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a b s t r a c t 

Architectured and segmented material designs have recently emerged as a powerful approach to increas- 

ing the strength and toughness of brittle materials. Architectured materials are made of regular building 

blocks that can collectively slide, rotate, separate or interlock, providing a wealth of tunable mechanisms 

and properties. In this work we have used experiments and modeling to explore the mechanical response 

of idealized segmented systems made of a linear array of cubes subjected to axial pre-compression 

and to a transverse force. From simple tabletop experiments with playing dice with instrumented tests 

on 3D printed cubes and simple models, we highlight the effects of axial pre-compression, number of 

blocks, friction coefficient and surface morphology on strength, energy absorption (toughness) and stabil- 

ity (catastrophic vs. graceful failure). We identified two failure modes in this segmented system: a sliding 

mode where one or more blocks slide on one another, and a “hinging” mode where some interfaces open 

and rotate about hinge points. The failure mode transition between hinging and sliding was established, 

to assist the design of modern architectured structures and materials. Finally, we demonstrate that en- 

riching the morphology of the cubes with curved interfaces (akin to the vertebrae in the spine of reptiles) 

delays hinging and improves stability. 

© 2019 Published by Elsevier Ltd. 
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1. Introduction 

Specific microstructures, heterogeneities or hybrid compositions

are now widely used in modern materials to generate high per-

formance ( Ashby, 2005 ). These concepts are now pushed to the

extreme with architectured materials, which contain highly con-

trolled structures and morphological features at length scales in-

termediate between the microscale and the size of the component.

Architectured materials include composites ( Ashby, 2005; Dalaq

et al., 2016 ) and the now well-studied lattice materials ( Abueidda

et al., 2016; Ashby, 20 06; Ashby et al., 20 0 0; Gibson et al., 1982 ),

which contain only a small fraction of solid. In contrast, the much

less studied dense architectured materials are fully solid and are

made of building blocks of well-defined size and shape, arranged

in two or three dimensions ( Barthelat, 2015; Mirkhalaf et al., 2016,

2018b; Siegmund et al., 2016 ). The building blocks are stiff so their

deformation remains small and within elastic limits, but the inter-

faces between the blocks can channel cracks and generate nonlin-

ear deformations by frictional sliding. Building blocks can therefore

collectively slide, rotate, separate or interlock, providing a wealth

of tunable mechanisms and properties ( Barthelat, 2015 ). These

information-rich materials can be designed with specific architec-

tures, geometries and interfaces to generate unusual and attractive
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ombinations of properties and functionalities. For example archi-

ecture can be used to combine high strength and toughness (two

roperties which are mutually exclusive in traditional engineering

aterials ( Dyskin et al., 2001; Ritchie, 2011 ), Fig. 1 a, b), or enhance

mpact resistance ( Mirkhalaf et al., 2016 ) and ballistic performance

 Wadley et al., 2013 ) in glasses or ceramics. Mechanical response

s largely governed by the interactions between the blocks, which

an be captured using load line analysis ( Khandelwal et al., 2012 ),

nite elements ( Dugué et al., 2013; Khandelwal et al., 2012 ), or

iscrete element methods ( Dugué et al., 2013; Zhu et al., 2008 ).

ome of these concepts and mechanisms were inspired from ma-

onry, where the fabrication of large structures was made possi-

le by block by block assembly. Stiff building blocks with weaker

nterfaces also lead to crack deflection and to the containment of

amage in large structures ( Barthelat, 2015; Barthelat et al., 2016b;

yskin et al., 2001; Ming-Yuan and Hutchinson, 1989; Mirkhalaf

t al., 2014 ). Interestingly, nature has been making use of archi-

ectured materials for millions of years. In bone, teeth or mollusk

hells, the interplay between the shape, size, properties and ar-

angement of the building blocks generates, together with non-

inear behavior (resulting from viscoplastic, friction and contact

ased deformations) at the interfaces, powerful combinations of

tiffness, strength and toughness ( Barthelat, 2015; Barthelat et al.,

016b; Wegst et al., 2015 ). At larger length scales the segmenta-

ion of stiff elements which can move with respect to one another

enerates unusual combination of properties in hard surfaces with

https://doi.org/10.1016/j.ijsolstr.2019.04.012
http://www.ScienceDirect.com
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Fig. 1. Examples of synthetic and natural architectured materials: (a) topologically interlocked materials (TIMs); (b) typical force-displacement response of architectured ma- 

terials versus monolithic materials. Linearly segmented architectured materials in nature: (c) wings of a stingray fish: Pteromylaeus asperrimus (adapted from ( Schaefer and 

Summers, 2005 )) and (d) concavo-convex vertebrae in the crocodile spine (adapted from ( Molnar et al., 2015 )). 
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rismatic architectures to resist wear in teeth ( Escobar de Obaldia

t al., 2016 ) or segmented armor in scales and osteoderms for flex-

ble protection ( Chintapalli et al., 2014; Martini et al., 2017; Mar-

ini and Barthelat, 2016; Szewciw et al., 2017; Yang et al., 2013 ).

he spines of vertebrae is in essence a linear arrangement of stiff

lements with controlled shape ( Dunn et al., 2006; Oxland, 2016 ),

ize and interfaces that allows controlled flexural deformations. For

xample the vertebral column of dogfish sharks can behave like

 spring or a brake depending on tailbeat frequency (or bend-

ng frequency) ( Porter et al., 2016 ). Fins and shark vertebrae are

inear arrays of bony segmented mineralized blocks arranged lin-

arly and connected by a collagenous membrane ( Fig. 1 c) ( Alben

t al., 2007; Porter et al., 2016; Schaefer and Summers, 2005 ). The

orphology of the interfaces between vertebrae plays an impor-

ant role in the overall mechanics of the spine. Some reptiles have

oncave and/or convex round interface articulation between their

ertebrae ( Fronimos et al., 2016; Troxell, 1925 ). These ball-and-

ocket like interfaces are prominent in animals that require a

igh range of motion with a combination of strength, tough-

ess, and flexibility such as crocodiles, dinosaurs and lizards

 Fig. 1 d) ( Molnar et al., 2015; Robert, 1960; Troxell, 1925 ). The

epth of concave-convex joints varies along the spine, and is

enerally deeper in the neck because it is the most flexible

ection of the spine. To date, only a few biomimetic materials

ave successfully incorporated these concepts ( Chen et al., 2007;

imas et al., 2013; Mirkhalaf et al., 2014 ). Despite recent ef-

orts in unifying designs ( Barthelat et al., 2016a; Fratzl et al.,

016; Naleway et al., 2015 ) and optimization ( Barthelat, 2014;

egley et al., 2012 ), there are still no comprehensive guidelines

o select optimum architectures for given applications and re-

uirements. This report presents a systematic mechanical anal-

sis of linear segmented systems. We examine the strength

nd stability of a row of cubic idealized stiff elements under

xial confinement and subjected to transverse loading. We estab-

ished deformation and failure maps as function of friction coeffi-
ient and number of cubes, and we assess the effect of simple ge-

metric enrichment on the mechanics and stability of this type of

ystems. 

. “Tabletop” experiments with dice 

Some of the basic deformation mechanisms and mechanical sta-

ility of linear assemblies of blocks can be captured with arrays of

ice. Two playing dice can be easily lifted from a table by pressing

hem together ( Fig. 2 ). It is also relatively easy to pick up a row

f three, four and up to about six dice in the same manner, pro-

ided that the axial force exerted by the fingers is high enough to

revent the dice from slipping on one another. In these examples

ngers confine the blocks together and act as and “external liga-

ent”, akin to rigid frames in TIMs ( Mirkhalaf et al., 2018a,b; Sieg-

und et al., 2016 ) or ligaments in spine ( Oxland, 2016 ). Picking up

onger rows of dice up to nine dice is possible, but requires special

are to align the dice and to distribute the axial pressure evenly.

sing two hands to apply end pressures, rows of up to 12–13 dices

an be lifted from a flat surface, but the row is very unstable even

ith perfect alignment of the dice. The stability of a row of dice,

nce it has been picked up, may be assessed by applying a trans-

erse force half-way along its length ( Fig. 2 ). The amount of force

equired to collapse the row of dice may then be used as a mea-

ure of stability. By this measure, rows with N = 2 are very stable.

n rows of N = 3, 4 or 5 dice, the center dice (or couple of dice if

 is even) slide on one another to about 1/3 of their width, after

hich the system fails catastrophically. When a transverse force is

pplied on rows with N > 6, no sliding occurs and instead, dices

ear the center of the row separate and form a hinge. The two

ections of the row rotate until a critical displacement is reached,

eading to catastrophic collapse. All experiments suggest that long

ows of dice (large N ) are much less stable than shorter rows.

or example, for N = 10 the critical transverse force is very small,

ven when a large axial force is applied. These seemingly sim-
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Fig. 2. Simple experiments with rows of dice ( N = 2–6). An axial pre-compression is applied with thumb and index fingers. The failure mode and the stability of the system 

can be assessed by applying a transverse force half-way along the dice row. 
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ple systems and experiments indicate that the stability, transverse

strength of a row of cubes are governed by load transfer and inter-

face mechanisms which are not trivial. 

3. Instrumented experiments 

We developed better controlled experiments with instrumen-

tation that duplicated the “dice” experiments discussed above

( Fig. 3 a). Individual cubes ( L 3 = 5 mm × 5 mm × 5 mm) were 3D

printed using the Digital Light Processing (DLP) technology (Mi-

cro HiRes Machine, EnvisionTech, 2019 ) with an ABS UV-curable

polymer (3DM-X Green). We used 3D printing to fabricate the

cubes because with this method the geometry of the blocks can

easily be enriched (as discussed in the last section of this arti-

cle). The DLP printing method also enables high spatial resolution

( ∼80 μm), a critical requirement for reproducibility, smooth sur-

faces and high morphological control ( Dawood et al., 2015 ). In ad-

dition, DLP produces materials that are pore-free, homogenous and

isotropic ( Studart, 2016; Tumbleston et al., 2015 ) ensuring uniform

and consistent elastic and frictional properties. The elastic modulus

of the fully cured material is E = 1.48 ± 0.05 GPa (measured using

a standard tensile test). 

We measured the friction coefficient between the ABS cubes

using a standardized method (ASTM (D1894) ( ASTM, 1894 )). The

sliding force displayed the typical characteristics of friction, with

an initial peak to initiate sliding from the static case (providing

a “static” friction coefficient f s ), and a sliding force fluctuating

around an average value which provides a “dynamic” friction co-

efficient f d ). For dry interfaces we measured coefficients of friction

f s = 0.18 ± 0.02 and f d = 0.12 ± 0.02. There was some fluctua-

tions in force in the sliding regime corresponded to slick-slip, a

common phenomenon for dry polymeric surfaces ( Berman et al.,
Fig. 3. A segmented beam model and the experimental setup: (a) a row of cubes with 

along the span S with a transverse force F T ; (b) 3D printed cubes made from ABS polym

then used to impose a transverse displacement half-way along the system and to record 
996; Menezes et al., 2013 ). We explored the effects of lower fric-

ion at the interfaces between the cubes by lubrication with white

ulfonated grease. These interfaces showed no stick-slip, with a

ower coefficient of friction equal to f s = f d = 0.11 ± 0.01. On

he other hand, we also explored the effects of increasing fric-

ion coefficient, by treating the surfaces with an anti-slip spray

Rust-Oleum speckle spray) which produced coefficients of fric-

ion f s = f d = 0.23 ± 0.03. For the stability experiments, 3D printed

ubes were arranged and aligned into a segmented beam of N

ubes. The beam was mounted on a vise used to apply an axial

ompressive force F A at the ends of the row ( Fig. 3 b). F A was mea-

ured with a low-profile force sensor (FlexiForce®, Tekscan). We

sed different values for F A ( F A = 10 to 200 N), making sure that

hese axial forces were well below the force to plastically deform

ndividual cubes ( F Y ≈ 1600 N). The compressed segmented beam

as then placed in a dual column loading stage (Admet, model

Xpert 50 0 0, MA US), and a round nozzle ( R = 1.5 mm) fixed to

he crosshead was used to impose a displacement u in the direc-

ion transverse to the beam, at a rate of 10 μm/sec. The transverse

orce F T was measured using a 150 lbf load cell. Fig. 4 shows a set

f representative force-displacement curves F T − u obtained from

eams made of N = 3 to N = 10 cubes. In all cases the transverse

orce F T initially increased linearly with displacement. In that lin-

ar regime, the segmented beam behaved like a homogenous, con-

inuous elastic beam, and as a result the initial stiffness was lower

or higher N (i.e. longer beams). When the number of cube was

mall ( N < 7), the linear region ended with a series of sudden drops

t a critical sliding force F (s ) 
T 

and at a displacement of about u ( s ) ≈
.3 mm (the superscript ( s ) denotes the onset of sliding). The stiff

ise maintained constant axial displacement during experiments.

he contact area between the cubes decreased linearly with sliding

istance, resulting in a linear decrease of F A and therefore in the
sides of L × L × L , compressed from both ends with a force F A and loaded halfway 

er ( L = 5 mm) arranged linearly and pre-compressed axially. A loading machine is 

the corresponding force. 
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Fig. 4. Experimental force-displacement F T − u curve for the segmented cubes with different number of cubes ( N = 3 through 10), for f s = 0.18 ± 0.02, f d = 0.12 ± 0.02 and 

with axial pre-compression F A = 150 N. The failure mode transitions from sliding to hinging as N is increased. 

Fig. 5. Critical sliding force F (s ) 
T 

and hinging force F (h ) 
T 

as function of (a) axial pre-compression F A and (b) number of cubes N . 
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bserved linear decrease of F T with sliding distance. F T vanished

t u ≈ 4 mm, at which point the beam collapsed. Throughout the

liding of cubes, large fluctuations of forces were associated with

tick slip, a typical phenomenon for materials where the dynamic

riction coefficient f d is lower than the static friction coefficient f s 
 Berman et al., 1996; Menezes et al., 2013 ). The amplitude of the

tick-slip force fluctuations was larger for higher N , because the

arger volume of elastically deformed material stored more strain

nergy between each slip pulse. 

The segmented beams with N = 7 to 10 cubes produced a very

ifferent type of response. The F T − u curve showed a nonlinear

egion before the cubes started to slide (if any sliding took place

t all), which corresponded to the progressive opening and loss

f contact of the interfaces, together with the relative rotations of

ndividual cubes. In the case N = 7 and N = 8 sliding was still ob-

erved, but with much less stick-slip. For N = 9, only one long slip

as recorded for each experiment and for N = 10 no sliding was

bserved. In that case the F T – u curve had a parabolic shape, and

he only failure mode being the opening of the central interface,

he formation of a hinge underneath the loading pin and of two

dditional hinge points at the ends of the beam. In the softening

egion of the curve, the two segments of beam rotated about these

inge points. With the case N = 10 we confirmed that the point at

hich the F T − u curve deviated from a linear response matched

he onset of hinging ( Fig. 4 , N = 10), occurring at the critical hing-

ng force F (h ) 
T 

where the superscript ( h ) denotes the onset of

inging. 

We found that the critical sliding force and the hinging force

re both proportional to the axial pre-compression F A . Fig. 5 a
hows an example of these results for a sliding case ( N = 5 with

 s = 0.18 on Fig. 5 a) and for a hinging case ( N = 8 with f s = 0.23 on

ig. 5 a). The experiments also confirmed that the critical force

t sliding F (s ) 
T 

decreases linearly with increasing N , and also that

he critical force decreases when f s is decreased ( Fig. 5 b). Cases

ere hinging dominated, plotted as crosses on Fig. 5 b, occurred at

he highest friction coefficient. The critical force for hinging also

ecreases with N and is independent of f s ( Fig. 5 b). From these

xperiments we captured the trends and the effect of f s , of both

ritical forces at sliding and hinging. These experiments guided

he assumptions to be made for predicting F (s ) 
T 

and F (h ) 
T 

in

ection 4 and 5 . The prominent failure mode is found by com-

aring the predicted onsets of sliding F (s ) 
T 

and hinging F (h ) 
T 

. If

 

(s ) 
T 

< F (h ) 
T 

, sliding prevails and if F (s ) 
T 

> F (h ) 
T 

, hinging prevails. 

. Modeling the onset of sliding 

An analysis based on Coulomb’s frictional force (stable friction

ynamics) predicts that sliding starts when the shear force be-

ween the blocks reaches f s F A (2013). This simple approach pre-

icts that any of the cubes is a candidate for sliding, and that the

ritical transverse force for sliding does not depend on the num-

er of cubes. The experimental observations contradict both pre-

ictions. In the experiments, only certain cubes on the beam actu-

lly slide (near the loading nose and near the supports), and the

ritical transverse force decreases when N is increased ( Fig. 5 b).

apturing the mechanics of sliding in the segmented beam there-

ore requires a more detailed analysis. We consider a segmented

eam of length S = NL made of N cubes of size L × L × L ( Fig. 6 ). The
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Fig. 6. Load analysis for a row of 5 cubes showing the distribution of bending mo- 

ment. 
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material of the cubes is modeled as homogenous and isotropic, and

it is assumed to follow linear elasticity with an elastic modulus

E and Poisson’s ratio ν . An axial compressive force F A is applied

along the x -axis, and a transverse force F T is exerted exactly half-

way along the beam and along the y -axis. The effect of gravity is

neglected because the magnitudes of the applied forces are signif-

icantly higher than the gravitational body forces. The ends of the

beam are assumed to be clamped, giving rise to a pair of reaction

forces R and reaction couples M R acting at both ends ( Fig. 6 ). The

system is symmetric in terms of geometry and loading about the

center of the beam. The moments along the beam are written (Ap-

pendix section A.1 ): 

M ( x ) 

2 S F T 
= 

1 

8 

(
1 − 2 

| x | 
S 

)
for − 1 ≤ x 

S 
≤ 1 (1)

The bending moment along the x -direction is minimum at the

two ends: M min /2 F T S = −1/8 at x / S = −1.0 and x / S = 1.0 and is maxi-

mum M max /2 F T S = 1/8 at the center x / S = 0 ( Fig. 6 ). 

The bending moment M ( x ) and the (compressive) axial force F A 
both give rise to an axial stress σ xx which can be obtained by su-

perposition, since the system is linear before the cubes start sliding

(Appendix section A.2 ): 

L 2 σxx 

F A 
= 3 

y 

L 

F T 
F A 

2 S 

L 

(
−1 

2 

+ 

| x | 
S 

)
− 1 for − 1 ≤ x 

S 
≤ 1 (2)

L 2 τxy 

F A 
= ±3 

F T 
F A 

[(
y 

L 

)2 

− 1 

4 

]
for 

x 

S 
< 0 and 

x 

S 
> 0 (3)

where 2 S / L is the number of cubes N . A microslip occur when the

shear stress at a point along an interface reaches or exceeds the

local “frictional” strength: τ xy ≥ f s σ xx ( Ben-David et al., 2010; Ben-

David and Fineberg, 2011; Johnson, 1987; Rubinstein et al., 2004 ).

Therefore, the criterion for microslip is based on the ratio: 

1 

f s 

∣∣∣ τxy 

σxx 

∣∣∣ = 

1 

f s 

3 

[ (
y 
L 

)2 − 1 
4 

] 
3 

y 
L 

2 S 
L 

(
− 1 

2 
+ 

| x | 
S 

)
− F A 

F T 

provided 

x 

S 
� = 0 (4)

Fig. 7 shows a contour plot of | τ xy ≥ f s σ xx | max at the onset

of microslip, | τ xy ≥ f s σ xx | max = 1 when F T / F A = 0.223 for N = 5 and

F T / F A = 0.212 for N = 8. Fig. 7 also shows the tendency of sliding in

each interface by showing the ratio | τ xy ≥ f s σ xx | max for odd case

( N = 5) and even case ( N = 8). This plot compares the tendency

of sliding at each interface, where interfaces that satisfy | τ xy ≥
 s σ xx | max = 1 first are the “critical interfaces” that will slide and

overn the failure mode of the segmented beam. Because of sym-

etry about the center ( x = 0), these critical interfaces come in

airs and are located at x/L = −0.5, 0.5 (odd) and x/L = −3, −1, 1,

 (even) which can be generalized as x / L = −0.5, 0.5 (first row of

ig. 7 a) and x / L = 1 − N /2, −1, 1, 1 + N /2 (first row of Fig. 7 b) for

dd and even cases, respectively. Critical interfaces for even cases

ave the same | τ xy ≥ f s σ xx | max ratio because they are subjected

o the same shear forces and moments ( Fig. 6 ). The last row in

ig. 7 shows the snapshots taken during experiments for odd and

ven cases that sled. Sliding interfaces in the experimental snap-

hots match the predicted critical interfaces (i.e. the one with the

ighest | τ xy ≥ f s σ xx | max ). These “critical interfaces” predictions are

ot limited to the two cases shown on Fig. 7 , we compared these

redictions to up to 15 cubes cases, the predictions are also in

greement with the snapshots shown on Fig. 4 . 

A general interface having f d < f s will experience multiple mi-

roslips (and stick-slip). If f d is low enough to allow for a large

icroslip distance, the sliding is catastrophic and the onset of mi-

roslip cascades into the sliding of the entire interface ( Ben-David

t al., 2010; Ben-David and Fineberg, 2011; Kammer et al., 2015;

ubinstein et al., 2004; Scheibert and Dysthe, 2010 ). For dry fric-

ion it is common to have f d < f s and therefore we expect the stick

lip behavior seen earlier ( Fig. 4 ). Since sliding interfaces matched

hat of the catastrophic onset of sliding and f d < f s we consid-

red the onset of the first microslip as the onset of sliding, | τ xy 

f s σ xx | max = 1. 

Now using the onset of sliding condition: | τ xy ≥ f s σ xx | max = 1

nd solving for the transverse force F T we get the critical sliding

orce F (s ) 
T 

for both odd and even cases as follows, 

F (s ) 
T 

F A 
= 

16 f s 

3(4 + f 2 s (N − 2) 
2 
) 

at 
x 

L 
= 0 . 5 for ( odd case ) (5)

F (s ) 
T 

F A 
= 

16 f s 

3(4 + f 2 s (N − 4) 
2 
) 

at 
x 

L 
= 1 for ( even case ) (6)

The analytical model predicts that the critical force F (s ) 
T 

is pro-

ortional to the axial force F A , which is consistent with the experi-

ents ( Fig. 5 a). Fig. 8 a compares the predicted critical sliding force

 

(s ) 
T 

with the experimental results. The analytical model properly

aptures the decrease in F (s ) 
T 

with increasing N ( Fig. 8 a), and the

redicted trends follow the experimental results closely. However

he experimental results are about 18% higher than the prediction,

ecause the experimental critical force for sliding may be the re-

ults of several microslips (while the analytical result only predict

he onset of the first microslip) ( Ben-David et al., 2010; Rubinstein

t al., 2004; Scheibert and Dysthe, 2010 ). The analytical model can

e extended to capture the full force-displacement F T − u curve for

he segmented beam. The F T − u curve before the onset of sliding

orresponds to the elastic deformation of the beam and it is given

y (Appendix section A.3 ): 

 T = 

16 EL 

N 

3 
u for 0 ≤ u ≤ u 

( s ) (7)

here u ( s ) is the displacement at the onset of sliding. The force af-

er the onset of sliding is governed by friction, and can be written

Appendix section A.4 ): 

F T 
F A 

= f d 

(
1 − u 

L 

)
for u 

( s ) ≤ u ≤ L (8)

Fig. 8 b compares this model with experimental F T − u curves

or N = 5. The analytical model prediction is in good agreement

ith the experimental results. Discrepancies in initial modulus

ere attributed to non-perfect contact between the cube and to

interface compliance”, as well the end conditions in the experi-

ents which may be more compliant than the perfectly clamped
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Fig. 7. Maps of sliding ratio: | τ xy ≥ f s σ xx | max , locations of the critical interfaces and experimental snapshots of the sliding cubes for (a) an odd case ( N = 5) and (b) an even 

case ( N = 8). 

Fig. 8. Comparisons of model predictions with experiments: (a) critical sliding force as function of the number of cubes and friction coefficient; (b) force-displacement 

( F T − u ) curves. 
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onditions assumed in the model. The area under F T − u can be

ritten as U / LF A ≈ f d where U represents and estimates the en-

rgy dissipated during sliding which also represents the toughness

f the segmented beam. 

. Modeling the onset of hinging 

In the configurations with large N , the experiments showed that

he interfaces between the cubes may lose contact and form hinge

oints. This type of failure mode, shown for N = 10 in Fig. 4 , occurs

hen the initial compressive stress from the axial force F A is com-

letely offset by tensile stresses from the bending moment. Since

he interfaces cannot carry tensile stresses they will open and form
inges at certain points in the system where: 

σxx 

F A / L 2 
= 0 (9) 

Recalling Eq. (2) , this criterion can be written: 

 + 

L 2 σxx 

F A 
= 3 

y 

L 

F T 
F A 

2 S 

L 

(
−1 

2 

+ 

| x | 
S 

)
(10) 

This criterion is illustrated in Fig. 9 as a contour plot at the on-

et of hinging when F T / F A = 0.19 for N = 9 and F T / F A = 0.16 for N = 8.

e monitor the criterion 1 + 

σxx 

F A / L 
2 where value of 1 means that the

nterface opens at that point (to be consistent with the sliding cri-

erion presented above). The contour plot shows region of higher
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Fig. 9. Distribution of the interface opening criterion: 1 + σ xx L 
2 / F A across the whole beam for (a) odd and (b) even cases. Snapshots of the experiment during hinging is 

shown below the contour plots to compare it with analytical predictions for the hinging points. 

Fig. 10. (a) Critical hinging force F (h ) 
T 

as function of number of cubes, model prediction and experiments; (b) snapshots of the hinging process, with the load lines highlighted. 
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tensile stress near the upper ends of the beam, and in the lower

side of the center regions. 

The regions of highest stresses in this contour map can be

matched with the positions of the interfaces to predict which in-

terfaces will open first. For example for the case shown in Fig. 9 a

(odd number of cubes), the points that are going to open are A,

P, Q and C , forming hinges at point A’, P’, Q’ and C’ . For the case

shown in Fig. 9 b (even number of cubes), the points that are go-

ing to open are A, B and C , forming hinges at point A’, B’ and C’ .

Snapshots from our experiments confirm these predictions. Solv-

ing for the force that satisfies the opening criterion at these points

we find the critical force F (h ) 
T 

that causes these points to open: 

F ( 
h ) 

T 

F A 
= 

4 

3 N 

for ( even case : point A, B and C open ) (11)

F ( 
h ) 

T 

F A 
= 

4 

3 ( N − 2 ) 
for ( odd case : point A, P, Q and C open ) 

(12)

Fig. 10 a shows the experimental and analytical critical force at

hinging F (h ) 
T 

as function of the number of cubes. F (h ) 
T 

decreases

rapidly when N increases because the bending stresses increase

with N . F (h ) 
T 

is lower for even cases and therefore it is easier to

hinge an even number of cubes case than an odd case. For even

cases, F (h ) 
T 

is lower because the critical points are subjected to

higher moments than that of the odd case ( Fig. 6 ). The analyti-

cal model captures the decreasing trend quite well but consistently

predicts higher F (h ) 
T 

in comparison to the experimental measure-

ments, reaching up to 16% error. This deviation can be attributed to

non-perfect contact between the cubes where the interfaces can be

more compliant than the bulk material. In addition, the end con-

dition in the experiment may be more compliant than the model
here perfectly clamped conditions are assumed. The apparent

lastic modulus at the interfaces can be slightly lower due to lo-

al point contact at the hinging points (e.g. P’, Q’ or B ’ on Fig. 9 ) in

he case of hinging. 

The mechanical response that follows the onset of hinging may

e captured with a thrust line analysis ( Dugué et al., 2013; Khan-

elwal et al., 2012; Siegmund et al., 2016 ). The rotating section of

he beams are confined axially and therefore develop compressive

tresses from the geometric jamming. These compressive stresses

re channeled in each section of beam through two hinge points

hich only transmit forces, and therefore each section can be con-

idered as a two dimensional two −force member (or thrust mem-

er) for the purpose of the analysis ( Fig. 10 b). While this idealiza-

ion is simple, the detailed force-deflection curve can be difficult

o obtain because of geometric nonlinearities in the system (large

otations and non-linear contact stiffness at the hinges). Neverthe-

ess, the thrust line analysis can provide two useful insights: first,

nlike sliding failure mode that dissipates energy, the hinging de-

ormation mode only involves elastic deformation and therefore it

oes not dissipate energy. Second, the hinging deformation mode

s stable as long as the compressed thrust line can carry the ap-

lied force. When these lines become horizontal they cannot bal-

nce the applied force and the system becomes unstable ( Fig. 10 b).

his threshold marks the point of instability causing the system

o release all the stored energy catastrophically, which ejects the

ubes in all directions. 

. Failure modes competition: sliding versus hinging 

The previous two sections provided the criteria for the onset

f sliding and for the onset of hinging. We now examine and dis-

uss which of the two failure modes may occurs first when the
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Fig. 11. Deformations maps as function of the friction coefficient f s and the number of cubes N ; (a) deformation map for odd and even cases; (b-c) comparison of the 

different combination of ( N, f s ) with the actual experimental measurements at the onset of sliding for even cases and odd cases. 

Fig. 12. (a) Enrichment of the blocks with curved contact surfaces with various values of CL (schematics of individual blocks and with corresponding 3D printed samples 

tested under transverse loading; (b) force-displacement ( F T − u ) curves for different curvatures: CL = L/R = 0, 1/2, 2/3, 1, 3/2, 2. 
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ransverse force F T is increased. The critical forces for sliding F (s ) 
T 

nd for hinging F (h ) 
T 

only depend on the number of cubes N and

n the friction coefficient f s between the cubes, and therefore one

an build a deformation map that depicts the failure mode as func-

ion of N and f s . On this map, the transition between sliding and

inging corresponds to the condition F (s ) 
T 

= F (h ) 
T 

. Using Eqs. (5) , (6) ,

11) and (12) , the equations for the transition lines are: 

 f 2 s ( N/ 4 − 1 ) 
2 − f s N + 1 = 0 for ( even case ) (13a)

Which can be solved to give: 

f s = 

2 N − 4 

√ 

2 

√ 

N − 2 

(N − 4) 
2 

for N � = 4 (13b)

f s = 0 . 25 for N = 4 (13c)

f 2 s ( N/ 2 − 1 ) 
2 − 2 f s ( N/ 2 − 1 ) + 1 = 0 for ( odd case ) (14)

For the cases where N is odd, the transition line equation is

olved numerically because Eq. (14) does not have real roots. In

hese cases the critical sliding force and the critical hinging force

annot strictly be equal F (s ) 
T 

� = F (h ) 
T 

because when F 
T 

= F (h ) 
T 

the

critical interface” (sliding ones) will lose contact (open) which

ean that | τ xy / σ xx | max → ∞ . For the cases where N is even, the

nterfaces that lose contact ( Fig. 9 b) are different than the sliding

critical interfaces” ( Fig. 7 b). Fig. 11 shows deformation map re-

ulting from these models. As expected sliding prevails for small

umber of cubes and small friction coefficient, while hinging pre-

ails for large number of cubes and larger friction coefficient. The

ailure mode transition also depends on whether N is odd or even,

ut these predictions converge at large N . We emphasize that the
ransition between sliding and hinging is independent of the axial

ompressive force F A . Interestingly, segmented beams made from

ubes with low friction ( f s < 0.08) will not hinge ( Fig. 11 a). We

ound very good agreement between the theoretical prediction of

he failure mode and the experimental observation over the range

f f s and N explored in this work ( Figs. 11 b, 11 c). In the next sec-

ion we explore another way of manipulating the failure mode by

uning the shape of the cubes. 

. Geometrical enrichments 

In terms of structural response, the sliding mode of failure is

ore beneficial than hinging: Sliding is stable, dissipates energy

nd only slightly decreases the structural integrity of the beam. In

ontrast, hinging does not dissipate energy, it is unstable and it

eakens the entire system since the forces are transmitted only

hrough a few contact points ( A’, B’, C’, P ’ and Q ’ on Fig. 9 ). Seg-

entation is primarily used to toughen brittle materials, so these

ontact points which localizes stresses may result in contact frac-

ure. In this section we explore how the geometry of the cubes

an be enriched to delay hinging and promote sliding. More specif-

cally, we enrich the geometry of the contacting faces to generate

rogressive interlocking while at the same time channeling defor-

ations in desired modes. A simple choice that fulfills these re-

uirements is to design contact surfaces with a single curvature

f radius R , with L /2 ≤ R ≤ + ∞ ( Fig. 12 a). The curved faces can

e more conveniently described by a non-dimensional curvature

L = L/R with 0 ≤ CL ≤ 2 . In this study we considered CL = 0 (flat

urface), CL = 1/2, CL = 2/3, CL = 1, CL = 3/2 and CL = 2 (maximum cur-

ature, which corresponds to half a circle, Fig. 12 a). We tested
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Fig. 13. (a) Example of a contact surface enrichment that prevents hinging in the case N = 10; (b) corresponding F T − u curve for flat case (hinged) and curved case (sliding); 

(c) deformed architectured beam obtained using finite element method (FE) for the cases in (a); (d) F T − u curves obtained from FE. 

Fig. 14. Deformations maps obtained from FE simulations for different ( N, f ). Increasing the curvature CL delays hinging. For each curvature, a deformed beam simulated 

using FE is shown for ( N = 10, f = 0.2). 
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these different geometries using the same experimental setup de-

scribed above under a lower axial pre-compression of F A = 30 N to

prevent possible yielding at the sharp corners and edges of the

blocks. Fig. 12 a shows snapshots of the deformation and failure

modes for different surface curvatures. CL = 0 corresponds to the

flat case considered above, where the center block slides. All cases

with CL > 0 showed a different failure mode where half of the beam

rotated collectively in one block. Fig. 12 b shows the effect of in-

creasing the curvature on the F T − u curves. Initially, the curves

show a linear elastic rise, showing few drops while rising mark-

ing the onset of sliding. During sliding, the volume of material

subjected to axial compressive stresses decrease, so that the axial

compression F A decreases. As a result the frictional forces decrease

so F T also decreases progressively. The benefits of curved surfaces

become more evident for large number of blocks. Fig. 13 shows

the results for N = 10, flat and curved interface with CL = 1/2. The

flat interface led to a hinging type of failure, with a characteristic

parabolic shape ( Fig. 13 b). The energy is stored within the beams,

and it is released in a catastrophic failure mode. In contrast, the

case N = 10 with curved interfaces ( CL = 1/2) failed by sliding, with

frictional energy dissipation and graceful, progressive failure. 
The mechanical modeling of arrays of blocks with non-planar

ontact surfaces is challenging because deformation involves mul-

iple contact points and interlocking of the blocks. Here we capture

he transition from hinging to sliding modes using finite element

FE) models (Appendix section A .5 , Fig. A .1 ). The FE model was first

alidated with experiments ( Fig. A.1 b) and then used to simulate

he sliding and hinging failure modes ( Fig. 13 b). F T − u curves from

he FE model captured the sliding trend of CL = 1/2 and the char-

cteristic parabolic shape of hinging failure mode well ( Fig. 13 c

nd d). From the simulated F T −u curves we obtained the maxi-

um force ( F T ) max (strength) ( Fig. 13 d). Both experiments and the

odel show that hinging can improve strength. Hinging becomes

dvantageous when the system is made from tough blocks (ductile

locks) as in the case of polymer blocks in our experiments. In ad-

ition, because hinging depends on the elasticity of the system the

trength can be improved by increased E ( Khandelwal et al., 2012 ).

We used the FE model to capture the transition between slid-

ng and hinging as function of number of blocks (focusing on even

ases with N = 4, 6, 8, 10, 12, 14), as function of friction coef-

cient ( f = 0 to 0.4), and as function of surface curvature ( CL = 0,

.25, 1.0), for a total of 144 simulations. Fig. 14 shows the resulting
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Fig. 15. Strength ( F T ) max / EL 2 as function of curvature CL and for different friction 

coefficients f . 
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eformation maps for the three different curvatures. Increasing

he curvature CL clearly shift the failure transition mode to pro-

ote sliding (green region, Fig. 14 ). The FE models shown for the

ase N = 10, f = 0.2 and for each curvature clearly shows how the

urved surface induced sliding and jam the blocks. In addition, the

verall strength of the beam depends on the efficacy of the jam-

ing mechanism, which is directly proportional to E . This depen-

ence on E for jamming, is actually similar to hinging which shows

hat improved strength by storing elastic energy is not exclusive to

inging and that enriched systems that fail by sliding can do so by

amming. However, curved contact surfaces have the added benefit

f maintaining contact between blocks which allows sliding that

issipates energy ( Fig. 14 ). Our simulations show that the strength

ncreases with CL ( Fig. 15 ), even with no friction at the interfaces

 f = 0). For high friction, f = 0.4, and low curvature ( CL = 0 and 0.25),

he blocks interlock and show signs of hinging shortly after sliding

hich explain the high strength values. 

. Summary 

We have used experiments and modeling to explore the

trength of stability of linear segmented systems made of sim-

le cubes that interact through contact and friction. Using simple

abletop experiments with playing dice, instrumented tests on 3D

rinted cubes and simple models, we have highlighted the effects

f axial pre-compression, number of blocks, friction coefficient and

urface morphology on strength and stability. Our main conclu-

ions are as follows: 

1 Short segmented beams fail by sliding that depends on the fric-

tion coefficient f s . Long and slender segmented beams exhibit

nonlinear failure mode where three or four interfaces open into

a “hinging” failure mode, with a strength which is independent

of f s . 

2 The critical transverse force for sliding F (s ) 
T 

decreases linearly

with increasing N and nonlinearly increases with increasing

friction f s . To properly capture this effect it is necessary to con-

sider the profile of the axial compressive stress as a superposi-

tion of the initial axial compressive stresses and of the flexural

stresses. A local criterion for the onset of micro-slips at the in-

terface can capture the experimental results. 

3 The hinging mode of failure only involves elastic deforma-

tion no sliding and poor transmission of forces between the

blocks. These effects were clearly observed in the beams tested

here, and are also present in topologically interlocked panels

( Khandelwal et al., 2012; Mirkhalaf et al., 2018b; Siegmund

et al., 2016 ) although their direct observation is more difficult. 

4 In the context of energy dissipation, toughness and stability,

sliding must be promoted over hinging. 
5 Relatively simple criteria for the onset of sliding or hinging

were developed to predict the critical force at sliding F (s ) 
T 

and

hinging F (h ) 
T 

. These models capture experimental results quite

well. The critical sliding and hinging forces are both propor-

tional to the initial compressive force F A . The transition be-

tween hinging and sliding is strongly dependent on the num-

ber of blocks N and on the friction coefficient f s , but it does not

depend on the axial force F A . 

6 The morphology of the interfaces between the blocks can

be enriched to delay hinging and promote sliding. Here we

explored interfaces with simple curvature, which we show

maximize contact between the blocks, induce sliding and pro-

gressively jam the system. These effects can be captured using

finite element models. The curvature of the contact surface is

an added design parameter that can be used to optimize its

mechanical performance. 

These findings can serve as guidelines to design tougher,

tronger, reliable and damage tolerant architectured beams and

lates. Similar to the flat case (cube), the behavior of some ar-

hitectured panels are usually governed by the sliding, tilting, or

amming of the indented block (the block under the load pin).

hereas, for enriched blocks, a group of blocks slide along a

esigned sliding path. This study also provides insight on the

echanics of spines and helps to understand the interaction of

ertebrae during transverse and axial loads. Onset of hinging and

liding may provide a mean to assess the stresses sustained by the

ntervertebral discs and help determine the effect of flexions (com-

ressive bending) and extensions (tensile bending) ( Oxland, 2016 ).

evere flexural deformation may cause hinging which localizes

tresses and increases the likelihood of intervertebral discs her-

iation, as well as stretching the disc in the tensile side caus-

ng disc disruption. Besides, the spine of most reptiles is flexible

 Troxell, 1925 ), subjected to lower stresses ( Fronimos et al., 2016 ),

nd as this study may suggest is also less prone to hinging than

he spines of flatter vertebrae. Finally, this study provides an ex-

mple of how lateral confinement and friction (analogous to mor-

ar shear strength) may form reliable unreinforced masonry beams.

s well as predict the out of plane response of shear walls and the

aximum capacity of the mortar between bricks. 
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ppendix 

.1. Load analysis 

The system in hand ( Fig. 3 a) can be modeled as built in con-

inuous beam. Consider the origin to be at the center of the beam

here the shear and moment are symmetric about the origin, the

oment along the beam can be written as ( Ross et al., 1999 ), 

M ( x ) 

2 S F T 
= 

1 

8 

(
1 − 2 

| x | 
S 

)
for − 1 ≤ x 

S 
≤ 1 (9.1) 

The magnitude of the bending moment at these locations is

 max = F T S /4 ( Fig. 6 ). These are the locations at which bending

tresses are maximum in the beam and where the interfaces be-

ween cubes are most prone to opening. 

http://dx.doi.org/10.13039/501100000038
http://dx.doi.org/10.13039/501100000156
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Fig. A.1. Finite element model (FE). (a) meshed beam under axial pre-compression F A and transverse force F T ; (b) compare FE results with experiments for validation. 
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A.2. Stress analysis 

The axial stresses in the x -direction σ xx results from the bend-

ing stress induced by the moment in the beam M ( x ) and from the

axial compression F A . Since the system is linear we use superposi-

tion to write σ xx and using equilibrium equations to find the shear

stress τ xy . Consider the square cross section with moment of iner-

tia ( I = L 4 /12) the stresses are ( Timoshenko and Goodier, 1951 ): 

L 2 σxx 

F A 
= 3 

y 

L 

F T 
F A 

2 S 

L 

(
−1 

2 

+ 

| x | 
S 

)
− 1 for − 1 ≤ x 

S 
≤ 1 (9.2a)

L 2 τxy 

F A 
= −3 

F T 
F A 

[(
y 

L 

)2 

− 1 

4 

]
(9.2b)

L 2 τ xy / F A follows the well-known parabolic profile, with a max-

imum value of ( L 2 τ xy / F A ) max = 3 F T /4 F A . Applying only axial com-

pression F A to the segmented system without any transverse force

applied ( F T = 0) subjects the interfaces to compressive normal

stress only L 2 σ xx / F A = −1. 

A.3. Pre-sliding behavior 

To find the force-displacement curve before the onset of

sliding, the stresses σ xx and τ xy can be substituted into the con-

stitutive model (Hooke’s law) of the material to find the strain

components ε xx , ε yy and γ xy . Integrating the strains and applying

boundary conditions we obtain the displacement along y -direction

(deflection) ( Ross et al., 1999 ), 

u y = 

3 F T 
E L 4 

( | x | + S ) 
2 

(
S 

6 

− | x | 
3 

)
for ∂ u y /∂x ( x = S, y = 0 ) = 0 

(9.3)

the deflection of the beam along the applied load F T at x = 0 is

given by 

F T = 

16 EL 

N 

3 
u y = 

16 EL 

N 

3 
u (9.4)

deflection at which sliding begins u = u ( s ) can be expressed as 

u 

(s ) = 

F (s ) 
T 

N 

3 

16 EL 
(9.5)

A.4. Post sliding behavior 

The system lateral axial force relaxes when sliding start, which

reduces the initial lateral compressive force F A . The whole system

losses compressive traction at the trailing edge of the sliding cubes

while part of interface that are still in contact with the adjacent

cube retain compressive stress. Therefore, the portion of material

held in between the cubes is subjected to decreasing compressive
tress of σ = F A / L ( L − u ). Using the constitutive relation (Hooke’s

aw), the strain is found to be ε = F A / L ( L − u ) = 2 �/ NL , where � is

he axial displacement due to axial compression. Realizing that the

ubes resemble spring in series, the equivalent stiffness of the sys-

em can be described by: K eq = 

E(L −u ) 
N , using the equivalent spring

quation: F A = K eq 2 � we get: 

 A (u ) = 

F A (L − u ) 

L 
for u 

(s ) ≤ u ≤ L (9.6)

Setting u = 0 in Eq. (9.6) returns the “initial” axial compressive

orce (precompression) F A . After the onset of sliding, Coulomb’s

liding criterion ( F (s ) 
inter face 

= f d F A ) is used to capture the onset of

ncremental sliding at varying compressive force as function of dis-

lacement, F A ( u ). Accordingly, the force −displacement curve is de-

cribed by F T = 2 f d F A giving: 

F T 
F A 

= f d 

(
1 − u 

L 

)
for u 

(s ) ≤ u ≤ L (9.7)

here f d is the dynamic friction coefficient. 

.5. Finite element model of curved interfaces 

To test the effect of interface enrichment, we modeled the ar-

hitectured beam using finite element (FE) ( Fig. A.1 ). The blocks

re modeled based on continuum with linear elastic behavior

ith Young’s modulus, E and poison’s ratio ν= 0.2. The blocks are

eshed using 8 nodes quadratic plane stress elements (PLANE183

 ANSYS, 2013b )). The blocks are separated by contact elements

CONTA 172, ( ANSYS, 2013a )), that consider contact deformation

nd contact friction. The beam rests on rigid supports modeled

s rigid contact elements (TARGE 169, ( ANSYS, 2013a )), the beam

s subjected to axial pre-compression F A applied at both ends

 x = ±L /2, y = 0) and to a transverse force F T applied at x = 0, y = L /2.

he FE model will be used to obtain F T −u curve for different CL, f,

 . Mesh is refined until results are mesh independent, in addition

t is compared with experiments for validation ( Fig. A.1 b). 
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