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• Interlocking of blocks can be achieved
by enriching architectured beams with
blocks having curved and wavy contact
surfaces.

• The contact surfaces of blocks can be
characterized by a waviness parameter
ϕL which correlates with toughness
and strength.

• Weak blocks allow little interlocking
therefore toughness is achieved through
deformation.

• Strong blocks allow interlocking there-
fore both strength and toughness are
achieved through hardening.

• Architectured beams fail progressively
resulting in 370 times the toughness
and 40% the strength of the monolithic
beam.
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Dense architectured materials are made of blocks that can slide, rotate, interlock and jam in powerful mecha-
nisms that can generate simultaneous strength and toughness. Nature abounds of examples of such architectured
materials, for example in the segmented structure of vertebrate spines. In this study we consider segmented
beams made of stiff blocks and submitted to a transverse force. We start with simple cubes as a geometrical ref-
erence, whichwe then enrich by using two-dimensional polynomial functions. The flexural response of the beam
is simulated using finite element modeling (FE-model) to predict strength, toughness and maximum local
stresses. Using this procedure we identified themost efficient interface geometries and interlockingmechanisms
within a set of polynomial functions and for a given strength of the individual blocks. To illustrate these results,
we fabricated segmented beams of ceramic glass using a laser engraver. Experiments on these architectured glass
revealed how enriched blocks turned the catastrophic brittle failure of monolithic glass into graceful progressive
deformation. Resulting in a tougher response than themonolithic by 370 times and preserved 40% of strength of
that of the monolithic.
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1. Introduction

Toughness and strength are mutually exclusive properties in
engineering materials. For example ceramics are hard and strong
against deformation, but they can only undergo small deformation
and they are brittle. For many applications there is a pressing need to
combine strength and toughness in onematerial, especiallywhenmate-
rials are subjected to unanticipated loads. Weight is an equally impor-
tant property to minimize in order to reduce carbon emissions of
vehicles, produce more slender structures and allow for bolder outer
space explorations. For reducing weight, many brittle materials such
as glass, clay and some ceramics are relatively light and inexpensive
[1]. While these materials are brittle they are also relatively stiff, corro-
sion resistant, abrasion resistant and have low thermal expansion [2,3].
Some of these materials, for example glasses, are also transparent. The
toughening of these brittle materials is a major challenge which may
allow their use as structural components: beams, shock absorbers,
trusses and frames. Architectured and segmented materials are power-
ful approaches to toughen brittle materials (Fig. 1a). Segmentation is
prominent in masonry structures, particularly in monuments, shear
walls and domes [4,5]. In addition, the field of pavement design is rich
with design templates and tessellations applicable to architectured ma-
terials [6]. Masonry structures have recently inspired topologically
interlockedmaterials (TIMs)which rely on the geometrical interlocking
Fig. 1. (a) Typical force−displacement curves of architectured materials versus monolithic m
materials in nature: (c) fish fins of zebrafish (adapted from [45]), (d) vertebrae of orca (adap
[40]) and (f) goniatite (adapted from [37]).
of relatively stiff blocks [7–9]. TIMs can contain cracks and improve
toughness [7–13]. The shapes of individual blocks range from simple
cubes, tetrahedrons, octahedron to more complex osteomorphic blocks
[11,14,15] (Fig. 1b). Individual blocks are relatively stiff, and their
deformations are typically small and within elastic limits. However
the interfaces between the blocks are more compliant and weaker, so
they can channel deformations and arrest cracks [16–19]. The blocks
can also rotate (hinge), slide, separate, interlock and jam, generating
powerful mechanisms for improving toughness and strength
[11,20–22]. The blocks may be held together and confined by external
ligaments such as stiff frames, internal tension cables, pre-compressed
supports tomanipulate contact and friction forces [9,23–26]. One draw-
back of tension cables is that it may interfere with the sliding and rota-
tion action of blocks. A practical alternative is to use variable spring
support [27], a device used in pipelines that can effectively serve as a
support and exert a controlled precompression on architectured
beams (Appendix A.5, Fig. A.5). Architectured materials and structures
are information-rich and highly tunable (e.g. dimensions, shapes, elastic
modulus, surface friction and number of blocks), a feature which suits
itself to optimization.

Interestingly, hard natural materials such as wood, mollusk shells,
bone, teeth or even entire skeletons are also made of stiff but brittle
“building blocks” with remarkably uniform geometries and arrange-
ments [17,28,29]. The interaction of shape, size, composition,
aterials; (b) topologically interlocked materials (TIMs). Linearly segmented architectured
ted from [35]), (e) concavo-convex vertebrae in the spines of crocodiles (adapted from
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orientation, arrangement of blocks, interface geometry along with soft
protein bonding at the interfaces which can generate nonlinear visco-
elastic and contact-based deformations, lead to remarkable combina-
tions of stiffness, strength and toughness. The arrangement of the
blocks vary from linear arrays as in fish fins and spines [30–33]
(Fig. 1c) to 2D arrangement like the tesserae in sharks [34] tomore com-
plex decussations of mineralized rods in teeth enamel [17]. Both fish
fins and vertebrate spines are composed of mineralized blocks arranged
linearly and bonded with soft collagenous membranes (Fig. 1c, d,
e) [30–33]. The shape of the blocks, and specifically the geometry of
the interface,may vary across species and biological components, giving
rise to specific properties and functionalities (Fig. 1c, d, e, f). The geom-
etry of the interface may vary from straight interfaces as in fish fins and
vertebrae of orcas (Fig. 1c, d), to slightly curved interfaces in crocodiles
(Fig. 1e) to complex serrated sutures between blocks in ammonites
(Fig. 1f) [36,37]. Some reptiles including crocodiles have concave
and/or convex round interfaces between their vertebrae [38–40],
which allows for a high range of motion for their spine. Applications
of such segmented materials and structures include armor, domes,
glass facades, shields, robotic arms, deployable and anti-seismic col-
umns [17,26,41]. In addition to segmentation, these systems are some-
times loaded with pre-compression. For example armored panels are
subjected to pre-compression in the in-plane direction for improved
damage tolerance [42]. Spines, domes and structural columns are
compressed under their own weight and from the weight of the ele-
ments they carry [4,5]. In addition, in a previous study we found
that the effect of precompression is limited to increasing stability
and effective strength [43]. On the other hand, the slightest variation
in the geometry of the blocks can induce profound changes to the
overall response [43].

Previous studies applied strategies of nature in architectured mate-
rials achieved some improvements, but at the expense of strength
[9,12,44]. In particular, linearly segmented materials similar to spines
have not been studied extensively to this day. In a previous study, we
found that the behavior of a segmented beam depends on the number
of blocks, friction and interface designs between blocks [43]. We also
found how the segmentation of glass panel into rectangular prisms
with flat interfaces improves toughness, strength and the damage toler-
ance of glass [41]. In a previous study we found that failure of
architectured beams is strongly dependent on the number of blocks
and friction between blocks [43]. Another important aspect of seg-
mentedmaterials is the geometry and arrangement of the blocks (archi-
tecture). Our previous study showed that curved interfaces have an
effect on failure mode, particularly it prevents the undesired hinging
failure mode [43], and that they also induce block jamming during de-
formation [43]. Hinging involves rotation of blocks around few localized
points, making the contribution of the geometry of interfaces minimal.
It also localizes stresses making it unfit for brittle materials [43].
Whereas, in sliding failure mode, entire interface interacts by sliding,
jamming and interlocking, and therefore is highly affected by geometry.
Therefore, we focus here on the effects of geometry on systems that un-
dergo sliding failure mode. These previous studies were also limited to
two-dimensional geometries and to interfaces with a single curvature.
In addition, they ignored internal stresses in individual blocks and
their potential failure. Several aspects such as failure of blocks, the
level of interlocking between blocks, the overall mechanical behavior
(force-displacement curves), strength, toughness, stability and their
possible dependence on strength of blocks remained unexplored. The
effects of three-dimensional geometrical enrichments of the contact
surfaces on overall mechanical response are not well understood. In
this study we systematically enrich the 3D geometry of the interfaces
between the blocks to explore and optimize interlocking mechanisms
between the blocks and mechanical performance (strength, toughness
and stability).

To carry out a systematic study on the effect of geometry of blocks
we consider here an ideal array of 5 blocks with tunable contact
interfaces described by 2D-polynomials. We fixed the study to 5 blocks
to ensure a sliding failuremode and to avoid hinging. This structuremay
not serve as an all-ready structure for service, per se, but rather it repre-
sents and simulates the behavior of linearly segmented “materials”,
which is a form of architectured materials that may comprise beams,
columns and similar prismatic structural components.

2. Model setup and enrichment of cubes with fillets

For this study we considered idealized segmented beams composed
of N = 5 identical blocks with dimensions L × L × L. The blocks are
aligned in a single row between two rigid supports (Fig. 2a). They are
modeled as linear elastic (modulus E, Poisson's ratio ν), with contact el-
ements inserted at the interfaces between the blocks, and also between
the end blocks and the rigid supports. The end supports are used to im-
pose a pre-compression force FA that holds the row of blocks in place by
dry friction (friction coefficient f). To assess the strength and stability of
this segmented beamwe apply a transverse displacement u at the cen-
ter of the beam (coordinates (5L/2, L/2, L/2)) that is progressively in-
creased until collapse of the system. The corresponding reaction force
is the transverse force FT which is recorded at each increment of the
transverse displacement u.

A simple starting point for this study is a segmented beam made of
cubes, a system we recently investigated to reveal the importance of
friction and number of blocks on overall strength, failure mode and sta-
bility [43]. 3D finite element models (FE-model) with different fillet
radii were automatically generated and simulated using a combination
of Matlab and Ansys-APDL (Appendix A.1). Mesh convergence was ver-
ified in all the results presented in this report. Since the state of stress in
the systemhave no particular length scale, all dimensionswere normal-
ized by the size of the blocks L. It is known from the contact mechanics
of elastic punches [23,24] that the contact stresses at the corners of
cubes are infinite. To prevent the stress from reaching these singulari-
ties and for a more realistic model, we rounded all edges and corners
of the cubes with a fillet of radius r/L (Fig. 2b). These fillets enabled
stress convergence at the edges and corners of the cubes, and also en-
sured mesh independent results. Rounding of the corners and edges of
the blocks acted as a first level of geometrical enrichment for the
cube-based segmented beams, with significant impact on the strength
and stability of the architectured beam. To assess the effect of fillet ra-
dius r/L we ran FE-models for beams made of blocks with r/L = 0.05,
0.1, 0.2, 0.3, 0.5. The sliding of the blocks is governed by frictional forces,
which are in turn governed by the pre-compression FA. More specifi-
cally, we verified that the transverse force is proportional to the axial
pre-compression, so that the results can be displayed as normalized
force FT/ FA without loss of generality. The force-displacement curves,
FT − u for different r/L show a linear increase in transverse force FT
(for r/L b 0.5) until a maximum FT is reached at the onset of sliding
(Fig. 2c). After this linear elastic part, the block(s) start sliding progres-
sively (Fig. 2d), which is associated with a decrease of the compressive
force FA: sliding the blocks reduces the volume of elastically deformed
material held between rigid supports which in turn decreases the
axial stiffness of the beam. As a result of the decrease of axial force the
friction force at the interface decreases, and FT decreases almost linearly
with increasing u (Fig. 2c). At a critical displacement the sliding block
(s) completely loses contact and the center block is being pushed out
(first column on Fig. 2d for u/L = 0.85). At this point the transverse
force becomes compressive (FT b 0) which indicates the tendency of
the sliding blocks(s) to “eject” out of the system. This general FT – u be-
havior was observed for all radii 0.1 b r/L ≤ 0.5, but the specific overall
properties of the beam varied with r/L. Increasing r/L led to a significant
decrease in initial stiffness, to a slight decrease in strength, and to a
more rapid instability in the system. For example, increasing the fillet
radius from r/L = 0.1 to r/L = 0.3 decreased the maximum displace-
ment by 50% (Fig. 2c). For r/L=0.3, a group of blocks sled and gradually
started rotating, which are signs that the system is transitioning from a



Fig. 2. (a) Finite elementmodel: blocks aremeshed andmesh refinement is applied at edges and corners; (b) the cube is enriched by rounding the edges and cornerswith fillets from r/L=
0 to r/L = 0.5 where finally the cube is transformed into a sphere. Effect of applying fillets r/L on (a) FT − u curves and (b) deformation.
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sliding failure mode into a “hinging” failure mode [43] (second column
on Fig. 2d). Sphere-based beams (r/L=0.5) are highly unstable and the
transverse force is negative over the entire simulation. In these simula-
tions we also monitored the maximum tensile stresses (σ1)max occur-
ring within the blocks, in order to predict damage and fracture (we
assumed brittle blocks). A typical snapshot from FE − model of the
maximum (principal) stress contours for r/L = 0.3 and at u/L = 0.5 is
shown on Fig. 3a. As expected from the contact mechanics of frictional
sliding, the maximum tensile stress occurs at the trailing edge of the
contact area. Fig. 3b shows the evolution of the maximum tensile prin-
cipal stress during deformation for different r/L. We verified that the
maximum stress (σ1)max is proportional to FA, so we used (σ1L

2/FA)max

as a non-dimensional number to characterize the maximum principal
stresses in the blocks. These stresses increase linearly with u/L until
the onset of sliding at u/L = 0.035 marking the first peak, after which
Fig. 3. Normalized maximum principal stresses in the segmented beam during deformation; (
variation during deformation, (σ1)max − u curves, the point of maximum stress is denoted by
(σ1)max falls sharply. The stresses then increased gradually as the con-
tact area decreased and the contact pressure increased. The maximum
stress reached another maximum value well into the sliding of
the blocks at u/L N 0.4 (marked with a red dot on Fig. 3b). Afterward
the stress decreased continuously until complete failure. In general the
maximum stress was the highest for small r/L, except for the extreme
case r/L = 0.5 (sphere) where the maximum stresses were compara-
tively very high.

Assuming that the blocks are made of a brittle material, we used a
simple failure criterion: the blocks fractured when the maximum prin-
cipal stress exceeds the tensile strength σs/E. We therefore truncated
the FT− u curves at the point at which (σ1)max/E ≥ σs/E, and the remain-
ing first part of these curves were used to compute the toughness Umax

and the strength Fmax (Appendix A.2, Fig. A.2). Fig. 4 shows a
toughness-strength map for segmented beams made of blocks with
a) stress contours in the blocks at u/L = 0.5 for r/L = 0.3; (b) maximum principal stress
a red dot marker.



Fig. 4. Toughness−strength map for segmented beams made of blocks with different
rounding r/L.

Fig. 5. Enriching the contact surfaces between blocks with 2D-monomial functions. Pascal
triangle depicting individual terms; the degree of the polynomial i+ j increases from top
to bottom.
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different rounding. The case with no rounding (r/L = 0) and perfectly
sharp cubes is a theoretical case where the stresses are infinite, and
where the blocks immediately fracture upon sliding. As a result the
toughness and strength are zero for r/L = 0 (Fig. 4b). For r/L = 0.025,
the stresses are high, the blocks therefore fracture which results in a
truncated FT − u curve with little deformation. Conversely, for r/L =
0.05, the stresses are lower than r/L=0.025 where the beam deformed
without fracture, resulting in the highest toughness and highest
strength. For 0.1 ≤ r/L b 0.3, the inherent lower maximum force and
displacement of these cases result in lower strength and toughness
than r/L = 0.05. According to Fig. 4 the optimum values are r/L =
0.025 and r/L = 0.05 for highest strength and toughness respectively.

3. Geometrical enrichments with polynomial functions

Using the same approach for model generation, finite element
modeling and data processing we then considered more complex geo-
metric enrichments for the blocks. One objective was to generate pro-
gressive interlocking between the blocks, in order to achieve better
combinations of strength and toughness. To enrich the geometry of
the blocks we considered contact surfaces that followed polynomial
equations of the form:

z x; yð Þ ¼
X
i; j

ai; jxiy j ð1Þ

The contacting surfaces of every block followed Eq. (1), which en-
sured that the initial contact surfaces were conformal. Individual
terms and their combinations can be visualized with the Pascal's trian-
gle shown on Fig. 5. The curvature andwaviness of the blocks are clearly
more pronounced as the order of the monomial i + j is increased. En-
richments that are a single function of x or y transform contact faces
along a single direction resulting in a curved “extruded-like” designs,
while multivariable monomials transform the contact faces in both di-
rections resulting in more wavy designs. Both the deformation and
FT − u curves generated by the finite element model was validated
with experiments before conducting a full study on all designs
(Appendix A.1, Fig. A.1).

Additional shapes can be generated by combining themonomials of
Fig. 5. Because of the high computational cost of the densely meshed
3D-models we limited this study to binomials. We did not pursue single
variablemonomials along x as z(x)= ai, 0x

i because they do not provide
interlocking. Likewise, we excluded the hyperbolic-paraboloid: z(y) =
a1,1xy which are unstable for large a1,1. Asymmetric designs about y-z
plane like z(y) = a1,2xy

2 undergo extremely high stresses and allow
for little sliding (limited deformation). In addition, the contact faces of
the asymmetric designs channel forces along x-direction where there
is no contact-based resistance at end supports to hold the structure to-
gether and maintain stability. We therefore excluded these asymmetric
designs and considered only symmetric ones which are a total of 4
designs.We explored all possible combinations of these symmetric mo-
nomials. The order in combining these monomials is irrelevant there-
fore all possible combinations are given by; C(2,4) combinations
which results in a total of: C(2,4)=4 ! /2 ! (4− 2) ! =6 combinations,
where C represents combinations and (!) represents the factorial. Fig. 6
shows the monomials we combined to form different binomials. The
resulting binomial functions are shown above each design. The coeffi-
cients ai, j of the polynomial function can be varied to change the ampli-
tude of the surface A, which can be found with:

A ¼ z xmax; ymaxð Þ−zðxmin; yminÞj j ð2Þ

where xmin, ymin, xmax, and ymax are the x, y location of themaximum and
minimum points of z(x, y). The coefficient ai,j are varied such that the
amplitude is A/L ≤ 0.5. The edges and corners of all designs were
rounded with a fillet radius of r/L = 0.1.

Fig. 7 shows some examples of FT − u curves for the enriched de-
signs. Fig. 7a is a design with z(x) = a2, 0x

2, a profile that produces little
interlocking along the sliding direction and which produces a response
comparable to the cube cases described above. Designs that included
terms that are a function of y were more successful: they generated a
progressive interlocking that increased FT during deformation
(Fig. 7b). The axial compressive force decreases as the blocks slide,
which decreases the efficacy of jamming between blocks. There is a
competition between geometric hardening and softening during the
loss of contact which results in a maximum force, followed by softening
until complete failure. The progressive interlocking is more pronounced
for the multivariable monomial: z(x,y) = a1,2xy

2 (Fig. 7c), which is a
wavy contact face. In addition, this multivariable monomial shows a
more stable response, resulting in a maximum displacement that is
1.5 times higher than z(y) = a0,2y

2 for ai,j = 0.4. Adding a plane term:
z(y) = a0,1y to the z(y) = a0,2y

2 forms a tilted-parabolic profile for the
contact faces that improved stability by prolonging the progressive
interlocking during deformation (Fig. 7d). Finally, adding the cubic pro-
file: z(y)= a0,3y

3 to z(x,y)= a1,2xy
2 generatedmore interlockingwhich

increased the maximum force (strength) (Fig. 7e). For all cases,



Fig. 6. Combining monomials to form binomials.
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increased amplitude (higher ai,j) increased strength, but at the expense
of maximum displacement (i.e. stability).

Fig. 7 highlights the profound effect of surface geometry on the
mechanical response of the architectured beams. It is then possi-
ble to rank the efficacy of these particular designs by strength,
by toughness (total area under the FT − u curve), or by a combina-
tion of the two. Importantly we note that both Fmax and Umax are
directly proportional to the friction coefficient f, provided that
0 b f ≤ 0.3 and that the structures fail by sliding. Therefore, we
normalized both Fmax and Umax by f. Fig. 8a shows the maximum
normalized strength and toughness for each design considered
here. The cube-based designs produced the lowest strength and
energy absorption, while the wavy design z(x,y) = a2,1x

2y + a0,3y
3

produced the highest strength and toughness. We previously
studied round interfaces (concavo-convex geometry [43]) which
generated improvement in strength and toughness. This simple
round design (denoted by filled circular marker) underperformed
compared to almost all multivariable wavy designs. For example it
only achieved 0.07 the strength and toughness produced by blocks
with waviness z(x,y) = a2,1x

2y + a0,3y
3. Fig. 8a shows that there is

a strong correlation between strength and toughness for the de-
signs tested here. The results suggest that wavier designs pro-
duced higher strength and toughness in comparison to flat and
less curved designs. This observation may be confirmed quantita-
tively by considering a single geometric parameter to characterize
the degree of “waviness” in the design. Here we define a normal-
ized surface curvature ϕL, computed from derivatives of the sur-
face in both directions, and which echoes the definition of
curvature for 1D functions [46]:

ϕL ¼

1
L

∂2z
∂y2

þ ∂2z
∂y∂x

* +

∂z
∂y

þ ∂z
∂x

� � ð3Þ
The chevrons 〈〉 denote mean values computed over the entire sur-
face. The numerator of Eq. (3) puts a stronger emphasis on variations
along y to capture waviness along the loading direction. We calculated
ϕL for different designs and Fig. 8b shows how wavier and curvier con-
tact faces translate into higher ϕL values, and therefore we used ϕL as a
metric for geometrical waviness of the different designs. It is then useful
and instructive to assess how the single waviness parameterϕL governs
the mechanical performance of the architectured beam.

Fig. 8c and d show the strength and toughness plotted as function of
ϕL for the different designs explored here. The plots show that the wav-
iness parameter ϕL can be used as an approximate predictor of strength
and toughness for the architectured beam. This feature can be useful to
predict the efficacy of other designswithout recourse to FE analysis. The
scatter in the plots was attributed to the inherent instability of certain
shapes. The friction coefficient f and the number of blocks N are the
main contributors to changing the failure of mode of such structures
[43], therefore for sliding cases the waviness parameter ϕLmay be gen-
eral and applicable for predicting both toughness and strength of such
architectured beams. Further studies are needed to assess the applica-
bility of ϕL for different enrichment types and/or different loading
conditions.

4. Optimization of monomials and binomials for finite strength of
blocks

A limiting factor in the amount of interlocking between the blocks is
the strength of the blocks themselves. In order to bring this factor into
the design of the blocks we tracked the stresses during the entire simu-
lations. Fig. 9 shows the maximum principal stress (σ1)max during de-
formation for three designs. For the case z(x) = a1,0x, the absence of
interlocking along the loading direction leads to negligible stresses
(Fig. 9a). For the curved design z(x) = a2,0x

2, the maximum stress
increases with interlocking, and once the interlocking diminishes,
the maximum stress in the blocks diminishes as well (Fig. 9b).



Fig. 7. Force−displacement, FT−u curves for (a) z(x)= a2,0x
2, (b) z(y)= a0,2y

2 and (c) z(x,y)= a1,2xy
2, (d) z(y)= a0,1y+ a0,2y

2 and (e) z(x,y)= a2,1x
2y+ a0,3y

3; theplots are reported for
f = 0.12.
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For z(x,y) = a1,2xy
2, sharper features at the contact faces (high ϕL) lead

to more interlocking between blocks but also to high contact stresses.
The performance of each design depends not only on interlocking,

but also on the strength of the blocks σs/E. Like section 2, we truncated
the FT− u curves at the point atwhich (σ1)max/E ≥ σs/E, and the remain-
ing first part of these curves were used to compute the toughness Umax

and the strength Fmax (Appendix A.2, Fig. A.2). For each design we ex-
plored about 25 combinations of different constants (i.e. different am-
plitudes, Appendix A.3, Fig. A.3b). The maximum strength and
toughness were computed for three different strength levels σs/E,
resulting in a total of 75 simulations for each design. For both mono-
mials and binomials, the optimum design was found by plotting
the data on Fmax − Umax space (Appendix A.3, Fig. A.3). Fig. 10 shows
the performance for two examples, the cubic: z(y) = a0,3y

3 and the
monkey-saddle: z(x,y) = a2,1x

2y + a0,3y
3. For each geometry we con-

sidered three levels of strength:σs/E=10−4, 10−3, 10−2. The plots in-
clude the cube design ai, j = 0 (flat contact faces) for comparison. The
higher the σs/E, the higher the strength and toughness, because the
blocks can withstand more stresses, and therefore they can undergo
more interlocking and sliding during deformation. For each value of
σs/E, there is an optimum design; a particular ai,j value on Fmax − Umax

space that outperforms other designs. For each value of σs/E, the shape
of the optimum design is shown adjacent to each optimum point
along with the optimum ai,j value(s).

For each geometrical design and strength, we could therefore iden-
tify the optimum amplitudes ai,j. The results are displayed on an
Ashby plot for σs/E = 10−4, 10−3, 10−2, designated by blue, red and
grey respectively (Fig. 11). For comparison, simulation results for a
monolithic beam with the same dimensions, under same mechanical
loads, including the same axial precompression (FA/EL2 = 6 × 10−5)
and made of the same material are also shown (denoted by a “+”
marker on each plot). Curved geometries along loading direction (z-di-
rection) (e.g. Fig. 7b, c, d, e) canmaintain stability and hardening even at
absence of precompression, because blocks can jam and/or interlocking
during deformation. Increased precompression FA increases strength
and toughness of all designs, due to increased efficacy of jamming and
interlocking between blocks. However, the distribution, the ranking of
these designs on the strength-toughness space (Fig. 11)may remain un-
changed by variations of FA. We first note that none of the architectured
designs exceed the strength of themonolithic beam, but also that many
of them exceed the monolithic case in terms of toughness. The designs
with best combinations of strength and toughness are highlighted in
yellow on Fig. 11 within each of their strength groups. The distribution
of these best designs indicates that there is a compromising relationship
between strength and toughness that is more prominent for weak
blocks σs/E = 10−4 (Fig. 11a). For σs/E = 10−4 (weak blocks), the
cubes (denoted by empty square marker) absorbed 280 timesmore en-
ergy than the monolithic but lost 60% of strength. For best toughness,
the monomials that are function of only x (z(x)) absorbed the highest
energy. The absence of progressive interlocking in these monomials
subjected their contact faces to lower stresses in comparison with the
rest. Therefore, they deformed more, through which they absorbed
more energy. For the tilted-cubic: z(y) = 0.125y − 1.0y3 (denoted by
triangle with black outline), the blocks interlock along loading direction



Fig. 8. (a) Normalized maximum strength Fmax and toughness Umax; (b) the geometric metric ϕL for different designs. Normalized (c) strength relationship and (d) toughness with ϕL.
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(y-direction)which inducesmechanical hardening and as a result fail at
a higher force than the rest. Because of this interlocking it lost only 16%
of strength, achieving the highest strength relative to other designs and
managed to improve toughness by 4 times. For slightly stronger blocks:
σs/E = 10−3, the beam can generally sustain higher stresses, and so
wavier and more curved designs are among the best designs
(Fig. 11b). For highest toughness, the hyperbolic-paraboloid: z(x,y) =
a1,1xy (denoted by a filled diamond marker) absorbed the highest en-
ergy, about 13 times more than the monolithic. Although, the cube
Fig. 9. Maximum principal stress during deformation for (a) z(x) = a2,0x
2, (b)
design performed well too, the twisted faces of hyperbolic-paraboloid
guide the sliding in a twisting path along y-direction which jams the
blocks and induces progressive interlocking (Appendix A.2, Fig. A.2b).
For best strength, we selected two designs; the tilted-cubic denoted
by a triangular marker with black outline) and the tilted-parabolic:
z(y) = 0.156y− 0.625y2 (denoted by a circular marker with black out-
line), both of which approached the strength of the monolithic.
The tilted-parabolic contact face is a further enriched version of
the concavo-convex design (indicated by filled circle marker), the
z(y) = a0,2y
2 and (c) z(x,y) = a1,2xy

2. The plots are reported for f = 0.12.



Fig. 10. Optimization of (a) a monomial: z(y) = a0,3y
3 and (b) a binomial: z(x,y) = a2,1x

2y + a0,3y
3 for σs/E = 10−4, 10−3 and 10−2. The plots are reported for f = 0.12.
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additional 0.156y term induced an additional interlocking that im-
proved its performance. Both designs lost only 30% and 4% of strength
respectively, moreover, they have absorbed 4 times more energy than
that of the monolithic.

For strong blocks: σs/E=10−2, only six designs out of 16 surpassed
the toughness of the monolithic beam. For highest toughness, the
z(x,y)= −0.8y3 design (denoted by a curved solid square without out-
line) absorbed 3.5 more energy than that of themonolithic while losing
75% of strength. The tiled-cubic (denoted by a solid triangle with black
outlines)was the strongest design, and absorbed 2.7 timesmore energy
than the monolithic. These curved and wavy designs (highlighted in
yellow) have also outperformed the concavo-convex design. Finally
for comparison with recent studies in the literature, we added the per-
formance of the osteomorphic blocks (Fig. 1b)which in previous studies
showed promising results [12,14,15]. Here however, the osteomorphic
geometry (denoted by a cross, “×”) was outperformed by some designs
for all values of σs/E. Its best performancewas achieved for σs/E=10−3

(Fig. 11b), where it absorbed 6 times more energy than the monolithic
and lost about 65% of strength.

For weak blocks (low σs/E), toughness relies mainly on stabil-
ity. As σs/E increases, toughness relies progressively more on
interlocking (jamming of block). For very strong blocks, the de-
signs reach their full potential by reaching their maximum defor-
mation before fracture, so they mainly fail due to instability. As a
result designs that generate the highest interlocking during defor-
mation stand out.

5. Experimental testing of architectured ceramic glass

In this part of the study, we fabricated and tested architectured
beams made of ceramic glass, a material with several attractive proper-
ties including transparency, high strength, low thermal expansion and
low cost [1,3]. The samples were cut from a monolithic ceramic glass
beam (σs =90± 8.2 MPa, E=100 GPa, so σs/E≈ 10−3) using a nano-
second pulsed laser (Model Vitrolux, Vitro Laser Solutions UG, Minden,
Germany) (Appendix A.4). We fabricated and tested monolithic
(Fig. 12a) and cubes-based (Fig. 12b) beams as references. Both mono-
lithic and architectured samples were tested under same loads.We also
fabricated and tested beams with the best three designs we identified
for σs/E ≈ 10−3 (Fig. 11b): the hyperbolic-paraboloid (Fig. 12c) (best
for toughness), the tilted-parabolic (Fig. 12d) (good for strength) and
the tilted-cubic (Fig. 12e) (best for strength). These architectured
beams were mounted on two steel (E = 200 GPa) supports and pre-
compressed along the axial direction (z-axis) by a stiff vise. The
precompression force FA wasmeasured using a low-profile force sensor
(FlexiForce®, Tekscan). All experimental tests were conducted for FA =
30 N. The setup was placed under a dual column stage (Admet, model
eXpert 5000, MA US), and an indenter with a nozzle head (with radius
of 1.5 mm) imposed a displacement u along the transverse direction
at a rate of 10 μm/s (Fig. A.4b). The transverse force FT was measured
using a 150 lbf load cell. Using this setup, we obtained the full FT − u
curves until complete failure as well as performed in-situ imaging to
capture the deformation stages of the architectured beam. Fig. 12
shows the deformation stages of each design with increased
displacement u.

The monolithic sample showed a sudden catastrophic failure from
high flexural stresses in the region of the indenter and at the lower
face of the beam (indicated on Fig. 12a). For the case of cubes, the
middle block(s) sled gracefully until it was fully pushed out
(Fig. 12b). We did not observe cracks or chip offs during deformation
for the cube design because of the low stresses at the contact faces.
The hyperbolic-paraboloid design progressively failed. The blocks
followed a twisted sliding path which progressively jammed the
blocks. In the tilted-parabolic and the tilted-cubic designs the curved
contact faces induced strong jamming at the interface, so that groups
of several blocks sled as one block [43](Fig. 12d and e). The high con-
tact stresses, that developed because of jamming, generated cracks at
the interfaces (Fig. 12c, d and e). However these cracks propagated in
a stable fashion with increasing load, and they were confined to indi-
vidual blocks. Representative FT − u curves from these experiments
are shown on Fig. 13a. As expected the monolithic beams showed a
rapid linear increase in FT that ended with sudden drop that reflects
their catastrophic failure. The architectured beams showed more jag-
ged increases in forces, but sustained over much larger displacements
compared to the monolithic case. This sustained but “noisy” increase
in force corresponds to the progressive jamming of the blocks. The
structure was tested under displacement-controlled loading which
leads to stable response where the structure shows multiple load
drops, gradual softening and effective energy dissipation.
Displacement-controlled loading therefore reveals the maximum po-
tential of the beam. In contrast, a force-controlled loading would re-
sult in the collapse of the structure after the first peak force, which
overlooks energy dissipated during softening and subsequent defor-
mations after peak force. During sliding the axial compressive force
decreases continuously, which tend to decrease the efficacy of the
jamming. The competition between geometric hardening and soften-
ing from the loss of contact area results in a maximum force, followed
by softening until complete failure.

Failure in structural materials translates in a loss of load carrying ca-
pacity or its function. Here the architectured samples sustainedmultiple
force drops during loading, undergoing large deformations in the pro-
cess. For applications were deflection must be controlled, the first
drop in forcemay be considered failure. However for other applications
where strength and energy absorptions are more critical, these drops



Fig. 11. Strength and toughness in an Ashby-like plot for (a) σs/E = 10−4 (blue), (b) σs/E = 10−3(red), and (c) σs/E = 10−2 (grey). The plots are reported for f = 0.12.
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maynot be considered as complete failure because the structure can still
sustain increasing amounts of force, it can maintain stability, sustain
deformation and absorb energy. Instead these successive force drops
demonstrate a capability for damage tolerance that is absent in brittle
monolithic materials. In the analysis presented here we therefore
considered the full FT − u curves until complete failure at FT = 0
where the curve ends, which marks the point of loss of load carrying
capacity.
Using the entire experimental FT − u curves we measured strength
(maximum force) and toughness (total area under the curve) for each
sample (N=5 for each design). These measures of strength and tough-
ness based on entire FT-u curve serve as an appropriate estimate for
maximum effective properties of the architectured beam
[9,21,22,41,47]. For the monolithic beam we added another measure
for toughness, where we calculated the work of fracture (denoted by a
dash marker, “−”) which is the energy required to grow a crack. If the



Fig. 12. Deformations of ceramic glass beams during experiments for (a) monolithic beam and architectured beams: (b) z(y) = 0, (c) z(y) = 0.5xy, (d) z(y) = 0.15y− 0.625y2 and (e) z
(y) = 0.1875y − 1.0y3.

Fig. 13. Experimental data of monolithic and architectured beams. (a) FT − u curves and (b) strength and toughness plotted in an Ashby-like chart. For monolithic data, toughness
calculated by the total area under the FT − u curve is denoted by a cross marker, and by the work of fracture it is denoted by a dash marker.
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energy release rate of ceramic glass is G=11.13 J/m2 and the total area
of the fracture surface is A ≈ 1.5 L2, the work of fracture becomes U =
GA = 4.17 × 10−4 J, which is only 2% of the areas under the force-
displacement curve [13]. Architectured beams are compared with the
monolithic using an Ashby like chart for strength and toughness
(Fig. 13b). Tilted-parabolic surpassed the toughness of the monolithic
beam by 5.5 times, while preserving 40% of the monolithic strength.
Compared to thework of fracture of themonolithic beam, the toughness
of the tilted-parabolic was 370 times higher. The tilted-cubic achieved a
toughness that is 2.8 times higher, while in terms ofwork of fracture it is
190 times higher than that of the monolithic and with strength that is
32% of the monolithic strength. The hyperbolic-paraboloid improved
toughness by 1.35 times and lost 80% of strength. The flat cubes per-
formed poorly in comparison: Their toughness was lower than the
monolithic beam, and they lost 95% of its strength. The geometric en-
richments were effective in reducing the loss in strength from 95% for
flat cubes to only 32%, that is N60% decrease. Further improvement in
strength can be achieved by using thin monolithic beams as protection
to the architectured ones, a successful strategy in panels [22,41]. Com-
parison of the experimental chart (Fig. 13b)with corresponding simula-
tions (Fig. 11b) shows that the relative ranking for the cube (empty
square marker), hyperbolic-paraboloid (diamond marker) and the
tilted cubic designs (filled triangle marker with black outline) matches
simulations. However, for tilted-parabolic design (filled circle with
black outline), experiments show a slightly higher strength and tough-
ness than the tilted-cubic design (filled triangle with black outline)
which is inconsistent with the ranking of simulations. This inconsis-
tency is partly because while the FE-models captured the onset of dam-
age, they do not capture post-damage stages (Appendix A.2, Fig. A.2). In
the experiments, some of the designs (including the tilted-parabolic de-
sign) showed an increase in force following the onset of damage, which
translated into better toughness and strength. FE-simulations therefore
provided a conservative measure of relative performance for the
architectured beams. In addition, the rough contact faces of the blocks
contribute to the discrepancy betweenmodel-experiments (comparing
Fig. 13b and Fig. 11b). Damaged interfacesmay also have lower effective
Young's modulus at the contact between blocks [19], which is not the
case in the simulation where we assumed constant elastic modulus for
contact. Although simulations in section 8 suggested that the benefit
of segmentation in comparison with monolithic beam diminishes with
very large values of σs/E, experiments showed clearly that despite sub-
stantial damage at the surfaces, the structure can still withstand load
and exhibit graceful deformation and failure.

6. Summary

In this study we have used finite element modeling and systematic
geometrical enrichments to explore how interlocking and progressive
jamming can be used to build strong and tough segmented beams.
The simulations revealed that there are optimum shapes for the inter-
faces between the blocks, and that the optimum geometry depends on
the normalized strengthσs/E for the individual blocks.More specifically,
the conclusions for this study are as follows:

1. Architectured beams made from simple cubes with flat faces lack
hardening because of the absence of jamming and/or interlocking
of blocks. Adding fillets at the corner of the cubes reduced local
stresses, but decreased stability. Strength and toughness depended
on r/L; where optimum r/L values are r/L = 0.05 and 0.025 for
highest toughness and strength respectively.

2. Interlocking of blocks and jamming can be generated by enriching
the contact surface along the direction of loading (i.e. the surface
followed the equations of the form z(y) or z(x,y)). Geometric
hardening can be tuned by increasing the “waviness” of the interface,
but this increase also generated higher contact and frictional stresses.

3. We characterized the geometry of the blocks with a single waviness

parameter ϕL ¼ 1
L 〈

∂2z
∂y2 þ ∂2z

∂y∂x〉=〈
∂z
∂y þ ∂z

∂x〉. Assuming infinite strength of

the blocks, beam strength and toughness correlated well with this
waviness parameter.

4. Overall strength and toughness of the architectured beams depend
on the strength of the individual blocks σs/E. Beams made of weak
material can only achieve high toughness through deformation and
negligible interlocking. Beams made of stronger blocks (higher σs/
E) can use more interlocking between blocks to achieve both high
strength and toughness.

5. Experiments with ceramic glass beamsmade from tilted-parabolic: z
(y)= 0.15y− 0.625y2 and tilted-cubic: z(y)= 0.1875y− 1.0y3 con-
firmed that these designs lead to graceful sliding and jamming of in-
dividual blocks. These designs improved toughness up to 370 times
and 190 times respectively while preserving 40% and 32% of the
strength of the monolithic beam respectively.
Futureworkmay include investigating thewaviness parameterϕL in

two dimensional architectured panels. The systematic enrichment of
the contact interfaces provides general guidelines for the strength and
toughness of sliding segmented systems based on a geometric parame-
ter (waviness). Thewaviness parameter successfully reflects the level of
interlocking between the blocks, a keymechanism in architecturedma-
terials and in engineering systems. This generic parameter may serve as
objective function for future optimization problems for architectured
materials and as a measure of interlocking and jamming of components
used in the design of engineering systems. The analysis here may re-
main valid for different number of blocks provided the system fails by
sliding. However, we anticipate a proportional decrease in maximum
strength, attributed to decrease in stiffness with larger number of
blocks, therefore optimum designs and their ranking may not be af-
fected with variations in N. This study may also provide insights on
themechanics of spines and howvertebrae interact. For syntheticmate-
rials we seek ways to increase jamming of blocks to improve strength.
However, the opposite is sought to prevent spine injuries, where we
seek ways to reduce the stresses. For example, by reducing the ampli-
tude of the articulation between vertebrae (by reducing ai,j), reducing
the slenderness (by decreasing the number of blocks), reducing the gra-
dients of contact faces (by decreasingϕL) and if geometrical changes are
inaccessible, the vertebrae could be reinforced to increase its strength
(higher σs/E).
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Appendix A. Appendix

A.1. Details of finite element model

A3-dimesional (3D) finite elementmodels are prepared to capture themechanical response of various interface designs. A generic codewaswrit-
ten inMatlab to automatically enrich the blockswith different interface geometries. Themodels are solved in ANSYSwhere displacements, forces and
stresses are obtained and finally post processed using Matlab. The communication between ANSYS and Matlab is automated as a single function,
where different combinations of friction f, different shapes (Figs. 5 and 6) (different polynomial functions, Eq. (1)), different coefficients,
precompression FA and number of blocksN can be input and simulated. However, we have limited the study to 5 blocks (N=5) because of expensive
computational costs with larger N. The blocks are modeled as continuum with linear elastic model for the material with Young's modulus E and
Poisson's ration v = 0.2 (typical for ceramics and brittle materials). We meshed the blocks using 20 nodes quadratic 3D element (SOLID186 [48]).
The faces of the interfaces are meshed using quadratic contact elements (CONTA 172) which model contact deformations and dry contact friction.
The beam rests on rigid supports. These rigid supports are meshed using rigid contact elements (TARGE 169, [49]). The blocks where pressed axially
together by an axial force FA applied at both ends (z=0 and at z= 5 L) (Fig. 2). A transverse force FT is applied at the center of the beam at (x= L/2,
y = L/2 and z = 5 L/2). Upon solving the model, we obtain the force displacement curve FT − u and the maximum principle stress (σ1)max. While
tracking (σ1)max we excluded the stresses under load FT because the stress there approach extremely large values. FT − u curves obtained from
the FE model are validated against experiments for three cases of amplitude Α/L = 0 (cube), 0.225, 0.5 for z(y) = a0, 2y

2 (Fig. A.1a). In addition,
the deformation is compared with 3D printed blocks (Fig. A.1b). Fig. A.1 shows that FE simulations captured the force and the deformation of the
experiments well.
Fig. A.1. Validation of the FE-model; (a) experimental force-displacement (denoted by black line and grey; the grey colour is used to allow visualization of A/L=0 case) curves compared
with FE-model (denoted by a red line), (b) shows the deformation of architectured beamwith blocks having contact faces described by z(y)= a0,2y

2, the deformed contour plots are com-
pared side by side with experimental snapshots of the same design.
A.2. Calculating the strength and toughness

The maximum principal stress (σ1)max is tracked for the entirety of the simulation until complete failure of the system. Fig. A.2a shows the nor-
malized stress plotted with deformation u for the hyperbolic-paraboloid: z(x,y) = a1,1xy. Fig. A.2a shows how the displacement at a critical stress
level is found. For example, here we consider the stress limit as σs/E = 10−3 which limits the displacement at u/L = 0.2 which is the displacement
at fracture. Fig. A.2b shows the principal stress σ1(x, y, z) contours at that fracture displacement (u/L = 0.2). Fig. A.2b also shows a zoomed image
focused at the location of critical maximum stress (σ1)max. The displacement at which (σ1)max/E N σs/E can then be used to truncate the force dis-
placement curve to depict the failure of the structure (Fig. A.2c). Once the curve is truncated, we can calculate the are under the curve and themax-
imum force to estimate the toughness and strength respectively (Fig. A.2d).



Fig. A.2. Procedure for calculating the maximum strength and toughness based on the limits of the strength of blocks σs/E, (a) maximum principal stress (σ1)max variation with
displacement; displacement at the point of fracture can be found, here for example, displacement at fracture is u/L = 0.2 for σs/E = 10−3; (b) contour plot of (σ1)max at the point of
fracture; (c) force−displacement truncated, FT − u; (d) FT − u truncated at the point of fracture, therefore toughness Umax and strength Fmax are found.
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A.3. Optimization of monomials and binomials

We used the procedure in Appendix A.2 to computemaximum strength Fmax and toughness Umax for all designs shown on Figs. 5 and 6. Here we
conducted a brute force optimization where we explore the design space by computing Fmax and Umax for σs/E = 10−4, 10−3, 10−2 for different
values of ai,j such that the amplitude is A/L b 0.5. For binomials, we explore the design space for different possible combinations of ai,j. For example,
for the monkey-saddle: z(x,y) = a2,1x

2y + a0,3y
3, combinations of (a2,1,a0,3) is simulated for the range of [0,1] and [−1,1] with increment of 0.25,

which results in 25 simulations for each σs/E value and a total of 75 simulations for each design. a2,1 starts from 0 because the design space within
the range of [−1,0] and [−1,1] for a2,1 and a0,3 respectively is identical to the [0,1] and [−1,1], so part of the design space bound by a2,1 with
[−1,0] is redundant. As an example, Fig. A.3 shows Fmax and Umax for different ai,j values for z(y) = a0,3y

3 and z(x,y) = a2,1x
2y + a0,3y

3.
Fig. A.3a shows that Fmax and Umax increases as a0,3 increases because of increased geometric hardening resulting from larger a0,3. However, there

is a peakpoint afterwhichboth Fmax andUmax start to decrease. Fig. A.3b shows Fmax andUmax as contours forσs=10−3 because the simulation is run
for 2 design variables: a2,1 and a0,3. Strength is maximum at (a2,1= 0.75, a0,3= 0), for this particular design any contribution from a0,3 term induces
severe interlocking between blocks which results in very high stresses. These high stresses exceed σs/E of the beam therefore the maximum force
reached during deformation is lower than cases of a0,3 = 0. Whereas, toughness is maximum at (a2,1 = 0, a0,3 = 0) which represents the cubes
case. The cubes contact faces are flat, so the stresses are much lower than wavy and curved faces, therefore it can deform for larger displacement
without failure. Both Fig. A.3a and b shows how peak points for Fmax and Umax may not necessary match, because there is a compromise between
strength and toughness where both can have their distinct optimum ai,j values. The objective is to find the optimum design for both strength and
toughness. To do so we plot simulation results on Fmax − Umax space. If the strength and toughness of a particular design is greater than the rest,
this design is therefore is nondominated and it is considered as an optimum design. Optimum designs is shown adjacent to their corresponding op-
timum points.



Fig. A.3. Brute force optimization for the coefficients ai,j such that the A/L ≤ 0.5 for (a) a monomial: z(y) = a0,3y
3 and (b) a binomial: z(x,y) = a2,1x

2y + a0,3y
3.
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A.4. Preparing the ceramic glass samples

A 50 mm × 50 mm × 5 mm ceramic glass plate is cut into several prismatic beams with a span of 25 mm and depth of 5 mm (Fig. A.4a). These
beams are cut into unit blocks using a nanosecond laser (Model Vitrolux, Vitro Laser Solutions UG, Minden, Germany) equipped with a pulsed UV
laser (355 nm, 0.5 W cw pumped, 4 kHz repetition rate, 4–5 ns pulse duration). Different shapes were input as a cloud of points described by
Eq. (1). The laser therefore traces different geometries and so carves the desired shapes of blocks from the prismatic beams (Fig. A.4b). The blocks
are then assembled into an architectured beam and mounted on steel rigid supports (E = 250 GPa) (Fig. A.4b). The blocks are pressed by a vise
from both ends. A low-profile pressure sensor tracks and measures the axial force before and during testing. A dual-column loading stage (Admet,
model eXpert 5000, MA US) is used to apply a displacement control load along the transverse direction (y-axis) by an indenter with a round nozzle
head of a radius R = 1.5 mm. The displacement is imposed at a rate of 10 μm/s at the center of the beam (half way along the span) until complete
failure. The transverse force FT was measured using a 150 lbf load cell.
Fig. A.4. Experimental testing and fabrication of architectured ceramic glass beams. (a) monolithic beam is laser cut into blocks; (b) experimental setup.
A.5. Application of precompression in real systems

Linearly segmented architectured materials can be used as structural components as beams and columns. To apply axial compression on
architectured beams without interfering with large deformation, sliding and rotation of blocks, the component can rest on a fixed support at one
end and on a variable spring support [27] at the other end. This configuration provides a practical control over strength and toughness as function
of axial compression FA.



Fig. A.5. An example of precompression setup for architectured beams using variable
spring support.
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