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a b s t r a c t 

Hard structural elements in nature are often joined with sutures lines, as seen in human skull, 

cephalopods or turtle shell. These sutures can arrest cracks, and can provide flexibility for respiration, 

locomotion or growth. In this paper we introduce a morphometric method to capture the complex shape 

of sutured interfaces using only a few parameters. The method is simple, and can capture relatively com- 

plex suture geometries with re-entrants, interlocking features. The study starts with a simple jigsaw-like 

model which is enriched with additional features (plateau regions in dovetail-like sutures, multiple lock- 

ing sites). For each case, closed form and finite elements solutions are developed to capture the full non- 

linear pullout response and to predict the maximum stress (and potential fracture) in the solid material. 

These models were then used to identify the geometries and interface properties (friction) that lead to 

optimum combinations of strength and energy absorption. Suture designs that reduced frictional stress 

with low coefficient of friction or with multiple contact points were the most efficient. The results can 

serve as guidelines to design and optimization of non-adhesive sutures with arbitrary shapes made of arc 

of circles and lines. We found that the best designs involve low coefficient of friction, which raises an 

interesting hypothesis on the function of the protein layer in natural sutured lines: This soft layer could 

act as “lubricant” to prevent the fracture of the solid structures. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Components made of hard materials can be joined by suture

lines, a structural feature found in multiple examples in nature:

shells of cephalopods ( Allen, 2007 ), human skull ( Coats and Mar-

gulies, 2006; Maloul et al., 2014; Miura et al., 2009 ), carapace of

turtle ( Achrai et al., 2014; Chen et al., 2015; Zhang et al., 2012 ),

wood peckers beak ( Lee et al., 2014 ) ( Fig. 1 ), and in many other

hard biological materials where weak interfaces govern deforma-

tion and fracture mechanisms ( Dunlop et al., 2011; Barthelat et al.,

2016 ). In these examples, stiff skeletal material (mineralized pro-

teinaceous matrices, keratin) are joined by thin lines of interfa-

cial material which are much softer. The geometrical complex-

ity of the suture lines ranges from nearly straight sutured inter-

faces in new born baby skull ( Coats and Margulies, 2006; Miura

et al., 2009 ), to more complex ceratitic and ammonitic sutures

with fractals geometries ( Allen, 2007; Li et al., 2012; Lin et al.,

2014 ). In cephalopods such as ammonoid, which produce angu-

lar or dendritic sutures, the complexity of the suture lines varies

across species ( Allen, 2007 ), or with growth as seen in the inter-
∗ Corresponding author. 
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igitating suture lines in human skull which become more com-

licated from infant to adult ( Miura et al., 2009; Maloul et al., ).

ome of these interfaces form anti-trapezoidal sutures which are

nterlocked as seen in linking the girdles of diatoms ( Genkal and

opovskaya, 2008; Manoylov et al., 2009 ), while others display si-

usoidal interfaces which increases resistance to crack propagation

 Li et al., 2011 ). 

The softer interface materials at the sutures enable the rela-

ive displacement and/or relative rotation of harder structural com-

onents, which facilitates locomotion, respiration or growth ( Lin

t al., 2014; Li et al., 2011 ). Sutured interfaces can also absorb im-

act energy ( Lee et al., 2014 ), channel the propagation of cracks

nto toughening configurations, or act as a source of local defor-

ation that can spread energy dissipative mechanisms throughout

arge volumes ( Barthelat et al., 2007; Fratzl et al., 2004 ). The geom-

try of sutured lines largely governs their mechanical response ( Li

t al., 2012, 2013; Lin et al., 2014, 2014; Zavattieri et al., 2008 ). In

articular, interlocking geometrical features can increase strength

nd energy dissipation ( Malik and Barthelat, 2016; Mirkhalaf et al.,

014; Mirkhalaf and Barthelat, 2017; Haldar et al., 2017 ). We re-

ently developed analytical and finite element models that cap-

ure the complete nonlinear pullout response of sutures with sim-

le interlocking jigsaw-like geometries, based on frictional con-

act and linear elasticity ( Malik et al., 2017 ). These models demon-

https://doi.org/10.1016/j.ijsolstr.2018.01.004
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2018.01.004&domain=pdf
mailto:francois.barthelat@mcgill.ca
https://doi.org/10.1016/j.ijsolstr.2018.01.004
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Fig. 1. Examples of sutured interfaces in nature: (a) Ammonite shell ( Ceratitic ammonoid ) with intricate suture lines ( Lin et al., 2014 ), (b) Pan troglodytes cranial sutures 

(adapted from Cray et al., 2010 ), (c) Osteoderms of a leatherback sea turtle shell (adapted from Chen et al., 2015 ), (d) red-bellied woodpecker ( Melanerpes carolinus ) beak 

(adapted from Lee et al., 2014 ). 

Fig. 2. (a) A parametric ( φ-s ) curve showing the cumulative angular function as function of curvilinear position; (b) Suture profile in ( x,y ) reconstructed from the ( φ-s ) 

function. 
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trated how geometry and local friction coefficient govern stiffness,

trength and energy absorption, and how geometry and friction

an be tuned to optimize the mechanical response. In this arti-

le we present new extensions to these models, where we con-

ider sutures with more complex morphologies: dovetail-like su-

ures and sutures with two or more pairs of locking sites. For each

ype of suture we performed an exhaustive search to determine

he design parameters which maximize strength and energy ab-

orption. A comparative study of the different suture morphologies

s provided at the end of the discussion. 

. Overview of the suture geometry 

Capturing the two-dimensional geometry of a curved suture

ine requires robust, high fidelity yet relatively simple mathemati-

al models. Methods used in the past include descriptive methods,

attern-matching using geographic information systems, complex-

ty indices, and morphometric methods ( Allen, 2007; Manoylov

t al., 2009; Saunders et al., 1999 ). In this work, we used a sim-

le 2D shape descriptor approach similar to the morphometric

ethod. Shape descriptors are mathematical objects which can

aptures geometrical features in a simplified and condensed fash-

on, for example the radius of a circle, the surface of an area, or

eometrical eccentricity ( Fang et al., 2015; Kim and Kim, 20 0 0 ).

he shape descriptor we used in this study is based on a cumula-

ive angular function of the contour of the suture φ as function of

he curvilinear position s along the contour ( Fig. 2 ). The approach

s versatile and more importantly, it enables the modelling of su-

ure lines with re-entrant, interlocking features. For this study we
nly considered φ ( s ) functions that are multilinear ( Fig. 2 a). The

D profile of the suture can be reconstructed from the φ ( s ) func-

ion in the x-y coordinate system using: 
 

 

 

 

 

x (s ) = 

∫ s 

0 

cos ( φ(s ) ) ds 

y (s ) = 

∫ s 

0 

sin ( φ(s ) ) ds 

(1) 

Where the point x = 0 and y = 0 coincides with s = 0. This pro-

ess generates a periodic unit cell of the suture ( Fig. 2 b). 

For this study we required the contour ( x-y ) of the suture to be

eriodic and continuous. We also required contours with no sharp

orner or kinks which would generate stress concentrations and

ead to sub-optimal designs. The function φ ( s ) therefore had to be

ontinuous. In addition, for a suture line whose general orientation

s aligned with the axis x , the local tangential angle φ must take a

ero value at least once within the periodic unit cell. For simplic-

ty we chose φ(0) = 0. In this work we also only considered sutures

ith a symmetry about line x = w /2, where w is the width of the

nit cell in the x-y space. This symmetry implies that the func-

ion φ( s ) is antisymmetric about the line s = 2 s 0 ( Fig. 2 a). Finally,

e sought optimum geometries for the suture and therefore we

ocused on geometries that produces identical stresses on either

ide of the suture line, because asymmetric sutures lines would be

ub-optimal with one side inevitably be “better” than the other.

herefore we only considered suture lines with a 180 ° rotational

ymmetry, which implies that the function φ( s ) is symmetric about

he line s = s 0 ( Fig. 2 a). Considering these symmetries, the func-

ions φ( s ) only need to be defined over a quarter of the curvilinear
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Fig. 3. (a) Half-unit cell for the suture with symmetry and boundary conditions 

applied. (b) Free body diagram of the half-unit cell; (c) free body diagram of the 

lower tab only, exposing the normal and frictional forces transmitted at the contact 

between the tabs. 

 

 

 

 

 

 

 

 

 

 

a⎧⎪⎨
⎪⎩  

 

u  

p  

s

 

 

φ  

y  

e  

i  

s

3

 

s  

e  

r  

o  

b  

a  

s  

o  

d{
 

length of the contour in the periodic cell (0 ≤ s ≤ s 0 , Fig. 2 ). The

first quarter of the ( x - y ) contour was reconstructed using Eq. (1) up

to s = s 0 , and a 180 ° rotational symmetry was then applied about

points x ( s 0 ), y ( s 0 ), in order to produce a half unit cell which was

used for the analysis of kinematics, forces and stresses. For dis-

play purposes, the full unit cell may be reconstructed with a sim-

ple symmetry ( Fig. 2 b). The full unit cell has width w , and height

L + 2 h where L is the projected length of the suture on the y axis,

and h is the height of two regions included in the model on either

sides of the suture. The width, w and the height, L of the suture
Fig. 4. (a) ( φ-s ) curve for a one-parameter suture; (b) Corresponding profile; (c) mode

interlocking is governed by the interlocking angle θ 0 , where θ 0 < 60 ° to prevent the re-e

of the references to colour in this figure legend, the reader is referred to the web version
re given by: 

 

 

 

 

 

w = 2 

∫ 2 s 0 

s =0 

cos ( φ(s ) ) ds 

L = 

∫ 2 s 0 

s =0 

sin ( φ(s ) ) ds 

(2)

This “shape generating algorithm” has a few properties that are

seful to outline here. The local radius of curvature R on the ( x-y )

rofile of the suture is related to the local suture angle by Rd φ = ds ,

o that the local slope of φ( s ) is: 

dφ

ds 
= 

1 

R 

(3)

An important implication is that horizontal segments in the

( s )function ( φ’ ( s ) = 0) correspond to straight segments on the ( x-

 ) profile ( R = ∞ ). This shape descriptor approach was used to gen-

rate a wide array of suture geometries, and the pullout mechan-

cs of each of these geometries was captured with the model de-

cribed below. 

. Pullout models 

In terms of mechanics, this study focused on the full pullout re-

ponse of the suture along the y direction ( Fig. 3 ). We only consid-

red sutures with no adhesive at the interfaces, so that the pullout

esponse was governed only by contact mechanics, friction and ge-

metric interlocking. The solid part of the suture was assumed to

e isotropic and linear elastic (modulus E and Poisson’s ratio ν),

nd 2D plane stress conditions were used. Fig. 3 a shows a repre-

entative volume element (RVE) of the suture geometry. The pull-

ut was simulated using a displacement controlled boundary con-

itions: 

u y (x, −h ) = 0 

u y (x, L + h ) = u 

(4)
l with symmetry and boundary conditions; (d) The “strength” of the geometrical 

ntrant regions of the tabs to intersect (case highlighted in red). (For interpretation 

 of this article.) 
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Fig. 5. Effects of (a) friction f and (b) interlocking angle θ 0 on the pullout response of the suture; effects of (c) friction f and (d) interlocking angle θ 0 on maximum tensile 

stress in the solid tabs. 
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Where h is the height of the upper and lower portion from the

uture interface ( Fig. 2 c). The sides of the model were subjected to

he periodic boundary conditions: 

u x (w/ 2 , y ) − u x (−w/ 2 , y ) = w ̄ε x 

u y (w/ 2 , y ) = u y (−w/ 2 , y ) 
(5) 

Where ε̄ x is the average strain in the x (transverse) direction.

he geometry and loading conditions are symmetric about the y -

xis so that: 

 x (x, y ) = −u x (−x, y ) (6)

Combining Eqs. (5) and (6) , the periodic boundary conditions

re written: 

u x (0 , y ) = 0 

u x ( w/ 2 , y ) = 

w 

2 
ε̄ x 

(7) 

In cases where h is sufficiently large, the stiffness of the solid

egions in the transverse direction is high enough to neglect

ny deformation in the transverse direction, i.e. ε̄ x = 0 . Equations

7) then become ( Fig. 3 a): 

u x (0 , y ) = 0 

u x (w/ 2 , y ) = 0 

(8) 

When the upper suture is pulled along the y axis, the interlock-

ng at the suture generates a pullout force F along the y axis ( F/2

n the half unit cell, Fig. 3 b). The contact forces at the interfaces

lso generate a horizontal component, giving rise to a compressive

orces F c along the x axis. Because the net horizontal force on the
nit cell is zero, the compressive forces in the suture region must

e balanced by tensile forces F T transmitted on either sides of the

uture line ( Fig. 3 b). Fig. 3 c shows a free body diagram of the lower

ection of the suture, which exposes the contact forces transmit-

ed at the interfaces. These forces can be decomposed into nor-

al force(s) P i and frictional force(s) fP i (only one contact force is

howed on Fig. 3 c, but there might be more sets of contact forces

epending on the design of the suture). These contact forces will

ranslate into a pullout force through the equation: 

 = 2 

N ∑ 

i =1 

P i ( sin θ + f cos θ ) (9) 

The set of forces shown in Fig. 3 also generate stresses in the

olid parts of the suture which must be monitored because frac-

uring the material would abort the pullout mechanisms and can-

el their potential benefits. Experiments and stress analysis have

hown that for brittle material in sliding dry contact, the highest

ensile stresses occur at the surface of the suture, at the edge of

he contact area ( Malik et al., 2017 ). For each of the geometries

resented below, the maximum tensile stress in the solid part was

alculated for the entire pullout sequence. 

We also used numerical methods for the models, with a com-

ination of finite element simulations (ANSYS parametric design

anguage) interfaced with Matlab (R2016a, MA, US). φ(s) curves

ere generated and automatically transformed into suture geome-

ries into x-y profiles using a Matlab. The same code was used

o automatically generate APDL input files for ANSYS. The mod-

ls were meshed with quadratic, plane stress element (PLANE 183),
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Fig. 6. (a) and (b) contour plots of maximum pressure (minimum principal stress) for θ 0 = 5 ° and f = 0.4; (c) contour plot of maximum principal stress (maximum tensile 

stress in the tabs); (d) and (e) traction and maximum tensile stresses as function of pullout distance showing a good agreement between the analytical and finite elements 

results (extracted from Malik et al., 2017 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

m  

c  

p

4

 

p

(  

l  

l  

r⎧⎪⎨
⎪⎩  

 

φ

φ

 

c  
and contact elements (CONTA 172, TARGE 169, symmetric contact)

were used to simulate sliding and frictional contact at the inter-

face. To appropriately mesh the model we used an adaptive mesh-

ing approach for each geometry. A first model was run with a uni-

form mesh, and the mesh was automatically refined at the regions

of highest stresses. The procedure was repeated automatically until

the results for pullout response and maximum tensile stress in the

solid converged, ensuring mesh independent results. Typically the

size of the elements in the converged mesh was about R /50 0 0 in

the contact region, where R is the radius of curvature. The number

of time steps in simulation was also adapted automatically to en-

sure converged results, typically about 500. The results were auto-

matically post-processed using ANSYS ADPL and Matlab. This fully

automated exploration procedure enabled the evaluation of thou-

sands of models with different suture geometries and coefficients

of friction. 

4. Exploration of suture geometries 

In this section we explore the effect of several suture geome-

tries on pullout behavior. We organized the exploration by starting

with a simple design (single jigsaw sutures) based on a single ge-

ometrical parameter. We then progressively enriched the geometry

of the suture by adding more geometrical features through addi-

tional parameters: dovetail-like sutures, double locking sutures, N -
ocking sutures. Within each type of geometry we sought the geo-

etrical parameters and materials properties that lead to optimum

ombinations of high strength and high energy absorption, while

reventing the brittle fracture of the solid part of the suture. 

.1. Single jigsaw sutures 

The single jigsaw sutures are the simplest form of geometric

arameters, with a radius of curvature R 0 , and a locking angle θ0 

[27], Fig. 4 ). Since the mechanisms captured here have no specific

ength scale, all results are normalized by the size of the model,

eaving θ0 the only geometrical parameter. The other geometric pa-

ameters can be found using Eqs. (2) and (4) : 
 

 

 

 

 

φ0 = θ0 + π/ 2 

w = 4 R 0 sin φ0 

L = 2 R 0 (1 − cos φ0 ) 

(10)

The length of the 1/4 contour of the suture is s 0 = R 0 φ0 and the

( s ) function is simply ( Fig. 4 a): 

( s ) = 

s 

R 0 

, 0 ≤ s ≤ s 0 

Fig. 4 b shows the reconstructed profile of the suture, which

onsists of four appended arcs of circle. The level of interlocking
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Fig. 7. (a) Possible combinations of the parameters θ 0 and f for optimum designs; (b) Optimum energy absorbed and optimum pullout strength calculated using the con- 

straint σ s / E = 1/100. 
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Fig. 8. (a) ( φ-s ) curve for a two-parameter suture; (b) Corresponding profile; (c) 

The “strength” of the geometrical interlocking is governed by the interlocking angle 

θ 0 and the plateau length d/R 0 . The geometries highlighted in red are not physically 

acceptable. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

i  

s  

e  

o  

s  

“  

(  
ncreases when θ0 increases as shown on Fig. 4 d, up to the ex-

reme case θ0 = 60 ° where the suture line intersects which corre-

ponds to the maximum geometrically allowed locking angle. Su-

ures with θ0 ≥ 60 ° were therefore excluded from the exploration

s physically inacceptable. An analytical solution for the pullout

esponse based on simple kinematics and contact mechanics was

resented in a previous article ( Malik et al., 2017 ), with the main

esults are summarized below. Fig. 4 b and c give the kinematics

elations ( Malik et al., 2017 ): 

( 2 R 0 − δ) cos θ = 2 R 0 cos θ0 (11) 

 = 2 R 0 sin θ0 − ( 2 R 0 − δ) sin θ (12) 

Using contact mechanics, the non-dimensional interference is

iven as ( Johnson and Johnson, 1987 ): 

δ

R 0 

= 

2 

π

P 

R 0 tE 

[ 
ln 

(
4 π

R 0 tE 

P 

)
− 1 

] 
(13) 

Where t is the thickness of the tab. This equation is solved nu-

erically to determine the non-dimensional contact force P 
R 0 tE and

he non-dimensional pullout force from Eq. (9) is given as: 

F 

wtE 
= 

P 

R 0 tE 

(
sin θ + f cos θ

2 cos θ0 

)
(14) 

The effect of Poisson’s effects are neglected in this solution, but

nite elements confirm that Poisson’s ratio has little effects on the

olutions. 

Fig. 5 a and b show the effects of the friction coefficient f , and

nterlocking angle θ0 on the pullout response of the suture. High

oefficients of friction f lead to relatively high strength because of

ncreased friction at the contact point, but do not change the max-

mum pullout distance which is governed by geometric parame-

ers. Higher interlocking angles θ0 increase the strength because of

ncreased geometrical interlocking ( Fig. 5 b), and also increase the

aximum pullout distance because the tabs stay in contact over

 longer pullout distance. The friction f and interlocking angle θ0 

ave therefore positive effects on strength and energy absorption.

owever increasing these two parameters also increase frictional

tresses, which can lead to the fracture of the tabs. The maximum

ensile stress in the suture is divided into frictionless and frictional

ontact stresses ( Malik et al., 2017 ), which can be evaluated from

ontact solutions. These frictional stresses produce the maximum

ensile stresses in the solid tabs, which are plotted as function of

ullout distance for different coefficient of friction ( Fig. 5 c) and dif-

erent locking angles ( Fig. 5 d). The contact stresses can also be
llustrated with finite element results, with the lowest principal

tress 
σmin 

E (i.e. maximum pressure, Fig. 6 a and b) and the high-

st tensile stress σmax 
E ( Fig. 6 c). The contact pressure is distributed

ver the contact following the expected parabolic profile. The ten-

ile stress is maximum at the edge of the contact surface which is

behind” the direction of sliding. Fig. 6 d and e show the pullout

force-displacement) curve and the maximum local stress as func-
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Fig. 9. Stages of the pullout for a dovetail suture; (a) Initial stage (no force applied), (b) first pullout stage where the flat faces are in contact, (c) second stage where only 

the rounded sections are in contact. 
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tion of pullout distance. The analytical solution and finite element

models are in good agreement. 

The interlocking angle θ0 , and friction coefficient f , increase the

maximum pulling force and total energy absorbed during pullout.

However the associated local stresses in the solid may cause a pre-

mature fracture of the tab, therefore there is need for optimiza-

tion. Here we performed an exhaustive search of the design space

to identify the best combination(s) of design parameters for any

given set of desired of normalized stiffness, strength, maximum ex-

tension, and energy absorption. The limiting factor for the design

is the fracture of the solid tabs, which is governed by the strength

of the material. The tabs will therefore fracture when σ max / E = σ s 

/ E , where σ max is the maximum tensile stress predicted from the

model and σ s is the tensile strength of the solid material. Here

we present results for σ s / E = 1/100 , which is a common ratio for

engineering materials ( Ashby, 2011 ). For a given value of friction

coefficient, it is therefore possible to identify the optimum locking

angle that will be the largest while preventing fracture of the tabs.

The strength is simply F max 
wtE , the maximum elongation is u max 

L and

the energy absorbed is given by the area under the pullout force-

displacement curve, 
U 

wtLE = 

∫ u max 
0 

F 
wtE 

du 
L . Fig. 7 a shows the allowable combinations of

θ0 and f that will prevent tab fracture and ensure the complete

pullout the suture. Since strength and energy absorption both in-

crease with θ0 and f, the optimum combinations of θ0 and f lie

on the line defined by σ max / E = σ s / E = 1/100. As expected, if f

is increased then θ0 must be decreased to prevent the fracture of

the tabs. Fig. 7 b shows the corresponding optimal energy absorp-

tion ( U 
wtLE ) opt and the optimal strength ( F max 

wtE ) opt . The maximum

pullout strength is achieved with a locking angle θ0 = 12.75 ° and a

friction coefficient f = 0, and at a value F max /wtE ∼ 0.5 × 10 −3 . How-

ever, this design does not dissipate any energy upon pullout, be-

cause the frictional dissipative mechanise is absent ( f = 0). To reach

the highest energy dissipation possible f must be increased, and θ0 

must be decreased. The bell-shape of this curve shows there is an

optimum point where the energy dissipation is maximum, which

is achieved with a locking angle θ0 = 9.25 ° and friction coefficient

f = 0.06 . This exhaustive search can therefore be used to identify

the suture geometry and local friction that will optimize strength

and/or toughness. The results also highlight the main limitation of
his design: the maximum strength of the suture is only about 5%

f the tensile strength of the solid material. In the upcoming sec-

ions we explore enriched geometries that aim at reducing the fric-

ional contact stresses by distributing the contact over larger areas.

.2. Dovetail-like sutures 

As a first extension to the simple jigsaw geometry, we increased

he contact area in order to better distribute and to decrease the

ontact stresses, and in particular those associated with friction.

educing the contact stresses can delay the fracture of the solid

aterials, which can enable more extreme locking geometries and

ore efficient designs. A straight region of length d was added

n the suture contour, which produced a “dovetail like” geometry

 Fig. 8 a,b). This dovetail suture can be described with three inde-

endent parameters: interlocking angle θ0 , radius of curvature R 0 
nd length of straight segment d , which were reduced to two pa-

ameters ( θ0 and d / R 0 ) after normalization. Other geometrical pa-

ameters are given by: 
 

 

 

 

 

 

 

 

 

 

 

φ0 = θ0 + π/ 2 

s 0 / R 0 = φ0 + d/ 2 R 0 

w/ R 0 = 4 sin φ0 + 2(d/ R 0 ) cos φ0 

L/ R 0 = 2(1 − cos φ0 ) + (d/ R 0 ) sin φ0 

(15)

The φ( s ) function ( Fig. 8 a) was defined as: 

φ( s ) = 

s 
R 0 

, 0 ≤ s ≤ s 0 − d/ 2 

φ( s ) = φ0 , s 0 − d/ 2 ≤ s ≤ s 0 
(16)

Fig. 8 c shows a set of dovetail suture profiles obtained for dif-

erent combinations of θ0 and d/R 0 . For d/R 0 = 0 the single jigsaw

eometry is recovered. With d/R 0 > 0 a wide range of geometries

an be obtained, but some combinations of parameters lead to the

ontour intersecting itself. The condition for the contours not to

ntersect is 2 R 0 < w , which can be written: 

0 < arccos 

( 

R 0 √ 

d 2 + 4 R 0 
2 

) 

− arctan 

(
d 

2 R 0 

)
(17)
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Fig. 10. Effects of (a) friction f (b) interlocking angle θ0 , and (c) plateau length d/R 0 , on the pullout response of the suture; effects of (d) friction f (e) interlocking angle θ 0 , 

and (f) plateau length d/R 0 , on maximum tensile stress in the solid tabs. 
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On Fig. 8 c, Eq. (17) defines the boundary between admissi-

le geometries and inadmissible geometries. As the plateau length

/R 0 , increases from zero (single locking) to higher values, the

ange of allowable locking angles θ0 becomes narrower. To pre-

ict the pullout response of the dovetail suture we used the same

rocedure as for the single jigsaw model. An analytical solution

as first developed by using a 2D flat punch with rounded edge

s base solution for the contact interaction ( Ciavarella et al., 1998,

0 02; Giannakopoulos and Chenut, 20 0 0; Sackfield et al., 20 05 ).

he kinematics of two disks in contact is the same as that de-

cribed above using Eq. (11 ), and the normalized contact radius

/R 0 can be determined from non-Hertzian contact solution for two

imilar disks in contact Eq. (18) ( Johnson and Johnson, 1987 ). 

δ

R 0 

= 

1 

2 

(
a 

R 0 

)2 
[

ln 

(
16 

(
R 0 

a 

)2 
)

− 1 

]
(18) 

The normalized contact surface a/R 0 can be obtained by solving

q. (18) numerically. From a/R 0 one can compute the normal force

or a flat punch with rounded ends for plane stress condition is

iven as ( Ciavarella et al., 2002 ): 

P 

R 0 tE 
= 

1 

2 

(
b 

R 0 

)2 

⎡ 

⎣ 

π

2 

− d 

2 b 

√ 

1 −
(

d 

2 b 

)2 

− arcsin 

(
d 

2 b 

)⎤ 

⎦ (19) 

b 

R 0 

= 

d 

2 R 0 

+ 

a 

R 0 

(20) 

The pullout is divided into two stages as shown in Fig. 9 . The

rst stage involves the sliding of the flat portion and the inter-

ocking angle remains unchanged while the contact length reduces
rom d to zero. The pullout distance in the first stage is given as:

 0 = 	d cos θ0 (21) 

Where 	d is the difference in the sliding length as the pullout

rogresses from zero to d . At the second stage the pullout distance

s the same as that of a single jigsaw which is given as: 

 1 = 2 R 0 sin θ0 − ( 2 R 0 − δ) sin θ (22) 

here δ is the interference between two disks pressed against

ach other and θ is used to track the evolution of the interlock-

ng angle. 

Resolving the force components vertically and normalizing by

he suture width provides the average pullout force: 

F 

wtE 
= 

P 

R 0 tE 

(
sin θ + f cos θ

2 cos θ0 − d sin θ0 

)
(23) 

The angle θ is used to track the progressive pullout of the su-

ure, and it remains constant along the flat portion of the suture,

ut later evolves from + θ0 to –θ0 at the rounded ends of the su-

ure. Fig. 10 a–c show the effect of friction coefficient f , interlock-

ng angle θ0 , and plateau length d/R 0 , on the average pullout force.

riction ( Fig. 10 a) and interlocking angle ( Fig. 10 b) have the same

ffect as we observed for the single jigsaw design- they both in-

rease maximum pullout force and energy absorption. Increasing

he length d of the plateau increases the area of contact, which

ncreases the pullout force ( Fig. 10 c). 

The maximum tensile stress in the suture is divided into fric-

ional contact stress and frictionless (hole in an infinite plate

oaded by a frictionless pin in the in-plane direction) maxi-

um tensile stress. The frictionless maximum stress is given as
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Fig. 11. (a) and (b): contour plots of maximum pressure for θ 0 = 5 °, d = 0.8 , and f = 0.4; (c) contour plot of maximum principal stress (d) and (e) traction and stresses as 

function of pullout distance showing a good agreement between the analytical and finite elements results. 
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( Ciavarella and Decuzzi, 2001 ): 

σ (P) 
max = 

P 

R 0 t 

5 − ν

2 π
(24)

The sliding frictional contact stress is given as ( Ciavarella et al.,

2002 ): 

σ ( f P) 
max = 2 f pk (25)

Where p is the contact pressure given as p = 

2 P 
πtb 

and k is a

geometrical factor that defines the effect of contact length ratio,

d/2b on the pressure distribution of flat punch with rounded edges.

If d = 0 , then k = 1 which reduces to a cylinder-on-cylinder contact

( Ciavarella et al., 2002 ). 

p = 

2 P 

πtb 

k = 

√ 

1 − ( 2 /π ) arcsin ( d/ 2 b ) 

1 − ( 2 /π ) arcsin ( d/ 2 b ) − ( 2 /π ) ( d/ 2 b ) 
√ 

1 − ( d/ 2 b ) 
2 

σ ( f P) 
max = 

4 P f 

πtb 
k (26)
Superposition of these two solutions gives the total stress at the

railing edge of the contact: 

max = σ (P) 
max + σ ( f P) 

max = 

P 

R 0 t 

5 − ν

2 π
+ 

4 P f 

πtb 
k (27)

Normalizing this equation gives: 

σmax 

E 
= 

1 

2 π

P 

R 0 tE 

[ 
( 5 − υ) + 8 

(
R 0 

b 

)
k f 

] 
(28)

The maximum stress increases with interlocking angle, plateau

ength, and friction ( Fig. 10 d, e, f). Fig. 11 shows the minimum

rincipal stress, maximum stress contour plots and the compari-

on between the pullout response and maximum stress. The result

hows that both the analytical and finite element models are in

ood agreement. For the rest of this section we used the analytical

odel because of its simplicity. 

To identify optimum sets of design parameters, we followed the

ame procedure as for the single jigsaw, by performing an exhaus-

ive parametric study on f , θ0 and d/R 0 . In particular, we identified

ptimum sets of parameters that prevent fracture of the tabs, using

s / E = 1/100 for the tensile strength of the solid material. Fig. 12 (a)

hows different combinations of f and θ0 that achieve this condi-

ion, and for four different values of d/R . As expected, increasing
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Fig. 12. (a) Possible combination of the parameters θ 0 , f, and d/R 0 for optimum designs; (b) material property map showing the optimum energy absorbed and the optimum 

pullout strength for different d/R 0 and for a design constraint σ s / E = 1/100. 
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Fig. 13. (a) ( φ-s ) curve for a two-parameter suture; (b) Corresponding profile; (c) 

The “strength” of the geometrical interlocking is governed by the interlocking angle 

θ 0 and by R 0 /R 1 . The geometries highlighted in red are not physically acceptable. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

t  

θ

θ
1 
he plateau d/R 0 must be accompanied by a reduction of f and/or

0 to prevent the fracture of the tab. Fig. 12 b shows the corre-

ponding optimum energy absorption and strength. Compared to

he single jigsaw tab design adding straight regions produced nar-

ower bell-shape curves, because as mentioned above the range of

ermissible f and θ0 is more restricted. The dovetail design how-

ver produced higher increases energy absorption, up to 2.5 times

igher than what can be obtained from the single jigsaw design.

he maximum pullout strength possible is however the same, at

 max /wtE ∼ 0.5 × 10 −3 for all designs. Interestingly, the optimum

esign achieves the highest possible strength and energy absorp-

ion simultaneously. This optimum design has a friction coefficient

f 0.12, a long dovetail d/R o = 0.6 and a vanishingly small lock-

ng angle ( θ0 = 0.125 °). A further increase in the plateau length

 d/R 0 > 0.6 ) did not generate any further improvements. 

.3. Double locking sutures 

The dovetail design demonstrated how distributing the contact

tresses over a larger area could delay fracture of the tabs and

ead to higher performance. We now examine another approach,

here the pullout force is transferred over more than one contact

rea. "Double locking" suture geometries were obtained by enrich-

ng the φ(s) with a second segment with a nonzero slope ( Fig. 13 a).

he most interesting cases are produced when this second slope

s negative, which then produces a second locking site of radius

 1 ( Fig. 13 b). The slope of that segment is therefore −1/R 1 on the

(s) . This enriched design has therefore three independent non-

imensional geometrical parameters: (i) interlocking angle θ0 , (ii)

adii ratio R 0 /R 1 , (iii) cumulative angular function φ0 / φ1 . The su-

ure angle function is written: 

φ( s ) = 

s 
R 0 

, 0 ≤ s ≤ s 1 

φ( s ) = 2 φ0 − s 
R 1 

, s 1 ≤ s ≤ s 0 
(29) 

Other geometrical parameters are written: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

φ0 = θ0 + π/ 2 

φ1 = −θ1 + π/ 2 

s 1 = R 0 φ0 

s 0 = R 0 φ0 + R 1 ( θ0 + θ1 ) 

w = 2 [ 2 ( R 0 + R 1 ) sin φ0 − 2 R 1 sin φ1 ] 

L = 2 [ R 0 ( 1 − cos φ0 ) − R 1 ( cos φ0 − cos φ1 ) ] 

(30) 
There are geometric constraints on R 0 / R 1 and θ0 which restrict

he range of possible designs for this suture. The transition angle

1 can be written: 

1 = arccos 

(
1 

2 

(
R 0 

R 

+ 1 

)
cos θ0 

)
(31) 
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Fig. 14. (a) Progressive pullout showing the two locking stages; effects of radii ratio R 0 /R 1 on (b) pullout response and (c) maximum tensile stress in the solid tabs. 
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However Eq. (31) has a solution only if: 

R 0 

R 1 

≤ 2 

cos θ0 

− 1 (32)

In addition the contour of the suture cannot intersect, therefore

a physical condition is given as: 

1 − cos θ0 

cos θ0 

< 

R 0 

R 1 

< 

cos θ0 

1 − cos θ0 

(33)

Eqs. (32) and (33) define the boundaries of admissible geome-

tries for this type of sutures ( Fig. 13 c). The pullout response can

be decomposed into two stages. In the first stage, the two pairs of

locking sites are in contact ( Fig. 14 a). As the pullout progresses the

system may reach a second stable locking configuration, which can

occur if R 0 / R 1 ≥ 1. Further pullout from that position only involves

one contact pair. Using Fig. 3 a–c, and 13 b above, we can derive the

kinematics relations for stage 1: 

δ

R 0 

= 

(
1 + 

R 1 

R 0 

)[
1 − cos θ0 

cos θ

]
(34)

u 

L 
= 

sin θ0 − sin θ + 0 . 5 ( δ/ R 0 ) sin θ

1 + 3 sin θ0 

(35)

F 

wtE 
= 

P 

R 0 tE 

(
sin θ + f cos θ

cos θ0 

)
(36)

At the second stage: 
u 

L 
= 

3 sin θ0 − sin θ + 0 . 5 ( δ/ R 0 ) sin θ

1 + 3 sin θ0 
(37)

F 

wtE 
= 

P 

R 0 tE 

(
sin θ + f cos θ

2 cos θ0 

)
(38)

These equations are combined to compute the pullout response

f the suture. We found that f and θ0 have the expected ef-

ect: they both increase the strength and energy absorption of the

uture, but they also increase the maximum stress in the tabs.

ig. 14 b shows the effect of R 0 /R 1 on the pullout response. The case

 0 /R 1 = 1 produces two force peaks, the first peak corresponding

o the force generated by two contact pairs, the second peak be-

ng generate by only one contact pair. As a result, the second peak

s half of the first one. Interestingly increasing R 0 /R 1 increases the

econd peak, because the second pullout stage is generated by a

arger geometric interference between the tabs. This effect is very

ensitive to the value of R 0 /R 1 . For R 0 /R 1 = 1.02 the two peaks are

qual, and for R 0 /R 1 = 1.03 the second peak becomes higher than

he first. This “geometric hardening” can generate some attractive

echanisms at large length scales ( Mirkhalaf and Barthelat, 2017 ). 

The maximum tensile stresses can be divided into a contribu-

ion from normal forces, and a contribution from the frictional

orces. 

(i) Hole in an infinite plate loaded by a frictionless pin in the in-

plane direction ( Ciavarella and Decuzzi, 2001; Persson, 1964 ):

in this configuration the inner side of a hole is loaded by a

contact force acting along the radial direction. The resulting



I.A. Malik, F. Barthelat / International Journal of Solids and Structures 138 (2018) 118–133 129 

Fig. 15. (a) and (b) contour plots of maximum pressure for θ 0 = 10 ° and f = 0.4; (c) contour plot of maximum principal stress (d) and (e) traction and stresses as function of 

pullout distance showing a good agreement between the analytical and finite elements results. 

Fig. 16. (a) Possible combination of the parameters θ 0 , f and R 0 /R 1 for optimum designs; (b) material property map showing the optimum energy absorbed and the optimum 

pullout strength, for R 0 /R 1 = 1, 1.01, 1.02 and with the design constraint σ s / E = 1/100. 

 

 

 

 

 

 

 

 

b  

a  
maximum tensile stress is the tangential stress at the edge

of the contact area. 

σ (P) 
max = 

P 

Rt 

5 − ν

2 π
(39) 

(ii) Periodic frictional contact : With a sliding frictional contact,

the maximum tensile stress is close to the trailing edge of

contact. A solution was derived using Kolosov-Muskhelishvili

general formula and the theory of automorphic functions

( Dundurs et al., 1973; Goryacheva and Martynyak, 2014;
Kuznetsov, 1976 ). A sinusoidal periodic contact problem is

considered and the sinusoidal equation with amplitude 	

and wavelength l is given as: 

y = δ − 	
(

1 − cos 
2 πx 

l 

)
(40) 

Where x is the coordinate of the interface, δ is the interference

etween two contacting tabs. Assume that the contact area and the

mplitude is small ( a < < R and 	< < R ), the maximum pressure is
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Fig. 17. (a) ( φ-s ) curve for a two-parameter suture; (b) Corresponding profile; (c) Here the “strength” of the geometrical interlocking is governed by the interlocking angle θ 0 

and by the number of clocking sites. The cases highlighted in red is not physically acceptable. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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given as: 

p 0 = 

El 

2 πR 0 

sin 

(
πb 

l 

)
(41)

Where R 0 is the radius of curvature, b is the half-width of con-

tact area and it is given as b = 

l 
π arcsin ( πa 

l 
) , E, v are the elas-

tic modulus and Poisson’s ratio for the solid material. The maxi-

mum tangential stress in frictional contact is given as σ ( f P) 
max = 2 f p 0 

( Johnson and Johnson, 1987 ), and the superposition of both fric-

tionless and periodic frictional contact stresses gives the maximum

tensile stress in the suture. Fig. 14 c shows the dependence of max-

imum tensile stress on radii ratio R 0 /R 1 . The maximum pressure

and maximum stress from the finite element model are shown in

Fig. 15 a–c below. The maximum stress occurred at the edge of the

contact region ( Fig. 15 c) which agrees with the analytical solution.

Fig. 15 d and e shows excellent agreement between the finite ele-

ments and analytical predictions in terms of pullout response and

maximum tensile stress within the material. 

A design optimization was performed on the geometry of the

double locking design, with the maximum stress in the tab as de-

sign constraint. The material fractures when 

σmax 
E = 

σS 
E and Fig. 16 a

shows for any given radii ratio R 0 /R 1 , the possible combination(s)

of friction coefficient f and interlocking angle θ0 from the opti-

mization method by setting the strength-modulus ratio to 
σS 
E =

1 
100 . The results show that R 0 /R 1 has little effect on the failure map

within the range explored. Fig. 16 b shows the optimum energy ab-

sorption and strength of material distribution for different designs.

Compared to the single locking design, the double locking design

increases the optimum strength by a factor of two, and the opti-
um energy absorption by a factor of about three. When R 0 /R 1 is

ncreased the possible range of angles and friction becomes nar-

ower, and relatively high values of R 0 /R 1 ( R 0 /R 1 = 1.02) become

ub-optimal in terms of energy absorption. For all designs, the op-

imum material properties are achieved with a low friction coeffi-

ient f, and relatively high interlocking angle θ0 . 

.4. Multi-locking ( N > 2) suture geometries 

With the same objective to decrease the frictional stress by cre-

ting more contact points, we finally explore locking geometries

ith N ( N > 2) pairs of locking sites. Fig. 17 a shows a φ(s) function

or a N = 3 design. There are seven independent, normalized geo-

etric parameters for N = 3: θ0 , R 0 /R 1 , R 0 /R 2 , R 1 /R 2 , φ0 / φ1, φ0 / φ2,

nd φ1 / φ2 . More generally, multi-locking sutures with N contact

airs have 1 + 2 
∑ N−1 

k =1 
(N − k ) independent, normalized geometric

arameters: θ0 , R 0 /R 1 , …, R 0 /R N-1 , φ0 / φ1 , …, φ0 / φN-1 . The previous

ection showed that in terms of strength and energy absorption

 0 /R 1 = 1 is the best design for double locking sutures. Therefore in

his section we only consider cases where R 0 = R 1 = … = R N-1 = 1. 

A closed form for the pullout response can be obtained by ex-

ending the N = 2 solution. There are N stages of pullout, and the

ullout force for the first stage is given as: 

F 

wtE 
= 

NP 

R 0 tE 

(
sin θ + f cos θ

2 cos θ0 

)
(42)

The equations for stress are similar to the double locking and

he major difference is the half-width of contact b and length l ,

hich is given as b = 

l 
π arcsin ( πa 

l 
) , for all sutures with N > 1 . 
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Fig. 18. (a) Progressive pullout showing the three locking stages for suture with N = 3 ; effect of number of locking on (b) average pullout force of the suture, and (c) 

maximum tensile stress in the solid tabs. 

 

m  

p  

i  

N  

p  

s  

r  

c  

m  

(

 

i  

r  

d  

a  

f  

c

5

 

n  

t  

f  

m  

f  

fi  

p  

c  

p  

(  

F  

f  

(  

l

o  

e  

t  

e  

b  

l  

b  

s  

i  

c  

a  

f  

g  

fi  
Fig. 18 b and c show the effect of N on the pullout force and

aximum tensile stress. For each design there is a total of N local

eaks of force corresponding to N stages of pullout. The first peak

s the maximum pullout force, and it increases proportionally with

 because of the addition of locking sites of equal strength. The

eaks then decrease linearly until complete pullout. For compari-

on we also performed finite element simulations, with some rep-

esentative results shown in Fig. 19 . The progressive pullout was

aptured in the models ( Fig. 19 a) and we obtained good agree-

ent with the closed form solution in terms of pullout behaviour

 Fig. 19 b) and maximum stress ( Fig. 19 c). 

The failure transition map ( Fig. 20 a) is not affected by a signif-

cant by N . The material property map for N = 1 to N = 7 ( Fig. 20 b)

eveal that the optimum strength increases up to N = 4–5, but then

ecreases thereafter. The optimum energy absorption increases by

 significant margin up to N = 4–5, after which the gain is marginal

or N = 6 and 7, and above N = 7, the optimum energy absorption

ontinuously decreases. 

. Summary 

Sutured interfaces and geometric interlocking are common in

atural materials. In this study we used a morphometric method

o capture the contour of sutures by using the cumulative angular

unction φ(s) as a function of curvilinear position s . The two di-
ensional profile ( x-y ) of the suture is then easily reconstructed

rom φ(s). While the method is simple, relatively complex pro-

les can be captured using only a few geometrical parameters. Im-

ortantly, the method allows for re-entrant features, an essential

haracteristic of interlocking sutures. The study starts with a sim-

le jigsaw-like model which is enriched with additional features

plateau regions in dovetail-like sutures, multiple locking sites).

or each case, closed form solutions are developed to capture the

ull nonlinear pullout response and to predict the maximum stress

and potential fracture) in the solid material. These closed form so-

ution are in close agreement with finite elements. A “brute force”

ptimization approach was used on each type of design, where ev-

ry combination of geometrical parameters is examined. We could

hen identify the optimum parameters for pullout strength and/or

nergy absorption. Fig. 21 summarizes our finding by showing the

est design and their performance. The single locking material is

argely outclassed by all the other designs, and we found that the

est geometry is the multi-locking tab with N = 5 (using a limit

trength for the solid of 
σS 
E = 

1 
100 , which is typical of engineer-

ng materials). For comparison, the pullout of a perfectly straight

ylindrical rod or fiber would require an initial compressive stress

cross the interface to generate any pullout force. In fiber rein-

orced ceramic-ceramic composites, this initial compression can be

enerated, for example, by thermal expansion mismatch between

ber and matrix ( Evans, 1990 ). In contrast, our sutures start in a
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Fig. 19. (a) and (b) contour plots of maximum pressure for θ 0 = 10 °, N = 3 , and f = 0.4; (c) contour plot of maximum principal stress (d) and (e) traction and stresses as 

function of pullout distance showing a good agreement between the analytical and finite elements results. 

Fig. 20. (a) Possible combinations of the parameters θ 0 , f and N for optimum designs; (b) Material property map showing the optimum energy absorbed and the optimum 

pullout strength, for design constraints σ s / E = 1/100. 
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stress-free state, and compression across the interfaces is gener-

ated by geometric interference as the suture is pullout out. Over-

all the limiting factor for optimization is the frictional stress, and

the results show that it is very advantageous to add more contact

points to decrease that stress. For the same reason it is also prefer-

able to use very low coefficients of frictions. This result raises an
nteresting hypothesis on the function of the protein layer in nat-

ral sutured lines. These soft proteins are often described as es-

ential to provide compliance and toughness at the interface. Our

esult suggests that their function could also be to “lubricate” the

uture line to prevent the fracture of the solid structures. These

odels can serve as guidelines to design and optimization of non-
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Fig. 21. Material property map showing the optimum energy absorbed and the op- 

timum pullout strength for all the designed explored in this study ( σ s / E = 1/100). 
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