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a b s t r a c t 

Natural materials such as nacre, collagen, and spider silk are composed of staggered stiff

and strong inclusions in a softer matrix. This type of hybrid microstructure results in re- 

markable combinations of stiffness, strength, and toughness and it now inspires novel 

classes of high-performance composites. However, the analytical and numerical approaches 

used to predict and optimize the mechanics of staggered composites often neglect sta- 

tistical variations and inhomogeneities, which may have significant impacts on modulus, 

strength, and toughness. Here we present an analysis of localization using small represen- 

tative volume elements (RVEs) and large scale statistical volume elements (SVEs) based on 

the discrete element method (DEM). DEM is an efficient numerical method which enabled 

the evaluation of more than 10,0 0 0 microstructures in this study, each including about 

5,0 0 0 inclusions. The models explore the combined effects of statistics, inclusion arrange- 

ment, and interface properties. We find that statistical variations have a negative effect 

on all properties, in particular on the ductility and energy absorption because random- 

ness precipitates the localization of deformations. However, the results also show that the 

negative effects of random microstructures can be offset by interfaces with large strain at 

failure accompanied by strain hardening. More specifically, this quantitative study reveals 

an optimal range of interface properties where the interfaces are the most effective at de- 

laying localization. These findings show how carefully designed interfaces in bioinspired 

staggered composites can offset the negative effects of microstructural randomness, which 

is inherent to most current fabrication methods. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

The outstanding mechanical properties of mineralized biological materials such as bone ( Ritchie et al., 2009; Jäger and

Fratzl, 20 0 0 ) or mollusk shells ( Barthelat et al., 2007 ) result from complex interactions between their soft and hard phases.

A prominent microstructure in these materials is the staggered arrangement in which elongated mineral inclusions are

aligned with the direction of loading in a “brick and mortar” fashion where the mortar consists of soft bio-polymeric lay-

ers ( Weiner and Addadi, 1997 ). For example, nacre found in the inner layer of sea shells is composed of ∼95 wt% micro-

scopic aragonite tablets which are arranged in a staggered structure and joined by ∼5 wt% bio-polymers interfaces ( Fig. 1 a)

( Jackson et al., 1988 ). Another example of staggered structures is bone ( Fig. 1 b). At the millimeter scale, cortical bone is
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Fig. 1. Two examples of staggered structures in highly mineralized biological materials. (a) Nacre found in the inner layer of sea shells is composed of a 

stagger of micron-sized aragonite tablets, (b) Cortical bone, at the nanoscale, is composed of mineralized collagen fibrils which are arranged in a staggered 

structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

composed of osteons, which are separated by weaker interfaces (cement lines). Osteons themselves are made of concen-

tric layers of unidirectional collagen fibers with varying fiber direction in the neighboring layers. Each fiber consists of

a staggered arrangement of fibrils, with each fibril being a staggered assembly of tropocollagen molecules and elongated

nano-minerals ( Fig. 1 b). Similar staggered architectures are found in silk drag line produced by spiders, where beta sheet

nanocrystals of proteins are embedded in an amorphous proteinaceous matrix, with the nanocrystals aligned with the ten-

sile direction ( Keten et al., 2010 ). The staggered structure, therefore, appears to be pervasive in load bearing biological

materials ( Wegst and Ashby, 2004 ), and it is found in plant or animal species with no common evolutionary descent. Inter-

estingly, recent theoretical investigations show that the staggered architecture indeed provides an optimum combination of

stiffness, strength, and toughness ( Guo and Gao, 2006; Rabiei et al., 2010; Begley et al., 2012; Barthelat and Mirkhalaf, 2013;

Barthelat, 2014 ), suggesting that this architecture is the result of an interesting case of parallel evolution. The remarkable

combinations of properties generated by natural staggered architectures have motivated the development of bio-inspired

composites fabricated with using self-assembly ( Bonderer et al., 2008; Valashani et al., 2015 ), freeze casting ( Deville et al.,

2006 ), filtration ( Liu et al., 2011 ), sedimentation ( Behr et al., 2015 ), doctor blading ( Mirkhalaf and Barthelat, 2016 ) or con-

trolled mineralization ( Mao et al., 2016 ). These methods produce “nacre-like” microstructures, but the statistical variation

and randomness in these microstructures is significant and much larger than what is found in natural nacre or bone. Per-

fectly periodic staggered arrangements can fabricated by only at larger length scales in “architectured materials” and using

manual assembly ( Barthelat and Zhu, 2011 ), 3D printing ( Espinosa et al., 2011 ) or laser engraving ( Chintapalli et al., 2014;

Valashani and Barthelat, 2015 ). 

The mechanical properties of staggered composites are governed by the hard inclusions gliding over one another, a spe-

cific mechanism which is mediated by the shearing of the softer interfaces. This mechanism generates nonlinear deforma-

tions and powerful toughening mechanisms that include crack deflection, bridging, wide inelastic process zone ( Fig. 1 a)

( Jäger and Fratzl, 20 0 0; Barthelat and Rabiei, 2011; Barthelat et al., 2016 ). Several analytical and numerical models have

been developed in the past to predict the stiffness, strength, and toughness of staggered composites as a function of mi-

crostructure and of the properties of the hard and soft phases. Many of these models are based on a small, two-dimensional

representative volume elements (RVEs) which consists of two or four tablets and which are used to predict and optimize

modulus, strength or energy absorption as function of microstructure and properties of the base components ( Jäger and

Fratzl, 20 0 0; Jackson et al., 1988; Begley et al., 2012; Barthelat, 2014; Kotha et al., 2001; Bar-On and Wagner, 2011; Gao,

2006 ). The RVE approach assumes that (i) the material is perfectly periodic, (ii) all the tablets and interfaces fail and deform

simultaneously and identically within the material, so that nonlinear deformations are assumed to propagate uniformly over

large volumes with no strain localization. In reality, biological and bioinspired staggered materials display pronounced mi-

crostructural variations and composition heterogeneity, which can have profound impact on material performance ( Alava

et al., 2006; Dimas et al., 2014 ). For example, models based on weakest link theory ( Zhang et al., 2010 ) and Monte Carlo

simulations ( Wei et al., 2015 ) have shown a reduction of strength from statistical variation in tablet overlaps. Introducing a

single defect in a chain of otherwise perfect shear-lap models can precipitate localization and failure ( Chintapalli et al., 2014 ).

Designing and optimizing bio-inspired composites based on simple RVE modeling may therefore lead to poorly performing

actual materials if variations in microstructure are not taken into account at the modeling stage. Numerical models that in-

cluded a large number of tablets were more recently proposed to capture structure-property relationships on larger volumes

( Barthelat et al., 2007; Katti and Katti, 2001; Askarinejad and Rahbar, 2015; Pro et al., 2015 ). While each of these models

could capture effects that small RVEs could not, they also have their own limitations: some of them only consider elastic
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Fig. 2. (a) Single cell RVE with key dimensions; (b) shear stress-strain curve showing the five independent parameters G, τ y , H , γ
(p) 

s and γ u . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

response and brittle failure ( Katti and Katti, 2001; Askarinejad and Rahbar, 2015 ), or used simplified flow rules at the inter-

faces ( Pro et al., 2015 ). Some of the most accurate models for this material ( Barthelat et al., 2007; Mirkhalaf and Barthelat,

2016; Katti and Katti, 2001; Niebel et al., 2016; Anup, 2015 ) use finite elements, which is computationally expensive. Only a

limited number of tablets can be included, and therefore they cannot capture microstructural variations and become “statis-

tical volume elements” ( Ostoja-Starzewski, 2006; Ostoja-Starzewski et al., 2007 ). Moreover, these models cannot be used to

explore the large number of statistical realizations which is needed to accurately capture the effects of statistical variations

on mechanical performance ( Yin et al., 2008 ). Discrete element models have also been used for staggered composites ( Pro

et al., 2015; Chandler and Cheng, 2017; Pro et al., 2015; Lim et al., 2016 ). This method offers significant savings in terms of

computational cost, but it is relatively recent and has not been widely used for this type of material so far. Most of these

studies conclude that statistical variations in microstructures degrade overall mechanical properties. However, there are also

identified configurations where statistics is beneficial. In ductile crack growth, for example, non-uniform distributions of

obstacles produce tougher materials than when the obstacles are equally spaced ( Needleman and Tvergaard, 1991 ). Large

3D finite elements models of nacre have suggested that some random variations in the microstructure can help strength

and strain hardening ( Barthelat et al., 2007 ). The exact effect of statistical microstructure on mechanical performance, in

particular the ductility and toughness, therefore remains an open question for staggered composites. The implications are

important in the design of bio-inspired materials. 

The present study focuses on the effect of statistical variations of microstructure on the mechanical performance of

staggered composites, focusing on strain localization and strain at failure. We first use a small RVE to capture the effects

of defect and localization in the simplest way possible. We then present large scale discrete element models of staggered

composites where we parameterize the amount of statistical variation in the microstructure, the properties of the interfaces,

and the type of arrangement for the inclusions. 

2. Two-interface, small representative volume element (RVE) 

We first capture the mechanism of localization with a small RVE or in other words a unit cell ( Fig. 2 a). This RVE repre-

sents a perfectly periodic staggered composite composed of tablets of length L and thickness t, that are bonded together by

an interface of thickness t i . The tablets partially overlap, defining a “short” overlap region of length κL (labeled 1 on Fig. 2 a)

and “long” overlap region of length (1- κ) L (labeled 2 on Fig. 2 a). We do not take any size effect into account here so that

the microstructure is captured by three independent parameters: the non-dimensional tablet aspect ratio ρ = 

L 
t , the overlap

ratio κ ( 0 < κ ≤ 0 . 5 , where κ = 0 . 5 corresponds to what we now refer to as “perfect microstructure”), and tablet volume

concentration φ = 

t 
t+ t i (0 < φ < 1). Considering symmetries, only half of the thickness of the tablets is modeled in the RVE.

This type of model, based on classical shear lag theory ( Tsai et al., 1998; Volkersen, 1938 ), has been used extensively in the

past, with an “asymmetry” in the overlap of the tablets ( Yourdkhani et al., 2011 ). However, here we present a new inter-

pretation where the asymmetry of overlaps acts as a measure of imperfections in the microstructure, because the shorter

overlap is weaker than the longer one. By this measure, a “perfect” microstructure has tablets overlapping by exactly one

half of their length ( κ = 0 . 5 ), while in the “imperfect” microstructures one or more of the overlaps may be longer than the

other ( κ < 0 . 5 ). 
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In this model, the response of the interfaces in shear is governed by the stress-strain curve shown on Fig. 2 b. An initial

linear elastic region with shear modulus G is followed by yielding at τ = τy , and by a post yield region with strain hard-

ening: τ = τy + H γ (p) . Here, H is the hardening slope and γ (p) is the plastic strain at the interface with γ (p) = γ − τ
G (as a

result, the slope of the stress-strain curve in the yielding region is H’ = H /(1 + H/G )). A final linear softening segment starts

at γ (p) = γ (p) 
s until the ultimate shear strain γu at which the stress vanishes. Therefore, this shear stress-strain curve is

defined by five independent parameters: G , τy , H , γ (p) 
s , and γu . We chose this three-step cohesive law because it is typical

of deformable engineering adhesives ( Chalkley and Chiu, 1993 ) and bio-polymers ( Smith et al., 1999 ). For convenience, we

use the terms such as “yield point”, “hardening” or “ductile” which are typically associated with the mechanics of metals,

even-though the materials in natural or bio-inspired composites may not be metallic. The cohesive traction-separation law

for the interface can be obtained by computing the displacement jump �u = t i γ across the interfaces as a function of shear

strain. In terms of micromechanics, the mechanical properties of the staggered composites are governed by the way the

elongated inclusions channel and amplify the shear response of the interfaces. Since the inclusions (or “bricks”) in biological

and bioinspired materials are several orders of magnitude stiffer than the interfaces, we modeled them as rigid in this study.

The assumption of rigid tablets has three important implications: (i) deformations are only generated by the interfaces be-

tween the tablets; (ii) the shear stress at the interfaces is uniform; (iii) there is no peeling stress at the interfaces, so the

interface is only loaded in shear. Using load transfer and continuity equations, an analytical solution can be derived for the

RVE in tension. The transfer of stress from shear at the interface to tension in the tablets is written: 

σ = φκρτ1 (1) 

Where τ 1 is the shear stress carried by interface 1. For continuity of stress: 

κτ1 = ( 1 − κ) τ2 (2) 

where τ 1 is the shear stress carried by interface 2. Note that here τ 1 ≥ τ 2 since we chose 0 < κ ≤ 0.5. Differentiating the

equation leads to: 

κ
d τ1 

d γ1 

= ( 1 − κ) 
d τ2 

d γ2 

d γ2 

d γ1 

or 
d γ2 

d γ1 

= 

κ

1 − κ

α1 

α2 

with 

⎧ ⎪ ⎨ 

⎪ ⎩ 

α1 = 

1 

G 

d τ1 

d γ1 

α2 = 

1 

G 

d τ2 

d γ2 

(3) 

The tensile strain in the RVE is: 

ε̄ = 

�u 1 + �u 2 

L 
= 

1 

ρ

1 − φ

φ
( γ1 + γ2 ) (4) 

Differentiating (1) and (4) gives: 

d σ = φκρd τ1 (5) 

d ε = 

1 

ρ

1 − φ

φ
( d γ1 + d γ2 ) (6) 

Combining these two equations provides: 

dσ

dε 
= 

φ2 

1 − φ

ρ2 (
1 

κα1 
+ 

1 
( 1 −κ) α2 

)G (7) 

This expression provides the slope of the stress-strain curve as a function of the behavior of the interfaces and the

microstructure. Because the cohesive law is a piecewise linear function, we expect the tensile stress-strain curve of the RVE

to also be a piecewise linear function. Using Eq. (7) , we can now compute the slope of each segment of the tensile stress-

strain curve from the cohesive law. Table 1 gives the slope of the stress-strain curve in different regimes for interfaces 1

and 2. 

The first regime corresponds to linear elastic deformations in interfaces 1 and 2, and the model provides the tensile

modulus E of the RVE. In the second regime “post-yield mode 1” the weaker interface 1 yields, but interface 2 remains

elastic. The modulus and first yield strength of the RVE can be normalized by the modulus and yield strength of a “perfect”

microstructure with κ = 0 . 5 . This gives: 

E/ E 0 = 4 κ( 1 − κ) (8) 

σy / σ0 = 2 κ (9) 

These relations, displayed on Fig. 4 a and b, are typical for this type of material. Here we focus on post yield regimes and

strain at softening. Post yield mode (1) ends either by premature softening if γ1 = γs (softening mode (1), Fig. 3 a), or with

a second yield point when interface 2 yields at τ2 = τy (post yield mode (2)). Post yield mode (2) is followed by softening
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Table 1 

Slope of the tensile stress strain curve at different regimes of tensile deformation for the RVE, computed using Eq. (7) . 

Regime α1 α2 Slope on tensile stress-strain curve 

Linear elastic 1 1 
dσ

dε 
= E = 

φ2 

1 − φ
κ( 1 − κ) ρ2 G 

Post-yield mode (1): Interface 1 yields, Interface 2 elastic 
1 

G/H + 1 
1 

dσ

dε 
= 

φ2 

1 − φ

κρ2 

( G/H + 1 / ( 1 − κ) ) 
G 

Post-yield mode (2): Interfaces 1 and 2 yield (condition: 

Eq. (10) ) 

1 

G/H + 1 

1 

G/H + 1 

dσ

dε 
= 

φ2 

1 − φ

ρ2 κ( 1 − κ) 

G/H + 1 
G 

Softening mode (1): Interface 1 softens from post-yield 

mode (1), interface 2 unloads from elastic regime 

1 

G 
τs 

[ γ (p) 
s − γu ] + 1 

1 
dσ

dε 
= 

φ2 

1 − φ

ρ2 κ( 1 − κ) 
G 
τs 

( 1 − κ)( γ (p) 
s − γu ) + 1 

G 

Softening mode (2): Interface 1 softens from post-yield 

mode (2), interface 2 unloads from yielding 

1 

G 
τs 

[ γ (p) 
s − γu ] + 1 

1 
dσ

dε 
= 

φ2 

1 − φ

ρ2 κ( 1 − κ) 
G 
τs 

( 1 − κ)( γ (p) 
s − γu ) + 1 

G 

Fig. 3. Typical stress-strain curves for the cases of (a) localization (where only interface 1 yields) and (b) spreading of deformations (where interface 1 and 

2 both yield). (c) Failure map which illustrates the condition for spreading vs. localization of deformation. Here κ can be interpreted as a measure of the 

microstructural defect, where κ = 0 . 5 corresponds to a perfect microstructure. (d) Spread of deformation, r , as a function of Hγ (p) 
s / τy for different values 

of κ . 

 

 

 

 

 

 

 

mode (2) when interface 1 eventually softens. Mode (2) is clearly more beneficial in terms of tensile strain at failure and

energy absorption capabilities. The condition for mode (2) to occur over mode (1) is: 

Hγ (p) 
s 

τy 
> 

1 − 2 κ

κ
(10)

We note that both high relative hardening at the interface H / τ y and high deformability γ (p) 
s promote mode (2).

Eq. (10) also shows that high values of κ promote mode (2). In the absence of any hardening at the interface ( H = 0) mode

(1) always prevails unless κ = 0 . 5 . For a perfect microstructure where κ = 0 . 5 , interface 1 and 2 are identical and in theory

deform identically and simultaneously. Fig. 3 c shows more features of Eq. (10) , which can be interpreted as follows: the im-

balance of overlap length between interfaces 1 and 2 ( κ < 0 . 5 ) can be considered a defect which induces strain localization
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and brittle failure. However, this effect can be offset by interfaces with high values of Hγ (p) 
s / τy . It terms of materials design,

it is therefore important to choose an interface material with a high value of Hγ (p) 
s / τy , which will delay localization even in

the presence of defects κ < 0 . 5 . The higher the value of Hγ (p) 
s / τy , the more imperfections the microstructure can tolerate

without localizing. Fig. 3 c shows that increasing Hγ (p) 
s / τy is the most effective in the range Hγ (p) 

s / τy = 0 . 1 − 10 , where it

decreases the “tolerable” defect from κ ≈ 0.47 to less than 0.1. Hγ (p) 
s / τy has little effect on localization behavior when it is

too low ( Hγ (p) 
s / τy < 0 . 1 ) or too high (beyond Hγ (p) 

s / τy = 10 ), however. To illustrate this result, we computed Hγ (p) 
s / τy for

the interfaces in nacre using literature values of H = 11 MPa, τy = 20 MPa , γ (p) 
s = 250 nm / 30 nm = 8 . 3 ( Barthelat et al., 2007 ).

Interestingly, these values give Hγ (p) 
s / τy = 4 . 7 , which is within the range that most effectively delays localization. 

We now examine the average RVE plastic strain as a measure of “ductility” in the material. More specifically, in the stable

region of the material the maximum plastic strain occurs at the onset of localization and can be written: (
ε (p) 

)
max 

= κ
(
ε (p) 

1 

)
max 

+ (1 − κ) 
(
ε (p) 

2 

)
max 

(11) 

At the shorter interface 1, the plastic strain at the interface has reached γ (p) 
s so that: (

ε (p) 
1 

)
max 

= 

1 

κρ

1 − φ

φ
γ (p) 

s (12) 

At interface 2 the plastic strain is: (
ε (p) 

2 

)
max 

= 

1 

(1 − κ) ρ

1 − φ

φ

(
γ (p) 

2 

)
max 

(13) 

With: (
γ (p) 

2 

)
max 

= 0 if 
Hγ (p) 

s 

τy 
≤ 1 − 2 κ

κ
( mode (1)) (14a) 

(
γ (p) 

2 

)
max 

= 

κ

1 − κ

[ 
γ (p) 

s − 1 − 2 κ

κ

τy 

H 

] 
if 

Hγ (p) 
s 

τy 
> 

1 − 2 κ

κ
( mode (2)) (14b) 

Combining, (12) and (1) gives: (
ε (p) 

)
max 

= 

1 

ρ

1 − φ

φ

(
γ (p) 

s + 

(
γ (p) 

2 

)
max 

)
(15) 

Remarkably, ( ɛ ( p ) ) max does not depend on the overlap of the tablets κ . The perfect microstructure ( κ = 0 . 5 ) serves again

as a reference: (
ε (p) 

0 

)
max 

= 

2 

ρ

1 − φ

φ
γ (p) 

s (16) 

We now introduce the ratio r = 

( ε (p) ) max 

( ε (p) 
0 

) 
max 

, which can serve as a measure of the tensile “deformability” of the material

compared to the perfect microstructure. Using Eq. (14) , (15) and (16) gives: 

r = 

1 

2 

if 
Hγ (p) 

s 

τy 
≤ 1 − 2 κ

κ
( mode (1) ) (17a) 

r = 

1 

2 

(
1 + 

κ

1 − κ

[
1 − 1 − 2 κ

κ

τy 

Hγ (p) 
s 

])
if 

Hγ (p) 
s 

τy 
> 

1 − 2 κ

κ
( mode (2) ) (17b) 

The lower bound for r using the small RVE is therefore 1/2 (in the second part of this article we will present models with

larger number of tablets that produce much smaller values for r ). In terms of optimizing material performance, r should be

maximized because it promotes large deformations that can accommodate and limit the effects of stress concentrations,

imparting the material with damage tolerance. Large deformations also promote energy absorption ( Barthelat, 2014 ) and

toughness ( Barthelat and Rabiei, 2011 ). Fig. 4 c shows that there are two ways to increase r : (i) use microstructures which

are as close as possible to perfect (i.e. κ as close to 0.5 as possible) and (ii) use interfaces with high values of Hγ (p) 
s / τy . As

a last step for the analysis of the small RVE, we computed the energy absorbed in the material up to the softening point,

normalized again by the energy absorption for a perfect microstructure: 

U 

U 0 

= κ + ( 1 − κ) 

( 

1 + 

1 
2 

Hγ (p) 
s 

τy 

(
γ (p) 

2 

)
max 

γ (p) 
s 

) 

(
1 + 

1 
2 

Hγ (p) 
s 

τy 

)
(
γ (p) 

2 

)
max 

γ (p) 
s 

(18) 

With ( γ (p) 
s ) max given by Eq. (14) . Eq. (18) is illustrated in Fig. 4 d. The slightest deviation from a perfect microstructure

decreases U / U 0 significantly, but these morphological defects can be compensated by using high values of Hγ (p) 
s / τy at the

interface. 
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Fig. 4. Key properties for the RVE in tension as functions of κ and normalized by the properties of a “perfect” microstructure ( κ = 0.5, index “0 ”): (a) 

modulus, (b) strength, (c) maximum tensile plastic strain, (d) energy dissipation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Discrete element models 

The small RVE considered so far provides useful insights into strain localization and how it can be delayed. However,

in this model the defects are simply modeled as an “unbalance” of overlap lengths through a single parameter κ . This

does not capture more complex, longer range deformation mechanisms associated with the presence of local defects and

statistical variations within the microstructure. To capture these effects the small RVE model must be replaced by a much

larger “statistical volume element” (SVE) that contains a large number of tablets and can therefore capture finite mesoscale

statistical scatter within a large volume ( Ostoja-Starzewski, 2006 ). 

In this work, we used a discrete element approach to lower the computational cost of modeling large volumes of stag-

gered composites. Our DEM approach assumes that (i) each tablet is represented by a “node” that has only one degree of

freedom (displacement along the direction of pulling), and (ii) the tablets (nodes) are connected to their neighboring tablets

with nonlinear springs ( Fig. 5 a). The spring behavior was governed by the shear stress-strain curve shown on Fig. 2 b, mul-

tiplied by the length of the interface. As in conventional finite elements, an element stiffness matrix was defined for each

interface and was assembled into a global stiffness matrix. We used displacement controlled boundary conditions on the

model: The left boundary of the model was held fixed and a uniform displacement was applied on the right boundary. The

displacement was ramped linearly at each loading step. As expected the model behaved elastically and linearly until the

first interface yielded. The rest of the simulation was then performed with a standard Newton–Raphson method ( Press et

al. , 1987; Ghaboussi and Barbosa, 1990 ). The inherent hardening behavior implemented at the interfaces, made an increasing

number of elements yield, until eventually some of these elements entered the softening region. Unloading of the interfaces

was captured by storing the maximum deformation experienced at each interface. Any deformation beyond that maximum

value would follow the piecewise linear cohesive law described above. Deformations below the maximum deformation in

the history of the interface corresponded to unloading. In that case, the deformation was simply proportional to the shear

modulus of the interface G. This unloading scheme corresponded to interfaces that accumulate residual deformations past

the initial yield point. Model generation, simulation and post-processing were all implemented in Matlab ( Mathews and

Fink, 2004 ). The DEM method implemented was validated using the small 14 tablet model shown in Fig. 5 a and b. The

results from our DEM code were in perfect agreement with the analytical stress-strain curves presented in the previous

section. 
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Fig. 5. Validation of the DEM model (a) a 14 tablet model and (b) corresponding DEM model with rigid tablets and a nonlinear spring at each interface. 

microstructure and (b) its discrete element mesh representing a brick and mortar structure. Here tablets and their interfaces are represented by nodes 

and nonlinear elements respectively. (c) Comparison between the analytical solution and DEM results for the small RVE. The agreement was perfect for all 

parameters (for this figure, G = 100 MPa, H = 6 MPa, τy = 3 . 5 MPa , γ (p) 
s = 1 . 5 , γu = 2 , ρ = 4, and κ = 0 . 1 & 0 . 4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Construction of large DEM models 

Biological and synthetic bioinspired staggered composites show statistical variations in their microstructures (variation 

in tablet size and arrangement), as well as their constituent properties (heterogeneous tablet and interfacial materials). To

capture the impact of these variations on mechanical performance, we generated large statistical volume elements (SVEs)

based on the DEM approach. In this work, we assumed that the properties of the interfaces were uniform within each

model and introduced statistical variations on the microstructure. These variations translated in non-homogenous overlap

length between tablets, which in turn resulted in local variations in interface stiffness, strength and ductility. Another way

of introducing statistics into the model is by varying the interface cohesive law which is beyond the scope of this paper.

In this work, we chose to focus on microstructural variations and assumed all interfaces properties were identical, which

is more representative of bio-inspired synthetic nacres (uniform materials, non-uniform microstructures). First, an array of

N x by N y tablets was constructed from tablets with aspect ratio of ρ̄ (mean aspect ratio). Every other layer was offset by a

distance κ ρ̄ , where κ is the “overlap ratio” defined above. Statistical variations were then introduced in the microstructure 

by disturbing the position of the nodes by a distance �x i, j , a realization of a statistical distribution with mean of zero. In

this work we used a normal distribution, because the aspect ratio of natural nacre was found to follow this specific type of

distribution ( Barthelat et al., 2007; Rabiei et al., 2010; Song et al., 2003; 2011 ). Normalizing all dimensions by the thickness

of the tablets, the positions of the nodes in the x-y coordinate system is given by: ⎧ ⎨ 

⎩ 

x i, j 

t 
= 

d j 

t 
+ (i − 1) ̄ρ + 

�x i, j 

t 
y i, j 

t 
= j − 1 

(19) 

Where 1 ≤ i ≤ N x and 1 ≤ j ≤ N y . The stagger distance was d j = 0 for j even and d j = (1 − κ) ̄ρ for j odd. The aspect ratio of

each tablet was then given by: 

ρi, j = 

1 

2 t 

(
x i +1 , j − x i −1 , j 

)
(20) 

The overlap ratio of the n th interface ( κn ) between the tablets i and j is given by: 

κn = 

(
x i +1 , j − x i, j+1 

)(
x i +1 , j − x i −1 , j 

) (21) 

With this description of the microstructure, the nodes were not necessarily at the center of the tablets. From the property of

the standard deviation and Eqs. 20 and 21 , the standard deviation in the aspect ratio ( �ρ), overlap length ( �κ) and tablet

center point shift can be related: 

�ρ = 

√ 

1 

2 

(
�x 2 

i, j 

t 2 

)
(22) 

and 

�κ = exp 

(√ 

2 

[
ln 

(√ 

2 �x i, j 

)])
. (23) 
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Fig. 6. The three types of microstructures explored in this study: Running bond, columnar nacre and sheet nacre. The effects of statistical variations on 

the microstructure are shown for three different standard deviations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the models we set the standard deviation of the normalized position 

�x i, j 

t to 
√ 

2 �ρ , which resulted in tablets with

an average aspect ratio ρ̄ and standard deviation �ρ ( Fig. 7 a). We explored the effects of �ρ/ ̄ρ in the range 0 to 0.125,

which is in the order of the statistical variations measured on natural nacre ( Rabiei et al., 2010 ). �ρ/ ̄ρ can be much higher

for synthetic nacre-like materials ( Bonderer et al., 2008; Deville et al., 2006 ), but we did not explore �ρ/ ̄ρ values higher

than 0.125 because wide normal distributions could produce realizations of ρ that were negative. To prevent such case

the tail of the normal distribution was cropped to ensure ρ > 0 for all realization of ρ . This precaution did not produce

any significant bias on the results, provided that the standard deviation was within the limit �ρ/ ̄ρ < 0 . 125 (This range of

statistical variations was sufficient to generate significant changes in the mechanical response of the models). This procedure

was used to produce three types of microstructures ( Fig. 6 ): (i) “running bond” where κ̄ = 1 / 2 , (ii) “columnar nacre” where

0 < κ̄ < 1 / 2 and (iii) “sheet nacre” microstructures where there were no correlation of position across the layers of tablets

(the stagger of each layer was assigned a random value d j between 0 and ρ̄ , following a uniform probability distribution).

Fig. 6 shows the effect of statistics on the each of these three types of microstructure. 

Once the position of the nodes was established, overlapping tablets were detected, and the overlap length was computed

to populate a connectivity table. The interface of each overlapping region was then modeled with one DEM element whose

behavior was governed by the cohesive law and by the length of the overlapping interface. Fig. 7 shows a model with a

running bond microstructure with �ρ/ ̄ρ = 0 . 025 . In this case, the size of the model was 60 × 60 tablets (3600 ° of freedom).

The cohesive law in this example had the characteristic Hγ (p) 
s / τy = 0 . 1 ( Fig. 7 a). 

Fig. 7 (b) shows the tensile stress-strain curve obtained from this model. The response is linear up to about 16 MPa (at

0.5% strain). A yield point is followed by strain hardening, which ends by a slight decrease of stress at which point the

simulation fails to converge. Qualitatively, the shape of the stress strain curve was consistent with experimental results on

natural nacre shells ( Barthelat et al., 2007 ). Using interface parameters closer to natural nacre produced realistic stress-

strain curves which captured σ y and H for natural nacre. However, the model overestimated E, σ s , and ɛ s , possibly because

of our assumption of rigid tablets, the two-dimensional approximation as well as the presence of relatively large defects in

natural nacre. Fig. 7 c shows snapshots of the model at different points on the stress strain curves. We used color code for

the interfaces to indicate if they are elastic (thin black line), yielding (yellow), softening (red) or unloading from a yielded

state (grey). Under tension, the shortest interfaces yield first, generating an interspersed distribution of isolated yielding

interfaces that grows in density as the load increases. Interestingly this cloud of yielded interfaces is well developed even

in the linear region of the stress-strain curve (snapshot 2). In this case, the density of yielded interfaces increases rapidly in

the hardening region, and almost all the interfaces yield (snapshot 3). However, this process is interrupted by a localization

region (snapshot 4) that propagates across the direction of pulling and eventually across the entire model (snapshot 5).

On either side of the softening region, the interfaces unload as the local stress decreases. At this point the model ceased

to converge because of elastic snapback, a known issue with the Newton Raphson method (the softening branch maybe

captured using damping at the interface ( Gao and Bower, 2004 ) but we have not pursued this route since we were only
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Fig. 7. Example of a 60 × 60 DEM model under uniaxial loading condition. Running bond with �ρ/ ̄ρ = 0 . 025 and (a) cohesive law with Hγ (p) 
s / τy = 0 . 1 

(b) tensile stress-strain curve produced by this model and (c) corresponding sequence of deformation showing small amount of yielding interspersed in 

the model, followed by widespread yielding and by a localization, and finally softening and unloading of the rest of the material. This model produced a 

localization ratio r = 0 . 15 . 

 

 

interested in capturing the onset of localization and failure for each microstructure). The “ductility” of the microstructure

was characterized using these large models, where Eq. (15) becomes: 

ε (p) = 

2 

N ρ̄

1 − φ

φ

N ∑ 

n =1 

γ (p) 
n (24) 

where γ (p) 
n is the plastic shear strain at interface n and N is the total number of interfaces. Note that ɛ ( p ) can also be

obtained from the tensile stress-strain curve. (
ε (p) 

0 

)
max 

= 

2 

ρ̄

1 − φ

φ
γ (p) 

s (25) 
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Fig. 8. Effect of SVE size on the overall modulus and strength for running bond. In this case ( �ρ/ ρ = 0 . 05 and N x = N y ), convergence is achieved at an 

SVE size of 60 × 60 tablets. While the variations in modulus almost disappear for large SVE, there are still significant variations in strength even after 

convergence. These variations are inherent to the material and are SVE-size independent. (for this figure κ = 0 . 5 , G = 100 MPa , H = 0 . 8 MPa , γ (p) 
s = 2 , 

γu = 3 , and τy = 1 . 3 MPa ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The normalized maximum plastic strain is then: 

r = 

(
ε (p) 

)
max (

ε (p) 
0 

)
max 

= 

1 
N 

N ∑ 

n =1 

γ (p) 
n 

γ (p) 
s 

(26)

The example shown in Fig. 7 produced r = 0.15, a relatively large value which reflects the ductility of this material. As

described in the rest of this article, varying the type of microstructure, its statistical variation, and the characteristics of the

cohesive law (parameter Hγ (p) 
s / τy ) had a profound effect on the distribution, shape, and extent of the yielded regions prior

to localization. In turn, these different behaviors had an effect on the strength and deformability of the microstructure. To

assess these effects with confidence, we had to ensure that the results were independent of the model size ( N x x N y ) ( Ostoja-

Starzewski, 2006; Gitman et al., 2007 ). To assess the effect of model size on predicted properties, we generated a series of

“running bond” models of increased size with N x = N y = 5, 15, 30, 50, 60, and 70. For each of these sizes, 100 realizations

of the microstructure were automatically generated and run. Fig. 8 shows the effect of model size on the macroscopic

modulus and strength for the staggered composites (using �ρ/ ρ = 0 . 05 , κ = 0 . 5 , G = 100 MPa , H = 0 . 8 MPa , γ (p) 
s = 2 , γu =

3 , and τy = 1 . 3 MPa ). Modulus and strength were normalized by the “perfect” small RVE microstructure values E 0 and σ 0 ,

respectively, computed from the cohesive law and ρ̄ . Fig. 8 shows that smaller models produced more variations in predicted

strength and modulus properties across realizations. Increasing the size of the model produced more consistent values for

these properties as the size converged to a “statistical volume element” (SVE) sufficiently large enough to accurately reflect

the effects of statistics on the average properties. We also verified that the results are not dependent on the boundary

conditions by running models under both displacement and traction-based loading conditions. Ten realizations of the model

with 60 × 60 tablets (the point at which the behavior is not affected by further increase in the RVE size for the parameters

used here ( Fig. 8 )) were developed at analyzed. The results show that changing boundary condition has less than 2% effect

on the modulus. Moreover, we found that there is less than 1.5% difference between the left and right hand sides of the

Hill–Mandel condition ( σ : ε = σ : ε ) for the ten realizations of the model with 60 × 60 tablets. Therefore, our boundary

condition and model size is consistent with the Hill–Mandel condition ( Ostoja-Starzewski, 2006; Nguyen et al., 2012; Dalaq

et al., 2013 ). Fig. 8 shows that the deviation in modulus decreases as the size of the model is increased. The statistics in the

microstructure also makes the material slightly less stiff compared to the perfect microstructure ( ̄E = 0 . 9 E 0 ). The variation

of strength also decreased as the model increased, but this statistical variation never completely vanished. In the SVE range,

the strength is governed by “weakest link” statistics which cannot be eliminated by increasing the size of the model. Even

for large models, these variations in strength are also observed in other types of SVEs ( Lu and Bhattacharya, 2005; Kanit

et al., 2003 ). Therefore, they are inherent to the microstructure and are similar to Weibull statistics used on brittle materials.

The exact distributions of modulus and strength are explored further in the remainder of this article. Fig. 8 also shows that

the effect of statistics is much more pronounced on average strengths than on average modulus. For this case, we obtained

σ̄ ≈ 0 . 6 σ0 . Convergence studies on model size were performed for each type of microstructure, so that the models presented

below are all model size independent. Typical SVE sizes ranged from 60 × 60 to 120 × 120 tablets. 

3.2. Large DEM models, results 

The large DEM models retain the expected effect of the cohesive law parameters on modulus, strength and deformability.

For example, increasing the shear modulus G increases the modulus E , increasing τy increases the yield strength in tension,
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Fig. 9. Effect of statistical variations on stress-strain curve and failure mechanism (small 30 × 15 models are shown for illustration). All models are of the 

“running bond” type, with Hγ (p) 
s / τ0 = 0 . 1 . (a) �ρ/ ̄ρ = 0 (perfect microstructure, no statistics); (b) �ρ/ ̄ρ = 0 . 025 ; (c) �ρ/ ̄ρ = 0 . 125 . For each case, the 

computed value of r is indicated on snapshop#3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and increasing γ (p) 
s increases the tensile strain at failure for the material. Here we focus on the effect of the cohesive

law, microstructure type, and statistics on the ability to delay localization (as measured by the ratio r defined above). The

parametric studies we performed on the large SVE by varying H , γ (p) 
s , and τy confirmed that the contribution of the cohesive

law to the r value is also governed by the single parameter Hγ (p) 
s / τy . With this result in hand, we examine the role of

statistics, the value of Hγ (p) 
s / τy , and the microstructure type on the stress-strain response and the r value. Fig. 9 shows

the effect of statistics with three models, all of the “running bond” type and with Hγ (p) 
s / τy = 0 . 1 . The models are relatively

small (30 × 15) for illustration purposes, but their behavior is representative of larger SVEs. The perfect microstructure with

no statistics ( Fig. 9 a, �ρ/ ̄ρ = 0 ) is identical to what is predicted by the small RVE. Every interface yields simultaneously

in the model and at a single yield point on the tensile stress-strain curve. The interfaces also soften simultaneously, so

that stress strain curve directly reflects the cohesive law used at the interface. The tensile strain at failure is relatively

large because every interface yields in unison and contribute to the large deformations. In this perfect microstructure there

is no localization, and r = 1. Fig. 9 b shows the effect of introducing a slight amount of statistics ( �ρ/ ̄ρ = 0 . 025 ). In this

case, a few weak interfaces (i.e those with shorter overlap lengths) start yielding even in the linear region of the stress-

strain curve. As the stress increases, the density of the yielded interfaces increases and some of them coalesce, generating

enough nonlinear deformations to form a yield point on the stress-strain curve. Since the statistical variations introduce

“weakest links” in the model, the strength of the model with statistics is lower than the perfect model. Snapshot 2 also

shows a localization band that initiates at the lower edge of the model. While the softening localization band propagates, the

local stress decreases which interrupts the formation of new yielding interfaces. The localization band eventually coalesces

across the model (snapshot 3) which precipitates failure, so that the value of r is greatly reduced: r = 0.26. The localization

band is jagged due to statistics as well as the combined shear and tensile stresses in its vicinity, which trigger a “stair”

type of failure ( Rabiei et al., 2010 ). Finally, Fig. 9 c shows a case with large statistical variations ( �ρ/ ̄ρ = 0 . 125 ). The yield

strength is greatly reduced because the weakest link in the microstructure is made even weaker by the statistics. The density

of yielding is very low and rapidly interrupted by the localization. The strain at failure is small and the material and r
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Fig. 10. Cumulative distribution of (a) normalized modulus, (b) normalized strength, (c) normalized ductility, (d) normalized energy absorption. All models 

are of the “running bond” type, with Hγ (p) 
s / τ0 = 0 . 1 and are (60 × 60) and (120 × 120) tablet SVE models with two different statistical distributions of 

�ρ/ ̄ρ = 0 . 025 and �ρ/ ̄ρ = 0 . 125 , respectively. (50 realizations were evaluated for each statistics). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

becomes very small: r = 0.04. Fig. 10 shows the effect of statistics on materials properties. While the effect is minimal on

modulus, statistical variations in the microstructure greatly decrease strength, ductility r , and in turn energy absorption.

�ρ/ ̄ρ = 0 . 025 produces seemingly negligible variations in the microstructure ( Fig. 6 ), but these small variations decrease

the energy absorption capabilities of the material by as much as 90%. These examples clearly demonstrate that while a

cohesive law with large deformations may appear to lead to high performance with a small RVE, statistical variations in

microstructure can precipitate failure and embrittle the material. 

The next set of examples shows the effect of Hγ (p) 
s / τy on mechanical response ( Fig. 11 ). All models are of the “running

bond” type, with moderate statistical variation in microstructure ( �ρ/ ̄ρ = 0 . 025 ). All models shown are from one real-

ization of the statistical distribution (i.e. the microstructures in Fig. 11 a–c were strictly identical). Low values of Hγ (p) 
s / τy

( Hγ (p) 
s / τy = 0 . 01 ) produce a very brittle response, with very low r ( r = 0.03). Increasing Hγ (p) 

s / τy to 0.1 increases the de-

formability of the microstructure and produces more yielding and higher r ( r = 0.26, Fig. 11 b). Finally increasing Hγ (p) 
s / τy

to an even larger value ( Hγ (p) 
s / τy = 1 ) enables the yielding of all the interfaces available, which produces a long yield-

ing region with strain hardening and a high r value ( r = 0.73, Fig. 11 c). These examples clearly show how Hγ (p) 
s / τy can be

increased to delay localization, spread inelastic deformations and offset the negative effects of statistical variations in the

microstructure. 

Finally, Fig. 12 shows the effects of microstructure type on the stress-strain curve and deformation patterns. The columnar

nacre we chose for this example had an average overlap of κ = 0 . 25 , which is half of the average overlap for the running

bond. As a result, the strength of the columnar nacre was only about 50% of the strength of the running bond (for which

κ = 0 . 5 ). The columnar nacre was also more brittle, with r = 0.13 (also about half of the r value for the running bond).

Snapshot 2 of Fig. 12 b shows clearly that the smaller deformations of the columnar nacre are due to the yielding being

confined to the smaller overlapping regions. The localization band is also straight, following a column of tablets. Fig. 12 c

shows that the strength and brittleness of sheet nacre was similar to that of the columnar nacre. The average overlap is

κ = 0 . 25 (the same values as the one used for the columnar nacre) with a uniform statistical distribution of overlap. The

yielding and localization bands also seek the weak regions, i.e. smallest overlaps, but unlike columnar nacre, sheet nacre

produces yielding and softening region which are highly jagged. 

A summary of the effects of randomness on properties and for different microstructures is given on Fig. 13 . In all cases,

random perturbations of the microstructure have only modest impacts on modulus ( Fig. 13 a). The effect on strength is more

severe: within the range of statistics we explored, up to 40-60% of the strength was lost due to statistical variations for

all types of microstructures ( Fig. 13 b). The most severe negative effects were on plastic strain at failure ( Fig. 13 c) and on

energy absorption ( Fig. 13 d). Relatively small random variations ( �ρ/ ̄ρ = 0 . 05 ) precipitate strain localization and decrease

r by ∼70-80%, while energy absorption decreases by ∼97-99% for all microstructures. The larger statistical variations we
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Fig. 11. Effect of the cohesive law on stress-strain curve and failure mechanism (small 30 × 15 models are shown for illustration). All models are of the 

“running bond” type, with �ρ/ ̄ρ = 0 . 025 : (a) Hγ (p) 
s / τ0 = 0 . 01 (b) Hγ (p) 

s / τ0 = 0 . 1 ; (c) Hγ (p) 
s / τ0 = 1 . For each case, the computed value of r is indicated on 

snapshop#3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

explored here led to further decrease in r and U/U 0 . These statistical variations seem large, but they are still smaller than

what is observed in most modern bio-inspired nacre-like composites. 

Finally, Fig. 14 shows a summary of the effect of Hγ (p) 
s / τy on the strain at failure r , for each of the three microstructures

we explored and for different statistical distributions. For all cases, higher values of Hγ (p) 
s / τy delay localization and conse-

quently increases r . However, it also appears that increasing Hγ (p) 
s / τy is only effective within the range 0.1 to 10. Values of

Hγ (p) 
s / τy smaller than 0.1 or greater than 10 have little effects on delaying localization. 

4. Summary and conclusions 

The staggered architecture is prominent in biological materials such as nacre, bone, tooth enamel, and spider silk. This

particular architecture offers attractive combinations of strength, toughness and energy absorption, and it is now serving

as model for the design and fabrication of modern composite materials. In this study, we examined the effect of random

variations in microstructures, interface properties, and type of microstructures using small RVE models and large SVE models

based on discrete element modeling. The main conclusions are summarized below: 

(1) The effects of imperfections in the staggered structure can be captured using small RVEs with an imbalance in overlap

lengths. Large discrete element models can capture the effects of statistical variations in microstructure in a more

comprehensive and realistic fashion. 

(2) Statistical variations have a modest effect on stiffness, but a more pronounced negative effect on strength. Statistical

variations have a very large negative impact on ductility and energy absorption. Seemingly small statistical perturba-

tions ( �ρ/ ̄ρ = 0 . 025 ) from the perfect microstructure can decrease energy absorption capabilities of the material by

up to 95%. 

(3) The negative effects of microstructure can be partially offset by using interfaces with high deformability and strain

hardening. More specifically, the interface parameter Hγ (p) 
s / τy must be maximized within the range 0.1 to 10 to delay
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Fig. 12. Effect of the microstructure type on stress-strain curve and failure mechanism (small 30 × 15 models are shown for illustration). All models are built with �ρ/ ̄ρ = 0 . 025 , and a cohesive law Hγ (p) 
s / τy = 

0 . 1 : (a) Running bond; (b): Columnar nacre; (c): Sheet nacre. For each case, the computed value of r is indicated on snapshot #3. 
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Fig. 13. Normalized properties as functions of relative standard deviation in the microstructure for Hγ (p) 
s / τy = 0 . 5 and for running bond, columnar nacre 

and sheet nacre: (a) modulus; (b) strength (c) strain at failure r and (d) energy absorption. 

Fig. 14. Effect of Hγ (p) 
s / τy on the strain at failure r , for each of the three microstructures we explored and for different statistical distributions: (a) running 

bond, (b) columnar nacre and (c) sheet nacre. 

 

 

 

 

localization. Values of Hγ (p) 
s / τy smaller than 0.1 or greater than 10 have little effects on performance. Interestingly,

for the interfaces in nacre, Hγ (p) 
s / τy = 4.7 which is within that “optimal” range. 

(4) Different arrangements of tablets (running bond, columnar or sheet) produce different values of modulus and strength,

but display the same behavior and response to Hγ (p) 
s / τy in terms of localization. 

(5) The discrete element model proved to be a valuable tool for the modeling of random staggered composites, where

the mechanical response is governed by interfaces. DEM is more computationally efficient than finite elements: In the
present study, we ran more than 10,0 0 0 nonlinear DEM models with more than 50 0 0 degrees of freedom each. 
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This study suggests two critical design elements to delay localization and maximize energy dissipation in staggered com-

posites: (i) high control over the architecture to minimize statistical variations and (ii) interfaces with high Hγ (p) 
s / τy . These

two strategies can be combined for best results, and interestingly both strategies are found in biological materials. Materials

like collagen fibrils or nacre have a highly ordered, near-perfect periodic microstructure, and also make use of highly de-

formable interfaces ( Barthelat et al., 2016 ) with hardening which may be generated by sacrificial bonds ( Smith et al., 1999 ),

nanofriction ( Evans et al., 2001; Tai et al., 2006 ) or interface waviness ( Barthelat et al., 2007 ). Duplicating these strategies

in synthetic materials still presents formidable challenges to this day. Advanced fabrication methods such as self-assembly

( Bonderer et al., 2008; Valashani et al., 2015 ), freeze casting ( Deville et al., 2006 ), filtration ( Liu et al . , 2011 ), sedimentation

( Behr et al., 2015 ), doctor blading ( Mirkhalaf and Barthelat, 2016 ) or controlled mineralization ( Mao et al., 2016 ) can be used

to make staggered composites, but the morphological control these methods offer is still inferior to what is observed in bi-

ological materials. However, there are ways to fabricate perfectly periodic staggered arrangements at larger length scales in

“architectured materials”, using 3D printing ( Espinosa et al., 2011 ) or laser engraving ( Chintapalli et al., 2014; Valashani and

Barthelat, 2015 ). Identifying synthetic materials for the interfaces also presents challenges. Various strategies were used to

generate large deformations including metal or polymer ductility ( Deville et al., 2006 ), polyelectrolytes ( Tang et al., 2003 ),

frictional contact ( Barthelat and Zhu, 2011 ), or even polymer rheology ( Chintapalli et al., 2014 ). When designing bioin-

spired staggered composites, interfaces with large shear strain at failure and high hardening must be selected. These are

indeed the two most important properties for the interfaces. Other properties such as stiffness, strength or even tough-

ness are secondary for the interfaces and can these properties can be relatively low, provided that they are amplified by

well-designed staggered architectures. As described in this article, we arrived at these conclusions using two-dimensional

models of complex architectures which are, in reality, three dimensional. However, this simplification has enabled in the

past unique insights into the mechanics of nacre-like materials, and we believe that the main conclusions reported here

would be confirmed by three-dimensional models. Three-dimensional DEM models are more computationally expensive but

more realistic, and could capture additional effects such as in-plane tablet rotations. These additional effects may have a

non-negligible role on the overall response, but are beyond the scope of this article. The findings reported here can al-

ready be integrated to existing design guidelines ( Begley et al., 2012; Barthelat, 2014; Gao, 2006 ) to further increase the

performance of bio-inspired composites at the design stage. 
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