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indeed latch and hook onto one another, generating sub-
stantial tensile strength [15, 18, 19]. Tensile force chains 
develop in these materials [16], and although they tend to be 
more sparse than typical compressive chains, they are suf-
ficiently strong and stable to enable free-standing structures 
(beams, columns [14, 20]). How the shapes of these parti-
cles govern entanglement, and in turn translate into strength 
provides a rich landscape in terms of mechanics and design. 
For example, geometrical alteration on standard staples, 
such as changing the length of legs [14] twisting of the legs 
[20, 21], or actively change the shape of the particles [22] 
have been shown to have profound impact on entanglement 
and strength, and interestingly, optimum geometries have 
already been identified within these design spaces [14, 20, 
21]. Various experimental approaches have been used to 
assess entanglement strength. Perhaps the simplest of these 
experiments consists of assessing the size of an entangled 
bundle of particles that can be lifted by just picking up a 
few staples against gravity [6, 9, 20]. More complex experi-
ments have measured angle of repose [16], and the stabil-
ity of long free-standing columns [23] and short columns 
subjected to vibrations [14]. Other mechanical tests on 

1 Introduction

Typical granular materials made of spherical or quasi-spher-
ical grains require mechanical confinement to generate shear 
strength [1–3] or a cohesive second phase at the interface 
between the grains [4, 5]. Grains with more extreme geom-
etries such as elongated rods can assemble into free standing 
structures with some tensile strength, because of long range 
interactions and multiple contact points [6–9]. Long rods, in 
turn, may be assembled into hexapods [10] or other star-like 
particles with entanglement or “geometric cohesion” [11], 
offering intriguing possibilities in terms of structural design 
and architecture [12, 13]. Even more extreme designs have 
branches with hooks and barbs, with the classical example 
of U-shape staple-like particles [14–17]. These particles can 
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entangled materials have included tensile tests [15, 19] and 
flexural tests [20]. While these experiments have provided 
“macroscopic” mechanical properties for bundles of entan-
gled particles, they provide limited insights into the funda-
mental mechanisms of entanglement and disentanglement 
at the local level. In addition, each of these experimental 
approaches was used to explore only one particular aspect 
of particle design (for example, [14] focused on the effect 
of leg length only). The lack of “unified” testing methods 
makes it difficult to assess and compare the entanglement 
efficacy of staples with different designs. To gain insights 
into the mechanics of entanglement, numerical models 
were also developed, primarily based on the discrete ele-
ment method (DEM) [24]. These models have revealed the 
effect of packing density on entanglement strength [14], the 
impact of alignment of staple-like particles across gravity 
[20], the dynamic structure of tensile force lines [16, 19, 25] 
or the shifting properties of particles where entanglement 
can be tuned with dynamic shape change [22]. However, 
these DEM models, performed on hundreds or thousands 
of particles with complex shapes, can be computationally 
expensive and produce large amounts of data that can be 
difficult to interpret. In this report, we present a relatively 
simple experiment to measure entanglement based on a 
bundle pick-up method. The second part of the report pres-
ents an entanglement model based on a pair of staples. A 
simple geometrical criterion for geometrical entanglement, 
together with a Monte Carlo approach, produces a predic-
tion for entanglement probability and the volumetric density 
of entangled particles that agree well with experiments on 
staples with a variety of designs.

2 Experiments

Our objective was to provide a simple and repeatable pro-
tocol to measure the entanglement and strength of various 
staple-like particle geometries. In consistency with previous 
studies, we assumed that the extent, or density, of entangle-
ment in a bundle is reflected by its strength, whether it is 
measured by stability under mechanical vibration [14], flex-
ural tests [20], tensile tests [19] or as recently demonstrated 
on active entangled matter [22]. The base particles we used 
for this study were standard steel office staples (Swingline, 
IL), with dimensions shown in Fig. 1a. In the rest of this 
report, we will use the same terminology as in the staple 
industry: The center section is referred to as “crown”, and 
the two branches are referred to as “legs”. These staples 
come in the form of “sticks” of about 200 staples, bonded by 
a relatively weak polymeric adhesive. To separate individ-
ual staples, we immersed sticks of staples in acetone, which 
immediately dissolved the adhesive and detached the sta-
ples. After thorough cleaning and drying, bundles of staples 
were prepared for the pick-up test. A thousand staples were 
first pluviated into a container with the shape of a truncated 
cone, with a base diameter of 80 mm (approximately 6.3 
times the length of the crown of individual staples, Fig. 1b), 
and from a height of 200 mm from the container. Next, we 
used a custom tool made of three staples embedded at the 
end of a 3D printed handle (Fig. 1c) to pick up staples from 
the container. The tip of the tool was first directed towards 
the center of the surface of the bundle, with a tilt angle of 
about 30° from the vertical. As the tip of the tool contacted 
the surface, the tool was straightened to a vertical position to 
engage 3 to 5 staples near the surface. The tool was finally 
gently pulled upwards and against gravity at a rate of about 
40 mm/s (Fig. 1d). The pickup process was dominated by 
gravity forces and by entanglement forces between staples 
and in comparison, the exact force produced by the pick-up 
tool on the topmost staples were less relevant. The number 

Fig. 1 Overview of the “pick-up” 
experiment: a Individual standard 
office staple with dimensions; 
These staples are b poured into an 
open container. c A custom “fishing 
tool” was used to d grab the center 
staples and pull upwards. The 
amount of picked-up staples was 
a strong function of geometry and 
could be e small (a few staples) to 
f large (most of the staples picked 
up)
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of staples picked up by this process depends on how much 
entanglement is present in the bundle, which itself is a 
strong function of the geometry of the individual staples. 
Some geometries led to poor entanglement and few staples 
picked up (Fig. 1e), while other geometries generated more 
entanglement and much larger groups of picked-up staples 
(Fig. 1f). To quantify the entanglement of staples, we used 
a “picked-up fraction,” which we defined as the fraction of 
staples lifted from the initial bundle of 1000 staples (mea-
sured by weighing the staples picked from the bundle). 
Repeated tests on the same staples revealed typical varia-
tions of 5–10% around the mean value of the picked-up 
fraction. This repeatability was sufficient to discriminate 
between different staple geometries.

We now present the first part of the study, where we varied 
the angle between the legs and the crown of the individual 
staples (the crown-leg angle θ). We designed and fabri-
cated 3D-printed tools to fold the legs to either decrease or 
increase θ from θ = 90° reference sticks of staples (Fig. 2a). 
We then performed three pick-up experiments on each of 
these geometries. Figure 2b shows the pick-up fraction as 

a function of the crown-leg angle θ, together with three 
superimposed contours of the picked-up bundle (Fig. 2c). 
These contours were obtained by extracting the outer con-
tour of the bundle from pictures acquired during the pick-up 
experiments. The contours were then superimposed, using 
a different color for each of the three experiments. The ref-
erence staples produced a modest entanglement, with an 
average pick-up fraction of only about 0.03. As expected, 
this number was even smaller for high angles (θ = 120°). 
On the other hand, decreasing θ greatly improved entangle-
ment, with a pick-up fraction greater than 0.8 for θ = 60°. An 
intuitive explanation is that decreasing θ turns the staples 
into a pair of increasingly sharp “hooks,” which can gener-
ate more robust entanglement with other staples. However, 
decreasing the angle further led to poorer entanglement, 
with a pick-up fraction of less than 2% for θ = 20°. We 
hypothesized that another effect is at play: The reduction of 
θ in effect “closes” the geometry of the staple, reducing the 
probability of the staples to geometrically “engage” with one 
another. The observed entanglement peak θ = 45–60° would 
then be the result of two competing mechanisms: closing θ 
makes the entanglement between two staples stronger once 
they engage, but closing θ also decreases the probability of 
staples mutually engaging. In the following sections, we 
introduce a simple model that captures the competition of 
these mechanisms.

3 A “throw-bounce-tangle” model for 
geometric entanglement

Entanglement and disentanglement are complex processes 
that involve multiple spatial and time scales [15, 16, 26]. 
In this study, we sought a relatively simple model to cap-
ture entanglement at a fundamental level, i.e., between 
two staples, based on geometry only. We assumed a round 
cross section for the backbone of the staples (with diameter 
d = 0.45 mm for a standard office staple) with semi-spherical 
caps at the ends of the legs (Fig. 3a). This simplification 
streamlined 3D calculations for staple-to-staple distance, the 
evaluation of collisions, and other staple-staple interactions.

3.1 Excluded volume and packing fraction

The excluded volume is the statistical volume occupied 
by individual staples in a randomly distributed bundle of 
particles, and as seen below it governs the volumetric den-
sity of staples [6, 26] We computed the excluded volume of 
individual staples using Monte Carlo simulations, follow-
ing Gravish et al. [26]. We first considered a center staple 
(staple 1) and a spherical volume V centered on that staple 
with a radius several times the size of the staple. We then 

Fig. 2 a The crown-leg angle of individual staples can be increased or 
decreased from the θ = 90° reference using custom 3D printed emboss-
ing tools [19]; b Experimental pick-up fraction as a function of crown-
leg angle θ. Horizontal error bars reflect the variability of angle θ, and 
vertical error bars reflect the range of pickup fraction measured for 
each geometry; c Composite images of the picked-up bundles
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d/l = 0.035) as a function of crown leg angle θ. Staples with 
higher excluded volumes take more space in the bundle, 
which results in lower packing factors. More specifically, 
using previous results on random packing of rods [6] and 
staples [26], the packing factor (PF) of a bundle of staples 
can be written:

PF = C
Vp

Vex
 (2)

where Vp is the volume of the individual staple and C is a 
constant parameter that corresponds to the average number 
of staples in contact with a given staple. PF represents the 
volume fraction of “solid material” in the bundle (Eq. (2) is 
also known as the random contact model [6]). As opposed 
to porous or cellular material whose properties are a strong 
function of solid volume fraction, in bundles of staples it is 
the number of staples per unit volume, or volumetric staple 
density ϕ, which is important for strength. It is written:

ϕ = l3

Vp
PF = C

l3

Vex
 (3)

Note that to keep the results nondimensional, ϕ is written 
as the average number of staples in a l × l × l volume (i.e., 
the unit volume is expressed in unit of l). To calibrate the 
constant C, we experimentally measured the staple volume 
fraction ϕ by pouring 1000 staples into a transparent acrylic 
container with a circular section (diameter = 38 mm). The 
height of the bundle of staples in the container was used 
to compute the volume occupied by the bundle, which was 
then used to determine the experimental staple volume frac-
tion ϕ. For each geometry, the test was repeated three times 
and the error on ϕ was relatively small (in the order of 3%). 
Figure 3c shows ϕ as function of crown-leg angle θ, show-
ing a decrease from about 75 to 50 as θ is increased from 
θ = 20°–120°. Using the crown length l and Vex computed 
above for each geometry (Eq. 1), Eq. (3) was fitted onto the 
experimental volume fraction using C as nondimensional 
fitting parameter. This process produced C ≈ 11.5 which is 
close, but slightly larger than the value of C ≈ 8.75 obtained 
through oscillatory excitation on staples by Gravish et al. 
[14] and larger than for rods [6].

3.2 Modeling entanglement with the throw-
bounce-tangle model

The aim of the “throw-bounce-tangle” model we present 
here was to predict the probability of entanglement of a pair 
of staples-like particles based on their geometry. The model 
is centered on a staple (staple 1) which remains stationary. 
Another staple (staple 2) is placed at a random position on 

generated a second staple (staple 2) within that volume, at 
random position and orientation. The occurrence of colli-
sions between staple 1 and 2 was then computed, accounting 
for the relative position of staple 1 and 2 and the diameter of 
the backbone. The probability of collision between the two 
staples is therefore c/N where c is the total number of col-
lisions over N realizations. The excluded volume is simply 
given by:

Vex = c

N
V  (1)

If N is sufficiently large (N > 106 in our simulations), we 
found that the result Vex is independent of the simulation 
volume V. The model was implemented using MATLAB 
with parallel processing [27]. Using this model, we recov-
ered the theoretically excluded volume of rods of different 
aspect ratios [6] and the excluded volume of staples with 
varying leg lengths [26]. Figure 3b shows the results of 
the excluded volume of standard office staples (w/l = 0.5, 

Fig. 3 a Geometry of the staples used in the MC models; b Nondimen-
sional excluded volume and c experimental and modeled volumetric 
density of staples as a function of crown-leg angle θ
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particle 1. In our algorithm, we considered all possible 
directions for an impulse on staple 2, in the form of a total 
solid angle Ω = 4π. Using simple 3D geometrical rules, we 
then computed, numerically, a “visibility” solid angle Ω(v) 
which led staple 2 to geometrically intersect with staple 1 
(Fig. 4a). This process of random placement of staple 2 on 
the excluded sphere and calculation of the visibility solid 
angle was repeated N times, so that the probability of staple 
2 and 1 to interact was given by:

pv = 1
N

N∑
i

Ω(v)
i

4π
 (5)

The probability pv therefore provides a measure of how sta-
tistically “visible” each staple is to neighboring staples. A 

a sphere of fixed radius centered on staple 1, and at a ran-
dom orientation (Fig. 4a). In this model, the radius of that 
sphere reflects the typical distance between staples in the 
bundle, and for this reason, we used the “excluded radius” 
computed from the excluded volume:

Rex = 3

√
3

4π
Vex (4)

Initial conformations where staples 1 and 2 collide are not 
permitted and were rejected. Next, we considered a “throw” 
step that simulates pouring or vibrations, which would pro-
vide an impulse of displacement to staple 2. We considered 
all possible 3D directions for a translation of staple 2 from 
the initial position, which can lead to one of two outcomes: 
Either Staple 2 collides with particle 1, or staple 2 “misses” 

Fig.  4 Diagrams illustrating the throw-bounce-tangle model: a Vis-
ibility of center staple 1 from staple 2 at a position A on the exclusion 
sphere. Staple 2 cannot engage staple 1 from position A; b statisti-
cal “visibility”, or probability pv of individual staples as a function 

of crown-leg angle θ; c In this case staple 2 can engage staple 1 from 
position B; d 2D Diagram showing how a bounce is considered, and a 
possible further entanglement is assessed (see text for further details)
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Figure 5a shows probabilities pe as a function of crown-leg 
angle. The probability of engagement is the highest in the 
60–90° range, and it is zero for θ = 0° and θ = 180° because 
the catch nets have zero surfaces (in these two extreme 
cases, the staples are rods). The final step in the model is 
a random “bounce” of staple 2 from staple 1 and a calcula-
tion of the probability of this bounce to further engage the 
two staples, in which case the two staples are entangled. 
This additional step was important to capture the propensity 
of the particles to keep other particles trapped by entangle-
ment. For this step, we only considered cases where the two 
staples are already engaged (Fig. 4d). We first defined a 
solid angular sector Ω(b) defining the possible directions of 
a bounce away from the contact point. Within these direc-
tions, we then geometrically determined which directions 
Ω(t) would take staple 2 further toward the “deepest” corner 
of the net region. More specifically, these translations u⃗(t) 
must satisfy, in three-dimensions:
{

c⃗ · u⃗(t) ≥ 0
l⃗ · u⃗(t) ≥ 0

 (7)

where ⃗c and ⃗l are vectors associated with the contours of the 
net, pointing towards the corner between the crown and the 
leg (Fig. 4d). The magnitude of these vectors is irrelevant 
in the determination of possible u⃗(t) vectors. This criterion 
provided a rich landscape of entanglement configuration 
which included translations u⃗(t) out of the plane of the net, 
enabling a small number of entangled configurations in sta-
ples with crown-leg angle greater than 90°. The probability 
pet of transitioning from simple engagement to an entangled 
conformation was then compute using:

pet = 1
N

N∑
i

Ω(t)
i

Ω(b)  (8)

A supplemental movie illustrates how these probabilities are 
computed with the throw-bounce-tangle model.

Figure 5b shows the probability of further entanglement 
from an engaged configuration as a function of crown-leg 
angle. Once the staples are engaged, the probability of 
entanglement increases rapidly when angle θ is decreased. 
In other words, staples with smaller θ, once they engage 
with other staples, are much more likely to geometrically 
“trap” these staples. The entanglement probability between 
two staples, accounting for all three possible transition paths 
to entanglement configurations, can then be written:

pt = pe · pet (9)

plot of pv as a function of crown-leg angle θ (Fig. 4b) shows 
that pv is the lowest when legs and crown are aligned, so the 
staples are effectively rods (cases θ = 0° and θ = 180°). Next, 
a director vector was randomly selected from the solid angle 
sector Ω(v). We computed the displacement required for sta-
ple 2 to contact staple 1 along that director angle, and we 
updated the positions of staple 1 and 2, now in contact with 
each other (see supplemental movie). The interaction of two 
staples by direct contact does not, however, guarantee that 
they will entangle. In the example of Fig. 4a, staple 2 can 
contact staple 1 after a translation from point A. However, 
none of the contact conformations can lead to entanglement, 
because the conformations are such that staple 1 and 2 inter-
act like simple rods. To generate entanglement the staples 
first need to engage, that is they need to enter a conformation 
where the geometrical hindrance from the concave features 
of the staples becomes prominent. To capture this effect, we 
considered regions of the staples that can potentially par-
tially enclose or geometrically “trap” branches from other 
staples. In this study we considered two of these “nets” 
region, as shown on Fig. 4c. Each of the nets is a plane tri-
angular region defined by the middle point of the crown, 
the elbow between crown and leg, and the tip of the leg. 
Defining a single, larger net enclosed by the crown and both 
legs was another possibility. However we required the nets 
to be planar region, and this single net definition was not 
compatible with the twisted staples we considered below. 
The staples may also be interpreted as particles made of 
two adjoined hook-like features, each being able to entangle 
with neighboring staples. In this context it was more natural 
to define a net region for each of these two “hook-like” fea-
tures. Using these nets, we then determined whether the two 
staples “engaged,” which we defined as conformations that 
satisfied the condition of reciprocal engagement: (i) Any 
branch of staple 2 intersects with a net from staple 1, and 
(ii) any branch of staple 1 intersects with a net from staple 
2. If any of these conditions were not verified, then the par-
ticles simply contacted with no engagement. To compute 
the probability for the two staples to transition from a “free” 
state to a state of “engagement” pe, we determined numeri-
cally which subset Ω(e) of Ω(v) led to engagement between 
the staples. In the example of Fig. 4a, no engagement is pos-
sible and Ω(e)

A= ∅. Figure 4c shows another conformation, 
where staple 2 is initially at point B. In this second example, 
there is a set of directions Ω(e)

B∈ Ω(v)
B where staple 2 can 

engage with staple 1 through its catch net 2 (see supple-
mental movie). Once N = 106 realizations of initial confor-
mations are considered, the probability pe of engagement 
between staple 1 and 2 is then given by:

pe = pv
1
N

N∑
i

Ω(e)
i

Ω(v)
i

 (6)
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for pt and ϕt are very similar (which will not be necessarily 
the case when other geometrical parameters of the staples 
will be varied in the upcoming sections of this report). Fig-
ure 5d also shows the experimental pick-up fraction as a 
function of crown-leg angle. The model agrees well with the 
experiments which showed a maximum entanglement den-
sity near θ = 35–60°, and no entanglement as the crown-leg 
angle nears θ = 0° and θ = 180°. This model therefore prop-
erly captures a competition of effects resulting in an opti-
mum geometry for entanglement: (i) The density of staples 
is the highest for staples with low θ (Fig. 3c); (ii) Rod like 
staples cannot engage, and the engagement probability is 
the highest near θ = 70° (Fig. 5a); (iii) if they do engage, 
the probability of “trapping” or “entangling” other staples 
is higher in staples with low θ. This result suggests that this 
two-staple throw-bounce-tangle model can be used to pre-
dict entanglement density in a bundle of staples, and that 
the entanglement density, in turn, governs the strength of 
the bundle. In the next sections, we test the throw-bounce-
tangle model against experiments on other types of staples.

Figure 5b shows the probabilities pt as function of crown-
leg angle. The model predicts an entanglement probability 
which is maximum at θ ~ 50° and which vanishes towards 
θ = 0°, and θ = 180°. Finally, as pointed out by Gravish et al. 
[26], the strength of a bundle of staples is also a function 
of the volume fraction of staples in the bundle. Following 
this model, we write the average entanglement density in 
the bundle, as the average number of entangled staples in 
a l × l × l volume (i.e., the unit volume is expressed in unit 
of l):

ϕt = ϕ · pt (10)

The volumetric density of entangled staples ϕt we use here 
is different from < N >, the average number of neighbor-
ing staples that engage with each staple in the bundle [14]. 
However, as illustrated below, both metrics for entangle-
ment lead to the same predictive trends for the entanglement 
strength of the bundles. Figure 5d shows ϕt as a function of 
the crown leg angle θ. The packing factor ϕ is greater for 
staples with smaller θ, so the effect of applying Eq. (10) is 
a slight shift of the peak entanglement from θ = 50° for pt 
to a maximum for ϕt at θ ~ 35–55°. In this case, the profiles 

Fig. 5 Main results from the throw-bounce-tangle model for a pair of 
staples of different crown-leg angles θ:a Probability of engagement; 
b probability of transitioning from “engaged” to “entangled”; c prob-

ability of entanglement and d Volumetric density of entangled staples 
as a function of crown-leg angle θ (the experimental results are also 
shown on that plot)
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4 Effects of leg length

The relative leg length w/l is another critical geometrical 
parameter in individual staples [26]. To explore this param-
eter experimentally, we decreased the leg lengths of stan-
dard staples by milling the legs of sticks of staples from 
w = 6.35 mm for standard staples down to 5.1 mm, 4.1 mm, 
2.7 mm, or 1.5 mm. We also acquired other staples with lon-
ger legs (w = 9.5 mm and w = 12.7 mm, d = 0.74 × 0.59 mm2, 
Swingline, IL). Three pick-up tests were performed on bun-
dles of 1000 staples for each of these geometries. Figure 6b 
shows the pick-up fraction as a function of normalized leg 
length w/l. We observed a clear peak at w/l = 0.4, and a sharp 
decrease for shorter or longer legs. Interestingly, this peak 
ratio w/l is identical to the optimum found with column-
collapse experiments in Gravish et al. [26].

Figure 7a shows the volumetric density ϕ of staples mea-
sured experimentally and fitted with the model of Eq. (3). 
As expected, longer legs for the individual staples result to 
a rapid decrease in ϕ. Figure 7b-f show the results of the 
throw-bounce-tangle model, which recovers the compet-
ing effects discussed in Gravish et al. [26]: As leg length is 
increased, higher visibility and higher chances of engage-
ment (Fig. 7b, c) result in a rapid increase of probability for 

Fig. 7 Results from the throw-
bounce-tangle model for a pair of 
staples as a function of leg length 
w/l: a Experimental and modeled 
staple volumetric density; b “Vis-
ibility” pv of individual staples; c 
Probability of engagement; d Tran-
sition probability from engaged to 
entangled; e Overall probability 
of entanglement and f Volumetric 
density of entangled staples as a 
function of leg length w/l

 

Fig. 6 Effect of leg length: a Experimental pick-up fraction as a func-
tion of normalized leg length w/l; b Composite images of the picked-
up bundles from three experiments
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frictional properties of these acrylic staples differed from 
the steel staples used so far in this study, so it is useful to 
mention the impact of these parameters on pickup fraction. 
Experiments on θ = 90° steel staples revealed an average 
pickup fraction of 0.023. The same experiments, performed 
on θ = 90° acrylic staples, revealed a pickup fraction of 0.05. 
These fractions are small, because θ = 90° staples produce 
relatively poor geometrical entanglement. In these condi-
tions it is possible that other factors such as stiffness and 
friction contributed to difference in measured pickup frac-
tion between steel and acrylic samples. On the other hand, 
for θ = 60° staples we measured a pickup fraction of 0.82 
for the steel staples and 0.84 for the acrylic staples. These 
numbers are quite close, suggesting that when geometrical 
entanglement is strong, geometrical effects largely prevail 
over effects of friction or deformations of the staples (at 
least in a regime where stresses are relatively low: recent 
work on tensile tests on bundles of staples have shown that 
friction and staple deformability must be taken into account 
when tensile stresses are high [19]). We now focus on the 
effect of backbone thickness. The pick-up tests revealed a 
sharp decrease in entanglement for thicker staples (Fig. 8): 
Doubling the thickness of the backbone from d/l = 0.035 to 
d/l = 0.065 resulted in a 75% decrease in pick-up ratio, even 
though the backbones in these cases may still be considered 
“thin” (d/l << 1).

Figure 9 shows the results of the throw-bounce-tangle 
simulations. Except for the probabilities of entanglement 
from engagement pet, all characteristics decrease with d/l. 
This includes the volumetric density, which appears to 
converge to infinity in the d/l = 0 limit. Indeed, as the cross 
section of the staples converges to zero no collision can be 
detected, so that the excluded volume converges to zero 
and the volumetric density of staples converges to infin-
ity. This effect largely explains how the entanglement den-
sity ϕt decreases rapidly when the backbone thickness d/l 
is increased, in accordance with the experimental results. 
The model therefore reveals the main two contributors of 
the poor entanglement density ϕt for staples with thicker 
backbones: Decreased staple density ϕ, and decreased prob-
abilities of engagement pe.

6 Effect of twisting

Experiments on 3D-printed staple-like particles have shown 
that entanglement and strength can also be manipulated by 
twisting the staples about the axis of the crown [20]. In this 
final section, we examine the effect of twisting the legs of 
individual staples. As a reference, we used the θ = 90° and 
60° steel staples described above. For each of these angles, 
we explored two twisted designs: A set of staples twisted 

entanglement (Fig. 7e). However longer legs also lead to a 
rapid decrease in ϕ (Fig. 7a), so that these two competing 
effects give rise to an optimum w/l value for entanglement 
at about w/l = 0.4, which is in good agreement with the opti-
mum from the experiments and with the results of Gravish 
et al. [14].

5 Effect of backbone thickness

Intuitively, we expected the thickness of the backbone of the 
staples to have minimal effects on entanglement as long as 
the backbone of the staples is “sufficiently thin” compared 
to its other dimensions. 3D printing of particles, which has 
been used in previous studies [16, 20], has relied on this 
assumption: Because of the limitations in printer resolu-
tion and material choice (polymers), 3D printed particles 
for entangles have backbones with larger relative cross-
sections compared to steel staples. However, in preliminary 
experiments, we noticed that 3D printed polymeric particles 
did not entangle well compared to thin steel staples. In this 
section, we explore the effects of backbone thickness. As a 
reference, we used the θ = 60° steel staple design described 
above, which has a backbone cross section d2 = 0.41 × 0.48 
mm2. We also fabricated two other designs, with a back-
bone contour identical to the θ = 60° steel staple but with 
thicker backbone cross sections: d2 = 0.85 × 0.85 mm2 and 
d2 = 1.50 × 1.50 mm2. These two thicker types of staples 
were cut from 0.85 mm and 1.5 mm thick acrylic sheets 
using a precision laser cutter (Nova 35, Thunder Laser, 
TX). In addition to different cross sections, the stiffness and 

Fig.  8 Effect of backbone thickness: a Experimental pick-up frac-
tion as a function of normalized backbone thickness d/l; b Composite 
images of the picked-up bundles
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possible effect might be obscured by the already very low 
pick-up fraction for θ = 90° staples (0.02). The results for the 
twisted, θ = 60° staples (Fig. 10b) show a slightly more pro-
nounced effect of twisting: Compared to the reference sta-
ple (β = 0°), entanglement increases by about 3.9% in staple 
twisted to β = 90°, but that entanglement degrades to below 
reference values for β = 180°. We however noticed that the 

by an angle β = 90° about the axis of the crown, and another 
set of staples twisted by an angle β = 180° about the axis of 
the crown (Fig. 10a, b). Individual staples were manually 
twisted about the axis of the crown, resulting in permanent 
change of geometry from plastic deformations. Figure 10a 
shows the results for θ = 90° staples: Twisting angle had 
almost no effects on the pick-up fraction. However, any 

Fig. 10 Effect of twisting staples: 
Experimental pick-up fraction as a 
function of twist angle β for staples 
with a θ = 90° and bθ = 60°

 

Fig. 9 Results from the throw-
bounce-tangle model for a pair of 
staples as a function of backbone 
thickness d/l: a Experimental and 
modeled staple volumetric density; 
b “Visibility” pv of individual 
staples; c Probability of engage-
ment; d Transition probability from 
engaged to entangled; e Overall 
probability of entanglement and f 
Volumetric density of entangled 
staples as a function of backbone 
thickness d/l
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(Fig. 12a). When β = 0° or β = 180°, all branches of the staples 
are in the horizontal plane, making entanglement impossible 
(Fig. 12b). In other intermediate cases (0 < β < 180°), legs 
coming out of the horizontal plane make entanglement pos-
sible across stacked planes. We captured this “stacking” 
or “pancaking effect” effect in our model by introducing a 
bias on the orientation of staples 1 and 2: When we numeri-
cally created staple 1 and 2, we required that (i) the crowns 
of both staples 1 and 2 lie in a horizontal and (ii) the sum 
of the absolute values of angles between the legs and the 
horizontal to be minimized, in order to simulate the propen-
sity of the legs to also align across the direction of gravity 

picked bundle for the β = 90° case was more “compact” (i.e. 
less elongated vertically) than for β = 0° and β = 180°, a pos-
sible indication of better entanglement stability.

Figure 11 shows the results from the throw-bounce-tan-
gle model using fully isotropic orientations for the staples, 
which predicts a very modest effect of twist angle β on every 
measure of density and probabilities.

Murphy et al. [20] explained the benefits of twisted sta-
ples for entanglement in the context of what they term a 
“pancaking” effect: Under the combined effects of vibration 
and gravity, the crown and the legs of the staples tend to 
align on stacked horizontal planes perpendicular to gravity 

Fig. 12 Effect of stacking or “pancaking”: a In the isotropic case the 
orientation of the staples is fully random; b In the stacked or “pan-
caked” case, the backbones of the staples align across the direction of 
gravity; c Stacked staples with various angles of twist β. When β = 0° 
or β = 180°, all branches of the staples are in the horizontal plane, mak-

ing entanglement impossible. In other cases, legs coming out of the 
plane make entanglement across staked planes possible; Density of 
entanglement as a function of twist angle β for d staples with θ = 90° 
and e staples with θ = 60°

 

Fig. 11 Results from the throw-
bounce-tangle model for a pair 
of staples as a function of angle 
of twist β, for cases where staple 
distribution is fully isotropic: a 
Experimental and modeled staple 
volumetric density; b “Visibility” 
pv of individual staples; c Probabil-
ity of entanglement and d Volumet-
ric density of entangled staples
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7 An optimum staple geometry

The sections above have shown that the throw-bounce-
tangle model can capture variations of entanglement for 
different staple geometries, in ways which are consistent 
with experiments and with previous studies. Because this 
model is relatively simple and computationally efficient, it 
is amenable to the exploration of large numbers of possible 
staple designs. In this section, we give such example, where 
we explore the crown leg angle–leg length (θ − w/l) design 
space. We performed a “brute force” exploration of the 
design space by considering ~ 5000 combinations of these 
parameters over a range of 20° < θ < 120° and 0 < w/l < 1.5. 
The combinations of these parameters that would lead to the 
legs of the staples crisscrossing (for which 2(w/l)cos θ > 1) 
were excluded from this exploration. Figure 13 shows a 
map of entanglement density as a function of θ and w/l. The 
map reveals a single maximum entanglement density for 
θ ~ 45° and w/l ~ 0.37, but the landscape in the design space 
is quite smooth, and that optimum peak is not particularly 
sharp. For example, deviations as large as 10–20% from 
the optimum values for w/l and θ only result in a 10% loss 
of entanglement density (black dotted contour on Fig. 13). 
This result is advantageous in terms of design robustness, 
because defects and deviations from the optimum geometry 
would still result in high entanglement. The optimum geom-
etry identified in this map is very close to one of the staple 
designs tested in this report (Fig. 2). Indeed, the experimen-
tal pick-up ratio for that design (θ = 45° and w/l = 0.37) was 
the highest we measured in this study.

8 Conclusions

Entangled matter provides intriguing perspectives in terms 
of deformation mechanisms, mechanical properties, assem-
bly, and disassembly. Collective entanglement mechanisms 
are complex, occur over multiple length scales, and they 
are not fully understood to this day. In this report, we pro-
pose a simple pick-up test which can be used as a metric 
for entanglement. This method produces results which are 
consistent with other, more complicated experimental meth-
ods previously proposed to measure entanglement [15, 20, 
26]. We also presented a new “throw-bounce-tangle” model, 
which is based on a 3D geometrical entanglement criterion 
between two staples, and a Monte Carlo numerical approach 
to extract probabilities of entanglement. This relatively sim-
ple model predicts an average density of entanglement, and 
it recovers the trends and optimum staple geometries iden-
tified experimentally: Entanglement can be manipulated 
by tuning the leg-to-crown ratio, the crown-lag angle, and 
the twist angle. We also show, using experiments and our 

[20]. Figure 12b shows examples of staple alignment for 
staples with different twist angles β. As the twist angle is 
increased from β = 0°–90°, the legs protrude more and more 
from either side of the horizontal plane. At β > 90° there is a 
sharp transition, with the legs protruding from only one side 
of the plane (to satisfy condition (ii) above), and the out-of-
plane protrusions decreasing progressively up to β = 180°. 
Figure 12c, d show the predictions of the throw-bounce-
tangle model: Compared to the isotropic case, stacking gen-
erally decreases the density of entanglement. However, in 
these stacked staples, the density of entanglement becomes 
a strong function of the twist angle β. In β = 90° and β = 180° 
cases, the legs are in the horizontal plane and no engage-
ment and entanglement are possible between staple 1 and 
2. In other twisted geometries, the legs of staple 1 and 2 
are out-of-plane, which greatly increased the likelihood 
of entanglement, with a clear maximum at β = 90°, which 
is consistent with our experiments and the experiments in 
[20]. Finally, we note that the sharp drop in entanglement 
predicted for β > 90° is explained by both of the legs being 
on the same side of the horizontal plane, an outcome of 
enforcing condition (ii) above.

Fig.  13 Map of entanglement density as a function of crown leg 
angle and leg length. The map reveals an optimum design at θ ~ 45° 
and w/l ~ 0.37. A broad range of designs in the neighborhood of the 
optimum also performs very well in terms of entanglement, with 
ϕt >0.9(ϕt)max
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entangled matter is prominent in nature, in the form of “pas-
sive entanglement” in bird nests [30, 31], beaver dams [32, 
33], seed barbs and hooks attachments [34, 35] and also 
“active entanglement” in ant rafts [36, 37] or worm blobs 
[38]. The model presented here, applied to these natural 
systems, could lead to a better understanding of how they 
produce strength and mechanical stability. These systems 
could also, in turn, provide a rich source of inspiration for 
new entangled materials. Along this line of bio-inspiration, 
the models can be adapted, in the future, to active entangled 
matter where particle can change their shape and entangle-
ment capabilities dynamically [22]. New optimized designs 
for individual particles may produce entangled bundles 
with attractive combinations of strength, extensibility, and 
toughness that may soon outperform lightweight engineer-
ing materials such as solid foams and lattices.
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model, that entanglement is very sensitive to the thickness 
of the backbone of the staples, even in regimes where that 
thickness is a small fraction (< 0.04) of the other dimen-
sions. Staples with thin backbones promote entanglement, 
and it is probably possible to manufacture such staples. 
However, a potential issue for exceedingly “thin” staples 
would probably be large deformations or even failure due 
to their reduced cross sections. While the “throw-bounce-
tangle” model is simple and can predict basic trends in 
entangled matter, this model does not consider geometrical 
hindrance in large bundles, the deformation of individual 
particles, frictional effects, or longer-range effects such as 
the formation and evolution of force lines. Consideration of 
these effects would probably improve the accuracy of pre-
dictions, but would require careful experimental validations 
including measures of order and disorder in the bundle. In 
the experiments presented here, bundles of staples were 
subjected to gravity forces only, which generated relatively 
low stresses and deformations. From what is known from 
previous studies [15, 16] and from our own experiments 
and models on tensile behavior of entangled staples [19], 
the formation and evolution of force lines may play a more 
important role in bundles of staples subjected to high tensile 
stresses and large deformation (> 100% strain). With these 
limitations in mind, the “throw-bounce-tangle” model still 
provides good estimates for the propensity of particle to 
entangle, and it can be used for the design and optimization 
of staple-like particles. In this report we demonstrate that the 
crown leg angle– leg length design space can be explored 
exhaustively using brute force to identify optimum particle 
designs. The smoothness of the design landscape makes it 
amenable to computationally efficient gradient-based opti-
mization methods. The “throw-bounce-tangle” could also 
be used in the future to explore more complex three-dimen-
sional designs, for example branched particles with barbs 
and a multitude of geometrical nets. For these particles the 
model may need to be expanded to account for cases where 
more than two particles are involved to generate entangle-
ment strength. In terms of loading conditions, the results 
presented here show that our model captures the strength 
of entangle bundles subjected to gravity (original pick-up 
experiments presented here), vibration/gravity [14] and 
flexural bending [20]. A parallel project we are conducing 
on bundles of staples under tensile deformations shows that 
when the crown-leg angle is changed, the tensile strength 
(measured from tensile tests) varies in ways similar to what 
is reported here [19]. This body of experiments suggest 
that our model is versatile in terms of predicting strength 
under different loading modes, although more experiments 
would be required to confirm the generality of the model. 
Geometric entanglement can also be exploited in microscale 
[28] or even nanoscale particles [29]. Interestingly, the 
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