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Exploring the Fracture Toughness
of Tessellated Materials With the
Discrete-Element Method
Architectured materials contain highly controlled structures and morphological features at
length scales intermediate between the microscale and the size of the component. In dense
architectured materials, stiff building blocks of well-defined size and shape are periodically
arranged and bonded by weak but deformable interfaces. The interplay between the archi-
tecture of the materials and the interfaces between the blocks can be tailored to control the
propagation of cracks while maintaining high stiffness. Interestingly, natural materials such
as seashells, bones, or teeth make extensive use of this strategy. While their architecture can
serve as inspiration for the design of new synthetic materials, a systematic exploration of
architecture-property relationships in architectured materials is still lacking. In this
study, we used the discrete element method (DEM) to explore the fracture mechanics of
several hundreds of 2D tessellations composed of rigid “tiles” bonded by weaker interfaces.
We explored crack propagation and fracture toughness in Voronoi-based tessellations (to
represent intergranular cracking in polycrystalline materials), tessellations based on
regular polygons, and tessellations based on brick-and-mortar. We identified several tough-
ening mechanisms including crack deflection, crack tortuosity, crack pinning, and process
zone toughening. These models show that periodic architectures can achieve higher tough-
ness when compared with random microstructures, the toughest architectures are also the
most anisotropic, and tessellations based on brick and mortar are the toughest. These find-
ings are size independent and can serve as initial guidelines in the development of new
architectured materials for toughness. [DOI: 10.1115/1.4044015]

Keywords: discrete element modeling, tessellation, Voronoi, brick and mortar, toughness,
fracture mechanics

1 Introduction
Specific microstructures, heterogeneities, or hybrid compositions

are now widely used in modern materials to generate high perfor-
mance [1]. These concepts are now pushed to the extreme with
architectured materials, which contain highly controlled structures
and morphological features at length scales intermediate between
the microscale and the size of the component. Architectured mate-
rials include the now well-studied lattice materials, which contain
only a small fraction of solid [2]. In contrast, the less-studied
dense architectured materials are fully solid and are made of build-
ing blocks of well-defined size and shape, arranged in two or three
dimensions [3–5]. The building blocks are stiff so their deformation
remains small and within elastic limits, but the interfaces between
the blocks can channel cracks and undergo nonlinear deformations.
Building blocks can therefore collectively slide, rotate, separate, or
interlock, providing a wealth of tunable mechanisms and properties
[5]. Material architecture can be used to combine high strength and
toughness—two properties that are mutually exclusive in traditional
engineering materials [6,7] or enhance impact resistance [8,9] and
ballistic performance [10] in glasses or ceramics. Interestingly,
nature is well ahead of engineers in making use of architectured
materials. Materials such as bone, teeth, or mollusk shells are also
made of stiff building blocks of well-defined sizes and shapes,
bonded together by deformable bio-adhesives. Material architec-
tures exist in nature in a variety of size scales, from the micron-scale
plates layer in nacre [11] and the cylindrical osteon in bones [12]

to the submillimeter mineralized tiles sheathing the cartilages of
sharks [13] and the macroscale plates in turtle shells [14] (Fig. 1).
The interplay between the shape, size, properties, and arrangement
of the building blocks generates, together with non-linear behavior
at the interfaces, powerful combinations of stiffness, strength, and
toughness not yet found in synthetic materials [5,6,15]. The build-
ing blocks in natural materials do not only simply interact through
contact and friction, but also through complex polymers with sacri-
ficial bonds, dynamic crosslinks, and viscous behaviors [16,17].
The interplay of architecture and interfaces generates unique prop-
erties, for example, in mollusk shells or bone where stiffness and
hardness are generated by high mineral contents, and toughness
is generated by crack deflection [18,19], crack bridging [20],
process zone toughening [11,21], or a combination of the above
mechanisms [22,23].
Recent studies on architectured materials and biological materials

have therefore highlighted the potential of material architecture, but
to this day, the lack of mechanistic models for dense architectured
materials makes optimization difficult and hinders the discovery of
new designs. The exploration of new architectures can be performed
using brute force optimization [24] or more recently using topo-
logical and geometrical optimization [25,26] or machine learning
algorithms [27,28]. The majority of these studies are based on the
finite element method, which becomes computationally prohibitive
on large models that must capture nonlinear processes associated
with crack propagation [29]. Recently, the discrete element
method (DEM) was used to capture crack propagation and tough-
ness in large models of nacre-like materials [29–31]. These models
capture multiple toughening mechanisms that act together, some of
them involving large volumes of material [29]. In this study, we
extended this modeling approach to a wider range of tessellations
that included Voronoi-based tessellations (representing typical
polycrystalline materials where the intergranular fracture is domi-
nant), tessellations based on regular polygons, and finally

1Corresponding author.
2Present address: Department of Mechanical Engineering, University of Colorado

Boulder, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received April 2, 2019; final manuscript
received May 30, 2019; published online June 13, 2019. Assoc. Editor: Thomas
Siegmund.

Journal of Applied Mechanics NOVEMBER 2019, Vol. 86 / 111013-1Copyright © 2019 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/86/11/111013/5433610/jam
_86_11_111013.pdf by C

olorado At Boulder user on 18 January 2021

mailto:najmul.abid@mail.mcgill.ca
mailto:florent.hannard@gmail.com
mailto:will.pro87@gmail.com
mailto:francois.barthelat@colorado.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4044015&domain=pdf&date_stamp=2019-09-17


tessellations based on brick and mortar tilings. More than a hundred
tessellations were modeled, with crack propagation along five direc-
tions considered for each tessellation. The report concludes with an
analysis of the results, which revealed recurrent failure patterns and
design guidelines for 2D architectured materials.

2 Fracture Model Setup and Validation
The fracture models we considered in this study are two-

dimensional tessellations composed of rigid tiles (Fig. 2(a)), each
tile being connected to its neighbors by nonlinear interfaces
(Fig. 2(b)). The geometric effect of the interface thickness relative
to the tile size is negligible and therefore is modeled with zero-
thickness cohesive elements. The interface traction-displacement
response is governed by a phenomenological cohesive law σ(Δu)
which we assume to be triangular for simplicity (Fig. 2(c)). The
interface separation Δu accounts for both the normal and tangential
separation of the tiles caused by the translation, sliding, and rotation
of the tiles (Fig. 2(b)) [32–34]. The initial slope is defined as E and

(a) (c)

(b) (d )

Fig. 1 Examples of natural tessellations occurring in nature: (a) 3D brick andmortar tiling in nacre,3 (b) cylindrical
osteon in bones,4 (c) plate-like geometry on turtle shells,5 and (d ) mineralized tesserae on the jaw of sharks6

(a)

(b) (c)

Fig. 2 (a) Overview of the fracture DEM model showing full virtual specimen with dimen-
sions, boundary conditions, and J-integral contour and close-up view of the rigid tile
arrangement, (b) schematic of two rigid tiles with an interface in the deformed configura-
tion, and (c) a triangular cohesive law that models the interactions between the two rigid
tiles at the interface

3https://www.freepng.es/png-63uj5u/
4https://www.clipart.email/clipart/hip-bone-clipart-54841.html
5https://pixabay.com/photos/turtle-tortoise-reptile-2815539/
6http://www.amisvegetarian.com/shark-clipart-black-and-white-st-patricks-day-

clipart/shark-clipart-black-and-white-great-white-shark-silhouette-at-getdrawings-
free-for-personal-clipart-free-download/
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softening occurs when the interface separation exceeds Δus. The
interface is considered broken (traction-free) once it reaches the crit-
ical separation Δuu.
For this study, we set Δuu/Δus= 15 which gave a good resolution

of the cohesive length. The cohesive secant stiffness k is defined as
the ratio of the interface traction to the interface opening at any
point: k= σ(Δu)/Δu (k=E in the elastic region). During unloading,
the traction and the separation return to zero linearly with no resid-
ual deformation (i.e., damage model, Fig. 2(c)) and Δumax is the
maximum separation experienced by the interface. The interface
toughness defined as the area under the cohesive law in Fig. 2(c):

Ji =
1
2
σ0Δuu (1)

In the DEM approach, only the displacements and rotations of
the center points of the tiles (nodes) are tracked as degrees of
freedom, with three degrees of freedom per node in 2D. The inter-
face opening displacement between adjacent tiles can be computed
directly from the relative displacements and rotations of the tiles,
since the tiles are assumed to be rigid. For the pair of tiles shown
in Fig. 2(b), we denote the center point coordinates of tile 1 and
tile 2 as (x01, y

0
1) and (x02, y

0
2), respectively. The nodal displacements

and rotations are represented in generic notation as q1–q6 where q3i−2
and q3i−1 are the translational displacements in the x- and
y-directions (respectively) and q3i is the rotational displacement of

tile “i” (i= 1,2). For the deformed pair of the tiles shown in
Fig. 2(b), the total interface opening separationΔu can be expressed
in the undeformed interface coordinate system y′ (Fig. 2(a)) as
follows:

Δu(y′)

=
�����������������������������������������������������������������
(q4 − q1 + q3(y′ − y01)+ q6(y02 − y′))2 + (q5 − q2 + x01q3 − x02q6)

2
√

(2)

where the relative rotation between the two tiles was assumed to be
small. In Eq. (2), the interface separation is computed from the rel-
ative translations and rotation of the tiles. This separation may
involve opening displacements, shearing displacements, or a com-
bination of the two. The stored elastic energy in the interface is
computed as

Wint =
1
2

∫sL/2
−sL/2

σ(Δu(y′), Δumax)Δdy′ (3)

where sL is the length of the interface and σ(Δu, Δumax) is the inter-
nal interface traction with a damage variable denoted as Δumax. For
computational efficiency, we used two-point Gauss quadrature
y′ = ±sL/

��
3

√( )
to perform the integral that gives

Wint

=
sL
4

(k1 + k2)(q2 −q5 − x01q3 + x02q6)
2
+
1
6

k1 q1 −q4 + y01q3 +
sL

2
��
3

√ (q3 −q6)− y02q6

( )2

+ k2 q1 −q4 + y01q3 +
��
3

√
sL(q6 −q3)− y02q6

( )2( )( )

(4)

where k1 and k2 are the cohesive secant stiffnesses (Fig. 2(b)) at the
first and second integration points, respectively. The external work
Wext for the two-tile system is given as

Wext =
∑6
i=1

fiqi (5)

where f3i−2 and f3i−1 are the forces and f3i represents the moments on
tile “i” (i= 1,2). The total potential energy of the systemW is simply
given as

W =Wint −Wext (6)

The equilibrium configuration is governed by the minimum of
potential energy:

∂W
∂qi

(q1, f1, q2, f2 . . . qn, fn) = 0 (7)

For the two-tile system shown in Fig. 2(b), Eq. (7) represents six
(n= 6) scalar equations and unknowns that can be regarded as either
the forces or the displacements. Choosing the former, the solution is
expressed as

f1 = g1(q1, q2, . . . , qn)

f2 = g2(q1, q2, . . . , qn)

. . . .

fm = gm(q1, q2, . . . , qn)

(8)

where gi are the generic nonlinear functions. To derive the compo-
nents of the elemental stiffness matrix that defines an interaction
between two tile centers, we set each DOF individually at unity

while fixing the other DOF’s at zero [35]:

Kij
e = gi(q1 = δ1j, q2 = δ2j, . . . , qn = δnj) (9)

where Kij
e is the elemental DEM stiffness matrix and δij represents

the Kronecker delta (δij= 1 when i= j and δij= 0 when i≠ j). For
completeness, the individual terms of the stiffness matrix are
shown in Appendix for the DEM element in Fig. 2(b). In the
linear region of the cohesive law, k1=E and k2=E, the elemental
DEM equations are linear and expressed in a general form as

Kij
eqj = fj (10)

which can be assembled element-wise using standard procedures to
form the global stiffness matrix. The element Jacobian entries are
identical in the linear regime to the stiffness matrix entries Jij

e=
Kij

e. In the nonlinear softening region, (Δ>Δus), the secant stiff-
ness k is a nonlinear function of the element nodal degrees of
freedom (k= σ(Δ)/Δ), where Δ is expressed in Eq. (2). In shorthand
form, the nonlinear elemental DEM stiffness equation is expressed
as

Kij
e(q1, q2, . . . , qn)qj = fj (11)

The Jacobian entries in the softening regime are obtained through
partial differentiation of Eq. (11):

Jij
e = Kij

e +
∂Kik

e

∂qj
(q1, q2, . . . , q12)qk (12)

The elements were assembled, and the global response was com-
puted using a DEM scheme that we implemented using MATLAB

[36]. In the linear range, the nodal displacements and the rotations
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are solved with a single function call to a standard sparse linear
solver to solve Eq. (10)

{q} = [K] \ {f } (13)

Once the system becomes nonlinear, Eq. (10) is solved with the
classical Newton–Raphson (NR) method [37] with continuous stiff-
ness and Jacobian updates in every NR iteration:

{q}z+1 = {q}z − [J(q)] \ {g(q)} (14)

where {g(u)} is the residual force vector that can be expressed as

{g(q)} = [K(q)]{q} − {f } (15)

A time step was considered converged when the residual forces
were less than 10−4 N. After each converged load step, both the
global stiffness matrix and the Jacobian matrix were updated
based on the converged displacements. Interfaces that exceeded a
separation Δu>Δuu (cohesive traction vanishes) were considered
fractured, and the fractured interfaces connected to the tip of the
main crack contributed to crack advance. The position of the
crack tip and the length of the crack were updated accordingly
and at each time step. The effective crack length was determined
at each time step as the projected length of the crack along the
x-direction. The characteristic size of the tessellation was captured
using �L, which is the average length of all the interfaces present
in the model (Fig. 2(a)). The normalized size of the fracture
model was then defined as Nx/�L by Ny/�L. A deep precrack was cre-
ated in the model from the center of the left edge all the way to the
center of the model (Fig. 2(a)), by removing the cohesive elements
along the precrack (the length of the precrack was therefore always
half of the horizontal width of the model (Fig. 2(a)). A linearly dis-
tributed displacement boundary conditions was applied on the
upper and lower boundaries (y = ±Ny/2�L) of the model (Fig. 2(a)).
The upper displacements followed the linear distribution:

u(x) = umax
1
2
−

x

Nx/�L

( )
(16)

where umax is the maximum displacement (at x = −Nx/2�L). The
lower boundary was subjected to the equivalent symmetric dis-
tribution. This particular distribution of displacement boundary
conditions is consistent with applied rotations (bending) and pro-
motes stable crack propagation in the system [31,38] in a way that
is compliant with the Hill–Mandel condition [39]. Left and right
boundaries (x = ±Nx/2�L) were free surfaces. During the simulation,
umax was progressively increased to propagate a crack through the
specimen. Stable crack propagation could be achieved in all simula-
tions, as verified by numerical convergence for small incremental
crack advances to a new stable equilibrium state as the loading was
ramped.
At each loading step, the length of the crack was calculated auto-

matically, and the crack driving force was computed using a discre-
tized version of the J-integral [40]:

J =
∫
Γ

Wn1 − ti
∂ui
∂x1

( )
dΓ (17)

where W is the strain energy density, n1 is the first component of
the normal vector to the contour, ti is the traction vector, ui is the
displacement vector, and Γ is the contour path. Because the top
and the bottom edges of the integration contour were taken
through the rigid tiles, and the integration contour of the other
two edges (left and right) were taken through the interfaces, the
J-integral (Eq. (17)) simplified to only include terms involving
the strain energy density of the interfaces and the net reaction
forces and displacements of the tiles on which the boundary condi-
tions were applied. The J-integral is path independent if the J inte-
gration contour is taken far away from the crack tip, and if the
plastic unloading is relatively small in comparison to the model
size [41,42]. The J-integral contour we used here followed the
outer edge of the model (Fig. 2(a)), and we made sure that a suffi-
ciently large number of tiles was included in the models (large Nx/�L
and Ny/�L). For a given model size, we verified that different con-
tours led to the same J-integral value (not shown here). The main
outcome for each simulation was the crack resistance curve
(R-curve) for a particular set of tessellations.
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Fig. 3 (a) Sequence of deformation and crack propagation in a hexagonal tessellation, (b) corresponding normal-
ized force–displacement curve, and (c) corresponding crack resistance curve. The snapshots in (a) are magnified
and only represent about 5% of the full model, which had full dimensions of Nx/�L= 52 and Ny/�L= 181.
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Figure 3 shows fracture simulation results from an example hex-
agonal tessellation. The evolution of the crack with increasing load
is shown in Fig. 3(a). Initially, all interfaces deformed elastically
until the highest stressed interfaces, just ahead of the crack tip,
reached the yield strength σ0 and then immediately started to
soften (shown in dark grey in Fig. 3(a)). As the applied displace-
ment was increased further, more interfaces started to soften,
forming a process zone ahead of the crack tip. Once the interface
just ahead of the crack tip reached the critical separation Δuu, the
cohesive traction vanished and the crack propagated by a distance
of one interface. Increasing the applied displacement further
resulted in the stable propagation of the crack across the model
(snapshot 3 in Fig. 3(a)). The corresponding normalized force–
displacement curve (Fig. 3(b)) is qualitatively similar to what one
would expect in a conventional fracture test with stable crack prop-
agation [43]: Initial linear increase up to the onset of crack propaga-
tion, followed by a gradual decrease in the force as the crack
propagates. The “softening tail” of the cohesive law was long
enough (i.e., large ΔUu/ΔUs) so we did not observe elastic snap-
back during crack propagation. Therefore, numerical damping
was not needed to achieve convergence [44]. The area under the
force–displacement curve is related to the energy absorbed by the
specimen, but the true fracture toughness is shown by the crack
resistance curve in Fig. 3(c) which is the computed J-integral as a
function of crack propagation. J progressively increases as the
process zone develops and reaches a steady-state value when the
crack started to propagate. Here, we normalize the toughness as J/
Ji and the crack extension asΔa/�LwhereΔa is the crack length pro-
jected onto the x-direction. The crack resistance curve we obtained
is size-independent because they are presented in normalized,
dimensionless form. In addition, a fixed straight increment of
crack propagation along the x-direction involves the fracture of a
length of the interface that is dependent on the type of tiling but
not on the size of the tiles. If the cohesive law at the interface is
kept constant, then the size of the tiles has no effect on toughness.
However, changing the size of the tiles for a fixed cohesive law
would be equivalent to increasing the volume fraction of the tiles
for a fixed interface thickness, with the effect of changing the stiff-
ness of the tessellation: smaller tiles would lead to lower stiffness.
In the particular simulation shown in Fig. 3, the steady-state crack

resistance is J/Ji= 1.13. For comparison, we derived the analytical
solution based on the tortuosity of the crack path (the actual crack
length divided by the shortest length from the start to the end of
the crack) which gave us J/Ji= 1.15, within 2% of the prediction
from the DEM simulation. Several other model validations with
simple analytical models were performed but they are not shown
here for brevity.
Before we present toughness predictions on a variety of tessel-

lated materials in the next sections, we discuss some of the limita-
tions of our DEM approach: (i) the details of crack propagation
within individual interfaces are only captured approximately; there-
fore, the DEM models are appropriate only in cases when the
process zone is larger than the size of individual tiles; (ii) our for-
mulation assumes small relative rotations between tiles (for effi-
ciency); therefore, we monitored the maximum relative rotation in
the model, and in all cases, it was less than 3 deg, and finally,
(iii) the model does not take into consideration the contact forces
between the tiles (which would be computationally expensive).
However, we monitored the interpenetration of the tiles during
each simulation to ensure that it was negligible.

3 Voronoi Tessellation
The Voronoi tessellation has been used extensively in material

science to represent polycrystalline microstructures with nonuni-
form grain shapes [45]. Indeed, the mathematical rules that
govern a Voronoi tessellation are very similar to the physical
rules governing the nucleation and growth of grains from a melt,
with the location of the grain boundaries determined by the grain

growth velocities for the given seed pattern [45]. The construction
of a Voronoi tessellation starts with a spatial distribution of points
called seeds. A tessellation is then generated by dividing the
plane into Voronoi cells, such that any point within each cell is
closer to its seed than to any other seed [46]. Here, we used the
DEM prediction for the “intergranular” fracture toughness of
Voronoi tessellations as a reference value for a brittle two-
dimensional polycrystalline material. We considered two types of
Voronoi tessellations: random Voronoi tessellation (RVT) and cen-
troidal Voronoi tessellation (CVT). The RVT is generated from a
random distribution of seeds. This approach produces tessellation
with overly large or small internal angles not observed in actual
polycrystalline materials. CVT is a more realistic approach where
a regularization step makes the seed points coincide with the cen-
troids of individual Voronoi cells [47]. Here, we used the Lloyd
algorithm that is one of the most popular iterative schemes for com-
puting the CVTs [47]. It starts with an initial random distribution of
seeds and consists of a simple iterative algorithm: (i) construct the
Voronoi tessellation associated with the current seeds distribution,
(ii) compute the centroid of each Voronoi polyhedron, and
(iii) use these centroids as the seeds distribution to generate the
Voronoi tessellation of the next iteration. The iterative procedure
terminates when the seeds distributions between two consecutive
steps meet some convergence criterion. The centroidal Voronoi
tessellation results in more regular polygons containing less of
these acute internal angles [48]. A total of 100 RVTs and 100
CVTs were generated and converted into a full DEM model.
Each model contained 5000 Voronoi tiles and had a size of Nx/�L =
75 by Ny/�L = 150. Figure 4 shows snapshots of the crack propa-
gation together with a typical crack resistance curve produced by
an RVT model. As expected, the crack broadly follows the direc-
tion of the driving force (from left to right), but the crack path is
tortuous because of local crack deflection, a significant toughening
mechanism due to the additional surface area traversed by a crack
relative to the area of a straight path. In addition, high stresses
“activate” the shortest (weakest) interfaces in a large region
ahead of the crack tip, and this “cloud” of microcracks unloads
when the crack advances (white interfaces in the wake of the
crack). We also observed the formation of daughter cracks ahead
of the main crack, as well as the formation of a few crack
bridges behind the crack tip (Fig. 3(a), second snapshot). The
crack propagation rate was not constant, and we observed multiple
place where the crack is pinned into a tougher region. The applied
load must be increased to unpin the crack and resume propagation.
As a result, the crack resistance curve (Fig. 4(b)) is jagged and
oscillates about J/Ji∼ 1.2.
Fracture simulation from a typical CVT model is shown in

Fig. 4(a). The model contains more regular polygons compared
with RVTs. The crack path is still tortuous because of repetitive
local crack deflections but generally appears to be more straight
at a larger scale compared with RVT. The process zone is more
regular and more confined to the vicinity of the crack tip (the
process zone size tends to decrease with increased uniformity of
the tessellation) compared with RVT. Furthermore, crack bridging
was never observed in the case of CVTs while it was frequently
observed in the case of RVTs (see snapshot 2 of Fig. 4(a)). The
crack resistance curve for CVT oscillates about a similar value
when compared with RVT (i.e., J/Ji∼ 1.2) but the amplitude of
these oscillations is clearly reduced.
In order to compare the fracture of RVTs and CVTs quantita-

tively, we computed the cumulative distribution function of all
the normalized toughness (J/Ji) point across all 100 crack resis-
tance curve in both cases (Fig. 5(a)). The resulting probability
density functions (PDF) are shown in Fig. 5(b). The PDF curve
for RVTs has a wider distribution compared with the taller and nar-
rower PDF of CVTs. In other words, the variability in local tough-
ness is greater for RVTs than for the CVTs. However, the average
value, i.e., the center of symmetry of the PDF, remains very close
the same value (J/Ji = 1.21) in both cases. The larger toughness
variability of RVTs results from the more irregular tiles which
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cause intermittent crack bridging and variations of the process zone
size. However, since the average toughness is almost unchanged,
crack deflection and tortuosity, present by an equal amount in the
RVT and CVT models, are probably the main toughening mecha-
nisms. Indeed, the average tortuosity (i.e., the actual crack length
divided by the shortest distance between the start and the end of
the crack) is equal to 1.2 in both cases. These results for the fracture
toughness of “random” tessellations will serve as a reference for the

following sections that focus on architectured, regularly tessellated
materials.

4 Tessellation With Regular Polygonal Tiles
In this section, we explore periodic tessellations based on regular

polygonal tiles to identify the toughest ones and to find out whether
regular, “architectured” tessellations are superior to random

(a) (b)

/ iJ J/ iJ J

Centroidal
Centroidal

Random

Random

Fig. 5 (a) Cumulative and (b) probability distribution of the normalized toughness for 100
random Voronoi tessellations and 100 centroidal Voronoi tessellations

(a)

(b)
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Unloading
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J
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Fig. 4 Typical fracture patterns in a Voronoi tessellation based on random and centroidal algorithms: (a) close-up of the crack
propagation and (b) corresponding crack resistance curves
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microstructures in terms of fracture toughness. There are several
ways to classify periodic tessellations, and in this study, we chose
a classification based on the works of Grünbaum and Shephard
[49] because it suits itself to a progressive increase in geometrical
complexity. In this classification, “n-uniform” tessellations are
defined based on the number of vertices in a tessellation that can
be mapped through symmetries (i.e., translation, rotation, and reflec-
tion). The complexity of the tessellation increases when n is
increased, and in this study, we considered tessellations with n= 1,
2, and 3. The “1-uniform” tessellations include the three regular

tessellations (Fig. 6) as well as semiregular tessellations which use
two types of polygons (eight total tessellations; also known as
uniform or Archimedean tessellation; Fig. 6). The “2-uniform” tes-
sellations (20 total tessellations; Fig. 7), and “3-uniform” tessellation
(61 total tessellations; Fig. 8) are all based on regular polygons with
identical edge length L and equal internal angles. All tessellations
considered in this section have an “edge-to-edge” arrangement
where the edges of neighboring tessellations always fully overlap
(non-edge-to-edge tessellations are discussed in Sec. 5). We imple-
mented a MATLAB procedure to automatically generate large fracture
models for each of the tessellations (Figs. 6–8). Since it is expected
for the fracture toughness to be orientation-dependent, for each tes-
sellation, we ran models with the initial crack and loading direction
oriented at five different angles (0 deg, 30 deg, 45 deg, 60 deg, and
90 deg) relative to the initial tessellation geometries. We found that
for some geometries, symmetrical crack bifurcations creates conver-
gence issues. To alleviate this problem, we perturbed the strength of
each interface in themodel by a random±0.01%. These small pertur-
bations did not have any effect on overall fracture toughness.
For each case, we used the same loading scenario shown in

Fig. 2(a) and the J-integral was used as a measure of toughness.
For each case, we also verified that the results were model-size
independent. Figure 9(a) shows a typical set of results for crack
propagation for a single tessellation tested along five directions,
with corresponding crack resistance curves shown in Fig. 9(b).
This particular tessellation (#43) is composed of triangles,
squares, and hexagons. The average dimensions of these models
were Nx/L= 54 and Ny/L= 234. As expected, the toughness was
generally higher than the toughness of the interface Ji due to
crack tortuosity. In addition, crack propagation and toughness in
this tessellation are anisotropic, and different orientations activated
different mechanisms to produce different toughness (a common
feature in architectured materials [31,50]). The 90-deg orientation
was the weakest and produced a toughness equal to the toughness
of the interface because the crack was perfectly straight with no
additional toughening mechanisms, while other orientation gave
rise to crack deflection, crack tortuosity, pinning, and unpinning
(which resulted in fluctuations on the crack resistance curves).

Fig. 6 DEM models of the 11 1-uniform tessellations (regular
tessellation in red, semiregular tessellation in green) with a pre-
crack at 0-deg orientation

Fig. 7 DEM models of the 20 2-uniform tessellation with a precrack at 0-deg orientation
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Interestingly, the 60-deg orientation also produced a rising crack
resistance curve (Fig. 9(b)), because the crack propagated at an
angle that required an increasing amount of driving force to
unpin. Some of the orientations produced a small volumetric
process zone (0 deg, 30 deg, 45 deg, and 60 deg orientations)
while other orientations did not produce any (90-deg orientation
in Fig. 9). The first reason for the formation of a process zone
is t, the rotated orientation of the tiles at the crack tip, which acti-
vated yielding in one or both Gauss quadrature points in the sur-
rounding interfaces (snapshot of 30-deg orientation in Fig. 9(b)).
The second reason is due to the symmetry at the crack tip,
which caused multiple yielding points just ahead of the crack tip
(Snapshot of 45-deg orientation in Fig. 9(b)).
All tessellations produced fracture patterns and properties similar

to case #43 (crack tortuosity, pinning-unpinning, and anisotropy).
In order to compare and rank these tessellations, we sought a way
to compute a single toughness value for each of the crack resistance

curves. This process can be done following ASTM standards
[51,52], corrected beam theory, [53,54], curve fitting [55], or
extracting the maximum, average, or minimum [56–58]. Most
studies have used the last approach (maximum, average, or
minimum), which is also the method we used here. In order to
accommodate models with rising crack resistance curve behavior,
we calculated the average normalized toughness �J/Ji over the
first five cracked interfaces for all models as follows:

�J

Ji
=

1
Ji(Δa/L)5

∫(Δa/L)5
0

J(Δa/L)d(Δa/L) (18)

where (Δa/L)5 is the crack extension Δa/L at the fifth cracked
interface. By this metric, the normalized average toughness for tes-
sellation #43 is �J/Ji = 1.038 at 0 deg, �J/Ji = 1.411 at 45 deg, and
�J/Ji = 1 at 90 deg. We followed the same procedure for model

Fig. 8 DEM models of the 60 one 3-uniform tessellation with a precrack at 0-deg orientation
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setup and analysis for all the 92 tessellations shown in Figs. 6–8.
Figure 10(a) shows a summary of the results where the maximum
average toughness Jmax is plotted as a function of an anisotropy
parameter which we defined as (Jmax − Jmin)/Jmax, where Jmax and
Jmin are the maximum and minimum average toughness from the
five orientations, respectively.
Figure 10(a) shows that, in general, the tessellation that produced

the highest toughness was also the most anisotropic. The most iso-
tropic (and weakest) tessellations are #32 and #55. Tessellation #32
had nearly the same crack paths in all direction. Tessellation #55’s
toughness is governed by tortuosity in the 0 deg and 60 deg orien-
tations and pinning events due to symmetry in the 30 deg and
90 deg orientations (snapshot #55-90 deg in Fig. 10(c)). In terms
of material design and selection, isotropy in toughness should be
prioritized for applications where the state of stress is fluctuating
or not known apriori. For these cases, tessellations #35, #36, and
#38 offer useful combinations of isotropy and toughness in all
directions. For other cases where the state of stress is well
known, other tessellations should be selected and oriented to
prevent failure along expected directions for crack propagation. In
these cases, the tessellations with the highest toughness should be
selected, even if they may be the most anisotropic. The most aniso-
tropic tessellation is tessellation #2, which is the square tessellation
(Fig. 10(a)). The weakest orientations for this particular tessellation
are 0 deg and 90 deg, which result in a toughness equal to the tough-
ness of the interface with a perfectly straight crack (snapshot
#2-0 deg in Fig. 10(c)). The toughest orientation in the square tes-
sellation is 45 deg, with a normalized average toughness of 1.527
due to a tortuous path and a process zone. We found that the tough-
est tessellation tested is #65 because two orientations (30 deg and 90
deg) promote crack branching (snapshot #65-30 deg in Fig. 10(c)). In
addition to ranking the models by anisotropy and toughness, it is
useful to identify recurrent toughening mechanisms. We found that
in most tessellations, crack tortuosity was the main source of tough-
ness. Here, we defined tortuosity as the total crack length divided
by the shortest distance between the start and the end of the crack.
Figure 10(b) shows the average normalized toughness (Eq. (18)) as
a function of the tortuosity for all the DEM models. The majority
of the models are clustered near a straight line with unit slope,
which indicates that these models only rely on tortuosity for tough-
ness. Tortuosity and crack deflection can produce relatively high
toughness, but these tessellations produced very small process
zones and lacked other toughening mechanisms such as crack

branching and bridging (snapshot of #2-0 deg and #10-45 deg in
Fig. 10(c)). Tessellations that are far above the “tortuosity” line
produced more powerful toughening mechanisms in addition to
crack deflection (snapshot of #47-45 deg in Fig. 10(c)): crack branch-
ing (snapshot #65-30 deg in Fig. 10(c)), crack pinning (snapshot
#55-90 deg in Fig. 10(c)), and large volumes of process zone (snap-
shot #47-45 deg in Fig. 10(c)). Crack branching was observed with
improvements in toughness when symmetry was composed of
small polygons (number of sides <5). Process zones developed
because of two main factors. First, the rotation of the polygons at
the crack tip initiated yielding in the surrounding interfaces (snap-
shot #65-30 deg in Fig. 10(c)) and second, a symmetry ahead of
the crack tip yields interface to occur in both potential crack
paths (snapshot #55-90 deg and #47-45 deg in Fig. 10(c)). Crack
bridging was rarely observed in tessellations based on regular
polygonal tiles.

5 Brick and Mortar Tessellations
The DEM models presented so far were all “edge-to-edge” type

tessellations where edges of neighboring polygons fully over-
lapped. In this section, we explore other types of tessellations
with only partial overlap. In order to restrict the design space to a
manageable size, we chose to focus on non-edge-to-edge tessella-
tion based on “brick and mortar” patterns, because this type of
architecture is common in hard natural materials [59] and in bioin-
spired architectured materials [60]. We explored 19 unique arrange-
ments of bricks adapted from Plummer [61] and developed the
DEM models shown in Fig. 11. Some of the tessellations used
only one brick geometry, while others used two brick geometries
(long bricks with an aspect ratio of 5 and short bricks with an
aspect ratio of 2.5).
Following the approach of Sec. 4, we considered five orientations

for crack propagation for each of the 19 brick and mortar tessella-
tion explored here. As an example, Fig. 12 shows the crack resis-
tance curves and the corresponding close up snapshots of
tessellation #99 for all the five different orientations. The average
dimensions of these models were Nx/�L = 50 and Ny/�L = 200. A
dominant toughening mechanism observed with these types of tes-
sellation is a large-scale crack deflection, crack pinning, and also in
some cases the formation of a process zone. These mechanisms
gave rise to high crack resistance (#99-0 deg in Fig. 12) when
they operated simultaneously. Observation of the entire set of
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Fig. 9 (a) Close-up snapshots for tessellation #43 with crack orientations at 0 deg, 30 deg, 45 deg, 60 deg, and 90 deg, and
(b) corresponding crack resistance curves
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results for this type of tessellation revealed that the basic crack
pinning and crack deflection mechanisms are generated by the
partial overlapping of bricks. This arrangement generates a large
number of “T-shaped” junctions that can pin incoming cracks.
The aspect ratio of the bricks ahead of these junctions also influ-
ences toughness, with longer bricks creating larger obstacles. In
addition, when the crack is pinned, the applied stresses must be
increased to unpin the crack, and as a result, large process zones
develop in the region of the pinning points (#99-0 deg orientation
in Fig. 12(a)). These combined mechanisms produced the large
amount of toughening.
We followed the same procedure for model setup and analysis for

all 19 tessellations shown in Fig. 11. All tessellations in general pro-
duced fracture patterns that were similar to the example discussed
above (crack tortuosity, pinning-unpinning, process zone, and
anisotropy). Figure 13(a) shows a summary of the results for
brick and mortar tessellation results, plotted with the results from
the regular polygon tessellation for comparison. The brick and
mortar tessellations are significantly more anisotropic but signifi-
cantly tougher than the regular polygon-based tessellations and
the Voronoi-based tessellations. This improvement is attributed to
the large-scale crack deflection, strong pinning events, and large
process zone that are the result of the arrangements of the bricks
in a non-edge-to-edge formation. Crack branching was not observed

in the brick and mortar tessellations because of the strong presence
of crack deflection in the 0-deg orientation, which gave preference
to one crack path over the other and the lack of symmetry in the
30 deg, 45 deg, 60 deg, and 90 deg orientations. The toughest
arrangement is #94 which also has the highest overlap area within
bricks (snapshot #94-0 deg in Fig. 13(c)); surpassing #95 that has
only half the overlap area as compared with #94 (Fig. 11).
Figure 13(b) shows the average normalized toughness as a func-
tion of the tortuosity of all models explored in this report, polygon
and brick and mortar tessellations. While some of the brick and
mortar closely follow the guideline for the tortuosity-based tough-
ness (Snapshot #110-45 deg in Fig. 13(c)), many other models are-
largely above this line, an indication that the toughening
mechanisms discussed above can be very powerful in the brick
and mortar tessellations (Snapshots #94-0 deg and #106-0 deg in
Fig. 13(c)).

6 Summary
Tailoring microstructures to control crack propagation and

increase toughness is a common strategy in materials design. In
this work, we have explored the fracture mechanisms and frac-
ture toughness of more than a hundred types of microstructures
including typical “polycrystalline” structures based on Voronoi
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Fig. 11 Nineteen DEM models of brick and mortar tessellations shown with at 0-deg crack orientation. These snap-
shots are zoomed in at the crack tip.
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Fig. 12 (a) Close-up snapshots for tessellation #99 with crack orientations at 0 deg, 30 deg, 45 deg, 60 deg, and 90 deg and
(b) corresponding crack resistance curves
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tessellations and “architectured” materials based on periodic tessel-
lations. For this study, we have used the discrete element method
and assumed the tiles to be rigid, an assumption valid in the limit
that the hard phase is much stiffer than the soft phase. This
method is computationally efficient and enables the nonlinear mod-
eling of crack propagation along five different directions for each of
the structure. The main conclusions are as follows:

(1) A wide range of fracture toughness and types of crack prop-
agation was observed in the tessellations explored here. For
most tessellations, crack tortuosity was the primary source
of toughness. Other toughening mechanisms included crack
branching, crack pinning and process zone toughening.
Crack bridging was only observed in the Voronoi-based
tessellations.

(2) Higher toughness can be achieved in architectured materials
compared with regular Voronoi-based microstructures. The
brick and mortar tessellations generated the highest tough-
ness, followed by tessellations based on regular polygons.
About half of the tessellations based on regular polygons
were tougher than the Voronoi-based tessellations.

(3) The most isotropic microstructures were the Voronoi-based
tessellations. The most anisotropic structures were the brick
and mortar tessellations. In general, the toughest architec-
tures were the most anisotropic.

(4) For the brick-and-mortar tessellation, toughness was higher
for higher aspect ratio of the bricks. Toughness could be
increased further by increasing the aspect ratio, up to the
limit of brick fracture (which was not explored here).

(5) Once a cohesive law is chosen for the interfaces, the tough-
ening mechanism and toughness do not depend on the size of
the tiles.

DEM is a powerful and computationally efficient method to
model the fracture behavior of materials made of rigid tessella-
tions with deformable interfaces. This method can capture
several toughening mechanisms, which makes it a promising
tool for the development of novel-architectured materials opti-
mized for toughness. DEM could also be a powerful tool to
capture complex processes in various three-dimensional biologi-
cal materials [59]. Finally, possible extensions of our approach
include the fracture of three-dimensional architectures and the
integration of the brute force exploration of the design space
with more efficient optimization tools such as machine learning
algorithms [27].
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Appendix
The full element stiffness matrix, Ke, for our DEM model is as

follows:

Ke =
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where sL is the interface length, α= k1+ k2, β= k1− k2, and x01 and
x02 are the x-coordinates of nodes 1 and 2, respectively, and y

0
1 and y

0
2

are the y-coordinates of nodes 1 and 2, respectively, in Fig. 2(b).
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