross sections of the rods were assumed to be aligned exactly with
the outer contour of the migrating ameloblast cells, which are rep-
resented here with the polygons generated from the Voronoi algo-
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Fig. 3. Different views of a 3D enamel architecture generated with hD = 10�. (a) Shows the enamel rod architecture, the DEM beam and interface elements, as well as three
cross sections with rod contours and DEM elements. (b) Shows the same architectures viewed from a different angle with different cross sections.
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rithm, which greatly simplified the connectivity generation
between adjacent rods. In reality the formed rods are roughly cir-
cular in cross section (even though the ameloblasts are hexagonal)
with an interfacial boundary shape resembling a horseshoe [11]. A
strength of the DEM method is that the geometrical details of the
interfaces between the rods do not need to be considered. Using
Voronoi contours as outlines for the rods overestimated the axial
and bending stiffness of the beam elements by about 10 and 22%,
(respectively) compared to that of a circular cross section.

The interfaces were modeled with a trapezoidal traction-
separation law shown in Fig. 4, which captured the interfacial
deformation and rupture of the material between enamel adjacent
rods. This is a highly idealized representation as the composition
and mechanical behavior of enamel interfaces is much less under-
stood. Historically, the interfaces have been regarded as continuous
(a) Undeformed:
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Fig. 4. (a) Schematic of deformation modes of a pair of adjacent rods in normal and tan
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separation Dt curves (not shown) are identical in form to those for normal tractions.
‘protein sheaths’ [15], however recentmicroscopy of bovine enamel
indicates that very little protein (if any at all) exists between the
rods after maturation [33]; subsequent mechanical tests suggest
that the rods may in fact be connected by hard mineral bridges
instead [34,35]. While these complexities are not meant to be over-
looked, for the practical purposes details of the interface composi-
tion are all homogenized into the interface law shown in Fig. 4 as
a simplified approach to explore the parameter space. We note that
our interface representation is the same one used in previous mod-
els of nacre [29] which follows a similar strategy to generate stiff-
ness and toughness through architecture of hard phases with
weak interfaces. While the composition of enamel interfaces is lar-
gely different from those found in nacre, bothmaterials exhibit high
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ductility of the interfaces [36] combined with its intricate
microstructure. It is therefore reasonable to infer that some ductil-
ity (albeit a possibly very small amount) is present in enamel inter-
faces and plays a similar role on fracture toughness as in nacre. We
also note that there have been no direct measurements in either
biocomposite of the interface bulk macroscopic stress-strain
response via conventional testing standards due to size-scale com-
plications; therefore an idealized approach is justified. The defor-
mation modes of the interface are shown independently in Fig. 4a
alongside the initial undeformed configuration. The full mathemat-
ical definitions of the interface law omitted for brevity but are given
in [29].

The interface cohesive law (Fig. 4b) is defined by four indepen-
dent parameters: the interface stiffness k, strength r0, work of sep-
aration Ci, and ultimate separation DU. The interface work of
separation Ci is defined as the area under the traction-
displacement response in pure normal separation. It is assumed
that Ci is exactly the energy required to separate the interface
completely to a traction-free state through bulk deformation only,
which effectively combines all of the nonlinear failure mechanisms
of the interface into one. Irreversibility in the interfaces was
accounted for through an idealized triangular unloading law
shown in Fig. 4b; our recent calculations in brick-and-mortar com-
posites have shown that the shape of the unloading law has a
numerically insignificant effect on the results so long as the mesh
is resolved. We also assumed that the displacement jump vector
was uniform along a given interface, which neglects the geometri-
cal effect of rotations at the adjacent nodes on the deformation of
the interface. This assumption greatly facilitated the numerical
implementation, as the response of the interface only depends on
its normal and tangential displacements (Fig. 4a). We verified by
full 3D finite element calculations of a subset of the model
microstructure shown in Fig. 2 (not shown here) that this approx-
imation has a negligible effect on the calculation results provided
that the mesh is sufficiently resolved (he<<d). We also assumed
that the response of the interfaces was mode independent and
therefore the interface properties were set equal in the normal
and tangential separation. While many ductile and quasi-ductile
interfaces exhibit mode dependent fracture toughness [37], this
assumption greatly simplified the numerical implementation and
isolated the role of microstructure. The effects of mixed-mode
interface laws are beyond the scope of this work but have been
studied in detail in [38] and one would expect similar scaling if
implemented here. The interface traction-separation law was then
converted to a multi-axial force-displacement relationship by scal-
ing the interface stiffness k (N/m3) and strength r0 (N/m2) by the
interface area Ai = lihe (Fig. 4a),which gives an effective spring stiff-
ness ke = kAi and peak force F0 = r0 Ai. This simplification is valid
because the tractions have been assumed to be uniform across
the interface, similar to the approach in [28]. More details on the
interface formulation, including the stiffness matrix entries, can
be found in Appendix B.

The system of governing equations in the DEM approach was
formed by assembling the local elemental stiffness matrices for
the beams and interfaces via the standard finite element assembly
procedure [39]:

K½ � ¼
Xne
i¼1

k½ �e ð1Þ

where [K] is the unconstrained global stiffness matrix and [k]e are
the local elemental stiffness matrices for the beam and interface
elements (shown in detail in Appendix B). Boundary conditions
and linear constraints were applied using the method of Lagrange
multipliers, resulting in augmented system of governing equations
represented in block matrix form as follows:
K AT

A 0

" #
u
k

� �
¼ f

Q

� �
ð2Þ

where {u} is the vector of unknown nodal displacements and rota-
tions, {k} is the vector of unknown Lagrange multipliers, {f} is the
known vector of externally applied forces and moments, {Q} is the
vector of known boundary conditions and linear constraint equa-
tion constants, and [A] is the matrix of boundary conditions and
constraint equations. In more compact notation, Eq. (2) is expressed
as:

K½ �þ uf gþ ¼ ff gþ ð3Þ
where [K]+ is the augmented stiffness matrix, and {u}+ and {f}+ are
the vectors of generalized knowns (forces and boundary conditions)
and unknowns (nodal displacements and Lagrange multipliers),
respectively. Details on the solution of Eq. (3) will be discussed in
the subsequent sections. Once solved, the structural reaction forces
were computed directly from the Lagrange multipliers: {R} = �
[A]T{k}.

Using the DEM approach, we carried out virtual mechanical
tests on the enamel architecture, with the main goal of the models
to capture trends and identify microstructural parameters that
govern the enamel mechanical properties. Three types of virtual
tests were performed: Uniaxial tension (orthotropic elastic moduli)
along three directions, indentation (point force), and crack propa-
gation (fracture toughness). In all subsequent results we repre-
sented the input and output variables in dimensionless form,
with the ranges of dimensionless inputs for the DEMmodels calcu-
lated from approximate ranges of properties and constants mea-
sured in experiments. This representation reduces the number of
virtual experiments required to capture basic trends, and moreover
represents the results in a more general form that could translate
to similar bioinspired crossply composites manufactured at larger
length scales.

3. Orthotropic elastic moduli

We measured the orthotropic elastic moduli of a unit cell of the
enamel architecture (Fig. 5) using virtual uniaxial tensile tests
along the x,y and z directions. The dimensions of the minimum unit
cell in the x, y and z directions were d0 by

ffiffiffi
3

p
d0 by kD, respectively.

Periodic boundary conditions were enforced in all three directions
using multi-point constraint equations, as shown in Fig. 5b. Redun-
dant elements within the unit cell were removed and reference
nodes were placed along the neutral axis of the next would-be
rod neighbor.

A uniform strain was applied to the unit cell by imposing a dis-
placement gradient between the opposing faces of the model. For
these elastic simulations, we set r0=1 which guaranteed that Eq.
(3) is linear. The deformed nodal displacements and rotations were
therefore solved for with a single function call to a standard sparse
linear solver:

uf gþ ¼ K½ �þleftffgþ ð4Þ
The average stress along a face of the unit cell was computed by

summing the constraint reaction forces along that face and divid-
ing by its area. The enamel modulus in any direction was defined
as the ratio of average stress to average strain at any level of defor-
mation. It was verified that results were independent of the mesh
size (he) and specimen size by stacking several unit cells. We
focused on the tensile moduli in three orthogonal pulling direc-
tions, which are subsequently referred to the transverse moduli
Exx and Eyy, and the axial modulus Ezz. All moduli were normalized
by the Reuss modulus at hD = 0� (EReuss = kd). The stiffness contrast
was defined as Er/kd, which can be expressed in terms of the inter-
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face modulus Ei and rod volume fraction /r as Er/kd = ½(Er/Ei)(1//r

� 1). To obtain ranges for stiffness contrast for the DEM simulation
inputs, we assumed Er to be in the range 93–113 GPa and /r = 0.95
[9]. For practical purposes we idealized the interface modulus Ei to
be in the range of 50–500 MPa which is reasonable given that it
consists mostly of water, protein remnants [40], and possible min-
eral nano-bridges [34,35]; it unlikely that Ei is in the GPa range.
With these ranges of parameters, the dimensionless stiffness con-
trast can range from Er/kd = 5–50 at the approximate extrema of
the property space, which were used in all subsequent parameter
studies.

Fig. 6a shows the effect of the decussation angle hD on the nor-
malized axial modulus Ezz/kd for various levels of stiffness contrast
Er/kd. For all values of stiffness contrast, the axial modulus Ezz is
maximized at hD = 0� and is equal to the upper theoretical limit
(Voigt modulus), as indicated by the dashed guidelines on Fig. 6a
where Ezz = Er. Fig. 6a shows that as decussation is introduced,
the axial modulus decreases and approaches the lower theoretical
limit (Reuss modulus) when hD approaches 90�. This trend suggests
that decussation may provide a gradual decrease of modulus from
the surface and towards the underlying softer dentin layer, in order
to reduce the elastic mismatch between these two materials. The
effect of decussation on the axial modulus Ezz is amplified by the
rod-to-interface stiffness contrast.

In the limit of straight rods (hD = 0�), the transverse modulus Exx
approaches the theoretical Reuss lower bound for all values of stiff-
ness contrast. In the regime where hD is less than about 20�, Exx is
insensitive to decussation for all values of stiffness contrast and
nearly equal to the Reuss bound. For larger decussation angles
(hD > 20�), Exx increased more significantly with hD as the stiff rods
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carry an increasing amount of stress, and the effect of decussation
was again amplified by the stiffness contrast. The normalized
transverse modulus Eyy/kd (Fig. 6c) did not change with hD and
was equal to the Reuss modulus (Eyy/kd = 1). The instantaneous
transverse modulus Eyy is therefore the same at any 2D slice in
the xy-plane shown in Fig. 2b. Fig. 6b and c also show that the
enamel model is nearly transversely isotropic when hD = 0�
(Exx = Eyy), as expected given the symmetry planes in a uniform
hexagonal tiling.
4. Hardness

Surface hardness is critical to the functionality of the teeth as a
cutting, tearing and crushing tool. In this second set of virtual
experiments we captured hardness as function of decussation
angle and stiffness contrast. The setup of the hardness model is
shown in Fig. 7a: A flat volume of material with thickness t was
first generated and meshed using the procedure described in Sec-
tion 2. The thickness was held constant for all hD, and the input val-
ues of hD = {5.7�, 11.5�, 23.6�, 53.1�} were chosen such that the
specimen thickness was an integer multiple of the decussation
wavelength; this ensured that the indenter boundary condition
was always applied at the same relative z-position within the
microstructure. The bottom face was clamped and a vertical inden-
ter displacement was applied to the center node on the top face.
This idealized procedure is not exactly the same of a true hardness
test [41] but it provided a simple approach to explore the effect of
different enamel architectures and properties on surface hardness.
Moreover, contact forces in humans and many mammals are often
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non-vertical and may have tangential components as well due to
frictional loads. This scenario is not considered here but could be
implemented with a basic scratch test within the DEM framework
[42]. In these models, the cohesive zones representing the inter-
faces were set to have both finite strength r0 and toughness Ci,
which resulted in a nonlinear system of governing equations:

g uð Þf g ¼ K uð Þ½ �þ uf gþ � ff gþ ð5Þ

where {g(u)} is the residual force vector. Eq. (5) was solved itera-
tively using the Newton-Raphson method:

uf gþiþ1 ¼ uf gþi � J uð Þ½ �þleftfg uð Þg ð6Þ

where [J(u)]+ is the global augmented Jacobian and is assembled
elementwise in the same manner as the global stiffness matrix in
Eq. (3); the local element Jacobian matrices are shown in Appendix
B. A small amount of artificial viscosity was added to the cohesive
law to promote numerical convergence [43] of Eq. (6) and was ver-
ified to not influence the calculation results. The global force resid-
ual norm tolerance was set at 0.01% of the minimummodel reaction
force which ensured accurate results. Some efficiency improve-
ments were made to the NR-scheme, including an adaptive loading
scheme, parabolic extrapolation of the new displacement solution
guess (based on the previous converged load increments), and use
of sparse triplet form for all matrix manipulation operations includ-
ing assembly and updating [27,44]. The indentation simulations
were run on the McGill supercomputer Guillimin using Matlab
R2016b and took about 3 h each. Each indentation simulation con-
sisted of about 30,000 nodes which gives a global stiffness and Jaco-
bian matrix size of about 180,000 by 180,000 (6 degrees of freedom
per node).
Fig. 7b shows the effect of decussation on the indenter force-
displacement curves for fixed stiffness contrast. In all cases, the
force-displacement curves were nonlinear and approached a
well-defined maximum followed by a region of post-peak soften-
ing. For comparative purposes, we defined the hardness H as the
maximum of the normalized indenter force-displacement curve.
The hardness is maximized for low decussation angles and
decreases smoothly and monotonically as the decussation is
increased. This trend is consistent with the mechanical function
of enamel: At the outer surface, maximum hardness is needed
for efficient biting and chewing of food Many nanoindentation
tests on human enamel have confirmed that enamel hardness is
functionally graded [15,16,45,46]. While the decrease in hardness
away from the surface has shown some variation depending on
the location and age of the extracted tooth (Cuy et al: 5–6 GPa to
2–3 GPa [15], Low: 4–1.5 GPa [45], Park et al: 5–3.5 GPa [16], He
et al: 4.5–2.5 GPa [47]), the decrease of the hardness with depth
is consistent in human enamel and in other species as well [40].
The decrease of hardness with depth has been attributed to many
different factors, including rod orientation, chemical structure, as
well as issues with demineralization that occur at greater depths
during maturation [15,45,47]. While there appear to be no univer-
sal connections between the enamel structure and these hardness
gradients, the results here support the notion that the relative ori-
entation of the rods can greatly influence these spatial changes in
hardness (Figs. 7 and 8). While our idealizedmodel predicts a hard-
ness which is roughly 30% higher than the experimental value
(assuming experimental values of Fc = 6.5 mN, r0 = 50 MPa,
hD = 30�, and d = 4 lm [12,15,48]), the fraction of decrease of hard-
ness with rod decussation in the experiments and in our DEM sim-
ulations are remarkably close. Fig. 7c shows the distribution of the



5

10

Er /kd=20

10 20 30 40 50 60
0

10

20

30

Decussation angle, D

H
ar

dn
es

s, 
H

 F
)

(
c/

0
d

2

Fig. 8. Normalized enamel hardness as a function of decussation angle for various
rod-to-interface stiffness contrasts Er/kd.

J.W. Pro, F. Barthelat / Acta Biomaterialia 94 (2019) 536–552 543
inelastic region ahead of the indenter tip at the peak load super-
posed on the deformed rod configuration. For brevity, only two dif-
ferent decussation angles are shown in Fig. 7c (hD = 5.7� and
hD = 23.6�), but the trend was consistent along all decussation
angles modeled: as the decussation angle was reduced towards
hD = 0�, the inelastic region was larger in the thickness (�z) direc-
tion to maintain equilibrium of the larger indenter reaction forces
associated with the harder material (Fig. 7b and c) but was still
contained within 3–4 rod diameters. For all decussation angles,
the inelastic region was highly localized and contained within
one rod diameter in the xy-plane as shown in the representative
contours for hD = 5.7� and hD = 23.6�. The distribution of vertical
surface displacements was also highly localized (shown at 75�
amplification in Fig. 7c) at the indenter, with the indented rod dis-
placement being about 20–30 times larger than its neighboring
rods in both cases. This result confirms the simulations reproduce
the rod ‘sinking’ mechanism observed in nanoindentation experi-
ments of enamel [17], which promotes strain tolerance and pre-
vents widespread damage via relative rod sliding within the
segmented architecture.

Fig. 8 summarizes the hardness test results and shows the com-
bined effect of stiffness contrast and decussation. As the stiffness
contrast is increased, the hardness is amplified over all decussation
angles and has the most pronounced effect when the rods are
nearly aligned (hD � 5�). This trend can be explained in part by con-
sidering the opposite limit of infinite interface stiffness (Er/kd? 0).
In this limit, the deformation state approaches the Boussinesq
solution for a point force [49] which predicts infinite compliance
at the point force. As the interfaces are made more compliant (Er/
kd > 0), combined relative rod sliding and interface yielding and
provide a mechanism for strain tolerance that decreases the local
compliance and increases the hardness.
5. Fracture mechanics and crack propagation

Finally, we used our DEM approach to explore crack propaga-
tion in enamel and to assess how variations in the enamel architec-
ture govern fracture toughness. The models in this section are
based on fracture mechanics and therefore only consider cases
where a dominant crack has already formed. The nucleation of a
dominant crack in enamel is complex; for example cracks can
nucleate at the DEJ from local stresses in radial arrays [50] or from
cyclically induced microwear events at the surface [51]. For the
DEM models these events are not modeled explicitly and it is
assumed that the crack has already initiated well into the
microstructure, with lengths larger than any characteristic length
present in the microstructure. The specimen geometry and bound-
ary conditions used to capture crack resistance are shown in Fig. 9.
The coordinate system for these models uses the fracture mechan-
ics convention where the x-axis is aligned with the crack. The spec-
imen width, height, and initial crack length are noted as ws, hs, and
a0 respectively. The specimen was assumed to be infinitely deep
and periodic along the z-axis (plane strain conditions) and there-
fore periodic boundary conditions were enforced the z-direction
using tie constraints between the first and third layer of rods, with
only reference nodes in the third layer (Fig. 9c). This reduces the
scaling of the computational time from n3 to n2 and is permitted
because the microstructure was assumed to be periodic (Fig. 2).
The strength and the toughness of the interfaces were set to be
finite to capture crack propagation directly. The initial crack was
inserted at the mid-height of the specimen along the xz-plane by
deleting any DEM elements that intersected the crack plane. Dis-
placement boundary conditions were applied at the top and bot-
tom of the specimen and followed a linearly decaying spatial
distribution (Fig. 9c), which promotes stable crack growth [21].
The nonlinear governing equations were solved via the full
Newton-Raphson method discussed in Section 4.

The crack driving force was computed at each load increment
using the 3D J-integral [52]:

Jk gð Þ ¼
Z
C

Wnk � ti
@ui

@xk

� �
dsþ

Z
A

@

@x3
Wdk3 � ri3

@ui

@xk

� �
dA ð7Þ

where W is the elastic strain energy density, nk is the kth compo-
nent of the normal vector to the integration contour (where k is
the direction coordinate aligned with the crack), ti is the traction
vector, ui is the displacement vector, xk is the spatial coordinate,
ri3 is the 3rd row of the Cauchy stress tensor, and dk3 is the Kro-
necker delta. The term g represents the position of the intersection
of the area contained within the line integral contour with the crack
front [52]. The terms C and A represent the integration lines and
surfaces, respectively. The J-integral has been shown to be accurate
and path independent for discrete systems [26]. The 3D J-integral
surface contour was taken to be the outermost faces of the speci-
men in Fig. 9c, and the line contour was taken along the outer edges
of the front face of the cube. The J-integral simplifies with this con-
tour choice and can be expressed entirely in terms of the nodal
reactions and interface separations. The crack resistance curves
were constructed by evaluating the J-integral at each unique incre-
ment in crack advance, where the crack tip position was defined as
the average position of the first pair of adjacent interfaces where
one interface is broken but the other is intact.

The cohesive law in Fig. 4 introduces a nonlinear fracture length
when a crack is present that scales directly with the cohesive stiff-
ness and toughness, and inversely cohesive strength squared
[38,53]. However, the fracture length does not influence the calcu-
lation results provided it is large relative to the mesh size (resolu-
tion) but small compared to the specimen, where the latter
corresponds to the condition required for linear elastic fracture
mechanics (LEFM) to be valid. [29,38,53–55]. Therefore, for all
models we checked model size independence by running a small
and large specimen and checked mesh size independence by run-
ning a fine and coarse mesh. The largest fracture models contained
about 200,000 DEM nodes (1,200,000 degrees of freedom) and took
about 4 days wall time to compute on the McGill supercomputer
Guillimin.

We first examined the effects of decussation angle on toughness
while holding the stiffness contrast constant at Er/kd = 5. Fig. 10
shows the effects of decussation on the volumetric process zone
evolution and on crack growth (columns 1–3), on the enamel R-
curves (column 4), and on the maximum tensile stress in the rods
over the entire model (column 5). The models were sufficiently
large, and fracture was stable enough to capture crack propagation
over distances of about 10–20 rod diameters. In the limiting case of
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uniformly straight rods (hD = 0�), relatively little inelastic deforma-
tion occurred as the crack propagated between the parallel rods.
For this case, the toughness remained unchanged as the crack
propagated past initiation, with a value corresponding to the the-
oretical delamination toughness (R/Ci = 4/3, inferred from the
geometry of the surface area shown in Fig. 9b). For cases where
hD > 0� (Fig. 10, rows 2–4), the crack was forced into a non-planar
configuration due to the decussating rod architecture, which pro-
moted the development of a large inelastic region ahead of the
crack through progressive yielding of interfaces and contributed
to the initiation toughness and crack resistance. The initiation
toughness increased monotonically with both decussation angle
and process zone size, and reached about five times the interface
toughness in the case for hD = 30�. As the crack advanced past ini-
tiation, the toughness increased significantly with no apparent
steady state reached for all cases where hD > 0�. For the case with
the largest decussation (hD = 30�), the crack resistance reached up
to five times the initiation toughness (twenty-five times the inter-
face toughness). The simulations were stopped when the R-curves
from the small and large specimen diverged (Fig. 10), at which
point the crack interacted with the specimen boundary.

For smaller non-zero decussation angles (hD = 10�), we observed
that the crack advanced by bursts and between crack pinning
points spaced by a distance of about 6 rod diameters. Interestingly,
this distance matches the decussation wavelength kD discussed
above. This finding suggests that the crossing points of the rods
act as obstacles for the cracks, and that for low decussation angles
the 3D crack tortuosity is the primary toughening mechanism. At
higher decussation angles, this effect is obscured by more powerful
toughening mechanisms: crack branching and energy dissipation
in the process zone (Fig. 10). We also monitored the maximum ten-
sile stress carried by individual rods during the simulation. For the
case with no decussation (hD = 0�), we found a maximum stress of
rr = 15r0, generated by flexural stresses in the rods that form the
crack tip opening displacements. For higher decussation the max-
imum stress in the rods initially increased as the crack advanced
(Fig. 10, column 5) but appeared to reach a steady state maximum
value of 40r0 to 60r0 for hD > 0�. This observation is rationalized by
the finite strength of the cohesive interfaces, which has been
shown by previous analyses of cohesive zone models to eliminate
the LEFM singularity ahead of the crack tip and provide an upper
bound for the model stresses [38]. Interestingly, the toughness
kept increasing with crack advance for hD > 0� even though the
rod stresses reached a steady state value. As the decussation angle
increased from hD = 0� to hD = 10�, the maximum stress in the rods
increased by a factor or 4–5. In going from hD = 10� to hD = 30�, the
steady state rod stresses decreased. This observation can be
explained by considering the physical limit of hD = 90�, where the
stress state along the cross sections of the individual rod elements
tends to be uniform in mode I loading. For a given state of stored
elastic energy in a vertical slice within a single rod element (which
directly scales the elastic energy release rate to drive cracking), a
state of uniform tensile stress has a lower peak stress than one
with a linear stress distribution.

Fig. 11 shows the 3D structure of the crack path and process
zone in more detail for hD = 30� and Er/kd = 5 at Da/d � 5. In ply
1, the pre-crack kinks into an interface between the rods at +30�,
while in ply 2 it kinks into an interface at �30�. In the interlayer,



Fig. 10. Effect of decussation angle (0� � hD � 30�, rows 1–4) on the volumetric process zone (columns 1–3), the crack resistance (column 4), and maximum stress over all
rods (column 5) as a function of crack length. For all calculations shown, the stiffness contrast was set at Er/kd = 5 and the relative cohesive separations were set at DS /DY = 10
and DU /DS = 1.8. For the case with the largest process zone (hD = 30�), R-curves are shown for both a small and larger (2x) specimen. The volumetric process zone was defined
as the region of interfaces whose maximum displacement (over the entire loading history) has exceeded its elastic limit (Dmax > DY).
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the crack follows a branched trajectory with a symmetry about the
x-axis. Within each ply, a dense process zone is generated from ‘‘in-
tralayer” shearing between the plies. These parts of the process
zone are close to symmetric about the x-axis (even though crack
propagation is not). The results also show interlayer shearing
between the plies which is symmetric about the x-axis and identi-
cal in the interlayer 1–2 and 2–3. This interlayer process zone is
more sparse and heterogeneous, with a substantial volume fraction
of interfaces remaining in the elastic region.

The snapshot shown in Fig. 11 represents a crack propagated in
the decussated region. The crack has propagated over a distance of
about five rods and the toughness has increased from Gc/Ci = 4.4
(initiation toughness) to R/Ci = 10.8. At initiation, there was no
observed crack branching or bridging, and tortuosity contributes
only 30% to the toughness (4/3Ci at maximum). The remaining
70% is therefore accounted for by the inelastic work expended in
the yielded interfaces ahead of the crack tip that form the initiation
process zone. As the crack propagates, the process zone grows sub-
stantially in volume while the inelastic region unloads behind the
crack tip, which consumes a large amount of energy and con-
tributes to the crack resistance [56]. We computed the contribu-
tion of the process zone to toughness (Rpz) using numerical
differentiation as rate of change of total interface inelastic energy
with respect to crack area (@Wi/oA). The contributions from crack
branching and tortuosity were grouped as surface area toughness
effects (Rsa) and were computed as the total crack surface area nor-
malized by the projected crack area [57]. From the snapshot shown
in Fig. 11b, we determined that 82.6% of the crack resistance is gen-
erated by process zone toughening, with 22.1% from interlayer
shearing and 60.5% from intralayer rod shearing. The remaining
17.4% is accounted for from surface area effects (3D tortuosity
and crack branching). Summing these individual contributions in
raw form provides an overall toughness which is very close to
the measured J-integral (within 1.7%), which shows that all the
important toughening mechanisms (branching/tortuosity and pro-
cess zone) where taken into account in this fracture model. These
relative contributions are illustrated on Fig. 11c. The process zone
within the plies (intraply shearing between rods) is the largest con-
tributor to toughness, followed by interply shearing. Branching and
tortuosity have a more modest but non-negligible effect. Parsing
the relative contributions to the toughness in this manner helps
establish strategies for designing tougher composites. For example,
the interfaces in the interlayer could be made artificially weaker to
provide greater homogeneity between the ply and interlayer pro-
cess zones; while this would impact the material strength, the frac-
ture resistance would likely increase.

We also explored the effect of stiffness contrast for a fixed
decussation angle hD = 20� (Fig. 12). Fig. 12 shows that larger
stiffness contrasts tend to simultaneously amplify the process
zone size, which is consistent with the scaling expected from
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LEFM [21]. Accordingly, fracture toughness also increased with
the size of the process zone. The maximum steady state stress
in the rods was also amplified for higher stiffness contrasts,
which can be explained by Voigt composite theory: as the mod-
ulus of one of the constituents increases, the effective composite
modulus also increases (as in Fig. 6), amplifying the stress state
in both constituents for fixed strain. Interestingly, the rate at
which rod stresses reach steady state also increased as the stiff-
ness contrast was increased. Considering the case for Er/kd = 5,
the maximum rod stress appears to reach steady state in the
later stages of the simulation (Da/d � 20–25), whereas when
Er/kd = 20 it is reached very early on (Da/d � 3). This is consis-
tent with LEFM scaling for the process zone size: the effective
modulus dictates the rate of growth of the process zone
(rp = EGc/r0

2) [21]. For larger effective moduli, the rods within
the process zone become surrounded by larger volumes of fully
yielded interfaces so that these models approach a constant
stress state earlier in the simulation.

To further illustrate the capabilities of the DEM approach and
explore the interaction of longitudinal cracks with the heteroge-
neous enamel microstructure, a hybrid bimaterial virtual specimen
was also generated. In this model, half of the specimen had no
decussation, and the other half had substantial decussation
(hD = 30�), analogous to the spatial distribution of decussation
observed in natural enamel [1,4,5]. The pre-crack was inserted in
the non-decussating region parallel to the rods with the crack tip
located about 13 rod diameters from the boundary of the decussat-
ing region. The boundary conditions were identical to those shown
in Fig. 9c.

Fig. 13 shows the process zone growth, crack propagation, and
crack resistance curves for the bimaterial enamel model. Initially,
the crack grows parallel to the straight rods with a localized pro-
cess zone but is quickly arrested as the crack tip ‘hits’ the decussat-
ing region (Fig. 13a). As the load is ramped, the crack remains
trapped at the decussation boundary while a large process zone
spreads well across the boundary into the decussating region. This
crack pinning mechanism is accompanied by a rapid rise in crack
resistance (Fig. 13b) which is qualitatively identical to the experi-
mental results shown in Fig. 1b [2].

For the last set of virtual fracture experiments, we allowed for
the possibility of brittle rod fracture (in addition to interface frac-
ture). We used a simple brittle fracture criterion where the rod ele-
ment is removed from the simulation if its maximum stress rr

exceeds the rod strength rrs. For these calculations, we chose the
strength ratio based on the elastic rod stresses in Fig. 12 such that
the first rod would fracture after an interface crack has initiated
(rr � 30r0 for hD = 30� when Da > 0).
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Fig. 13. Results from the heterogeneous bimaterial enamel model where the rods are stra
boundary (hD = 30�). (a) Shows the process zone evolution as the crack approaches the de
at 50% of the specimen size.
Fig. 14 shows the effect of finite rod strength on the process
zone and R-curves for the case where hD = 30�, Er/kd = 5, and rrs/
r0 = 30, alongside the case with infinite rod strength, with the rel-
ative toughness contributions shown in Fig. 14c. Initially, the pro-
cess zone size and shape are identical in both cases as well as the
initiation toughness. As the crack advances, both rods and inter-
faces fracture just ahead of the crack tip along a line which is sym-
metric to the delamination crack forming a full branch rather than
just a kink. The crack from rod fracture in ply 1 follows the delam-
ination crack in ply 2 and vice versa. A branch of broken interfaces
was also formed in the interlayer for rrs/r0 = 30 nearly identical to
Fig. 11b. The fracture of the rods therefore does not completely
suppress the fracture of interfaces between the rods, and the tra-
jectory of the cracks is still largely affected by the architecture of
the material. However, since the fracture of rods releases stresses
ahead of the crack tip, the process zone size and ultimately tough-
ness are diminished compared to the case of infinite rod strength
(Fig. 14) and both reach steady state concurrently when Da/
d � 5. Rod fracture also alters the relative contributions to the
toughness which are shown in Fig. 14c for rrs/r0 = 30 at steady
state (Da/d � 5). The process zone now contributes to 57.4% (com-
pared to 82.6% when rrs/r0 =1) of the toughness, which raises the
relative contribution from surface area effects to 42.6% (compared
to 17.4% when rrs/r0 =1).

The predicted R-curves in Fig. 14 can be compared with fracture
experiments on human enamel [1,2]. Evaluating the experimental
crack resistance at the largest crack extension involved in [2]
(Da � 1.5 mm) gives KR = 2.3 MPa�m1/2

. Assuming an interface frac-
ture energy Ci = 10 J/m2 [48] and an enamel modulus E = 100 GPa
[15], the experimental values of R/Ci for human enamel can be
roughly estimated through Irwin’s relation (R/Ci = KR

2/ECi) [21] and
gives a value around R/Ci � 5.3. As with many mammalian species,
the decussation patterns in human enamel are far more complex
than the idealized cross-ply structure shown in Fig. 2, with no single
well-defined decussation angle hD. Mouse incisor enamel appears to
be the exception, with a simple cross-ply structure with relative ply
angles ranging from 30 to 55� [12]. Therefore hD = 30� is reasonable
for the sake of comparison. Unfortunately there are no published R-
curves for mouse incisor enamel so direct comparisons could not be
made. To compare with the DEM simulations, we assumed a stiffness
contrast Er/kd = 5, which corresponds to Er � 100 GPa and /r � 0.95,
and an interface modulus Ei of about 500 MPa which is on the upper
end of what would be realistic. Examining the DEM data for Er/kd = 5
and hD = 30� predicts a steady state fracture resistance of R/Ci � 7
(Fig. 14), by comparison the estimated experimental value was about
R/Ci � 5.3. This is in fact quite reasonable given that many of the
experimental constants, especially those of the interface, had to be
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roughly estimated given that they are much less understood. More-
over, we emphasize that our objective was not to model the full 3D
structure of enamel, but to capture the effect of decussation and rod/
interface properties on the enamel mechanical properties with an
idealized geometry. Still, the DEM model predicts properties that
are relatively close to experimental trends even with its many ideal-
izations and simplifying assumptions.

6. Summary: Ashby plots

The effects of decussation and stiffness contrast can be conve-
niently summarized in Ashby plots (Fig. 15). As the decussation
angle is increased, both the axial modulus and hardness decrease
simultaneously. Higher stiffness contrast between the rods and
the interfaces (Er/kd) decreases the rate that hardness decreases
with modulus. Fig. 15b shows the initiation toughness vs. axial
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Toughness and stiffness are mutually exclusive properties, which
is consistent with other biological and engineering materials
[58]. Low decussation angles produce stiff materials in the axial
direction with low toughness in the transverse direction. Con-
versely, higher decussation angles produce more compliant mate-
rials in the axial direction that are much tougher transversally to
the crack plane. The implication is that natural enamel transitions
from a very hard and stiff (but brittle) material on the surface
where the rods are parallel, to a tougher but more compliant mate-
rial in the deeper regions where decussation increases. The decus-
sation region serves as a smooth transition of modulus from the
outer enamel to dentin, and as demonstrated by experiments and
the models presented here, can arrest cracks and prevent them
from propagating into the more infection prone dentin and pulp.
Interestingly, our models show that higher stiffness and toughness
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can both be achieved by increasing the contrast of stiffness
between rods and interfaces. This finding is consistent with guide-
lines for nacre [59], and can be generalized to hard biological mate-
rials that rely on hard building blocks bonded by softer interfaces
[48]. Fig. 15c however illustrates the limitations of increasing the
stiffness contrast: the stresses within the rods are amplified and
therefore presents a higher likelihood of brittle rod fracture, which
we showed substantially limit the crack resistance (Fig. 14). For
example, considering the case where Er/kd = 5, the maximum rod
stress reaches about 40 times the interface strength for the case
modeled with the largest toughness (hD = 30�), indicating that the
rod strength would have to be about 40 times that of the interface
to avoid brittle rod fracture. This strength contrast is substantial,
and consistent with mechanical tests on bovine enamel where
individual rods were shown to have high strengths (1.5–1.7 GPa
[34,35]), at least in compression. These simulation results reinforce
the conclusions here that high strength contrast is needed to gen-
erate toughness. In bioinspired materials, this high contrast of
strength could be achieved by combining a relatively low strength
polymer (�25 MPa) for the interfaces with a higher strength metal-
lic or ceramic material for the rods (�1 GPa) [60].

7. Conclusions

While it has been understood for some time [1,2,5,6,8,14,15]
that decussation influences the properties in enamel (particularly
its ability to arrest through-thickness longitudinal cracks emanat-
ing from the surface to prevent them from reaching the DEJ),
detailed numerical models that explicitly quantify effect of decus-
sation and stiffness contrast had not been performed. This study
shows that DEM offers a powerful, computationally efficient
approach for simulations of complex architectures that would
otherwise not be tractable with conventional 3D finite elements.
By combining the efficiency of the DEM approach with the raw
processing power of modern supercomputers, we conducted
parameter studies with very large 3D models of enamel (over 106

degrees of freedom). While the DEM models are highly idealized
and make many simplifying assumptions, the results are remark-
ably close to experiments and capture the toughening mechanisms
observed in natural enamel [2] as well as bioinspired crossplies
[61]. The DEM models quantitatively elucidate the role of specific
micromechanics, which are summarized below:

1. Parallel rod alignment generates high stiffness. The axial mod-
ulus (Exx) is maximized at hD = 0� and recovers the theoretical
upper bound constant-strain (Voigt) model. As decussation is
introduced the material becomes more compliant and
approaches the lower bound constant-stress (Reuss) model.
This trend is consistent with experiments [14–16] and suggests
decussation functionally grades enamel and alleviates DEJ
stresses due to modulus mismatch.

2. Hardness is governed by inelastic shearing between rods, which
spreads primarily in the depth direction (�z). The spread in the
depth direction was largest (3–4 rod diameters) for near
straight rods (hD = 5.7�) and decreased as more decussation
was introduced which accounts for the drop in hardness
(Fig. 8), consistent with many experiments [14–16]. In all
indentation simulations the inelastic region and rod displace-
ments were highly contained (within 2 rod diameters) in-
plane, thus reproducing the ‘sinking’ mechanism [17] that pre-
vents widespread damage.

3. Toughness and rising crack resistance are generated by a con-
fluence of mechanisms that are activated with increasing
decussation, including crack branching, 3D tortuosity, and
spreading of the volumetric process zone. For straight rods
(hD = 0�), only 3D tortuosity was activated but for higher
decussation angles, a nonlinear process zone developed along
with a 3D partially-branched partially-kinked crack configura-
tion which both amplified the crack resistance. For hD = 30�,
the process zone contributed the most to crack resistance at
82.6% (for Da/d = 5), with about 60.5% from intralayer deforma-
tion and 22.1% from interlayer deformation. Crack branching
and 3D tortuosity accounted for the remaining 17.4%.

4. Crack resistance is substantially limited when rod fracture is
allowed (rrs –1) and approaches a steady state value of R/
Ci � 7 (for hD = 30�, Er/kd = 5, and rrs = 30), close to experimen-
tal values [2]. In this case full crack branching and process zone
toughening are activated but the fracture of rods releases elastic
stresses ahead of the crack that would otherwise process zone
energy dissipation. Hence, the process zone size is reduced rel-
ative to the infinite rod strength model and quickly reaches
steady concurrently with the crack resistance.

5. For all decussation angles hD > 0� (and rrs =1), the crack resis-
tance increased indefinitely with crack advance while the max-
imum stresses in the rods approached steady state due to fully
yielded interfaces. This finding is consistent models for process
zone toughening in [25] with elastic-plastic interfaces: the
stresses in the interfaces surrounding the hard phase remain
constant but energy is continually dissipated which raises the
overall crack resistance.

The results from the DEM analyses may be incorporated into
existing dental practices to offer improvements in many regards.
For example the DEM models could help assess the stability of sur-
face cracks and sub-surface defects (largely dictated by the spatial
distribution in fracture toughness) to decide whether conservative
treatment options are realistic [62]. The DEM models also offer
insight on how to make better tooth replacements with unique
combinations of properties (e.g., hardness and toughness) that
incorporate architecture and expand the material selection space
[10]. This is particularly advantageous as modern tooth replace-
ments are rather limited in material selection [63] due to strict
requirements in terms of reliability and function. Many microfab-
rication techniques have been recently proposed [64,65] that could
reproduce similar geometries to those represented by the DEM
models (Fig. 2), although attaining high concentrations of the hard
phase remains a substantial challenge [66]. Interestingly, many of
the ‘design’ concepts in natural enamel shown in this work are
mirrored in the design of modern engineering coatings. For exam-
ple, both experiments and the DEM models indicate that enamel is
a functionally graded system [14–16], which is a technique used in
synthetic coatings to mitigate stress concentrations at interfaces
by gradually reducing the elastic mismatch [67]. Thermal barrier
coatings (TBC’s), which serve as a protective layer against heat
and environmental attack in modern turbine engines, are also sim-
ilar in microstructure to enamel. The deposited TBC microstructure
is typically arranged in micron-sized feathery ‘columns’ [68] that
are analogous to the ‘rods’ found in enamel. The classic columnar
microstructure provides protection against contact forces (e.g., for-
eign object damage) via localization and provides a mechanism for
thermal strain tolerance due to CTE mismatch over larger length
scales. While there are many similarities between modern and nat-
ural systems, modern coating systems still exhibit reliability con-
cerns due to their inherently brittle composition [68]. The DEM
simulations can help in the exploration of mechanics-based bioin-
spired strategies for increasing the crack resistance and reliability
of such systems.

The DEM models could be improved in many regards to capture
the effects of geometric complexities such as defects (e.g., ‘intruder
cells’ [32]) and Hunter-Schreger bands [69] on stiffness, hardness
and toughness. As shown in many mammals, the rods are in fact
not straight as assumed here but are arranged in wavy bands with
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near sinusoidal profiles [70]. The rods are offset in phase from adja-
cent layers which creates a periodically varying distribution of
decussation and could be studied under mechanical loading with
the current DEM simulation tools. The assumption of a semi-
infinite periodic structure (Fig. 2, y-direction) could also be relaxed
as many species show nonperiodic microstructure with rod entan-
glement in 3D [12,70], although this would require further opti-
mization of the DEM approach to manage the n3 computational
complexity of modeling a full nonperiodic 3D microstructure.
Strain-hardening could also be implemented into the interfaces.
Although strain-hardening has not been directly observed in natu-
ral enamel, it was shown in our previous DEMmodels for staggered
composites [26] that even a small amount of hardening (5%) ampli-
fies the crack resistance nearly 50% and therefore presents a plau-
sible hypothesis in enamel. Lastly, the approach could be combined
with genetic algorithms [71] to generate optimized architectures
that serve as future guidelines for engineered composites, as well
as offer an evolutionary explanation for many morphological fea-
tures observed in natural enamel.
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Appendix A:. Glossary of symbols
[A]
 Boundary condition matrix

[J(u)]
 Augmented Jacobian matrix

[K]
 Unconstrained global stiffness matrix

[K]+
 Augmented global stiffness matrix

[k]e
 Elemental stiffness matrix

{f}
 Global fodal force vector

{f}+
 Augmented generalized force vector

{f}e
 Elemental nodal force vector

{g(u)}
 Nonlinear augmented force residual

{Q}
 Prescribed boundary condition vector

{R}
 Nodal reaction force and moment vector

{u}
 Global nodal solution vector

{u}+
 Augmented generalized solution vector

{u}e
 Elemental nodal solution vector

A
 3D J-integral area contour

a0
 length of initial pre-crack

Ai
 interface area

Ar
 Rod cross sectional area

d
 average rod diameter

d0
 initial tile spacing

Ei
 Interface modulus

Er
 elastic modulus of rods

EReuss
 Reuss modulus of enamel model (hD = 0�)

Exx
 modulus of enamel model (x-direction)

Eyy
 modulus of enamel model (y-direction)

Ezz
 modulus of enamel model (z-direction)

F0
 effective peak force of interface

Fc
 Peak force in virtual indentation test
fi,x-z
 Element i local nodal forces

Gc
 fracture initiation toughness

H
 Enamel model hardness, Fc/r0d

2

he
 height of beam elements (mesh size)

hs
 height of fracture specimen

Ixx
 Rod polar moment of inertia

Iyy
 Rod 2nd area moment about local y-axis

Izz
 Rod 2nd area moment about local z-axis

k
 interface stiffness

ke
 effective interface spring stiffness

KR
 Experimental crack resistance

Li
 interface length

Lr
 Length of rod element

Mi,x-z
 Element i local nodal moments

nk
 integration contour normal vector

R
 crack resistance

rp
 size of process zone (maximum radius)

Rpz
 process zone contribution to crack resistance

Rsa
 surface area contribution to crack resistance

t
 thickness of virtual indentation specimen

ti
 traction vector

ui,x-z
 Element i local nodal displacements

W
 elastic strain energy density

Wi
 inelastic work expended in process zone

ws
 width of fracture specimen

C
 3D J-integral line contour

Ci
 interface toughness (area under Fig. 4b)

D
 applied indentor displacement (hardness)

D
 Indenter displacement in hardness models

Da
 crack length

Dapp
 peak applied displacement in fracture test

dkj
 Kronecker delta

Dn
 interface normal separation

DS
 interface softening displacement

Dt1
 interface tangential separation (direction 1)

Dt2
 interface tangential separation (direction 2)

DU
 interface ultimate displacement

DY
 interface yielding displacement

g
 3D J-integral crack front coordinate

hD
 decussation angle

hi,x-z
 Element i local nodal rotations

kD
 decussation wavelength

r0
 interface strength

rij
 Cauchy stress tensor

rr
 maximum elastic stress within rods

rr,ss
 steady state maximum rod stress

rrs
 brittle fracture strength of rods

/r
 Rod volume fraction
Appendix B:. Elemental stiffness and Jacobian matrices

The stiffness and Jacobian matrices are shown in this appendix
section for completeness. The elemental governing equation for a
single beam or interface element is given as:

K uð Þ½ �e uf ge ¼ ff ge ðB:1Þ
where [K]e is the local element stiffness matrix, {u}e is the vector of
local nodal degrees of freedom, and {f}e is the vector of local nodal
forces and moments. For the beam elements used to model the rods,
Eq. (B.1) is linear and is expressed in expanded form as [39]:
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The beam element Jacobian is simply equal to its stiffness
matrix ([J]beam = [K]beam) as it is a linear element. For the interfaces,
Eq. (B.1) is nonlinear and the stiffness matrix depends on the nodal
degrees of freedoms. For a mode independent, isotropic interface,
the local stiffness equation is given as:
ke Dð Þ 0 0 0 0 0 �ke Dð Þ 0 0 0 0 0
0 ke Dð Þ 0 0 0 0 0 �ke Dð Þ 0 0 0 0
0 0 ke Dð Þ 0 0 0 0 0 �ke Dð Þ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

�ke Dð Þ 0 0 0 0 0 ke Dð Þ 0 0 0 0 0
0 �ke Dð Þ 0 0 0 0 0 ke Dð Þ 0 0 0 0
0 0 �ke Dð Þ 0 0 0 0 0 ke Dð Þ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ðB:3Þ
Where the displacement jumpD is given directly in terms of the
local nodal displacements:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x � u1xð Þ2 þ u2y � u1y

� �2 þ u2z � u1zð Þ2
q

ðB:4Þ
The is the effective stiffness ke is computed from the cohesive

traction displacement relationship T(D) in Fig. 4:

ke Dð Þ ¼ T Dð Þ
D

Ai ðB:5Þ

For an element with nonlinear stiffness, the elemental Jacobian
is represented in index notation as:

Jij ¼ Kij þ @Kik

@uj
u1;u2; :::;u12ð Þuk ðB:6Þ
where u1–12 are now the generalized displacements (u1 = u1x,
u2 = u1y. . .). The individual entries of the interface Jacobian matrix
(Jij) were computed and simplified symbolically with Mathematica
[72] and inserted into the main routine of the DEM code; the full
expressions are omitted here for brevity.
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