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A B S T R A C T   

Natural protective systems are attracting an increasing amount of attention for their ability to 
provide simultaneous flexibility and puncture resistance by combining hard and soft materials in 
mechanically efficient ways. In typical flexible natural armors, a continuous layer of soft material 
is either covered or embedded with segmented hard scales. The interaction between the hard 
scales and the softer surrounding materials give rise to unusual and attractive mechanisms which 
are not fully understood to this day. Here we propose and validate the discrete-element method 
(DEM) to capture the mechanics of stiff scales on soft substrates including scale-substrate elastic 
deformations, scale-scale interaction through the substrate, and direct scale-scale interaction by 
contact. We considered two configurations: (i) hard scales on soft substrates to capture scale 
tilting and penetration resistance, and (ii) hard scales on soft membranes to study flexural 
compliance. The computational efficiency of the DEM algorithm allowed for large parametric 
studies with many combinations of aspect ratio, slant angle, and gap size to identify the best 
designs in terms of resistance to unstable tilting, coverage, penetration resistance, and flexural 
compliance. DEM is a promising tool for the design and optimization of fish-skin-like protective 
structures, also providing new insights into the synergistic role of the hard scales and the soft 
substrate.   

1. Introduction 

Modern engineering applications are requiring lighter, stronger, tougher, and multifunctional materials. In this quest for better 
engineering materials, nature can provide outstanding models and inspiration for new designs. Natural materials have high me-
chanical performance, can produce seemingly mutually exclusive properties (Ritchie, 2011), and are inherently multifunctional 
(Wegst et al., 2014). A powerful paradigm in structural biological materials is the combination of hard and soft materials in 
well-controlled micro-architectures (Wegst et al., 2014; Barthelat, 2015; Martini et al., 2017; Rajabi et al., 2016; Porter et al., 2013; 
Yang et al., 2013; Rajabi et al., 2016). Scaled natural flexible armors (Fig. 1) are excellent examples of this concept: They combine hard 
materials (mineralized collagen, dry keratin) with soft materials which are orders of magnitude more compliant (Chintapalli et al., 
2014; Martini and Barthelat, 2016). Natural scaled armors combine two properties which are typically mutually exclusive: high surface 
hardness for protection against puncture or laceration, combined with high flexural compliance for fast locomotion. In fish skins the 
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hard scales are attached to a soft substrate (Fig. 1a and b). Under flexural deformation the scales can glide on one another, providing 
high compliance to the system (Funk et al., 2015; Rudykh et al., 2015; Vernerey and Barthelat, 2014). Moreover, interactions between 
neighboring scales can improve the penetration resistance (Vernerey and Barthelat, 2010), and distribute the localized puncture force 
over a larger area to prevent excessive strains in the underlying tissues, thereby delaying blunt injuries (Martini and Barthelat, 2016; 
Zhu et al., 2013; Browning et al., 2013). Experiments on synthetic scaled systems made of hexagonal glass plates on elastomeric 
substrates showed that discrete glass plates not only provide flexural compliance to the system, but also increase puncture resistance by 
up to 70% compared to a continuous glass layer (Chintapalli et al., 2014). Decreasing the size of the plates reduces their flexural span 
which delays fracture up to a point where the scales are small enough to tilt from the action of the sharp indenter (Chintapalli et al., 
2014; Martini and Barthelat, 2016; Martini and Barthelat, 2016). The tilting of individual plates is indeed an important failure mode in 
scaled skin which is prominent in animals with very hard scales such as in alligator gar (Martini and Barthelat, 2016). A mechanical 
criterion was recently proposed for the tilting and instability of hard plates on a soft substrate (Martini and Barthelat, 2016). Ex-
periments on 3D printed scales have later suggested that the indented scale can be stabilized by neighboring scales, and that scale 
geometry and arrangement have a deep impact on this mechanism (Martini et al., 2017). Despite these recent advances, the mechanics 
of scaled skins is still not fully understood. For example, how scales interact during flexural deformation and puncture, how they 
distribute concentrated forces over wide areas, and how the geometry and arrangement of the scales govern mechanical performance 
are important effects that are not fully understood. 

Some insights can be provided from experiments on synthetic scales (Martini et al., 2017, Chintapalli et al., 2014, Connors et al., 
2019), also from finite element modeling such as a 2D simulation of a scale-covered substrate under blunt indentation loading 
(Browning et al., 2013), and a 3D flexural modeling of a system of hard scales on a soft membrane (Vernerey et al., 2014). But in the 
both finite element models, a limited number of scales were used. The large number of contact regions occurring concurrently are 
difficult to properly capture with standard numerical methods such as finite elements where convergence is difficult (if at all possible). 
In this article, we propose the discrete element method (DEM) as an approach to model the deformation of scaled skins, including 
multiple scale-scale interactions. The discrete element method (DEM) offers a computationally efficient alternative to the conventional 
finite element method (FEM) by reducing the degrees of freedom in the problem (Dugué et al., 2013). DEM is also well suited for the 
systems containing a large number of rigid elements with complex interaction laws (Dugué et al., 2013; Pro et al., 2015; Bolander and 
Saito, 1998; Abid et al., 2018; Abid et al., 2019; Lim et al., 2015; Pro et al., 2015; Pro and Barthelat, 2019; Pro and Barthelat, 2020). For 
instance, we recently used DEM on nacre which had a structure similar to fish skin: both are made of hard plates connected by much 
softer material (Abid et al., 2018, Abid et al., 2019). After validation of this numerical tool, we used DEM to explore the design space of 
a large number (720) of scale-covered systems with interesting combinations of puncture resistance and flexibility. 

2. Discrete element method (DEM) for scales: formulation and validation 

For this study we developed a 2D DEM model of hard scales perfectly bonded onto a soft substrate (Fig. 2a). The scales were 
identical and modeled as parallelograms defined by a thickness t, length 2L, and slant angle α. The bases of the scales were assumed to 
be perfectly bonded to a soft substrate and uniformly spaced, with a gap distance d. To model puncture, a concentrated force was 
applied on the upper face of the middle scale along the direction normal to the surface of the substrate (Fig. 2a), while the substrate was 

Fig. 1. Examples of animals with armors made of combinations of segmented hard elements and soft materials together: (a)-(b) alligator gar 
(Atractosteus spatula, adapted from Nelson, 2014); (c)-(d) Armadillo (Dasypus novemcinctus, adapted from (Chen et al., 2011; Garst and Garst, 
1985)); (e)-(f) Northern pine snake (Pituophis melanoleucus, adapted from Burger and Zappalorti, 2011). 
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modeled as a half-space. The position of each scale was represented by a node coinciding with the midpoint of the lower side of the 
scale. Each of the nodes has three degrees of freedom: translations in the x- and y-directions, and rotation about the z-axis. The 
substrate was modeled as a linear elastic half-space (modulus Es, Poisson’s ratio ν) with small strains. The scales were assumed to be 
several orders of magnitude stiffer than the substrate (Zhu et al., 2012), and therefore we modeled the scales as rigid for the purpose of 
efficiently capturing scale-substrate interactions (scale-scale interactions were captured using a simplified contact model that takes in 
account the deformability of the scale, as detailed below). For simplicity the substrate was modeled with spring elements (Fig. 2a) that 
captured not only the reaction of the substrate onto individual scales, but also the elastic coupling between neighboring scales. More 
specifically, the two reaction forces and the reaction moment from the substrate to the individual scales were captured with three 
“direct” stiffness coefficients αx, αy and αϕ, and the effect of the neighboring scales on a given scale were captured with another three 
“coupling” coefficients βx, βy and βϕ. The forces (Fx, Fy) and the moment Mz (about the z axis) on the ith node were expressed as: 

Fig. 2. (a) The system of hard scales attached to a soft substrate, The DEM model in which the substrate is replaced by spring elements in the x- and 
y-directions, and torsional spring elements; The distribution of the shear load q(x) and the normal load p(x) for the models with (b) a horizontal 
displacement boundary condition (the surfaces at the sides are fixed, and the middle one is displaced); (c) a vertical displacement boundary 
condition (the surfaces at the sides are fixed, and the middle one is displaced); (d) applying a rotation boundary condition (the surfaces at the sides 
are fixed, and the middle one is rotated) which makes both the shear and normal loads on the surfaces (q(x) + p(x)); (e) Intersection of two scales 
with a triangle shape which makes a force along the line of action (the red line), or with a four sided shape which makes two separate forces along 
their line of actions (the red lines) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.). 
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Where Es is the Young’s modulus of the substrate, and ν is the Poisson’s ratio of the substrate. ux, and uy are the nodal displacements in 
the x- and y-directions, respectively, and ϕ is the nodal in-plane rotation. To appreciate the effect of coupling between the scales, 
consider a simple example where all the scales are clamped, except scale i+1 which is displaced by u(i+1)

x > 0. Displacing that scale 
deforms the surrounding substrate, so that a force F(i)

x < 0 must be applied onto scale i to keep it immobile (Eq. (1)). To calibrate the 
coefficients αx, αy, αϕ, βx, βy and βϕ we used Boussinesq’s and Cerruti’s close-form solution for the substrate as an elastic half-space 
where we assumed that the substrate is adequately thick (Barber, 2002; Okumura, 1995). For the case of thin substrate assump-
tion, other theories are available to be used which is beyond the scope of this work (Wu and Ru, 2019; Lin et al., 2008; Li and Dai, 
2020). We considered three scales on the elastic half-space, first subjecting the middle scale to a tangential displacement ux (Fig. 2b) 
while the other two scales were clamped. 

The relation between the tangential displacement ux and the horizontal (x-direction) distributed shear load q(ζ,γ) on the surface of 
the substrate underneath the scales (Fig. 2b) is given as: 
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Where z is the out-of-plane direction. We obtained the distributed shear load q(x,z) from Eq. (2), which we then integrated over the 
area of the scales to obtain the shear force for each scale. Dividing the shear forces on the middle scale, and on the neighbouring scales 
by the imposed displacement of the middle scale (ux0) provided the stiffness coefficients αx and βx, respectively. The process was 
repeated for a normal displacement uy (Fig. 2c) where we imposed a displacement uy0 to the middle scale. To compute αy and βy we 
used the equation: 

uy =
1 − ν2
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Where p(ζ,γ) is the distributed normal load in the vertical (y) direction on the surface of the substrate below the scales Fig. 2c). Finally, 
we imposed a rotation ϕ0 on the middle scale by still keeping the other two scales clamped (Fig. 2d). Using Eqs. (2) and ((3), we 
obtained the distributed shear and normal loads and the resultant moment on each scale. The coefficients αϕ and βϕ were computed by 
dividing the moment on the middle and neighbouring scales (respectively) by the imposed rotation on the middle scale ϕ0. The co-
efficients αx, αy, αϕ, βx, βy and βϕ are expressed as 

⎧
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(4) 

In which Am and An are the areas of the middle scale and either of the neighbouring scales, respectively. xm and xn are the x-co-
ordinates of the midpoint of the lower side of the middle scale and either of the neighbouring scales, respectively. An important 
implication of this result is that individual scales can interact with their neighbors not necessarily only by direct contact but also 
through deformations in the substrate. Direct contact between the scales is another feature of the model which is critical to capture 
puncture and flexural deformations. In our model the contacting scales were assumed to be rigid and frictionless, and we used a simple 
yet accurate and computationally efficient contact algorithm inspired by the Winkler elastic foundation model (Johnson, 1987). We 
first used shape intersection algorithms to detect collision between pairs of scales, and we used kinematics to compute the penetration 
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distance δp (Fig. 2e) between the contacting scales. The contact force was then computed from δp using: 

Fct

LbEct
= C1

(δp

L

)C2
(5)  

Where Ect is the contact modulus, and b is the out-of-plane dimension (width) of the scales. The calibration constants C1 and C2 were 
obtained using a 2D finite element model (ANSYS V16 2016, PA, US) in which the corner of one scale penetrated into the edge of 
another scale under controlled displacement (Fig. 2e). From the finite element calculations we computed the resultant contact force 
(the interfaces were assumed to be frictionless) and determined C1 =1.1 and C2 =0.23. We also defined the line of action of Fct so that it 
is intersecting the penetrating corner of one the scales, and is perpendicular to the edge of the other scale (Fig. 2e). For the case of four- 
sided overlap area (Fig. 2e), we applied the procedure to two instances of corner contact and applied Eq. (5) twice. In addition to 
forces, direct contact between scales may induce moments about the out-of-plane axis z. We computed the effective nodal moment due 
the contact forces as: 

Mij = rct × Fct,ij (6)  

Where Mij is the effective nodal moment induced by scale i onto neighboring scale j, rct is the position vector of the contact force relative 
to node i and Fct,ij is the contact force which scale i exerts on scale j. Since the contact model introduces geometrical nonlinearities we 
used the iterative Newton-Raphson method to obtain numerical solutions (Abid et al., 2018). 

To validate our model we performed puncture tests on a system composed of a pair of Acrylonitrile butadiene styrene (ABS) blocks 
glued onto a softer elastomeric substrate. The blocks were 3D printed with a high resolution Direct Light Projector (DLP) 3D printer 
(Micro HiRes Machine, EnvisionTech, 2019), which produced fully dense and pore-free blocks. We tested 3D printed ABS along 
different directions and verified that the blocks were isotropic, with a modulus EABS=3 GPa. The blocks were then glued onto the 
surface of a thick polyurethane substrate using cyanoacrylate. The polyurethane we used is four orders of magnitude softer than ABS, 
with a measured modulus of Es=310 kPa (we used a Poisson’s ratio ν=0.5 (Martini et al., 2017)). The assumption of rigid blocks 
compared to the substrate, required for our DEM simulation, was therefore verified. For the puncture test, a needle was pressed on the 
upper surface of one of the blocks, which caused the substrate to deform and the blocks to displace and tilt (Fig. 3a). 

For validation we compared the force-displacement curves obtained experimentally and through DEM, which showed excellent 
agreement (Fig. 3b). The model properly captured the initial stiffness of the system and the onset of contact between the blocks. 
Following contact, the stiffness of the system suddenly increased (which shows as a ‘kink’ on the puncture force-displacement curve in 
Fig. 3b), a phenomenon that the DEM model also accurately captured. 

3. Parametric study and exploration of geometry-puncture resistance relationships 

We used the DEM model to systematically explore the effects of scale geometry and arrangement on puncture resistance. In this first 
study, we focused on parallelogram-shaped scales placed at regular intervals over the softer substrate. Since there is no length scale 
associated with the elastic deformation, we use non-dimensional geometrical parameters: the aspect ratio of the scales (L/t), the slant 
angle of the scales (α), and the normalized gap distance between the scales (d/t). Fig. 4 illustrates models with different combinations 
of these three geometrical parameters, showing that this approach covered a wide range of possible scale designs. 

A first inspection reveals that some designs do not provide adequate coverage, leaving the substrate directly exposed to outside 
mechanical threats. This issue occurs for all designs with no slant angle (α=0), and more generally when the spacing of the scale is too 
large and/or the slant angle is too low. On the other hand, designs providing good coverage involve neighboring scales that overlap. To 
characterize the extent of coverage for each design we defined a non-dimensional coverage parameter λ=ts/t where t is the thickness of 
the scales, and ts is obtained by first drawing a vertical line from the upper right corner of a scale. ts then was computed as the sum of 

Fig. 3. (a) Experimental and DEM puncture tests on a pair of ABS blocks on a polyurethane substrate; (b) Force-displacement curve showing a good 
agreement between the experimental and DEM results. 
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the intersect lengths between that line and the neighboring scales (Fig. 5). By this measure, λ ranges from λ =0 (no coverage) to λ =1 
(full coverage). 

For all models, we imposed a vertical force on the upper right corner of the middle scale so that the force applied the largest possible 
tilting moment on the scale, which represented the “worst-case scenario” for loading. We first present the effect of each parameter on 
the puncture force-displacement curves (Fig. 6). For all results, we normalized the applied force on the middle scale as F*=F(1-ν2)/EsLt 
(consistent with equation (1)) and the displacement of the punctured point as u*=u/t.Fig. 6a shows the effect of the slant angle α on the 
deformation of the system for a fixed aspect ratio of L/t=1 and gap of d/t=0.1. Initially, the imposed force simultaneously pushes the 
scales into the substrate and increases the tilt angle. At the initial stage the puncture stiffness is relatively low, especially at larger slant 
angles (Fig. 6b) because of the larger moment arm of the applied force. At some point during the simulation the scales start contacting 
each other (on the snapshots of Fig. 6a, the contact areas are marked in red and on the puncture force-displacement curves in Fig. 6b a 
(×) symbol marks every new contact event). For the cases of α = 0◦ and α = 45◦ the punctured scale contacts with the neighboring 
scales at about u/t=0.08, which translates into a kink on the force-displacement curve and a stiffer response. For the case of α=0, the 
corner of the punctured scale slides on the side of the neighboring scale with little resistance and the contact force between the scales is 
mostly horizontal. Introducing a slant angle generates a vertical component to the contact force and a much stiffer response (this result 
is consistent with our previous experimental study on 3D printed scales Martini et al., 2017). For the model with the largest slant angle 
(α=75◦) the initial contact occurs earlier due to the larger tilting moment. The first four contacts do not have a significant effect on the 
stiffness because of the high tilting moments in the scales. By engaging more scales by contact during loading, the resistance from the 
contact eventually overcomes the high tilting moment and the stiffness starts increasing. The post-contact stiffness also increases 
significantly with the scale slant angle. Interestingly, the puncture force can become high enough that additional scales enter contact 
(Fig. 6a), which distributes the puncture force over an even greater area. Fig. 6c shows the effect of varying the aspect ratio on the 
response of the system, with a fixed gap of d/t=0.1 and fixed slant angle of α=45◦. Larger aspect ratios cause less penetration, but 
larger tilting moments induced by the loading in the punctured scale, which implies that individual scales offer less resistance to tilting 
resulting in low initial stiffness (Fig. 6d). In contrast, smaller scales (smaller L/t) penetrate more into the substrate but showed less 
tilting. This stability effects the post-contact stiffness of the system as well, where the contacting scales with smaller aspect ratios show 
more resistance against tilting resulting in higher system stiffness (Fig. 6d). Finally, Fig. 6e and 6f show the effect of the gap size for a 
fixed aspect ratio of L/t=0.5 and slant angle of α=45◦. The gap size has no significant effect on the initial stiffness of the systems and 
little effect on post contact stiffness. The main effect of increasing d/t was to delay scale-scale contact (Fig. 6f). 

Fig. 4. Models with different combinations of scale gaps (d/t), aspect ratios (L/t) and slant angles (α).  
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Fig. 5. Diagrams showing three examples on how to compute ts and λ=ts/t: (a) Example with no scale overall and no coverage (λ = 0); (b) Example with two scales overlapping, leading to intermediate 
λ; (c) Example with three scales overlapping, leading to high λ. 
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In addition to puncture stiffness, we considered the puncture resistance of the scaled surface. There are several possible failure 
modes for this system, including fracture in the scales, failure of the interface or tearing of the substrate. However, in this study the 
combination of the materials, geometries and load range was such that we did not observe any of these failure modes. Instead, we 
focused on a failure mode that occurred by tilting of the indented scale. In this failure mode the indented scale tilts from the action of 
the needle, and when the tilt reaches a critical angle ϕc=tan− 1(μ) (where μ is the friction coefficient between the scale and the needle), 
the needle suddenly slides on the surface of the tilted scale and finds its way into the substrate (Fig. 7a). 

This failure mode was identified on scales from gar fish and duplicated in puncture experiments on 3D printed scales (Martini et al., 
2017; Martini and Barthelat, 2016). For each of the models discussed above, we computed a critical force, corresponding to the point 
where the tilting of the scale reached a critical angle which we took as ϕc = 10◦ to be consistent with previous experiments (Martini and 
Barthelat, 2016). Fig. 7b shows that the gap size, aspect ratio and slant angle, all had a significant effect on the critical force. In general, 
decreasing the gap between the scales (d/t) increased the critical force, because early contact between the scales increased stability and 
delayed tilting. Smaller scales (small L/t) were also more stable, because of the reduced lever arm of the applied force. Higher slant 

Fig. 6. Deformation of three systems of scales at u/t=0.7 on a soft substrate in a puncture test, and the related force-displacement curves: for (a) and 
(b) a fixed aspect ratio of L/t=1 and a gap size of d/t=0.1, (c) and (d) a fixed gap size of d/t=0.1 and a slant angle of α=45º, (e) and (f) a fixed aspect 
ratio of L/t=0.5 and a slant angle of α=45º. 
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angles also increased the critical force as long as the scales contacted early in the puncture process. If the contact was delayed because 
of a large initial gap between scales, larger slant angles led to larger lever arm for the force and less stability. Compounding all these 
effects, the smallest aspect ratio (L/t=0.1), the smallest gap (d/t=0.1) and the largest slant angle (α=75◦) produced the system with the 
highest critical force (Fc(1-ν2)/ELt=64). Fig. 8 maps the puncture stiffness and the critical force for all models of scale designs, showing 
a strong correlation between these two properties. The highest puncture stiffness was achieved for the case with an aspect ratio of 
L/t=0.1, a slant angle of α=75◦, and a gap of d/t=0.1. This system also has the highest critical force. Among all the design parameters 
considered here, we found that the slant angle had the most significant effect on the puncture stiffness and critical force. 

Contact interaction between scales not only improves critical force, it also improves how the puncture force is distributed onto the 
substrate (see, for example, Fig. 6a). To better illustrate this effect, Fig. 9 shows the spatial distribution of vertical reaction forces from 
the substrate onto the scales, for models with different slant angles (under the same puncture force). In the model with no slant angle 

Fig. 7. (a) Reaching the critical angle causes the needle to slide off the scale surface; (b) the effect of the slant angle (α), the aspect ratio (L/t) and 
the gap (d/t) on the critical force of the system. The critical force is denoted as Fc and is normalized by Fc*= Fc (1-ν2)/EsLt. 

Fig. 8. The relation between the normalized stiffness and the critical force for different combinations of slant angle (α), aspect ratio (L/t) and gap 
(d/t). The stiffness and critical force are denoted as K and Fc, and are normalized by K*= K/Est, and Fc*= Fc (1-ν2)/EsLt, respectively. 
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(α=0), only one scale is engaged by the point force, and the force is transmitted to the substrate over a small area. This concentrated 
distribution could lead to flexural failure of the scale, or damage in the underlying tissues (“blunt damage”). As the slant angle is 
increased, more scales enter in contact and distribute the force over a larger region of the substrate. This effect is very pronounced for 
the case α=75◦, where scales tilt and contact in “domino effect” that involve about eight scales, distributing the puncture force over a 
large surface. Slanted scales can therefore improve the critical force of the system by distributing the force over a wider area. 

4. Hard scales on a soft membrane: flexural compliance 

In addition to resistance to puncture, flexural compliance is a desired property in scaled skin. In this section we used the DEM model 
to explore how the architecture of the scales affects flexural stiffness. In the model, a set of scales is perfectly bonded to a thin 
membrane of thickness h, depth b, and modulus Em (Fig. 10a). The membrane was modeled with nonlinear co-rotational Euler-Ber-
noulli beam elements which assumed linear elasticity and small strains within the membrane, but allowed for arbitrarily large 
elemental rotations. The section of the membrane located below the rigid scales was also assumed to be rigid (Fig. 10a). In order to 
induce flexural deformations to the model, two self-equilibrated moments M were imposed at the ends of the membrane, inducing a 
state of pure bending. Fig. 10b shows the bending moment-curvature response for a membrane covered with cubic scales. Initially the 
flexural deformation of the thin membrane is the only contributor to the bending moment, so that the flexural stiffness is very low. As 
curvature increases the scales contact each other, which is characterized by an abrupt stiffening. In that second stage, the contact forces 
between the scales are balanced by tension in the membrane. These two forces create a couple which becomes the largest contributor to 
flexural stiffness. To better appreciate this mechanism we partitioned the total strain energy in the DEM model into the contributions 
from bending and axial strain energy in the membrane (Fig. 10c). In the initial stage the energy from axial stretch of the membrane is 
negligible compared to the energy from flexural deformation. After contact of the scales however, the energy from axial deformation 
increases dramatically. 

To validate the flexural models we also fabricated and tested a membrane covered by ABS cubic scales (8mm×8mm×8mm). The 
scales were 3D-printed and glued onto a 1mm thick strip of polyurethane (Young’s modulus =4.5 MPa, measured in three-point 
bending). In the experiment, pure bending was induced in the membrane using a four-point bending configuration (Fig. 10d). 
Fig. 10b shows an excellent agreement between the experiment and the DEM model, except near the contact point. In the DEM model, 
contact is initiated simultaneously between all the scales which gives rise to a sharp transition in stiffness. In the experiments contact 
was initiated at slightly different deformation stage due to imperfections, which gave rise to a more progressive transition in the slope. 
We used the DEM approach to explore the effect of the scale geometry and arrangement on the flexural compliance of the scaled- 
membrane system. The moment was normalized according to classical beam theory as M*=Mt/EmIm, and the curvature normalized 
as κ*=κt. Fig. 11 shows the effect of slant angle, scale length and scale gap. The normalized moment-curvature response followed the 
behavior described above: initially negligible stiffness, followed by rapid stiffening immediately after the scales enter contact. 
Interestingly, the post contact behavior shows softening, because the sliding of the contact points increase the moment arm on in-
dividual scales, effectively making the entire structure more compliant (softening is absent for cases with no slant, α=0 because the 
contact points remain at the corner of the scales during the entire simulation). The deformation at which the scales contact, the amount 
of stiffening and softening depend largely on the geometric parameters. In addition, we observed that for designs with high slant 
angles, large scale size or small gap, the conformation induced a ‘zig-zagged’ deformation in the membrane. 

Fig. 12 summarizes the flexural compliance for different combinations of gap sizes (d/t), aspect ratios (L/t) and slant angles (α). For 
all models, we considered a constant total membrane length of Lwhole/t = 100. also, we put a limitation on loading where the system is 

Fig. 9. Force distribution over the models with different slant angles in a puncture test.  
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loaded up to a maximum end rotation of 180º. In some designs, contact was never initiated in the simulation due to geometry (large gap 
sizes) and, therefore, were unaffected by the scale angle; these cases were plotted as unfilled dots in Fig. 12. Considering all other cases 
in which contact occurs during the loading (filled dots in Fig. 12), contact significantly decreases the flexural compliance of the system 
by up to three orders of magnitude. For small slant angles of α=0◦ and α=30◦, the highest flexural compliance is for the models with the 
smallest gap (d/t=0.1) and the smallest aspect ratio (L/t=0.1). For slant angles of α=60◦ and α=75◦, the highest flexural compliance is 
for the model with d/t=0.5, L/t=0.1, and the model with d/t=1, L/t=0.1, respectively. For the models with large slant angles, larger 
gaps therefore increased the flexibility to the system. Also, by increasing the aspect ratio of the scales the system gets stiffer, so smaller 
aspect ratios are desirable. 

5. Optimum mechanical performance 

From the previous sections, it is clear that several of the design parameters have conflicting effects on puncture resistance and 
flexural compliance. For example, increasing slant angle increases puncture resistance, but also decreases flexural compliance. In this 
section we seek designs which offer optimum combinations of four mechanical properties: (i) the coverage parameter λ (determined 

Fig. 10. (a) Schematic for the DEM flexural model; (b) Bending moment-curvature curves showing good agreement between the experiment and 
DEM results; (c) Evolution of strain energy from axial stresses and strain energy form bending stresses during loading, computed from the DEM 
simulations. (d) Comparison between a DEM simulation and an experiment on 3D printed blocks on elastomer strip. 
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using geometry, Fig. 5) (ii) the critical force (force at which the indented scale become mechanically instable), (iii) the penetration 
resistance (defined as the inverse of the maximum penetration of the scales into the substrate when the punctured scale reaches the 
critical tilting angle), (iv) the flexural compliance (defined as the inverse of the maximum slope in the moment-curvature curve). In 
order to find the best design, we parameterized the scale gap size d/t = {0.1, 0.2, …, 1}, aspect ratio L/t = {0.025, 0.05, 0.1, 0.2, …, 1}, 
and slant angle α ={0◦, 15◦, …, 75◦}. We eliminated the designs where the coverage λ is zero, because these designs leave the substrate 
partially exposed to mechanical threats. We compared a set of models with various combinations of the three design parameters (the 

Fig. 11. Deformation of three systems of scales on a soft membrane under pure bending, and the related moment - curvature curves: for (a) and (b) a 
fixed aspect ratio of L/t=1 and a gap size of d/t=0.1, (c) and (d) a fixed gap size of d/t=0.1 and a slant angle of α=75º, and (e) and (f) a fixed aspect 
ratio of L/t=0.5 and a slant angle of α=75º. 
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gap size, the aspect ratio and the slant angle) using a quaternary plot to find the best design for a given design performance criteria. As 
the four criteria have values with different orders of magnitude, we rescaled each criterion to a range from 0 to 1 in which the 
minimum and the maximum of each criterion are 0 and 1, respectively. We defined a fitness score as: 

f = (Coverage)m
(Critical force)n

(Penetration resistance)k
(Flexural compliance)l (7) 

The individual values of m, n, k and l can be tuned to control the influence of each criterion on the fitness score, but we required 
m+n+k+l=1. The best designs for any combinations of m, n, k and l can therefore be displayed on a quaternary plot, shown on Fig. 13. 
The corners of the tetrahedron shows the four designs that optimize one of the four criteria while the other three are ignored. High 
coverage (m=1) is obtained with small gap size, large aspect ratio and intermediate slant angle (45◦). Maximum critical force (n=1) is 
obtained for small gap size, small aspect ratio and large slant angle. The best penetration resistance is obtained for a large gap size. 
Finally, the most flexible designs among the models (l=1) are achieved with scales with the smallest aspect ratio (L/t = 0.025) and a 
large slant angle (α = 60◦). These four designs are very distinct, especially in terms of aspect ratio and gap distance. In order to identify 
the design with the best “balanced” set of properties, we sought the design that maximized f with m=n=k=l=0.25, to give equal weight 
to each performance metrics. 

The design with the best balanced performance was d/t=0.7, L/t=0.1 and α=60◦. Our approach also showed that this particular 
design dominates not only for m=n=k=l=0.25, but also for a wide variety of fitness parameters depicted by the orange volume on 
Fig. 13. 

6. Summary 

In this study we proposed the discrete element method to investigate the mechanical behaviour of systems of segmented scales 
attached to a soft substrate and a soft membrane. DEM is appropriate for this kind of system where the scales can be assumed to be rigid 
compared to the surrounding materials, and we validated the simulations with puncture and flexural experiments. The focus was to 
learn about the effect of the architecture (the aspect ratio and slant angle of the scales) and the arrangement (the gap size between the 
scales) of the scales on the mechanical performance of the scaled systems. The study gives us useful insights into the mechanics of this 
type of system, optimization of its mechanical performance, and eventually, a better design of synthetic fish-skin-like protective 
systems. The computational efficiency of DEM allows us to run a large number of nonlinear models (720 Models) with different 
combinations of the design parameters. To identify the best designs, we considered four criteria: critical force, coverage, penetration 
resistance and flexural compliance. The results show that the contact between the scales play a critical role in the behaviour of the 
system. The contact helps to distribute the load over a wider area therefore the system becomes more resistant to tilting and pene-
tration. The main conclusions are as follow:  

• The models with a high stiffness have a high critical force as well.  
• The model with the highest critical force requires the smallest gap size and aspect ratio, and the largest slant angles.  
• The smallest gap size, the largest aspect ratio and a moderate slant angle of 45◦ give the best coverage.  
• Contact makes the force distribution occur over a wider area which results in a higher critical force and penetration resistance. On 

the other hand, too many contact points has negative effects on the penetration resistance.  
• To have the highest flexural compliance the aspect ratio needs to be the smallest.  
• There is limitation on the positive effect of the slant angle on the flexural compliance: too large slant angle decreases the flexibility 

of the system. 

We used a quaternary plot to examine the influence of the design parameters (gap size, aspect ratio and slant angle) on the four 
mechanical properties: coverage, critical force, penetration resistance and flexural compliance. The quaternary plot shows that 
changing each design parameter can improve one mechanical property while having a negative effect on the other ones. Also, based on 

Fig. 12. The effect of the gap size, aspect ratio and slant angle on the flexural compliance of a series of scales on a soft membrane. The flexural 
compliance is denoted as Cf and normalized by Cf *= Cf EmIm. 
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which mechanical properties are more important to be considered, we give a weight to each criterion (m, n, k and l), which results in 
different combinations of design parameters. The best response of the system considering the four criteria with the equal weights 
(m=0.25, n=0.25, k=0.25 and l=0.25) belongs to the model with a small aspect ratio (L/t=0.1), intermediate gap size (d/t=0.7) and 
large slant angle (α=60◦). This article provides a strong basis for future design of synthetic fish-skin-like protective systems. Further 
simulations would be needed to optimize the design parameters for specific applications and boundary conditions, and could include 
material nonlinearity in the substrate for better accuracy at large deformations. Adding nonlinearities and unusual behavior to the 
substrate could indeed enrich the problem and possibly lead to new and interesting interactions between the scales and the substrate. 
The focus on this DEM-based method is on systems where the scales are orders of magnitude stiffer than the substrate, which is relevant 
for many types of flexural armor (biological and engineered). For the cases where the deformation of individual scales cannot be 
neglected, other numerical approaches such as finite elements must be used. Finite element is however much more expensive 
computationally because of contact penalty methods and much greater number of degrees of freedom. 
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