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a b s t r a c t 

Capturing how cracks initiate and propagate in tooth enamel is difficult because of the 

complex three-dimensional microstructure of this material. In this work we use the dis- 

crete element method (DEM) to model fracture in idealized enamel structures where the 

enamel rod microstructure is explicitly represented with DEM elements. The model cap- 

tures the interactions of a propagating crack with the mineral rods and their interfaces, 

including crack deflection and penetration into the rods. We used this model to assess the 

effect of relative strength and stiffness between the rods and the interfaces, of the de- 

cussation angle, and of statistical distributions of defects in the mineral rods. We show 

that higher strength rods (smaller flaws) promote interface crack deflection and branching 

which increases toughness through spreading of an inelastic region. Stiffer rods increase 

the load carried by the rod, which ultimately decreases crack resistance. Statistical varia- 

tions in rod strength were shown to have an overall negative impact on the average crack 

resistance. In particular, for high coefficients of variation we observed substantial nucle- 

ation of ‘daughter’ cracks far from the main crack, which steer the main crack along the 

weakest trajectories and decrease overall toughness. This model and results provide in- 

sights to better interpret fracture experiments in human or bovine enamel, as well as bet- 

ter guidelines for the design of synthetic dental and bioinspired materials. 

© 2020 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Enamel is a complex bioceramic with a microstructure consisting of crisscrossing (decussating) mineral rods bonded by

proteins and mineral bridges ( Pro and Barthelat, 2019 ). The three-dimensional morphology of enamel is relatively com-

plex, but its function is straightforward: to provide reliable and efficient mastication, which implies three requirements

in terms of mechanical properties: hardness, stiffness, and resistance to fracture. While these properties are mutually ex-

clusive in engineered materials ( Ashby and Cebon, 1993 ), natural composites overcome this limitation and show remark-

able combinations of mechanical properties from billions of years of evolution of their microarchitecture. Enamel is an

example of a material with extreme hardness (it is the hardest material in the human body) which combines relatively

high toughness. Tightly packed and parallel mineral rods generate hardness and stiffness at the surface ( Jiang et al., 2005 ;

Cuy et al., 2002 ; Park et al., 2008 ), while toughness is generated by trapping cracks into regions of mineral rod decussation
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( Yahyazadehfar and Arola, 2015 ; Bajaj and Arola, 2009 a; Yahyazadehfar et al., 2013 ). In contrast, engineered hard ceramic

coatings suffer from brittleness ( Evans et al., 2001 ), which limits their reliability and lifespan. 

Recently, conventional fracture mechanics experiments have directly shown that decussating enamel exhibits rising crack 

resistance (R-curve) behavior in both humans ( Yahyazadehfar and Arola, 2015 ; Bajaj and Arola, 2009 a; Yahyazadehfar et al.,

2013 ; Bajaj and Arola, 2009 b) and bovines ( Bechtle et al., 2010 ). As in many composites (e.g., fibrous woven composites

( Rajan and Zok, 2014 ), multilayered ceramic coatings ( Evans et al., 2001 ), etc.), the toughening micromechanisms in enamel

are complex and involve progressive and interacting failure between the hard and soft phases. A wide array of fracture

mechanisms in including crack bridging, interface deflection, branching, and direct fracture in the hard phase (e.g., frac-

ture of ‘bundles’ of rods) has been observed in enamel and correlated with fracture toughness ( Bajaj and Arola, 2009 a;

Yahyazadehfar et al., 2013 ; Bajaj and Arola, 2009 b; Bechtle et al., 2010 ). Failure is further complicated by nondeterministic

fracture of the mineral phase due to statistical distributions in flaws and defects, a well-known phenomenon for many brit-

tle materials ( Lu et al., 2002 ). Indeed experimental R-curves can show significant scatter and variability ( Yahyazadehfar and

Arola, 2015 ), which is likely due to statistical variations of structures and properties across different teeth and even within

the same tooth. 

While many experiments have begun to elucidate the fracture mechanisms in enamel, there are very few numerical mod-

els of crack propagation because of the complexity of enamel failure. In particular there are no models that explicitly model

the competition between crack propagation along an interface (between the rods) and penetration into the hard phase itself

(through the rods), where the latter is governed by defect distributions and Weibull type statistics. This is a substantial lack

as global enamel failure involves complex combinations of both types of failure as observed in almost all fracture mechanics

based experiments in enamel to date. Extended finite element models (XFEM) have captured crack propagation in enamel

but they relied on homogenization of the microstructure ( Barani et al., 2012 ), and therefore did not explicitly capture rela-

tionships between microstructure and crack resistance. Phase field models have captured some interacting fracture mech-

anisms in nacre and Bouligand structures but have yet to be applied in numerical simulations of enamel ( Yin et al., 2019 ;

Khandelwal et al., 2017 ). In our previous study ( Pro and Barthelat, 2019 ) we modeled elasticity, hardness, crack propagation,

and toughness in enamel with discrete element modeling (DEM). This numerical method is computationally efficient, so

that the complex enamel microarchitecture can be represented explicitly in large fracture models ( Pro and Barthelat, 2019 ).

These DEM models successfully captured rising R-curves along with the associated failure modes and sources of toughness.

However, these models were based on an implicit approach and often faced convergence difficulties when simulating rod

fracture. In addition these models only considered perfectly periodic enamel-like architectures with no statistics. In general

the effect of statistical variations in microstructure on the mechanics of biological composites is less understood, but it can

be significant. Our previous models of nacre-like materials in uniaxial tension have shown that statistics on average have a

negative impact on modulus, strength, and energy absorption which can be partially offset by strain hardening ( Pro et al.,

2015 a; Abid et al., 2019 ). Other computational fracture models have considered the effects of statistics on crack propagation

in ductile materials with explicit random inclusions ( Srivastava et al., 2014 ; Needleman and Tvergaard, 1991 ); yet there still

remains a lack of statistics-based models of crack propagation in complex composites including enamel. 

The object of this work is therefore threefold: (i) to develop a robust explicit DEM-based computational approach that

can handle complex fracture mechanisms without convergence issues, (ii) to capture the competition between rod fracture

and interface fracture during crack propagation and (iii) to assess the effect of statistical distributions of flaws within the

enamel rods. This work builds upon our previous study but provides new connections between the effect of rod to interface

strength contrast and statistical flaw distributions, in particular the effect of ‘weak patches’ ahead of the dominant flaw that

influence its trajectory and overall toughness. We first outline the numerical approach and subsequently study the effect

of decussation, rod-to-interface strength contrast, and stiffness mismatch. Lastly we use the method to model the effect of

flaws which are manifested through spatial statistical variations in rod strength. 

2. Enamel fracture model and computational approach 

Fig. 1 a shows a schematic of the idealized 3D enamel microarchitecture and its corresponding discrete element model

(DEM). The geometrical model is identical to that used in our previous study ( Pro and Barthelat, 2019 ), but here brittle

rod fracture including statistics is considered, and the numerical solutions were obtained using an explicit time stepping

algorithm (instead of the implicit approach we used previously). The enamel architecture is assumed to be a crossply where

the plies are stacked in the z-direction, with each successive ply consisting of rods that alternate in relative orientation

from one ply to the next. The 3D architecture is completely defined by two independent geometrical parameters ( Fig. 1 b):

the average rod diameter d, defined as the perpendicular distance between the centerlines of two adjacent intraply rods,

and the decussation angle θD , which indicates the orientation of the rods relative to the (vertical) x-axis. Note that this

definition of the decussation angle differs from the convention used in dental biology ( Cox, 2013 ) by a factor of two but

for consistency we have kept the same definition as used in our previous work ( Pro and Barthelat, 2019 ). Fig. 1 b highlights

the discretization and connectivity of the DEM model, showing three different projection views in both the vertical (xy)

and horizontal (yz) planes. The horizontal view slices are denoted with labels 1–3, and vertical view slices are denoted

with labels 4–6 and are indicated on both Fig. 1 a and 1 b for clarity. The rods are modelled as beams discretized by beam

elements and nodes, and nodes from adjacent rods also interact via interface elements. Fig. 1 b (column 2) shows how the

interfaces are connected through the depth of the enamel geometry: at each discrete layer in the yz-plane, the interfaces
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Fig. 1. Differe nt views of the 3D enamel model. (a) Idealized enamel architecture with 3D DEM model of beam and interface elements. (b) DEM model 

and connectivity superposed on the idealized architecture different horizontal and vertical cross sections. Note that each rod is rendered with a slightly 

different grayscale coloring simply for illustrative purposes to distinguish the rod boundaries. 

Fig. 2. Deformation modes and constitutive material model for (a) the interfaces and (b) the rods. 

 

 

 

 

 

 

follow exactly the nearest-neighbor connectivity of the corresponding Voronoi contour as in Pro and Barthelat (2019 ). For

more details on the model generation process, the reader is referred to Pro and Barthelat (2019 ). 

The interfaces were modeled with a phenomenological trapezoidal cohesive law ( Fig 2 a) that is fully characterized by a

stiffness k (initial slope), strength σ 0 (peak stress), and fracture energy �i (area under the cohesive curve). The interface area

is shown in Fig. 2 a and is defined as a 2D rectangular area A i = h e l i , where h e is the mesh size ( Fig. 1 b) and li is the length of

the edge that intersects that interface in the corresponding Voronoi contour. The underlying assumptions and idealizations

of the interfaces are identical to our previous work ( Pro and Barthelat, 2019 ) with one addition: in the dynamic formulation
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Fig. 3. (a) Full 3D generated enamel rod geometry with decussation and (b) cross section slices at various locations in the yz-plane in the direction of 

crack growth. (c) Shows the modeled specimen with dimensions and boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the interfaces are assumed to be massless which is reasonable given their low volume fraction ( Maas and Dumont, 1999 ).

The enamel rods were modeled in the same manner as our previous study ( Pro and Barthelat, 2019 ) using 3D Bernoulli-

Euler beam elements except rod inertia was included and brittle rod fracture were accounted for in this study. The rod

elements were assigned a density σ r and assumed to be initially linear elastic (modulus E r ) up to an ultimate strength of

σ ru , at which point the load instantly drops to zero (brittle fracture) and that rod element is erased from the simulation

permanently. This model of rod fracture is highly idealized and neglects the details of intermediate crack growth within the

enamel rods, and assumes that rod fracture is always unstable: if any flaw within the rod is activated due to local stress

intensities, then it is assumed that the flaw grows catastrophically and instantaneously fractures the entire cross section of

the rod. This assumption is valid in the limit that the limiting crack velocity within rods (dictated by the Raleigh wave speed

( Xu and Needleman, 1994 )) is much higher than that of the interfaces, which is related to the elastic mismatch between the

two materials (up to 100–1000 in natural hard/soft composites ( Barthelat, 2015 ; Pro et al., 2015 b)). 

To capture fracture properties and crack propagation, we generated a large volume of the microarchitecture in Fig. 1 into

a virtual fracture specimen (height hs, width ws) with an initial edge pre-crack of length a 0 = w s /2 ( Fig. 3 ). The dimension

in the z-direction (thickness) was assumed to be infinite and therefore periodic boundary conditions were implemented in

the z-direction with constraint equations. Velocity boundary conditions were applied along the lower and upper faces and

followed a linearly graded spatial distribution from left to right (peak applied velocity v app , Fig. 3 ), in order to promote

stable crack growth ( Pro and Barthelat, 2019 ; Pro et al., 2015 a; Abid et al., 2019 ; Pro et al., 2015 b; Tada et al., 1973 ). 

To maintain quasi-static loading conditions, vapp was kept small relative to the characteristic wave speed c d (v app /c d ≈
0.001) which was approximated from the uniaxial wave speed: 

c d = 

√ 

E trans v erse 

ρr 
(1) 

Where E transverse is the modulus in the pulling direction and was obtained from our previous study on enamel mod-

uli ( Pro and Barthelat, 2019 ). Proportional damping was implemented to eliminate unwanted high frequency dynamic ef-

fects and to allow larger load rates to be applied while still maintaining quasi-static loading conditions ( Pro et al., 2018 ,

Cook et al., 1974 , Sehr et al., 2019 ). The dimensionless damping ratio is denoted as ξ and is given from the damping coeffi-

cients as a function of structural frequency ω as ( Cook et al., 1974 ): 

ζ = 

1 

2 

(
β

ω 

+ αω 

)
(2) 

Where α and β are the mass and stiffness damping terms, respectively. We assumed that the damping ratio was a

minimum at the lowest natural frequency ω (where ω was approximated from the largest specimen dimension), which
min min 
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gives the structural damping coefficients from Cook et al. (1974 ) as: 

α = 

√ 

π2 ζ 2 E trans v erse 

h s ρr 
, β = 

√ 

ζρr h s 

π2 E trans v erse 
(3)

A conservative damping ratio of ζ= 0.2 was used in all calculations. In general, the dynamic response of a structure under

loading depends on the specific level of damping which is governed by physical material constants ( Paz, 1985 ). However in

the quasi-static limit of slow loading, the choice of damping coefficients becomes arbitrary ( Prior, 1994 ) as the velocity and

acceleration become negligible. We verified for most calculation results that this limit was achieved by running a case with

a 1/2x slower load rate and comparing the crack resistance curves. A few cases were also validated against our previous

quasi-static results ( Pro and Barthelat, 2019 ) and gave numerically indistinguishable results. We note that the dimensionless

damping ratio ζ and loading rate v 0 /c d and were both based on approximation expressions and some trial and error was

required to obtain quasistatic results. At all loading increments, the position of the crack tip was tracked and the 3D J-

integral was calculated at the outermost boundary of the specimen as in Pro and Barthelat (2019 ), Abid et al. (2019 ). The

fracture length along the interfaces was set to be large relative to the mesh but small relative to the specimen size hs

( Parmigiani and Thouless, 2006 , Parmigiani and Thouless, 2007 ) such that it did not affect the calculation results; as in

Pro and Barthelat (2019 ), this was checked with trial and error by running large and small specimens and coarse (h e / d ≈.3)

and fine meshes (h e / d ≈ 0.15). 

The full governing dynamic equations of motion (with inertial terms) were solved directly with explicit dynamic time

integration. We used this approach to eliminate convergence issues associated with incremental, gradient based numerical

schemes ( Press et al., 2007 ) when modeling instabilities. Indeed, when implementing the brittle rod constitutive law in our

previous implicit-based models Pro and Barthelat (2019 ), we experienced convergence issues caused by local instabilities

in microfracture events that led to exceedingly large simulation times. These instabilities are in fact manifestations of real

effects: when a microflaw is activated within a rod, its stability is governed by a local criteria (dG flaw 

/da < dR flaw 

/da) rather

than a global stability criteria (dG/da < dR/da) ( Anderson, 2017 ). For very stiff and brittle rods, this often implies that local

rod fracture is unstable until the initiated microflaw reaches the edges of the entire rod, which occurs over very short time

scales compared to other structural time scales. These instabilities are inevitable and cannot be eliminated by altering the

global loading configuration or reducing the global loading rate, but do not influence the results in the limit of slow loading;

hence the use of an explicit DEM approach is justified. 

The explicit time integration DEM scheme followed an identical assembly procedure as standard finite element analysis.

The global stiffness, mass, and damping matrices for the rods only (denoted as [K]r, [M]r, and [C]r, respectively) were first

assembled as follows: 

[ K] r = 

n e ∑ 

i =1 

[ K] r,i (4)

[ M] r = 

n e ∑ 

i =1 

[ M] r,i (5)

[ C ] r = 

n e ∑ 

i =1 

[ C ] r,i (6)

Where [K] r,i , [M] r,i , [C] r,i are the local elemental stiffness, mass, and damping matrices for rod element i, respectively and

ne is the number of rod elements. The local elemental proportional damping matrix [C] r,i is given as: 

[ C ] r,i = αr,i [ M] r,i + βr, i [ K] r,i (7)

Where αr, i and βr, i are the mass and stiffness damping coefficients of rod i, respectively. The interfaces were assumed

to be massless and therefore only contributed a stiffness term. For computational efficiency the interface local stiffness

matrices were never formed. Rather, the interface forces were computed directly from the nonlinear cohesive law in Fig. 2 a

and applied as a set of equal and opposite internal forces ( Cook et al., 1974 ) to avoid constant updating of the global stiffness

matrix during interface rupture. The local internal interfaces forces were assembled into the global internal interface force

vector as: 

{ f } i face = 

n i ∑ 

i =1 

{ f } i face,i (8)

Where {f} iface,i represents the internal force vector for a single interface i, {f} iface is the global assembled interface force

vector, and ni is the number of interfaces. The full system of governing dynamic ODE’s is then given in discretized matrix-

vector form as: 

[ K] r { q } + [ C] r { ̇ q } + [ M] r { ̈q } + { f } i face = { f } (9)
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Where q, ˙ q , and q̈ are the vectors of nodal displacements, velocities, and accelerations, respectively, and {f} is the vector

applied external forces. Making the following substitution: 

{ R } = { f } − { f } i face − [ K] r { q } − [ C ] r { ̇ q } (10) 

and rearranging Eq. (9) gives the following: 

[ M] r { ̈q } = { R } (11) 

Where {R} is the nodal reaction force vector. Displacement boundary conditions and nodal ties were formulated into

linear constraint equations that were applied by augmenting Eq. (11) with Lagrange multipliers ( Pro and Barthelat, 2019 ).

The full displacement and velocity vectors were then updated numerically using the Newmark- β method with β= 0, where

the subscripts n + 1 and n denote the solutions at the new and previous time step respectively: 

{ q } n +1 = { q } n + �t { ̇ q } n + 

1 

2 

�t 2 { ̈q } n (12) 

{ ̇ q } n +1 = { ̇ q } n + 

1 

2 

�t 
({ ̈q } n + { ̈q } n +1 

)
(13) 

To solve explicitly for { ̈q } n+1 , Eq. (9) was substituted into Eq. (13) 

{ ̈q } n +1 = [ H ] 
−1 

(
{ f } − { f } int − [ K] r { q } n +1 − [ C ] r { q n + 

1 

2 

( �t ) ̈q n } 
)

(14) 

Where the following substitution was made: 

[ H ] = [ M] r + 

1 

2 

�t [ C ] r (15) 

For improved efficiency and accuracy we computed only the lower-upper (LU) factorization of [H] rather than its inverse,

and re-used this factorization at every time step to perform a direct triangular solve of Eq. (14) ( Press et al., 2007 ). The

maximum rod stress σ r, max was computed in all rods and if any rod element i ∗ exceeded its ultimate strength σ ru ( Fig. 2 ),

it was subtracted from the simulation: 

[ K] r = [ K] r − [ K] r, i ∗ (16) 

[ M] r = [ M] r − [ M] r,i ∗ (17) 

[ C ] r = [ C ] r − [ C ] r,i ∗ (18) 

The [H] matrix was then updated, re-factorized, and stored, which only occurred approximately every thousand (out of

millions) time steps and did not introduce substantial computational expense. The procedure described in Eqs. (12) –( 18 ) was

iterated over a full time-stepping loop with regular file-writing intervals. The algorithm was implemented in C ++ and used

the UMFPACK library for sparse LU factorization ( Davis, 1993 ). Linux shell scripts (.sh) were used for automating simulations

and the calculations were performed on the Graham and Cedar supercomputers using Compute Canada resources. A typical

simulation required about 400 rods (rod length ~ 20 0d) and 120 0 interfaces, discretized with about 120,0 0 0 total beam el-

ements and 380,0 0 0 total interface elements (respectively) in order to achieve specimen and mesh size independent results

with respect to the fracture length ( Pro et al., 2018 ; Parmigiani and Thouless, 2006 ; Parmigiani and Thouless, 2007 ). This

discretization implied about 20 0,0 0 0 total nodes with 6 DOF’s per node (three displacements and three rotations) resulting

in stiffness, mass, and damping matrix sizes of about 1.2 by 1.2 million. For numerical stability the time step size �t was

set at about one-tenth of the lowest natural period of a single rod beam element ( Cook et al., 1974 ), and combined with the

requirement for slow loading ( Eq. (1) ) implied about 3 million total iterations of the time-stepping algorithm. These four

requirements (specimen size, mesh size, time step size, and slow loading) scaled the total run-time which was about 3.5

days for an average simulation. Around 200 fracture simulations were run in preparing this work, run in batches of about

25 simultaneous simulations at a time on the clusters for about one month of straight computation wall time. The graphical

output was postprocessed using Paraview ( Ahrens et al., 2005 ). Using the explicit DEM algorithm, we carried out two main

types of virtual fracture tests: uniform distribution of rod strengths ( Sections 3 –5 ) and statistical (random) distribution in

rod strengths ( Section 6 ). 

3. Effect of the decussation angle θD 

It is known from experiments ( Bajaj and Arola, 2009 a; Yahyazadehfar et al., 2013 ; Bajaj and Arola, 2009 b, Bajaj et al.,

2010 ) and models ( Pro and Barthelat, 2019 ) that rod decussation provides a major obstacle for crack propagation. At a ba-

sic level, adjacent rods interact through friction, viscous fluid-to-solid interaction, and mineral bridges that generate in-

elastic deformation and toughness along a crack front between rods. A crack entering the decussating region can kink

and/or branch along non-planar interfaces introduced through the complex ‘woven’ architecture ( Bajaj and Arola, 2009 ;
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Fig. 4. Effect of the decussation angle θD for fixed strength contrast ( σru / σ0 = 21 . 4 ) and fixed stiffness contrast (E r /kd = 10). Snapshots of the emergent 

crack patterns and through-thickness process zone contours are shown in the first 3 columns alongside their corresponding crack resistance curves in the 

last column, with broken rod elements highlighted in black. The last interlayer is not shown as it was indistinguishable from interlayer 1–2 in all cases. 

For θD = 30 ° we also show a case with 50% slower loading to verify the results are quasi-static. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yahyazadehfar et al., 2013 ; Bajaj and Arola, 2009 b, Bajaj et al., 2010 ), which can delay crack propagation and spread inelastic

energy dissipation over larger length scales (process zone) while simultaneously increasing the elastic stresses on the hard

phase ( Abid et al., 2019 ; Pro et al., 2015 ; Barthelat and Rabiei, 2011 ). This crack propagation mechanism creates a complex

competition of failure modes that is a function of the decussation angle ( θD ) and the relative contrasts between the rod and

interface in terms of strength (ratio σru 
σo 

) and stiffness (ratio E r /kd). In this first set of simulations ( Fig. 4 ) we explore the

effect of decussation for fixed strength contrast ( σru 
σo 

= 21 . 4 ) and fixed stiffness contrast (E r /kd = 10). 

For the case with no decussation ( θD = 0 O , first row in Fig. 4 ), the crack propagated between and parallel to the rods

with relatively little inelastic deformation. The crack resistance curve did not show any evidence of toughening: Initiation

toughness and steady state crack resistance (denoted as R init and R ss , respectively) were identical and equal to the theoretical

delamination toughness ( Rtheory 
�i 

= 4 / 3 ) . The theoretical delamination toughness for θD = 0 0 is higher than unity because the

corrugated crack faces ( Fig. 3 a) introduce 4/3x more crack surface area per unit crack advance in the x-direction than that

of a flat crack ( Anderson, 2017 ). 

For θD > O 

0 we observed that for �a < 

d 
sin ( θD ) 

the pre-crack initially formed two kinks along interfaces between rods

oriented at ± θD in the first and second plies respectively, without fracturing any rods. As the projected position of the

kinked crack tips on the x-axis reached the nearest crisscrossing point (defined as the points where the rod centerlines at

+ θD cross those at - θD , spaced at integer multiples of d 
sin ( θD ) 

in the horizontal direction) along the specimen mid-plane, the

interfaces directly ahead of both kinks softened which redistributed and concentrated the maximum model stress directly

to the rod elements at that crisscrossing point. Eventually these rods fractured and both kink tips were simultaneously

jolted downward/upward by one rod diameter. This process was repeated as the load was applied which formed an overall

crack with a periodic ‘sawtooth’ pattern of broken interfaces and rods. In the interlayer, the crack path consisted of only

broken interfaces and formed a merged-sawtooth wave with the same frequency as the interface/rod cracks in the plies.

The overall frequency of the sawtooth crack matched the characteristic decussation frequency f D given by the geometry of

the microstructure: f D = 

sin ( θD ) 
d 

. 

In terms of crack resistance, nonzero decussation increased the initiation toughness because the rod crisscrossing points

served as added obstacles for crack initiation ( Fig. 4 ) that forced the inelastic region to develop along forked/branched inter-

faces through pinning rather than along a perfectly straight Mode I plane. Similarly, during crack propagation, decussation

initially delays straight crack propagation and forces a 3D forked crack to develop along the same forked interfaces. The

forked crack configuration requires more energy for sustained growth than a straight crack and therefore spreads inelastic-

ity over larger volumes, initially leading to toughening and rising R-curves ( Fig. 4 ). When rod fracture initiates a straight

crack (on average) emerges which is a lower energy state (lower toughness) than the forked configuration; growth of the



8 J.W. Pro and F. Barthelat / Journal of the Mechanics and Physics of Solids 137 (2020) 103868 

Fig. 5. Effect of normalized rod strength σ ru / σ 0 on crack propagation, development of a nonlinear inelastic region (process zone) ahead of the crack tip, 

and crack resistance. For all cases shown, θD = 30 0 and E r /kd = 10. For the lowest strength ( σru / σ0 = 7 . 1 ) modeled, a case with a 50% slower loading is also 

shown for verification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inelastic region is inhibited while the system reaches a steady state crack resistance R 
�i 

≈ 7 for ( θD = 15 0 ) and 

R 
�i 

≈ 7 for

θD = 30 0 (at �a 
d 

≈ 15 ). 

4. Effects of relative rod strength σru / σ0 

Crack propagation and toughening are governed by two competing failure mechanisms: the fracture of individual rods

and the yielding/failure of the interfaces. The details of this competition can be captured in our models by tuning the relative

strength of rods and interfaces. Fig. 5 shows the through-thickness process zone contours (columns 1–3 for �a 
d 

= 15 ) and

corresponding R-curves (column 4) for three contrasts of strength σ ru / σ 0 at a fixed decussation + θD and fixed stiffness

contrast (E r /kd = 10). 

For the lowest relative rod strength ( σru / σ0 = 7 . 1 ) the crack kinks at + θD through the thickness of the specimen with a

limited process zone size. The 3D crack grows parallel to the rods in the first ply, with only a few broken rods in that layer.

In the second ply the crack followed the same general direction, forcing crack propagation across the rods. As a result, the

crack in that ply alternated between fracturing rods and fracturing interfaces. In this case the symmetry is broken when the

crack propagates even though the loading and microstructure are symmetric (Mode I) due to unstable equilibrium, which

is governed by both the strength and stiffness contrast. This is analogous to a simple system of three nonlinear springs in

series: as the spring strength contrast is reduced (analogous to low 

σru 
σ0 

), the symmetric deformation state is introduced (all

three springs breaking simultaneously) but as an unstable equilibrium solution, therefore for lower σru 
σ0 

the non-symmetric

fracture modes are much more likely even when the system is initially symmetric. 

For moderate strength contrasts ( σru / σ0 = 21 . 4 ) the same case is shown as in Fig. 4 for θD = 30 0 but is used here for

cross-comparison against different strength contrasts instead of decussation and reveals new insight: as the strength con-

trast is increased ‘controlled’ crack propagation is achieved as the symmetric (Mode I) deformation state becomes a stable

equilibrium solution, analogous to the three springs in series system but where the outer springs are made stronger. The

main crack remained pinned longer as the rod elements at the crisscrossing point nearest to the pre-crack could now sus-

tain higher loads, which led to the spreading of the inelastic region over larger length scales and higher crack resistance (up

to R 
�i 

for θD = 30 0 at �a 
d 

> 15 ). For the highest strength contrast modeled ( σru 
σ0 

= 28 . 5 ), the initial pair of kinks grew past

the first crisscrossing point nearest to the pre-crack ( �a 
d 

≈ 4 for θD = 30 0 ) at which point the crack resistance temporarily

reached a constant value while the interface kinks continued to grow. The stress was then redistributed to the next nearest

crisscrossing point directly ahead of the main crack (along the specimen mid-plane) which re-initiated the growth of the

inelastic region and was accompanied by a rise in crack resistance (starting at �a 
d 

≈ 4 in Fig. 5 row 3). Eventually the stress
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Fig. 6. Effect of stiffness contrast for fixed decussation and rod strength ( θD = 30 0 and σru / σ0 = 21 . 4 ). The crack path and inelastic region distribution are 

shown in columns 1–3 alongside the corresponding R-curves in column 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‘pile-up’ caused successive fracture of rods at the crisscrossing points directly ahead of the pre-crack and an overall straight

crack eventually emerged. 

The crack path for θD = 30 0 is more complex and contains higher frequencies as the occurrences of rod and interface

fracture are asynchronous. Combined with the effect of decussation, higher strength contrast delays the development of a

full through thickness crack and forces the initial interface fork to grow larger while spreading inelasticity over larger length

scales. When rods begin to fracture the inelastic region cannot sustain continued growth and the system reaches a steady

state crack resistance (around 

�a 
d 

≈ 15 for most cases), which increased in all cases with increasing strength contrast. The

initiation toughness (R init ) also increased with strength contrast but for σru 
σ0 

, the interfaces always fractured before any rods

therefore σru 
σ0 

had no effect on R init . 

Interestingly the simulations also showed that strength contrast introduced preferential fracture planes influenced by the

microstructure, which was particularly evident for low strength contrasts ( σru 
σ0 

< = 7 . 1 ). Indeed experimental evidence has

suggested that preferential wear is the key to the ’self-sharpening’ mechanism in mouse incisors ( Cox, 2010 ; Boyde, 1989 ):

as the enamel wears, entire ’sheets’ of rods cleave from the outermost surface in a controlled manner such that the tip

of the tooth maintains its sharpness. The DEM simulations suggest that both strength contrast and decussation play a role

in the preferential wear of enamel; this mechanism could be modeled and confirmed with similar but more detailed DEM

fracture simulations that account for the tooth geometry as well as nucleation and fracture of cleavage planes. 

5. Effects of relative rod stiffness E r /Kd 

The mechanism of crack propagation is also function of how the applied stresses are channeled in the rods and in the

interfaces, and this distribution of stresses is governed by the relative stiffness of the rods and interfaces (stiffer rods will

carry more of the applied stress). We explored the effect of the relative stiffness of the rods by tuning the parameter

E r /kd between 5 and 20, which is a reasonable range considering the composition of enamel ( Pro and Barthelat, 2019 ;

Spears, 1997 ). Fig. 6 shows the effects of E r /kd on crack propagation and toughness for a fixed decussation angle ( θD = 30 0 )

and a fixed relative rod strength ( σru / σ0 = 21 . 4 ). For the lowest stiffness contrast modeled (E r /kd = 5), the initial 3D crack

consisted of only ruptured interfaces that formed a pair of kinks at _ θD in the first and second ply, respectively. In this case

the kinks grew well past the first crisscrossing point of rods directly ahead of the crack tip while the crack resistance and

inelastic region simultaneously increased for �a 
d 

≈ 15 ( Fig. 6 ). 

At about �a 
d 

≈ 15 , the first rod fractured ahead of the upper kink causing it to suddenly deflect downward and merge

with the lower kink to form a single through thickness crack at −θD . The final crack consisted of both broken interfaces and

rods in the first ply (against the grain), and only broken interfaces in the second ply (delamination). This progression of crack

propagation is qualitatively similar to those observed in fracture experiments of engraved laminated glass crossply compos-
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Fig. 7. Initiation toughness R init / �i and steady state crack resistance R ss / �i as a function of decussation angle θD , rod strength σ ru / σ 0 , and stiffness 

contrast E r /kd, where the cohesive law strength σ 0 , stiffness k, and fracture energy �i ( Fig. 2 ) were again used as normalizations. The initiation toughness 

R init / �i is computed at the first increment in crack advance where �a/ d > 0. For comparative purposes the crack resistance curves are represented by a 

single data point at �a/ d ≈ 30 which is defined as R ss / �i . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ites we recently reported ( Yin et al., 2018 ): the crack initially forms a partially-kinked partially-branched configuration; as

the branch grows the equilibrium state becomes more unstable but at elevated energy (higher toughness). Eventually small

defects force the branch to ‘choose’ a direction and the solution is forced into a lower energy state (local minima) with

lower toughness. 

For higher stiffness contrasts (E r /kd = 10, 20), the rods carry higher fractions of the applied stresses. As a result the rods

fracture before the main crack reaches the nearest crisscrossing point, and before the unstable equilibrium branch can

develop. The resulting crack grows in a controlled and periodic ‘sawtooth’ pattern but with lower crack resistance and a

smaller inelastic region ( R �i 
≈ 8 for E r /kd = 10 and 

R 
�i 

≈ 6 for E r /kd = 20, both at �R m 
�i 

≈ . 4 ). We note that our previous

models with infinite rod strength ( σru 
σ0 

) showed that stiffness contrast alone increased the crack resistance ( Pro and Barthe-

lat, 2019 ) but also elevated the stress state within the rods. Our new models here show that rod fracture always limits the

crack resistance (e.g., Fig. 5 ); therefore stiffness contrast and rod fracture present competing toughening and embrittlement

mechanisms, respectively. When modeled simultaneously, the embrittlement contribution due to rod fracture exceeds the 

toughening contribution from stiffness contrast leading to an overall net decrease in crack resistance reflected in Fig. 6 .

Stiffness contrast expedites rod fracture which releases stresses that would otherwise drive further growth of the inelastic

region, ultimately limiting the crack resistance. 

Fig. 7 provides a summary of the effect of decussation angle, relative rod strength and relative rod stiffness on initiation

toughness (R init ) and steady state toughness (R ss ). The initiation toughness R init initially increases with contrast in strength

(rods fracture first) but reached a constant plateau (interfaces fracture first) for high enough rod strength (e.g., σru 
σ0 

= ≥ 21 . 4

for E r /kd = 10 and θD = 30 0 ). In the latter limit, the rod strength is high enough that initiation of an interface crack occurs

before the rod elastic stresses exceed the rod strength; therefore increasing the rod strength further has no effect on the

calculation results. For higher stiffness contrasts, higher strengths were required to reach this limit, and in some cases it was

never reached (e.g. E r /kd = 20 and θD = 15 0 , 30 0 ). When the rods fractured first, there was little difference between two cases

with different stiffness contrast but the same strength and decussation angle. In all cases the steady state crack resistance

R ss increased with the relative rod strength �σru / ̄σru and decussation angle θD but decreased with stiffness contrast E r /kd.

This result illustrates a conflicting design tradeoff for bioinspired composites: for maximum crack resistance the rods should

be both compliant and strong, two mechanical properties which are typically mutually exclusive ( Ashby and Cebon, 1993 ).

Moreover, lowering the stiffness contrast lowers the overall modulus ( Pro and Barthelat, 2019 ) which is often undesirable. 
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Fig. 8. Effect of rod strength coefficient of variation �σru / σ ru on crack path, inelastic zone, and crack resistance for fixed population mean in rod strength 

( σ ru / σ0 = 28 . 5 ), fixed decussation ( θD = 30 °), and fixed stiffness contrast (E r /kd = 10). The snapshots show typical simulation results from a single mi- 

crostructure realization at various coefficients of variation, with all five realizations shown in the corresponding R-curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Effects of statistical rod strength distribution 

We now consider cases with statistical spatial distributions of strength within the rods to model the effect of flaws,

defects, and other inhomogeneities within the mineral rods. The simulation procedure and model setup are identical to

that in the previous section except the rod element strengths are generated from a random normal distribution, with the

normalized population mean in rod strength denoted as σ̄ru 
σ0 

and coefficient of variation (CV) as 
�σ0 
σ̄ru 

, where �σ ru is the

population standard deviation. For each different coefficient of variation we generated and simulated five realizations from

the same population mean and standard deviation as in ( Abid et al., 2019 ). For proper comparisons we kept the specimen

size w s and h s constant as it is well known that brittle materials with statistically distributed flaws exhibit size-dependent

failure properties ( Bažant, 1984 ; Bažant, 2004 ). Additionally, in brittle materials the volumetric density of flaws affects the

average failure properties ( Danzer, 1992 ), which was modeled with the rod element mesh size h e . Finer meshes (smaller h e )

represent a material with higher flaw density and therefore the statistical probability of sampling a larger critical flaw is

higher ( Zhou and Molinari, 2004 ). In many brittle systems it is not uncommon for flaw sizes to be on the order of nanome-

ters which would require prohibitively fine meshes to realistically model even with the most powerful supercomputers.

Here we implement much coarser meshes which keeps the simulation cost manageable but overestimates the true frac-

ture properties ( Zhou and Molinari, 2004 ). For consistent comparison between different models, identical meshes were used

across all models in this section. Moreover, in all calculations the element size he was uniform over the entire volume of

the specimen. We did not attempt mesh convergence for these statistics based calculations (over 4 weeks run-time) and it

was assumed for convenience and simplicity that the mesh size established for the section with no statistics (h e / d = 0.3)

was sufficient as it yielded numerically convergent R-curves. These simplifications eliminated the need to use element-size

dependent statistical calculations (as in conventional Weibull-based finite element simulations ( Zhou and Molinari, 2004 )):

the mesh size h e was in fact constant for all elements within all models shown in this section. 

Fig. 8 shows the effect of the coefficient of variation in rod strength on crack propagation, inelastic region, and crack

resistance for four different coefficients of variation ranging from 0 ≤ �σru / ̄σru ≤ 0 . 3 . For each CV, R-curves from all five

microstructure realizations are shown alongside typical simulation contours from a single realization. For �σru / ̄σru > 0 , the

crack path differed substantially from one realization to the next but on average the evolution and size of the inelastic region

was relatively unchanged. For low to moderate coefficients of variation ( . 1 ≤ �σru / ̄σru ≤ . 2 ), rod fracture was observed
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Fig. 9. Effect of coefficient of variation in rod strength �σru / σ ru on the average merged crack resistance R̄ m / �i , where R̄ m / �i included data from all 

realizations over the subset of crack advance 0 < �a/ d < 30. The error bars show the standard deviation in the merged crack resistance data, �R m / �i . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

only very locally in the highest stressed region ahead of the crack tip. In this case the statistical distribution in rod strength

was narrow enough that the rod elements in the lower stressed elastic region (e.g., far from the crack tip) had a lower

(but nonzero) probability fracturing before those in the region of maximum stress; the probability was low enough that it

was not observed over the course of the simulation and the elastic stress distribution governed the failure sequence of rods

rather than inhomogeneities in strength. For high coefficients of variation ( �σru / ̄σru ≥ . 2 ), weak sections of rods began to

fracture farther from the main crack before the main crack advanced, which was particularly evident for 0 . 1 < �σru / ̄σru <

0 . 5 . For these cases there is a higher probability that the stress failure criterion for rods far from the crack tip is met

before the energy criterion for advance of the main crack is met. This long-range formation of daughter cracks is simply

due to probability: for wider distributions (e.g., with greater �σru / ̄σru ) the area under the left tail of the probability density

function is increased. As daughter cracks nucleate, weak planes ahead of the main crack are formed which the main crack

tends to follow, coalescing with the daughter cracks as it advances which inhibits the spread of the inelastic region and

overall decreases the toughness. This conclusion is qualitatively similar to those reached in our previous DEM models of

nacre-like materials ( Abid et al., 2019 ) that considered only interface fracture with statistical distributions in tablet size. 

Interestingly however, previous analyses of synthetic fiber-matrix composites have illustrated that variability in fiber

strength can in fact increase toughness, depending on the fiber size and relative fiber to matrix strength ratio ( Thouless and

Evans, 1988 ). This differs from the conclusions reached here but we note several apparent differences. First, the analysis

of Thouless and Evans (1988 ) assumed a vertical unidirectional fiber-matrix composite, whereas the structures here are as-

sumed to be decussating crossplies. Additionally, modern composites contain much higher volume fractions of the soft phase

(e.g., matrix or interface) than natural biocomposites, which is typically on the order of 35–50% ( Gibson, 2016 ) (compared to

1–5% in most hard biological composites ( Yahyazadehfar and Arola, 2015 )). These differences lead to substantially different

toughening mechanisms in enamel (bridging, deflection/branching ( Bajaj and Arola, 2009 a)) compared to modern fibrous

composites (fiber-pullout, fiber/matrix frictional sliding, crack front/wake debonding ( Evans and Zok, 1994 )), which in turn

alters the impact of statistics on the respective composites. In particular the higher matrix volume fraction in engineered

composites reduces stress transfer to the fibers themselves (fibers carry less load) ( Gibson, 2016 ), which increases the overall

probability that a weakest-link flaw can stabilize itself post-initiation ( Anderson, 2017 ) and provides a basic mechanism for

delaying localization in the fibers. We also note that enamel interfaces are governed mostly fluid to solid interactions and

friction whereas in modern composites the fibers are embedded in a continuous matrix; the latter can support more com-

plex stress states and therefore also contribute to stabilization of flaws. Indeed experimental evidence has indicated that

microcracks can spread over larger length scales (~1 mm) in engineered composites ( Evans and Zok, 1994 ; Evans, 1991 ),

whereas enamel microcracking is relatively localized ( Lawn et al., 2009 ). In general the nature of microcracking is different

in the two systems which makes statistics advantageous for engineered composites but detrimental in natural systems. 

Fig. 9 summarizes the effect of the coefficient of variation on the average merged crack resistance R̄ m 
�i 

, taken from data

over all statistical realizations over the interval 0 < 

�a 
d 

< 30 for each realization. For low nonzero coefficients of varia-

tion ( 0 < �σru / ̄σru < 0 . 5 ) the average merged crack resistance is relatively insensitive to �σru / ̄σru ≥ 0 ( R̄ m �i 
≈ 11 . 9 ) but

decreases on the order of 50% for higher coefficients of variation; this is on the same order of magnitude of the reductions

in toughness reported by Abid et al. (2019 ) and Pro et al. (2015 a) in similar DEM simulations of nacre-like composites. To

illustrate the predictability in crack resistance, the standard deviation in the merged R-curve data (denoted as �R m 
�i 

) is also

shown on Fig. 9 as error bars. Interestingly, the deterministic case showed the largest �R m 
�i 

and 

�R m 
�i 

decreased by about 50%

for higher coefficients of variation ( �R m 
�i 

for �σru / ̄σru = 0 . 3 to �R m 
�i 

≈ . 2 at �σru / ̄σru ≥ . 2 ). This data illustrates an impor-

tant result: the transient nature of the R-curve for �σru / ̄σru ≥ 0 introduces a large enough 

�R m 
�i 

that any nonzero coefficient

of variation in fact reduces �R m 
�i 

. This is in part because the maximum crack resistance (and therefore the span between

the maximum and minimum crack resistance, related to �R m 
�

) is also reduced. This result shows a fundamental tradeoff

i 
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between properties: on average the material is tougher for lower coefficients of variation but less predictable (in terms of a

higher �R m 
�i 

) as the crack advances, and vice versa for higher coefficients of variation . 

7. Summary and conclusions 

The models here illustrate the competing effect of rod and interface fracture on the tradeoffs in crack resistance in decus-

sating enamel structures, and show relative penalties of statistical microstructures which are inevitable in natural composites

and high-throughput manufacturing technologies. In particular, the results show that a hard phase with both high strength

(small flaws) and minimal statistical variation in flaw size is key to achieving high crack resistance. This finding is consis-

tent with our simulations of nacre-like composites as well as general failure of brittle materials: for maximum performance

the microarchitecture should be as controlled as possible with minimal defects/flaws ( Pro et al., 2015 a; Abid et al., 2019 ).

Overall the mechanisms identified in the DEM simulations are consistent with those observed in experiments of natural

enamel including crack deflection and branching/bifurcation ( Bajaj and Arola, 2009 a; Yahyazadehfar et al., 2013 ; Bajaj and

Arola, 2009 b, Bajaj et al., 2010 ). The general findings and main mechanisms are summarized below: 

1) Decussation amplifies the overall crack resistance and promotes spread of the inelastic region. The emergent crack path

forms a sawtooth waveform in the plies with a frequency that matches the frequency of the periodic microstructure for

moderate strength contrast ( σru 
σ0 

= 21 . 4 ). 

2) Stronger rods generate higher crack resistance and for large enough strength contrast (e.g., σru = 28 . 5 , E r /kd = 10, θD =
30 0 ), higher frequencies are introduced into the crack path due to intense pinning of the crack at the crisscrossing points

between adjacent rods. Weak rods (e.g., σru = 7 . 1 , E r /kd = 10, θD = 30 0 ) tended to break symmetry in the material and

form a full kinked crack with daughter cracks which reduced overall crack resistance. 

3) Stiffer rods decrease the crack resistance (fixed decussation and strength). For high stiffness contrast the rod stresses are

amplified and fracture before the interface process zone can develop at a rate fast enough to offset the negative effect of

rod fracture, leading to a net decrease in the overall crack resistance. 

4) Spatial variations in rod strength always decreased the overall toughness. For low coefficients of variation in rod strength

( �σru / ̄σru < 0 . 5 ) the crack resistance was relatively unaffected but as higher coefficients of variation were introduced

the probability of daughter cracks being formed increased. For large coefficients of variation ( �σru / ̄σru = 0 . 3 ) daughter

cracks were formed in much greater numbers at larger length scales from the main crack line. Daughter cracks caused

local oscillations in 

R 
�i 

and ultimately reduced the average toughness. Local oscillations in the crack path were associated

with local oscillations in 

R 
�i 

which varied from one realization to the next, but the average process zone distribution

remained relatively constant. 

The results in this study are an extension of our previous models ( Pro and Barthelat, 2019 ), and in addition to offering

a better understanding of the mechanics of natural enamel, they can be incorporated into the design of restorative dental

materials as well as serve as basic guidelines for tough bioinspired crossplies. The explicit DEM approach is general and can

be used to model complex fracture in other types of composites such as Bouligand structures (already in progress), syn-

thetic laminated composites, and multilayered coating systems (e.g., thermal and environmental barrier coatings). The same

explicit DEM approach could also be used to study dynamic impact and fracture in architectured glass inspired from our

previous experiments ( Yin et al., 2018 ; Yin et al., 2019 b). In general the explicit DEM algorithm offers a robust approach for

obtaining numerical solutions involving complex crack propagation, and as shown here can be used to obtain true specimen

independent material properties. Coupled with broad parametric studies and/or machine learning algorithms, this powerful

approach could aid to understand and expand the general structure-property space for modern composites. 
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