
  

 Abstract- Capsule endoscopes have gained popularity over the 

last decade as minimally invasive devices for diagnosing 

gastrointestinal abnormalities such as colorectal cancer. While 

this technology offers a less invasive and more convenient 

alternative to traditional scopes, these capsules are only able to 

provide observational capabilities due to their passive nature. 

With the addition of a reliable mobility system and a real-time 

navigation system, capsule endoscopes could transform from 

observational devices into active surgical tools, offering biopsy 

and therapeutic capabilities and even autonomous navigation in 

a single minimally invasive device. In this work, a vision system 

is developed to allow for autonomous lumen center tracking and 

haustral fold identification and tracking during colonoscopy. 

This system is tested for its ability to accurately identify and 

track multiple haustral folds across many frames in both 

simulated and  in vivo video, and the lumen center tracking is 

tested onboard a robotic endoscope platform (REP) within an 

active simulator to demonstrate autonomous navigation. In 

addition, real-time localization is demonstrated using open 

source ORB-SLAM2. The vision system successfully identified 

95.6% of Haustral folds in simulator frames and 70.6% in in vivo 

frames and false positives occurred in less than 1% of frames. 

The center tracking algorithm showed in vivo center estimates 

within a mean error of 6.6% of physician estimates and allowed 

for the REP to traverse 2 m of the active simulator in 6 minutes 

without intervention.  

I. INTRODUCTION 

Gastrointestinal (GI) diseases are diagnosed and treated 

primarily through the use of a traditional endoscope or 

colonoscope. While less invasive alternatives such as wireless 

capsule endoscopes (CEs) are becoming more prevalent, 

these devices are limited, via their passive nature, to 

observational techniques and offer nothing in the way of 

therapeutic capabilities [1]. Recent research efforts have 

focused on the development of a mobility and sensory 

feedback system for such a device, to enable autonomous or 

semi-autonomous motion control and navigation in vivo. 

These efforts support the goal of designing a truly robotic 

capsule endoscope (RCE) or colonoscope to improve this 

minimally invasive procedure.  

 

The development of our scaled robotic endoscope platform 

(REP) [2] and the modular endoscopy simulation apparatus 

(MESA) [3] has enabled the rapid development and testing of 

a multitude of sensing and navigation strategies. This paper 
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presents an upgraded platform, REP-2, as well as a novel 

vision system able to track the lumen center for autonomous 

navigation while also identifying and tracking haustral folds 

to enable careful observation by the physician. In addition, 

this paper presents the use of a monocular localization 

strategy using ORB-SLAM2 within the MESA simulator. 

A. Motivation 

Although colorectal cancer (CRC) is treatable with a 

relative five-year survival rate of 90% if detected in the early 

and localized stage, it remains the third leading cause of 

cancer deaths in the U.S. for both men and women [4]. The 
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Figure 1. Robotic endoscope platform (REP) inside of the Modular 
Endoscopy Simulation Apparatus (MESA) with inset showing haustral fold 

identification and tracking (top) and front view of the REP-2 showing the 

additional center wheel to improve mobility over obstacles (bottom).  Top 
wheels and belts are not shown as these were not used during testing. 

 



  

most effective method of early detection is regular screenings, 

which serve not only to identify CRC, but also to prevent it, 

by removing potentially precancerous polyps [5]. The 

colonoscopy remains the most effective screening method for 

CRC, allowing a surgeon to locate and remove suspect polyps 

by inserting a scope into a patient's anus, rectum and colon 

[5]. However, despite recommendations from the American 

Cancer Society that adults over 50 years of age receive a 

colonoscopy once every ten years, a 2010 study showed that 

only 56% of adults 50 years or older had actually had the 

procedure within that timeframe [4].  

 

Colonoscopies can be uncomfortable for both patient and 

physicians. It is estimated that up to 90% of patient pain 

during colonoscopies is caused by looping, where the 

colonoscope continues to advance into the colon without a 

simultaneous progression of the tip. This leads to colon 

distension and in severe cases, can cause tissue damage and 

perforation [6]. In an attempt to both decrease the 

invasiveness of this procedure and improve the screening 

procedure as a whole, capsule devices have been developed. 

B. Capsule Endoscopy  

Wireless capsule endoscopes offer a less invasive 

alternative to traditional endoscopes. Once this pill-sized 

device is swallowed by a patient onboard cameras are able to 

transmit images of the patient’s GI tract to a wireless receiver 

where they can then be analyzed by a physician. While several 

wireless capsule endoscopes are currently on the market, all 

of these devices rely on passive locomotion to progress 

through the GI tract [1]. Due to their passive nature, these 

devices are unable to interact with the tissue they observe, 

lacking the ability to take biopsies or administer therapeutics 

[7]. Furthermore, because the positioning and orientation of 

these devices is not controlled, important diagnostic 

information (i.e., precancerous or cancerous polyps) can be 

missed, resulting in a diagnostic accuracy less than that of 

conventional scopes [7]. Implementation of a robust and 

reliable mobility system for a robotic capsule would help to 

avoid many of these issues, enabling controllability and 

making way for more detailed imaging as well as biopsy and 

therapeutic capabilities. 

  

While a wide range of locomotion methods for RCE’s have 

been attempted including legged [8-11], earthworm [12], 

inchworm [13-14], treaded/wheeled [15-16] and magnetically 

linked [17-18] prototypes, these devices have yet to achieve 

satisfactory mobility in vivo and typically lack the sensory 

feedback that would allow for closed-loop control, thus, 

potentially complicating an already difficult procedure.  Our 

group has had success with in vivo wheeled and treaded 

robotic mobility using micro-pillared polydimethylsiloxane 

(PDMS) materials [19-20]. Recent efforts have focused on the 

benchtop scaling of these devices to larger dimensions for 

ease of manufacturing and reduced cost [2], while enabling 

the addition of a multitude of sensors and actuators for 

improved feedback and automation capabilities.   

The device featured in this work incorporates four DC 

motors with encoders and current sensors, a 6 degree-of-

freedom (DOF) inertial measurement unit (IMU), a 3 DOF 

magnetometer, a monocular vision system and an onboard, 

Wi-Fi capable microcontroller, all housed in a prototype 

scaled to be approximately 2x the size of the device from 

previous work [15]. The many features of this device allow 

for a diverse range of benchtop tests and experiments to assess 

the value of different sensing and state estimation strategies 

as well as the implementation of various control laws to 

improve mobility and navigation. While the device itself is 

too large for in vivo testing, it serves as an invaluable 

benchtop testing platform for the assessment of device 

designs. 

C. Sensing and Navigation  

The unique GI environment presents sensing and 

navigation challenges not addressed in conventional field 

robotics. Although attempts have been made at localization 

and navigation of in vivo devices, these techniques have 

typically relied on external hardware to track endoscopic 

devices which can be very difficult given the lack of line-of-

sight to the device [21-22] and the necessity of large external 

hardware. Alternatively, onboard navigation and localization 

via computer vision often relies on the detection of clear and 

discrete features such as corners and edges which are typically 

non-deformable and ever present in the world we experience. 

While vision in the in vivo environment has only recently 

become an active area of research, the deformable nature of 

this environment and sparseness of features may pose 

significant challenges to conventional feature detection 

approaches [23]. Despite these difficulties, attempts at 

detecting and tracking using images from within the lumen 

have been done using techniques such as optical flow and 

shape from shading [24-29]. 3D reconstruction of stomach 

simulator images and ex vivo stomach tissue has also been 

shown using sparse-then-dense feature tracking [30]. 

Similarly, structure from motion has been attempted using 

images from conventional endoscopy [31-32] and simulated 

environments [33] as well as using fused visual inertial 

estimates from a capsule endoscope in a GI simulator [34]. 

While success has varied, in general, these attempts have been 

computationally very expensive and most have not been done 

in real-time or tested on actual devices.   

 

A crucial goal of the REP/MESA system is to evaluate and 

improve the way future robotic endoscopic devices sense and 

respond to the deformable GI environment. To improve 

endoscopy procedures, RCE’s must be designed with the 

capacity to maintain objects of interest (i.e., polyps or 

diseased tissue) in view, avoid progression into diverticula or 

into the GI wall (which can cause distension or even 

perforation), and respond safely (without inducing tissue 

damage) under the presence of unanticipated disturbances 

(due to patient movement or peristalsis). In addition, these 

devices have the potential to significantly simplify user input 

and reduce training barriers to physicians via autonomous or 

semi-autonomous navigation, localization and control and 

may even offer disease identification and environmental 

mapping. 

 



  

To achieve these goals, the use of advanced sensing and 

environmental feedback are requisite additions to these 

devices. Fortunately, advances in robotic vision may offer 

many of these capabilities [35]. In addition to autonomous 

navigation, visual cues allowing for localization within the 

colon will enable physicians to know not only the location of 

an RCE during a procedure, but potentially, where the RCE 

found polyps or took biopsies in previous procedures. 

Typically, the removal of suspect polyps and other biopsy 

locations is identified via a small tattoo applied to the colon 

wall. While this visual cue allows a physician to carefully 

screen this region in future procedures, these tattoos can be 

difficult to find. A more robust method for localizing within 

the colon may better enable a physician to locate these 

important regions during repeated inspections. In addition, as 

haustral folds often occlude suspect polyps, real-time 

information informing a physician about which haustral folds 

have already been screened (front and back) during a 

procedure may also prove useful. To accomplish this task, 

haustral fold tracking across multiple image frames is 

necessary.  

 

The device featured in this work utilizes a computationally 

inexpensive method for identifying the haustral folds of the 

colon lumen and tracking them across multiple image frames. 

This allows for accurate identification of the lumen’s center 

in real-time, enabling the robot to utilize this information in 

its feedback loop, and providing a method for closed-loop 

navigation/visual-servoing through the colon. In addition, 

monocular Simultaneous Localization and Mapping (SLAM) 

is applied using the open source ORB-SLAM2 library. This 

feature based monocular SLAM approach utilizes key-

frames, and bundle adjustment to compute pose and sparse 

point reconstruction up to a scale [36], allowing for real-time 

localization of the REP-2. 

II. DESIGN 

Design of the REP-2 is divided into four sections. The first 

section describes the updated REP-2 chassis and drivetrain 

and is followed by a brief description of the MESA. Finally, 

the design of the vision system is described in detail.  

A. A Scaled Robotic Endoscope Platform 

The REP was designed to be a 2x scaled version of the RCE 

from [15]. The original REP featured four independently 

controlled motors to allow for tank steering regardless of the 

device’s orientation. This device, detailed in [2], housed a 

wireless microcontroller, two dual motor drivers, a 6 DOF 

IMU and 3 DOF magnetometer, current sensors, motor 

encoders, FRAM memory module for data logging, and a 

camera for visual feedback. This device unfortunately was 

prone to roll-overs and high-centering in the presence of 

obstacles and thus the drive system of this device has been 

improved to accommodate the more challenging task of 

traversing large haustral folds. In addition, the camera has 

been updated to improve image processing capabilities as 

described below. This second iteration of the REP, (REP-2) is 

otherwise identical to the original (electronics, data flow and 

general operation).  

To enable the REP to traverse large simulated haustral folds 

the original drive system was modified to prevent high 

centering and to improve stability. An updated clamshell 

housing allows for the addition of two center shafts on the top 

and bottom of the device. One center wheels supported by 

wheel bearings fits over each shaft and is locked in place by a 

small retaining ring. These center wheels interface via timing 

belts to their respected driving wheel in the front of the device 

as well as to the rear wheels of the device. This modification 

allows the REP-2 to maintain traction even as its center 

reaches the peak of large haustral folds. In addition, these 

center wheels increase the overall wheel base width of the 

device from 21 mm to 46 mm, improving the device’s 

stability substantially and reducing its propensity to roll in the 

presence of obstacles. Finally, to improve the device’s ability 

to utilize robotic vision, the original CCD interlaced scanning 

camera was replaced with a 1080p CMOS progressive 

 

Figure 2. 3D rendering of the REP-2. Updated drive train and clamshell 

housing are shown (top). Exploded view of the center wheel upgrade is 
shown in detail (bottom). These modifications improve stability and reduce 

high centering over simulated haustral folds.   



  

scanning camera (ELP-USBFHD01M-L2, Ailipu 

Technology Co., Shenzhen, Guangdong, China). This camera 

demonstrated significantly improved performance from the 

original, particularly in the presence of the rapid motions 

experienced by the device while moving over the haustral 

folds.  

B. MESA Benchtop Simulator 

The MESA system used in this study is a scaled active GI 

simulator environment and has the ability to induce 

significant deformation in the silicone synthetic tissue (more 

than 15 cm in 0.5 seconds). This simulator also has the ability 

to induce peristalsis type deformation of the colon at wave 

propagation speeds of 7.7 cm/s. As noted in [3] the synthetic 

colon on the MESA features haustral fold obstacles designed 

to replicate the size, shape and distribution of typical folds 

found in the human colon. The synthetic, highly deformable 

colon is also insufflatable and is approximately twice the 

length and diameter of the human colon. The MESA serves as 

a scaled testing environment for the REP-2, allowing for the 

assessment of navigation and localization strategies on a low 

cost platform that offers repeatability and directly measurable 

ground truth, while also providing the chance to increase or 

reduce the difficulty of the testing environment via changing 

geometries or adding disturbances such as external motion, or 

peristalsis simulation. 

C. Sensing and Vision System 

The vision system for the REP-2 is similar to the lumen 

tracking strategy featured in [2] however while this previous 

strategy was adequate for identifying static folds and 

estimating the lumen center, it was hampered by false 

positives, offered no means for tracking specific folds across 

multiple frames and produced poor center estimates in non-

circular and deformable environments. To address these 

issues, a more advanced edge detection algorithm has been 

adopted for frame segmentation and significant functionality 

has been added to this system to allow for haustral fold 

tracking across multiple frames as well as ellipse fitting rather 

than circle fitting to more appropriately describe the shape of 

the identified haustral folds and more accurately estimate the 

lumen center. In addition, localization capabilities have been 

incorporated into this system to allow for real-time location 

estimates using the open source ORB-SLAM2 monocular 

vision system. 

 

The process to identify haustral folds (Fig. 3) is as follows: 

(1) Prevalent haustral folds in each frame are detected using 

Canny edge detection. Each RGB frame is first converted to 

gray scale where it is then smoothed using a Gaussian filter. 

Canny’s intensity gradient approach is then used to detect the 

edges in the image. This first step is relatively liberal to ensure 

that as many complete haustral folds as possible are 

identified. (2) Once edge detection is complete, all segments 

below a fixed size threshold (500 pixels) are removed. This 

step is important in reducing noise and false positives, 

ensuring only good haustral fold estimates are selected. The 

threshold selected is based on the size of the original RGB 

image so as to allow for the use of a range of cameras and 

previously recorded video. (3) An ellipse fit is done on all 

remaining segments. The mean center of these ellipses serves 

as the center estimate of the lumen and the standard deviation 

of this estimate is used to determine the accuracy of this 

estimate. Any segments to which an ellipse cannot be fit are 

removed and not used. (4) The segments identified in step 2 

are next used as a mask to determine relevant points to track 

for each segment. Each segment is dilated via a disk 

structuring element with a radius of 3 pixels, and each of these 

dilated segments is used to mask off the original image such 

that only pixels within the dilated segment are used. 

Minimum eigenvalue feature detection is used to detect 

features on these masked images and a multi-object tracker 

based on the Kanade-Lucas-Tomasi algorithm [37] is used to 

determine which segments have been seen in previous frames 

and which segments represent new haustral folds to be tracked 

in subsequent frames. New segments are added to the tracker, 

and previously seen segments are updated with any new 

points that may have been found. To provide an estimate on 

the persistence of each segment, segments that are seen are 

scored. Initially a segment receives a score of 1, if this same 

segment is seen in the subsequent frame its score is increased 

by 1 and so on. When a segment is not seen its score is 

decreased by 0.5. If a segments score falls below 0 it is 

removed and no longer tracked. Once segments are identified 

and added to the tracker, a bounding box is used to identify 

each segment. These segments are numbered consecutively to 

 
 

Figure 3. Haustral fold tracking algorithm applied to an image from a human 

colonoscopy procedure. The original image (A) is processed via Canny edge 

detection (B). Segments below a set pixel threshold are removed (C) and 
ellipses are fit to the remaining segments. All segments to which ellipses have 

been successfully fit are dilated to form an image mask (D). These dilated 

segments are then passed to a KLT tracking algorithm to be tracked across 
frames (E).  

 



  

provide a sense of when they were first viewed, and their size 

is estimated based on the ellipse fit. Each segment’s score is 

also displayed in the bounding box caption. In addition, by 

resizing the incoming images from the camera to 25% of their 

original size, this process can be completed at speeds up to 25 

Hz without any noticeable detriment to performance on a 

consumer grade laptop using an Intel Core I5 Processor. 
 

III. METHODOLOGY 

Methodology is divided into three sections: First the lumen 

center identification and haustral fold tracking system is 

tested using the onboard camera of the REP-2 in both in vivo 

images and simulator images taken from the MESA. Next, 

REP-2 localization using ORB-SLAM2 is tested. Finally, the 

vision system is used to autonomously navigate the REP-2 

through the MESA simulator. 

A.  Center Estimate Evaluation and Haustral Fold Tracking 

To test the vision system’s ability to detect and track both 

the lumen center and haustral folds, the REP-2’s camera was 

used within the colon simulator to record video at 10 fps for 

analysis. This video was broken into 1000 frames (640x480 

resolution) and each frame was passed into the vision system. 

In addition, video from actual colonoscopy shot at 30 fps (480 

x320 resolution) was broken into 2758 frames and analyzed 

using the identification and tracking algorithm. The output of 

the algorithm including detected haustral folds, tracked 

haustral folds (tracked for > 3 frames), false positives and 

tracked false positives (tracked for > 3 frames) were counted 

and compared to ground truth (manually counted haustral 

folds from the same video) to determine the number of misses, 

good hits, and false hits over the duration of the video. 

 In addition, the center tracking algorithm output was 

compared to the estimated center as determined by four both 

inexperienced users and three gastroenterologists. A simple 

game was designed to allow a user to select the lumen center 

in 148 images from both the MESA simulator and actual 

colonoscopy. Each image was displayed at random and users 

were instructed to estimate the center of the lumen (described 

as the point in the image they would immediately head 

towards to stay in the center of the enclosed space). This 

selected pixel position was recorded and compared to the 

estimated center as determined by the lumen center estimator. 

Users were allowed to see their selection but were given no 

prior information about what good center estimates might 

look like beyond the verbal explanation.   

B. REP Localization Using ORB-SLAM2 

To assess the ability of ORB-SLAM2 to provide useful and 

accurate pose information, the camera of the REP was first 

calibrated in MATLAB. The resulting camera parameters 

were setup in ORB-SLAM2 and the raw camera images from 

the REP were then published via a Robotic Operating System 

(ROS) node and subscribed to via ORB-SLAM2. The REP 

camera was then manually progressed into the MESA 

simulator while its global position (distance of progression 

down the tube) was manually verified and recorded. The 

simulated tissue was placed in multiple geometric 

configurations to allow for a visual comparison and 

confirmation of the resulting point cloud and trajectory from 

ORB-SLAM2. Following this initial test, the REP was 

manually driven down the full length and back to the start to 

visually compare the resulting pose plot to the actual MESA 

geometry.  

C. Autonomous Navigation of MESA Simulator 

To assess the feasibility of using this algorithm for 

navigation purposes, the vision system was used to 

autonomously navigate the REP-2 through the synthetic 

colon. A dual-mode control strategy similar to that used in [2] 

was applied to the lumen center estimates from the vision 

system and both video and run-time were recorded. In 

addition, any necessary manual intervention was recorded. A 

total of three trials were conducted to demonstrate the 

feasibility of this navigation method.  

 

To navigate the MESA, center estimates from each image 

frame are calculated using the vision algorithm presented 

previously in [2]. A pixel error E is calculated by taking the 

difference between the true center pixel position 𝐹𝑐𝑒𝑛𝑡𝑒𝑟  and 

the X pixel position of the center estimate 𝐸𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 . The 

 

Figure 4. Multi-Haustral Fold tracking is shown in both an actual colon (top) 

and the simulated colon used with the MESA simulator (bottom). Each 

bounding box shows the estimated size of the haustral fold in pixels, the ID 
number of the fold, and a score to indicate how prevalent each fold has been.  

 



  

pixel error in the x-direction is sent to the REP-2 for use in 

the control loop.  

                            𝐸 = {
   𝐹𝑐𝑒𝑛𝑡𝑒𝑟 − 𝐸𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟   
    𝐸𝑡−1                           

         (1) 

The dual-mode control strategy uses the lumen center 

feedback for accurate REP navigation. This controller 

consists of a proportional, integral, derivative (PID) control 

mode for errors greater than ±30 pixels, and allows the REP-

2 to use tank steering (one wheel forward, one driving in 

reverse) to correct for center tracking errors. As shown in 

equations (2) and (3), wheel speeds 𝜔1 and 𝜔2 (which are 

proportional to the PWM motor inputs) are adjusted based on 

error 𝐸 and PID controller 𝐷𝑃𝐼𝐷.  

𝜔1 = {
    𝐸 · 𝐷𝑃𝐼𝐷 , |𝐸| > 30, 𝐸 > 0

−𝐸 · 𝐷𝑃𝐼𝐷 , |𝐸| > 30, 𝐸 < 0
       (2) 

𝜔2 = {
−𝐸 · 𝐷𝑃𝐼𝐷 , |𝐸| > 30, 𝐸 > 0

   𝐸 · 𝐷𝑃𝐼𝐷 , |𝐸| > 30, 𝐸 < 0
     (3) 

For errors less than ±30 pixels, simple proportional control, 

𝐾𝑝, is used to adjust the speed of one wheel while the other is 

driven at a set max speed. 

𝜔1 = {
𝜔𝑚𝑎𝑥 ,   |𝐸| < 30, 𝐸 > 0

 𝜔𝑚𝑎𝑥 − 𝐸 · 𝐾𝑝 , |𝐸| < 30, 𝐸 < 0
    (4) 

𝜔2 = {
𝜔𝑚𝑎𝑥 − 𝐸 · 𝐾𝑝,   |𝐸| < 30,   𝐸 > 0

𝜔𝑚𝑎𝑥 , |𝐸| < 30,   𝐸 < 0 
   (5) 

With this method for controlling the REP-2, the device was 

allowed to progress down the insufflated MESA simulator on 

its own while being timed by the operator who also ensured 

that the REP-2’s tether was continuously fed into the 

simulator. The REP-2 was monitored for rollovers and tether 

snags which were corrected by the operator manually who 

could squeeze the insufflated deformable simulator externally 

to reach and adjust the REP-2 if necessary. Any interventions 

like these were recorded but the REP-2 was allowed to 

continue to the end of the simulator to complete the trial.  

IV. RESULTS & DISCUSSION 

By manually comparing the identified haustral folds to 

those of the detection/tracking algorithm, it was found that 

this algorithm detected and tracked 95.6% of haustral folds in 

the simulator images, with a false positive rate of 0.34% (34 

false IDs in 1000 frames). While haustral folds were rarely 

missed, the reliance on image segmentation often results in a 

single haustral fold being split and tracked as separate pieces. 

This is particularly true as the camera comes closer to the 

haustral folds (splitting the folds in the image frame). Despite 

this, the algorithm was very successful at identifying and 

tracking the vast majority of haustral folds over many image 

frames (Table 1). 

TABLE I.  HAUSTRAL FOLD IDENTIFICATION & TRACKING 

 Total Identified Tracked FP % a TFP % a 

Simulator 23 22 22 0.34 0.08 

In vivo 51 36 14 0.10 0.03 
 

a. False positive rate and tracked false positive rate are shown as a percentage of total frames.   
 

Haustral fold tracking in the colonoscopy video proved 

more difficult likely due to the irregular shape of actual 

haustral folds and the less discrete edges present. Despite 

these problems, the algorithm was able to identify 70.6% of 

folds with a very low occurrence of false positives, 0.10% (27 

false IDs in 2758 frames). As with the simulated folds, double 

counting of folds was common, and improvements made to 

allow for better merging of these segments may prove useful 

in improving overall identification and tracking. Tracking did 

prove difficult in vivo, likely due to fast movements and visual 

 
 

Figure 5. ORB-SLAM2 computes both camera/REP-2 pose and world points 
up to a scale. An input monocular image from the simulator is shown (A). 

Orb features are detected (B) and over many frames the estimated trajectory 

and point cloud is constructed (C). Note the clearly visible haustral folds 
present in (C).   
 

 
Figure 6. Error scaled as a percent of image size (in x and y) is shown for the 
center detection algorithm in comparison to both physicians (blue) and 

inexperienced users (red) for the in vivo colon images.  

 



  

occlusions less present in the simulated frames and only 

27.5% of folds were tracked across three or more image 

frames (Table I). 
 

 

While haustral fold ID and tracking were somewhat 

hindered in colonoscopy images, center identification proved 

to be successful in both simulated and real in vivo 

environments. Pixel error was calculated as both a magnitude 

distance and a horizontal and vertical distance in X and Y. 

Error was then calculated as a percentage of the total image 

width/height in pixels to account for different image sizes. 

Estimated centers between all users differed widely, however 

the overall mean center estimate error of the algorithm across 

the 74 in vivo images was 6.6 % when compared to the three 

physicians (PH) and 4.6% when compared with the 

inexperienced users (IU) in the x-direction. The simulator 

center estimates proved less accurate, with overall mean 

errors in X of 15% when compared to the physicians and less 

than 9.4% when compared to the inexperienced users (Table 

II and Fig. 6). In general, the large difference in scale and 

depth between simulator and in vivo images may have 

resulted in this discrepancy as across the board, physicians 

and inexperienced users tended to choose points further down 

the lumen then the algorithm selected.     

TABLE II.  MEAN PIXEL ERRORS IN LUMEN CENTER DETECTION  

 In vivo  

 % Error 

In vivo xa  

% Error 

Simulator 

% Error 

Simulator xa 

 % Error 

PH #1 6.2  3.8 4.4  3.6 11.8  4.6 9.4  5.2 

PH #2 7.6  4.8 5.0  4.2 16.3  5.5 13.5  6.6 

PH #3 14.9  6.1 10.5  6.8 24.5  5.1 22.2  6.1 

IU #1 7.6  4.6 4.5  4.0 11.6  5.5 9.3  6.1 

IU #2 5.9  3.0 3.6  2.6 6.2  4.9 5.4  4.9 

IU #3 7.2  4.4 4.0  3.4 8.7  4.5 4.9  4.6 

IU #4 9.0  5.3 6.4  5.3 20.3  7.1 17.9  7.6 
 

a. Errors in x are shown separately from overall magnitude as this was the direction being 

controlled in autonomous navigation.  
 

Localization via ORB-SLAM2 proved to be very 

successful. Final visual comparison of the resulting pose map 

and point cloud demonstrated excellent geometric similarity 

to the MESA simulator as seen in Fig. 7. In addition, haustral 

fold locations were readily discerned from the resulting point 

cloud and the REP-2 location was easily determined from the 

map, allowing for easy manual verification of its location 

during operation.  

 

Autonomous navigation of the REP-2 within the MESA 

simulator also proved successful. Center tracking resulted in 

fast movement throughout the deformable simulator with the 

fastest trial taking approximately 6 minutes. While minor 

manual intervention was required on two of the three runs to 

correct tether snagging on the final sharp curve of the 

simulator, in general no other assistance was necessary to 

enable REP progression to the end of the simulator.     

V. CONCLUSIONS & FUTURE WORK 

An updated REP was designed fabricated and tested within 

the MESA anatomical simulator. An improved lumen center 

tracking approach was tested for its ability to detect and track 

haustral folds and for its ability to determine the lumen center 

in both colonoscopy video and video from the MESA 

simulator. Lumen center tracking was then used as feedback 

to allow for autonomous navigation within the simulator. 

Finally, an open source monocular SLAM approach (ORB-

SLAM2) was applied within the MESA simulator to allow for 

REP localization and sparse mapping of the simulator 

environment. Lumen tracking and localization using ORB-

SLAM2 both proved effective, allowing for autonomous 

navigation and localization of this device in the MESA 

simulator. In addition, the haustral fold detection and tracking 

algorithm also showed significant potential when applied to 

actual in vivo colonoscopy images. 

This preliminary investigation into visual strategies for 

navigation and localization of the REP, demonstrates the 

potential for robotic vision to improve the capabilities of 

robotic capsule endoscopes. While the device featured in this 

work is currently not a suitable size for in vivo applications, 

we believe these same techniques will prove useful on a 

scaled down version for animal testing currently under 

development.  

 
 

Figure 7. ORB-SLAM2 utilized in two different simulator configurations, 

with the resulting point clouds (A,C) compared against the geometry of the 

simulator as photographed from above (B,D). Dotted lines around the point 

clouds show this simulator geometry superimposed. A view of the MESA 
table with the estimated REP-2 location as predicted by ORB-SLAM2 is also 

shown (E). The configuration shown in (C,D) was also the configuration used 

to test autonomous navigation of the REP-2.  
 



  

 

Future work will focus on building on the tools presented 

here for improved haustral fold detection/tracking in actual 

colonoscopy video and to allow for monocular SLAM in the 

more difficult deformable in vivo environment. In addition, 

parallel work is currently focused on a device scaled back to 

the size of [17]. In vivo testing of this device will be conducted 

to further evaluate the utility of these visual tools.  
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