]
o

THE TAXIR PRIMER

R. C. BRILL

Py WAy

| OCCASIONAL PAPER No. |
INSTITUTE OF ARCTIC AND ALPINE RESEARCH @ UNIVERSITY OF COLORADO




)

THE TAXIR PRIMER

by R. C. Brill

Occasional Paper No. 1
Institute of Arctic and Alpine Research
University of Colorado
Boulder

1971

Publication of this manual has been spon-
sored by the National Science Foundation
(Atmospheric Sciences) under grant no.
GA-15528 to Dr. R. G. Barry, Institute of
Arctic and Alpine Research, University of
Colorado. '



>

w)

-ii-

TABLE OF CONTENTS

PREFACE.

L] L] L] . L] L L J

About the Taxir System .
About the Taxir Primer .

Brief History of the Taxir System

ACKNOWLEDGMENTS « . « ¢

1. INTRODUCTION TO TAXIR AND SET

Taxir Data Banks .
Data Bank Design .
Taxir Programs. .
General Formats .

L] *
* L]
L] L]
® L

2. BUILDING A TAXIR DATA BANK

STATEMENT TYPE: DEFINE DESCRIPTORS

ORDER Option. . .
NAME Option . . .
FROM-TO Option . .
Equals Facility. .

STATEMENT TYPE: DEFINE ITEMS

Fixed Field Format.
Free Field Format .
SAME Format . . .

L ]
L
.
L]
L]

THEORY

e e o o

STATEMENT TYPE: DEFINE AND PRINT ITEMS.

STATEMENT TYPE: Item Definition

STATEMENT TYPE: END OF ITEMS .

A SAMPLE DATA BANK . .,

3. QUERYING A TAXIR DATA BANK

STATEMENT TYPE: CONTROL VOCABULARY

BOOLEAN EXPRESSIONS . .

Boolean Operators .

*

Taxir Boolean Operands
Taxir Boolean Operands
Taxir Boolean Operands
Taxir Boolean Operands

(Type
(Type
(Type
(Type
Combining Operators and Operands
The Use of Parentheses in Boolean Expre531 ns

1)
2)
3)
4)

[ ]
L
L]
L J
L]
L J

L] [ L[] *

L ] L] L] * L L ]

L]
[ ]
L]
L4
(o)

] L ] L] L] L] . .



*)

)

4.

STATEMENT TYPE: HOW MANY . . .

STATEMENT TYPE: PRINT . . . .

‘Descriptor Lists . . . .
Line Combos «. . « . o o
Print Fields. .

[

Print Field Overrlde Optlons (L and R Parameters)
Parameter).

Print Field Override Options
SAME Option . . . .« =« o

HOW To QUEm [ ) L] L] L] L] [ ] *
STATEMENT TYPE: GENERATE . . .

File Structure . . « e
Other Possible Appllcatlons.

CORRECTING A TAXIR DATA BANK. .

(F

STATEMENT TYPE:
STATEMENT TYPE:
STATEMENT TYPE:

STATEMENT TYPE:

CORRECTION, « + =+ o o o
DELETE STATE . . . « «
DELETE ITEMS . .« =« ¢ =« o

DEFINE MORE DESCRIPTORS . .

5. MISCELLANEOUS TAXIR STATEMENTS . . o« ¢ o &

STATEMENT TYPE:
STATEMENT TYPE:
STATEMENT TYPE:
STATEMENT TYPE:
STATEMENT TYPES:

ID ¢ ¢ ¢ ¢ o o o o o
END . . .« ¢ o ¢ o o
TIME. . ¢ « ¢ o o o
MEMO. . . .« ¢« ¢ o o

READ DATA BANK and WRITE DATA

APPENDIX A: TAXIR ERROR MESSAGES . .« « =« o

Taxir Error List . . . ¢ o ¢ o o o o

APPENDIX B: PRELIMINARY PROBLEMS . l. e o o

Data Bank Design . . . . o o

Fitting the Taxir System to the Data Bank.
Running Taxir under the Operating System .
Taxir System Conversion. . . « ¢ o

Summary . . .

INDEX . . .. =« o

L] [ ] o ® L] [ L] [ ] [ ]

e e o ¢ o

e & o O o

e o 0 o o



o)

-ivyv-
PREFACE

About the Taxir System

Taxir is an information storage and retrieval system designed
for general use on electronic computing machines. The semantic con-
tent of the information fed to it has no bearing on its operation.
If the information can be structured in the manner described in
Chapter 1, then the Taxir system is capable of handling it,.and
most of the information that is gathered in all fields of human
endeavor can be so structured.

The system is based on some simple notions in set theory which
permit the data to be stored in a highly compressed form and rapidly
retrieved by calculation rather than by the traditional comparison
search. This technique results in significant savings in both ma-
chine storage space and machine execution time.

The Taxir user addresses the system in a high level language,
somewhat resembling English, which permits him complete control over
building, updating, and querying data banks. The querying section
of the language, which enables the user to retrieve desired portions
of his data, is the language of boolean algebra, adapted so that
terms of the user's own choosing may serve as operands in boolean
expressions of any degree of complexity.

The responses to queries are ordered alphabetically, numeri-
cally, or on any other ordering criterion defined by the user, and
arranged in a convenient hierarchical structure of the user's choosing.

About the Taxir Primer

This primer explains the Taxlr system in detail from a user's
point of view and assumes that the reader has no knowledge of math-
ematics or computers. Readers who are well versed in these topics
will, I hope, bear with the simple discussions of sets and boolean
algebra which my readers who are not so well versed will find abso-
lutely necessary for an understanding of the system. There are many
persons who are not scientifically trained who nevertheless find
themselves in charge of large masses of information and in great
need of tools for controlling them. Taxir is such a tool and it is
my belief that the use of this tool can be learned by any intelli-
gent motivated person with or without a scientific education who is
willing to read and study this primer.



o}

)

—v-

Brief History of the Taxir System

The system owes its origin to the long-standing interest of
plant taxonomist David J. Rogers in computer aided classification
and museum curation. During the early 1960's Dr. Rogers assembled
a research team to study the classification process. Several com-
puter programs were developed over the period 1963 to 1966, most
notably the similarity-clustering program (based on graph theory
and set theory) and the character analysis program (based on infor-
mation theory and set theory), both largely contributions of mathe-
matician George Estabrook. Although the original impetus was to
classify biological organisms, Estabrook's approach was to regard
classification as a general procedure for grouping similar objects
into clusters, whatever these objects may be and whatever character-
istics of the objects may be chosen as the basis for similarity and
difference. Both of these programs are still much used by taxono-
mists, but they are increasingly being used by other workers outside
systematic biology, such as geologists, psychologists, ecologists,
etc.

In 1967 Dr. Rogers and his team were awarded a grant from the
National Science Foundation to develop a computerized information
storage and retrieval system for systematic biology, principally to
facilitate the curation of botanical and zoological collections.
Again, the team took a generalized approach and extending the con-
cepts developed during the earlier work in classification, Brill
and Estabrook designed and programmed (for the CDC 6400) the Taxir
system. Taxir stands for Taxonomic Information Retrieval, a name
which reflects the original intentions of the project. These in-
tentions were fully realized and a number of Taxir museum applica-
tions are now in existence. But a great deal more was achieved in
the process and thanks to Taxir's generality we are now able to
offer the system to all who wish to retrieve at will select portions
from a large mass of data, whatever the nature of that data. As
with the classification programs, workers outside systematic biology
have begun to use the system and it is our hope that not only scien-
tists, but businessmen and administrators, will recognize the common
structure underlying their information problems and give the Taxir
system a wide acceptance.

R. C, Brill
Boulder, Colorado
April, 1971



»)

=

-tyie—-

ACKNOWLEDGMENTS

Above all to David J. Rogers and the staff of the Taximetrics Lab-
oratory at the University of Colorado for the support and encourage-
ment given to Estabrook and myself during the original research,

~design, implementation, and testing of the Taxir system.

To Roger G. Barry of the Institute of Arctic and Alpine Research at
the University of Colorado for support and encouragement during the
design, implementation, and testing of improvements to the Taxir
system and for the publication of the Taxir Primer.

To the National Science Foundation, who in the form of grant no.
GN-656 (David J. Rogers, Principal Investigator) and grant no.
GA-15528 (Roger G. Barry, Principal Investigator) sponsored the
developments referred to above.

To George Estabrook, George W. Nace, and Roger G. Barry for sugges-—
tions about and corrections to the Taxir Primer.

To George W. Nace, Department of Zoology, The University of Michigan,
and his staff for typing and proofreading of the Taxir Primer under
the support of National Science Foundation grant no. GB 8187.

To William Walden, Director of the Computing Center, Washington
State University, and his staff for undertaking the conversion of
the Taxir system to the IBM 360/65.

To the following Taxir users: 8S.G. Appan, R.G. Barry, L. Blick,
J.M. Clark, S. Dietz, H. Fleming, N. Hairston, M. Hale, L.W. Hudson,
W. Klein, A. Kluge, A. L8ve, T. Mason, F. Richardson, T. Stewart,

W. Weber, R. Westdyke, and G.F. White, for using the Taxir system
while it was still under development and without benefit of a user's
manual. The feedback from these experiences has given rise to many
of the improvements now present in the system.

- ) ———



)

-]

1. INTRODUCTION TO TAXIR AND SET THEORY

It is a strange property of the human mind to impose upon the
flux of its sensory input an exhaustive taxonomy which structures
the world for us into things. Each thing has its name and its at-
tributes. Pencil. Paper. Blue pencil. Red pencil. Writing paper.
Wrapping paper. Thus we are shielded from reality by an elaborate
metaphor and all that we know of the world is cloaked in its terms.
To behave as though the illusion were the reality, as most of us do
most of the time, is to. be sane.

For those of us who work with masses of data, set theory pro-
vides a simple, powerful and practical tool for manipulating infor-
mation about things. A set is a collection of things. The people
in a room, the books in a library, the fish in a lake, the specimens
in a museum are all sets. The things of which sets are composed are
called elements or members. A pair of dice is a set with two mem-
bers. A single rose is a set with one member. All the money in an

empty pocket is a set with no members. The universal set (written
as U) can be defined as the set of all the elements under consider-

ation. If U = a certain wolf pack, then we can find subsets of U,
such as the female wolves or the young wolves or the females and
young taken together or those wolves who are just now facing east,
etc., etc. Some of these subsets may be equivalent to (that is,
have the same elements as) the universal set. For example, if U =
the wolf pack, then the subset with fur = U. Some of these subsets
may be equivalent to the null or empty set (written as @), a set
with no elements. If U = the wolf pack, then the subset with bank-
books = @. Sets are themselves things and so there are sets whose
members are sets, like the set of all wolf packs which are in turn
sets of wolves. ,

This simple, intuitively grasped notion of things structured
into sets and sets themselves hierarchically structured into other
sets lies at the foundation of all our mathematics. The recent
realization that this is so has led to the introductory mathematics
now taught to our youngest school children. The core of this ap-
proach is to teach before all else the simple properties of sets
and the concept of number. In the mid-nineteenth century George
Boole published the first statement of the algebra of logic. The



it

»

-2-

concepts of Boole have been extended by other workers and in va-
rious contexts they are known by the names boolean algebra, the
algebra of sets, propositional calculus, logical arithmetic and
by other names as well. In our own context of data manipulation,
we can consider boolean algebra as a technique for combining and
altering sets to form other sets. Using.this algebra to operate
on sets is reminiscent of the way we use ordinary arithmetic to
operate on numbers, only easier.

Our computing machines all perform ordinary arithmetic on num-
bers. In the machine these operations are actually composed of a
series of simpler boolean operations on the bits which represent
the numbers. Computing machines are at the circuitry level boolean
algebra machines in toto. And at the programming level the machine
user may perform boolean operations on variables of his own choice.
It is this fundamental property of computing machines which makes
the Taxir system possible and which the designers of Taxir have ex-
ploited in 2 ways:

1. The language which the Taxir user employs to select

desired subsets of his data for printout is the lan-
guage of boolean algebra.

2. The system responds to such user requests, not by

performing the traditional linear file search, but

by performing boolean operations directly on the

stored data.
As these same boolean operations are the simplest and fastest in
the machine, this technique accounts for Taxir's exceptional re-
trieval speed. See Estabrook, G.F. and R.C. Brill, 1969, The Theory
of the Taxir Accessioner, Mathematical Biosciences, 5:327-340.

The elements of a set U can be represented pictorially as all

the points bounded by a rectangle (or any other closed plane fig-
ure). The elements of the various subsets of U can be represented
as the points bounded by circles (or other closed plane figures).

U = all the people in Room 7

Some of the subsets may be:
those with hats

those with coats

those named Robert
those over 20

A
B
C
D
E those over 40

(3




»

-3-

No one named Robert has a hat. This reflects the fact that sets
A and C are disjoint, i.e., have no elements in common. Other dig-
joint pairs of sets are (A,D), (A,E), (B,C), (B,D), (B,E), (C,D),
and (C,E). Some people have hats, some have coats and some have
both, reflecting the fact that sets A and B overlap, i.e., some
but not all of the elements of A are also elements of B, and vice
versa. All those over 40 are also over 20, which reflects the fact
that set D contains set E, or to phrase it another way, E is a sub-
set of D. (All elements of E are also elements of D.) E is also
a subset of U and so are A, B, C and D.
There are 3 ways of establishing the membership of a set P,
l. by naming the elements of the set, such as, P is
the set whose members are Peter, Paul and Mary.
2. by naming some condition or property or rule that
selects the elements of U that qualify for member-
ship in the set P, such as, P is the set of those
people with purple neckties.
3. by performing one or more of the 3 basic operations
of boolean algebra on already existing sets, such
as, P is the set of those people with purple neckties
and incomes over $10,000/year. Q is the set whose
members are Peter or Paul or not those with purple
ties.
These operations are defined and illustrated in Chapter 3.

Taxir Data Banks

A data bank is a collection of things, i.e., a set. Each ele-
ment of a data bank corresponds to an element in some other set of
interest such as a collection of museum specimens, a group of eco-
logical habitats, the contents of a warehouse, the employees of a
company, the books of a library, the students of a university, the
results of an experiment, the findings of an oceanographic survey,
the inventory of a store, etc., etc. Each element of a data bank
is called in Taxir terminology an item and is composed of all the
pieces of pertinent information describing the corresponding ele-
ment in the set of interest. Although there is a significant con-
ceptual difference between an object, such as a museum specimen,



»

-4~

and the recorded data in the bank concerning this object, it is
simple and convenient in daily usage to let the word item desig-
nate either one, the object itself or its information abstract.
The pieces of information which comprise an item belong to
information categories called descriptors. A descriptor may be

thought of as a criterion for dividing all the items in a data bank
into mutually exclusive (disjoint) subsets called descriptor-states
or sometimes just states. For example, if the items in a data bank

are botanical specimens, then with respect to the descriptor FLOWER
COLOR each specimen will be assigned to a subset (state) in accord-
ance with the color of its flower. All the items with red flowers
will constitute the membership of a subset called FLOWER COLOR, RED.
All the items with pink flowers will constitute the membership of a
subset called FLOWER COLOR, PINK. Etc. If a specimen is discovered
to have white flowers with purple stripes, it is not assigned to
both the states WHITE and PURPLE, but rather, a new state which
might be called WHITE WITH PURPLE STRIPES is admitted to the list
of recognized states. In this way the states of a descriptor are
guaranteed to be mutually exclusive. '

U = 100,000 botanical specimens

Red Pink
flowered flowered 6'”‘~-Specimens whose
specimens specimens Yellow flowers are white

flowered with purple stripes
specimens

Purple

flowered Blue White

specimens flowered flowered
specimens |\ specimens

Any data entered into the Taxir system will be cast into the
set theoretic data structure described above, but the information
content of the items, descriptors and descriptor-states, as well
as their quantity and their identifying names, are strictly under
the control of the Taxir user. Virtually all information can be
rather naturally and easily structured as sets, but this set theo-
retic data organization provides more than a convenient means for
storing information. As will presently be shown, it provides us
with a powerful means of selective retrieval.



-5-

Data Bank Design

Before the potential Taxir user can put the Taxir system to
work, he must design a data bank or a set of data banks. In his
role as data bank designer he must ask and answer the following
essential questions:

1. How many data banks will cover my needs?
2. In each of these data banks, what conceptually is an item?
3. How many items can I expect in each data bank?

4, What pieces of information should be preserved about these
items? The answer to this will take the form of a list of
descriptors for each data bank.

5. In each descriptor chosen, what will be the range of expres-
sion? The answer to this will take the form of either a list
of states or an estimate of the number of states for each
descriptor chosen.

6. What kind of queries can be expected? That is, what do I
want to do with this mass of information? In what ways do
I want to use the power of selective retrieval?

The main purpose of this primer is to instruct the user who
has already solved his design problem and who is now ready to put
the Taxir system to work. For the user who still has to answer
the above questions, this primer is an essential guide, for it il-
luminates the possibilities raised by these questions, but it is
not by itself enough. Appendix B examines the data design problem
and some related problems in more detail and sets forth some sug-
gestions.

Taxir Programs

The Taxir user communicates with the Taxir system by writing
a Taxir program, which consists of a series of statements in the
Taxir language. These statements are prepared for machine execu-
tion by punching them on cards (or typing them at an input terminal)
and feeding them to the Taxir system. This primer will use the term
card to mean either a punch card or a line typed on a terminal. The
system reads and executes each statement before treating the next
statement in the Taxir program. There are no facilities for condi-
tional jumps, hence no program branching or looping. The program
is executed sequentially from the first to the last statement at
which time program execution is finished.

There are 19 statement types in the language} each of which
is associated with a statement name. This primer describes in de-



-6-

tail each statement type in the Taxir language and how to use it,
as well as discussing how to combine statements into Taxir programs.
Some general rules about statements are:

l. Each statement begins on a new card.

2. Each statement (except for the type called Item Definition) be-
gins with its statement name. 1In some cases, this is the entire
statement. In other cases, the statement name is followed by
additional information.

3. A statement name must be complete on the first card of the state-
ment which it introduces.

4. All blanks embedded in statement names (such as DEFINE DESCRIPTORS) ,
descriptor names (such as GEOGRAPHICAL LOCATION), or descriptor-
state names (such as NOVA SCOTIA) are considered by the system to
be a part of these names and must be included each time such names
appear in Taxir statements.

5. Leading and trailing blanks around names or punctuation marks
are optional. 1In a few special cases leading and trailing blanks
are required and these are carefully stipulated in the text.

6. With regard to the number of cards permitted per statement, the
Taxir language falls into 3 classes.

A Class I statement may extend over as many cards as are
desired and must be terminated by an asterisk.

A Class II statement must be complete on one card and
need not be terminated by an asterisk.

Class III covers only Item Definitions under the FIXED
option. The number of cards in such a statement is deter-
mined by the field definitions of the governing DEFINE
ITEMS statement. No terminating asterisk is needed. This
is fully explained in the section called STATEMENT TYPE:
DEFINE ITEMS.

7. Class I and Class III statements are treated as though the cards
composing them were laid end to end to form one long card. For
example, card 1/col. 80 is considered to be contiguous with card
2/col. 1.



-7

Class I Statement Names Class II Statement Names
CONTROL VOCABULARY END

CORRECTION END OF ITEMS

DEFINE AND PRINT ITEMS ID '

DEFINE DESCRIPTORS READ DATA BANK

DEFINE ITEMS TIME

DEFINE MORE DESCRIPTORS WRITE DATA BANK

DELETE ITEMS

DELETE STATE Class 111 Statement Names
gggggiﬁg Item Definition (under FIXED option)
Item Definition (under FREE option)

MEMO

PRINT

General Formats

Associated with each statement type in the text is a general
format, which might be described as an expression which attempts

to summarize the full range of the statement's powers. Throughout

the primer, wherever these general formats appear, the following

conventions are employed:

1. Brackets { } enclose choices. When composing a statement, the
user may choose one of the alternatives listed vertically within
the brackets.

2. Symbols in capital letters and punctuation marks (except ...)
must appear in a real statement exactly as they appear in the
format.

3. Symbols in lower case letters represent a set of choices and
these choices are always defined in the text.

4. A lower case b associated with a word in capital letters, such
as bWITHb, designates a required blank.

5. An ellipsis (...) designates a series of indefinite length, such
as d(p), d(p) ;,...d(p). The space occupied by the ellipsis may
be filled in with additional instances of d(p),.

- ()



-~

2. BUILDING A TAXIR DATA BANK

Assuming now that the user has made all the necessary prelim-
inary design decisions which set the structure of his data bank,
he may now bring his data bank into existence by a Taxir program
which includes a sequence of the following statement types:

DEFINE DESCRIPTORS
DEFINE ITEMS
Item Definition

1
]
W

Item Definition
END OF ITEMS

The DEFINE DESCRIPTORS statement is basically a list of the
descriptors chosen by the user together with some parameters that
teach the Taxir system how to interpret the data that follow. The
DEFINE ITEMS statement tells the system that there is a block of
Item Definitions awaiting definition on either cards, tape or disk,
and it teaches the system the physical layout of data as they ap-
pear on the card, tape or disk records. There follows an Item De-
finition for each item being entered into the bank at this time.
An Item Definition is basically a list of all the states to which
a single item has been assigned (one state for each descriptor in
the bank). The Item Definition series is terminated by an END OF
ITEMS statement, which merely serves to inform Taxir that the end
of the series has been reached.

STATEMENT TYPE: DEFINE DESCRIPTORS

This statement appears once and only once in the life of a
data bank and its appearance marks the birth of the data bank.
This statement imposes structure on the stream of input data that
may follow at intervals throughout the life of the bank.

Its general format is:

DEFINE DESCRIPTORS d(p), d(p),...d(p)*

d = descriptor name. The user may choose as a descriptor name
any sequence of from 1 to 90 characters selected from the available
character set, but not containing any of the following characters: '

() *,



-9-

and not containing any of the following character strings:

bANDDb bTOb
bORb bRESULTb
bNOTb bSAMEDb
bFROMb bFORDb

A descriptor name must contain at least one non-blank character.
Leading and trailing blanks are ignored and not considered to be
part of the name. Blanks embedded in the name itself are considered
to be part of the name. Each descriptor in a data bank must bear

a unique name.

Examples: EMPLOYEE NAME
DEPARTMENT
YEAR OF PURCHASE
1ST ESTIMATE
2ND ESTIMATE
A+B
X
..$-‘/8..
ABCDEFGHIJKLMNOPQRSTUVWXYZ

p = parameter list. This may be broken down into a more de-
tailed general format, as follows:

ORDER, ds, ds,...ds

NAME , est

FROM a TO b BY IN label
i D T

= {j } optional optional

Each descriptor will be defined under one of three options: ORDER,
NAME or FROM-TO.,

ORDER Option

d (ORDER, ds, ds,...ds)

ds = descriptor-state name. These names conform to the same
rules as descriptor names except that the character strings bRESULTD,
bSAMEb, and bFORb are permitted. Following the work ORDER is the
complete list of states for the descriptor 4, separated by commas.
The first (left-most) name in the list is assigned by Taxir the



-10~-

code number 1, the second name in the list is assigned the code
number 2, etc. In the Item Definitions, in the field reserved for
the states of this descriptor, Taxir will expeét to find either

one of the ds names from the list above or one of the code numbers
assigned to these names. There need be no consistency in the prac-
tice. In one Item Definition the name may appear and in another
the code may be used.

Example: In a data bank with the descriptor MONTH (ORDER, JANUARY,
FEBRUARY, MARCH, APRIL, .MAY, JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER,
NOVEMBER, DECEMBER), the numbers 1 through 12 may be used to stand
for the months of the year when defining items. In this example,
the keypunch operator will find it easier to punch numbers than

the full names of the months, especially as this particular cor-
respondence between names and numbers is already in common use.

Example: GRADE (ORDER, A, B, C, D, E, F). In this case the names

A through F are as easy to punch as the codes 1 through 6, easier

in fact, as the keypuncher need not learn a name-to-code correspond-
ence, but can punch the grades as they appear on the source docu-
ments.

The prime consideration in deciding whether to punch names or
codes should be the keypuncher's convenience. By far the largest
bulk of Taxir statements in any sizable data bank will be Item Def-
initions, i.e., the entering of new data into the bank. Anything
that can be done to ease the strain on the keypunch operator will
increase the speed and the accuracy of the punching.

The principal advantage of the ORDER option is that it estab-
lishes an order to the states, so that later when gquerying, the
user may take advantage of the FROM dsl TO ds2 facility.

Examples: Assuming a data bank containing the 2 ordered descriptors
of the 2 previous examples, we might exploit their order in the fol-
lowing queries:

HOW MANY ITEMS ARE THERE WITH MONTH, FROM JUNE TO SEPTEMBER#
HOW MANY STUDENTS HAVE GRADE, FROM A TO C»



-11-

Taxir will understand the FROM-TO range in the first instance to
include the months of June, July, August and September, and in the
second instance to include the grades A, B and C. There is a full
discussion of the FROM dsl TO ds2 querying facility in the section
on BOOLEAN EXPRESSIONS, Taxir Boolean Operands (Type 3).

There exists the unlikely possibility that a ds name will be
the same as one of the code numbers. Example: POWER (ORDER, 1, 2, 4,
8, 16, 32, 64). If Taxir picks up a 4 in the appropriate field of
an Item Definition, this could refer to the name 4 (code = 3) or to
the code 4 (name = 8). Taxir resolves ambiguities of this type by
treating the number in question as a name and not as a code number.

NAME Option

d (NAME, est)

For the descriptor defined under the NAME option there is no
preset ordered list of permissible descriptor-state names. Rather
whatever names are found in the Item Definitions, in the field re-
served for the states of this descriptor, shall be accepted as valid
state names, provided they conform to the rules for descriptor-state
names élready mentioned. Codes may not be used in place of names
when defining items and the FROM dsl TO ds2 facility may not be used
when querying.

This option is useful for cases where a full list of all pos-
sible state names cannot be anticipated at the time of the data
bank creation.

Example: In a data bank where the items are students of a univer-
sity, the descriptor NAME OF STUDENT would almost necessarily be de-
fined under the NAME option. The name of a student will be punched
in the appropriate field of each Item Definition.

The word NAME must be followed by the parameter est, which is
an estimate in the form of a positive integer of the maximum number
of states expected in this descriptor. This is necessary because
storage space must be reserved in the machine for a dictionary of



these expected state names. The upper limit on this estimate will
be determined by available machine space.

Examples: NAME OF STUDENT (NAME, 5000)
GEOGRAPHICAL LOCATION (NAME, 50)
COLOR OF SPECIMEN (NAME, 12)
DEPARTMENT (NAME, 80)

FROM~-TO Option

d(FROM a TO b BY ¢, IN label
( . el)
optional optional

This option is ideal for the common case in which the states
of a descriptor are strictly numeric and can be ordered as a series
whose successively larger members differ from their neighbors by
the same amount. To define such a set of numbers 3 values are
needed. These are a (the numerically smallest value of the series),
b (the largest value), and ¢ (the increment by which the series in-
creases stepwise from a to b).

Note that it is possible to name 3 values such that b is not
a member of the set defined. FROM 0 TO 99 BY 2 is such a case.
Taxir will interpret the set to be 0, 2, 4, 6,...98, terminating
the set with the largest value obtained (by repeatedly adding the
increment ¢) that does not exceed b.

a and b may be negative, 0 or positive. If negative, use a
minus sign. If 0 or positive, use no sign. They may be integers,
fractions or mixed numbers and must be expressed in decimal nota-
tion, although integers need not have a decimal point.

c follows the same rules except that it must be positive. ¢
may be omitted, in which case Taxir understands the increment to
be 1.

When printing the states of a descriptor defined under this
option, Taxir prints as many digits to the right of the decimal
point as the a, b or c parameter with the most such digits.

label is a name which is subject to the same rules as descrip-
tor-state names, except that it may not exceed 10 characters in
length. When printing the states of a descriptor defined with a
label, Taxir also prints the label following the value. The purpose



]33~

of the label is to supply a unit of measurement such as LBS., FT,,
MPH, etc.

Examples: YEAR(FROM 1900 TO 1980)
TEMPERATURE (FROM =50 TO 120 IN DEGREES F.)
WEIGHT (FROM 0 TO 100 BY 5 IN LBS.)
COST (FROM 2.50 TO 10000 BY .01 IN $§)
PROBABILITY (FROM 0 TO 1 BY .001)
ITEM NO. (FROM 1 TO 100000)

Equals Facility

Tank

Whenever two or more descriptors in the same data bank have
the same states and differ only in their descriptor names, the
equals facility may be used. The user follows the = sign with
either i, the descriptor number, or j, the descriptor name, of
any descriptor appearing earlier in the same DEFINE DESCRIPTORS
statement and to whose states the user wishes to equate the states
of the present descriptor. The first (left-most) descriptor name
in the DEFINE DESCRIPTORS statement is descriptor number 1, the
second name is descriptor 2, etc.

Examgle: DEFINE DESCRIPTORS MONTH OF PURCHASE (ORDER, JAN., FEB.,
MAR., APR., MAY, JUNE, JULY, AUG., SEPT., OCT., NOV., DEC.), MONTH
OF SALE (=MONTH OF PURCHASE), DAY OF PURCHASE (FROM 1 TO 31), DAY

OF SALE (=3), DAY OF JUDGMENT (=3)* This last descriptor can equally
well be defined as DAY OF JUDGMENT (=4) or DAY OF JUDGMENT (=DAY OF
PURCHASE) or DAY OF JUDGMENT (=DAY OF SALE).

The equals facility is not to be construed as a separate op-
tion. The option will be that of the iff_descriptor. This facil-
ity not only provides the user with a shorthand form of expression,
but more importantly it permits Taxir to establish a single dic-
tionary of state names for any equated descriptors. In the case
of descriptors defined under the NAME option with a large estimated
number of states, this will save considerable machine storage space.
It is very much to the user's advantage to use this facility when-
ever the opportunity presents itself.



~14-

There exists the unlikely possibility that a descriptor name
will be the same as one of the descriptor numbers. Example: DEFINE
DESCRIPTORS 2 (NAME, 100), J(FROM 1 TO 10), K(=2)* The =2 could re-
fer to the descriptor whose name is 2 (and whose number is 1) or to
the descriptor whose number is 2 (and whose name is J). Taxir re-
solves such ambiguities by treating the number in question as a de-
scriptor name.

STATEMENT TYPE: DEFINE ITEMS

CARDS bFIXED Cc, Cs.ee C
DEFINE ITEMS FROM { TAPE noise {bFREE £, f,... f}*
DISK bSAME

This statement informs Taxir that it can éxpect to find a
series of Item Definitions. If the option CARDS is chosen, the
Item Definition series with its terminating END OF ITEMS statement
should be on cards, following immediately in the deck after the
DEFINE ITEMS statement. If the option TAPE (or DISK) is chosen,
the Item Definition series should exist as a file on a magnetic
tape (or disk). This file should be the tape (or disk) analogue
of a card deck, that is, written in alphanumeric (or as it is some-
times called, BCD) mode and set up in 80 column records. It should
be terminated either by the END OF ITEMS statement or by an end-of-
file mark or both. This tape (disk) should be already positioned
to read the first record (card image) of the file. This can be ac-
complished through the control language of the operating system at
the user's computer installation and should be done earlier in the
run before the Taxir system takes control of the machine.

The term noise means that thé user may insert here any combin-
ation of characters except the words bFIXED, bFREE or bSAME, Noise
is ignored by Taxir. Its purpose is to improve the readability of
the statement (not for the machine, but for humans). It is always
permissible to omit the noise, but the noise terminator (bFIXED,
bFREE or bSAME) must appear.

The options in the second set of brackets describe to Taxir
the physical layout of the data on the expected card, tape or disk



=15~

records. Inasmuch as a tape or disk record is a card image, data
formats for all three media will be the same and can be discussed
in terms of cards and card columns. We can also assume that these
cards are conceptually laid end to end so that card 1/col. 80 is
contiguous with card 2/col. 1. In like manner each card of an Item
Definition, and there may be any number of these, is treated as con-
tinuous with its neighboring cards.

The Item Definition is divided into fields. There should be
a field reserved for each descriptor in the bank. Each field should
contain one of the states of the descriptor for which the field is
reserved.

Fixed Field Format

If the option FIXED is chosen, then a field is defined as be-
ing the set of contiguous card columns beginning at card x/col. y
and ending at card x'/col. y', where the latter comes after (to the
right of) the former in the card continuum.

The parameter c defines a field. If the field is but a single
card column, ¢ may take the form card x/col. y (example: 2/8). If
the field is larger than a single column, ¢ may take the form

card x/col. y - card x'/col. y' (example: 2/8-2/20).
c may also take the following forms:

Examples:
col. y 19
col. y - col. y' 45-49
col. y - card x'/col. y' 7-2/25

In these cases, which are characterized by the omission of one or
both of the card numbers, Taxir will assume that the missing card
number is 1.

The first (left-most) c parameter defines the field for de-
scriptor 1 (the first, or left-most, descriptor in the DEFINE DE-
SCRIPTORS statement), the second ¢ parameter defines the field for
descriptor 2, etc. There must be a ¢ parameter for each descriptor
in the bank. The order of the c parameters creates the necessary
link between the data in the Item Definitions and the descriptors,
thus reserving a field in the Item Definition for each descriptor.
Any portions of the Item Definition cards not specified in a ¢
parameter will be ignored.



-16-

The fields should be designed to accomodate theAlargest ex-
pected state name or code. The minimum field length is 1 card col-
umn and there is no maximum. A practical upper limit is 90 card
columns as Taxir will not accept a name longer than 90 characters.
However, a field may always be larger than its contents. Remember
that leading and trailing blanks are ignbred, so a state name or
code may sit anywhere inside its field, not necessarily beginning
in the first column of the field.

These field definitions may be chosen to suit the user's con-
venience, but once chosen they are fixed for the current batch of
Item Definitions. The next time the user wishes to add a batch
of items to the bank he is free to choose an entirely different
data format. In this way data decks or tapes originally designed
for other uses may, if they contain sufficient valid data, be ac-
cepted by Taxir without conversion to some "standard" input format.

Under the Fixed Field Format option a field is always the same
length and always appears in the same position in each Item Defini-
tion. This permits the keypunch operator to set up a drum program
card for uniform punching.

Free Field Format

It is sometimes convenient to have a more flexible arrange-
ment than the Fixed Field Format described above. Under the Free
Field Format option the fields are maintained in the same order
from item to item, but may vary in length and position. This is
done simply by separating the fields by commas and terminating the
Item Definition with an asterisk.

If the option FREE is chosen, then a field is defined as be-
ing the set of contiguous card columns between successive commas.
(Or between card 1l/col. 1 and the first comma. Or between the last
comma and the terminating asterisk.) ‘

The parameter f defines a field by its order of appearance in
the Item Definition. £ may take the form field order no. (example:
3, which indicates the third field, counting from the left in the
card continuum) or field order no. - field order no. (example: 2-4,
which indicates the three fields 2, 3 and 4).




-17-

The first (left-most) field order no. defines the field for
descriptor 1, the second field order no. defines the field for de-
scriptor 2, etc. There must be a field order no. for each descrip-
tor in the bank. Any fields not specified in an f parameter will
be ignored.

SAME Format

This option simply tells Taxir to expect the same data format
that was specified in the last DEFINE ITEMS statement. It makes
no difference if the last DEFINE ITEMS statement appeared earlier
in the same run or in some previous run. Clearly this option can-
not be used if this is the first batch of items to be defined into
the data bank. |

STATEMENT TYPE: DEFINE AND PRINT ITEMS

DEFINE AND PRINT ITEMS FROM [same parameters as DEFINE ITEMS]«*

This is a minor variation of the regular DEFINE ITEMS statement.
In addition to performing the tasks described above, this variant
will generate a complete printout of the Item Definition series.
This increases the length of computer time expended in creating the
data bank and therefore increases its cost. On the other hand it
is often useful to have a copy of the raw data, particularly for
tracking down errors.

STATEMENT TYPE: Item Definition

Under the FIXED option the general format for the Item Defini-
tion statement is as follows:

ldsl ldsl...ldsl

The vertical lines are meant to indicate that each ds appears in
the fixed field defined in the governing DEFINE ITEMS statement.
Under the FREE option the general format is:

ds, ds,...ds»*




-18-

If the descriptor to which ds belongs was defined under the
ORDER option, then ds must be either one of the descriptor-state
names defined in the DEFINE DESCRIPTORS statement or the code num-
ber for that state.

If the descriptor to which ds belongs was defined under the
NAME option, then ds must be a descriptof-state name conforming
to the rules already stated for such names.

If the descriptor to which ds belongs was defined under the
FROM-TO option, then ds must be one of the numbers in the set de-
fined. The only non-numeric characters permitted are the minus
sign and the decimal point.

In addition to the descriptor-states defined by the user,
each descriptor is automatically assigned by Taxir a state called
UNKNOWN. Whenever information is missing leave the appropriate
fields blank and Taxir will assign the item in question to the
UNKNOWN state of the descriptors involved. Under the FREE option
no blanks are actually necessary. The 2 field defining commas
may be in adjacent columns.

STATEMENT TYPE: END OF ITEMS

END OF ITEMS

If the Item Definition series is on cards, this statement
must follow the series in order to inform Taxir that the series
is finished. If the Item Definition series is on tape or disk
the series must end with either this statement or an end-of-file
mark or both.

A SAMPLE DATA BANK

The XYZ Company is using Taxir to keep track of its money
transactions. The managers of a real company would probably moni-
tor their business in greater detail than this, but examples seem
to illustrate their points more clearly if they are simplified.

In this spirit let us assume that XYZ operates on a small scale,
preserving only the following information categories. DEFINE
DESCRIPTORS TRANSACTION NO. (FROM 1 TO 50000), TRANSACTING PARTY



-19-

(NAME, 2000) , ADDRESS OF TRANSACTING PARTY (NAME, 2000), NATURE
OF TRANSACTION (ORDER, EXPENSE, INCOME), YEAR OF TRANSACTION (FROM
1950 TO 1990), MONTH OF TRANSACTION (ORDER, JAN., FEB., MAR., APR.,
MAY, JUNE, JULY, AUG., SEPT., OCT., NOV., DEC.) , DAY OF TRANSACTION
(FROM 1 TO 31), DESCRIPTION OF GOODS (NAME, 5000) , DELIVERY STATUS
(ORDER, DELIVERED, PARTLY DELIVERED, UNDELIVERED) , TOTAL AMOUNT
(FROM 0 TO 10000 BY .01 IN §), PAYMENT STATUS (ORDER, PAID, PARTLY
PAID, UNPAID), AMOUNT PAID (=10), YEAR DUE (=YEAR OF TRANSACTION) ,
MONTH DUE (=MONTH OF TRANSACTION), DAY DUE (=DAY OF TRANSACTION) *
In actual practicelsome of the descriptor names might be short-
ened to make querying of the bank less verbose (e.g., NATURE OF
TRANSACTION might be shortened to TYPE). These names were chosen
to make the descriptors roughly self-explanatory.
The bank is now structured but empty. Let us put some data
in it.
?gF{ﬁE ITEMS FROM CARDS, FORMAT FREE 1-3, 7, 6, 4-5, 8-12, 15,
- *

14616, CUTRATE FURNITURE CO., 415 KNOTHOLE ST., MAY, 15, 1960,
EXPENSE, 3 DESKS WITH CHAIRS, DELIVERED, 180.79, UNPAID, O,
JuLy, 15, 1960%

14617, ECONOMO DRUGS, 800 BONGO DRIVE, MAY, 15, 1960, 1, 6 VANILLA
+ 2 CHOCOLATE ICE CREAM SANDWICHES, 1, 1.29, PAID, 1.29,,,*

14618, J.W.SWINDLER, 99 CREDIT CARD BLVD., 5, 15, 1960, INCOME,
2 XYZ SPECIALS, 3, 4.99, 2, 1.00, JUNE, 10, 1960%

P

END OF ITEMS

The XYZ data bank is now in existence and ready for querying.
The next day the XY2 manager decides to experiment with a new data
format.

DEFINE ITEMS FROM TAPE - FIXED 1-5, 7-80, 2/7-2/30, 3/1, 3/3-3/6,
3/8-3/9, 3/11-3/12, 2/31-2/80, 3/18, 3/20-3/26, 3/28, 3/30-3/36,
3/40-3/43, 3/45-3/46, 3/48-3/49x

14682 ABC CO.

45 SHMOO AVE. 6 XYZ SPECIALS
2 1960 5 16 1 14.97 1 14.97 1960 6 10
14683 PQR CO.
47 SHMOO AVE. 2 XYZ SPECIALS
2 1960' 5 16 3 4.99 3 0 1960 6 10
]
v

END OF ITEMS



=20 =

Note that the DEFINE DESCRIPTORS statement is required only
once, at the time of the creation of the data bank. After that
items may be added as needed by using the Taxir program sequence:

DEFINE ITEMS
Item Dpfinition

W
Item Definition
END OF ITEMS

To preserve the data bank between runs and bring it back
into the machine as needed, see the section on READ DATA BANK
and WRITE DATA BANK statements.

——-.O—-—



-21-

3. QUERYING A TAXIR DATA BANK

STATEMENT TYPE: CONTROL VOCABULARY

Having built a data bank by means of the procedure described
in the last chapter, the user is now in a position to address quer-
ies to the Taxir system which cause selected information from the
data bank to be printed. The user makes these selections by writ-
ing Taxir statements containing boolean expressions and these ex-
pressions are composed of words and punctuation chosen from a spe-
cial list called the control vocabulary. Every data bank has its
own control vocabulary. Permanent members of the control vocabu-
lary of any and all data banks are the following character strings:

bNOTb bFROMb (
bANDD bTOb )
bORb bUNKNOWNDb R

bRESULTDb *

The balance of the control vocabulary for any one data bank con-
sists of the descriptor names and descriptor-state names defined
for that bank by the user.

CONTROL VOCABULARY FOR d, d,...d *
" ~ -
optional

The CONTROL VOCABULARY statement (minus the optional portion)
generates a printout of this latter part of the control vocabulary,
i.e., a list of all descriptor names together with their state
names. With this printout available the user has a useful guide
for the composing of queries to his data bank.

d = any descriptor name defined for this data bank. This op-
tion permits the user to print selected portions of the control
vocabulary, i.e., for just the descriptors specified.

Examples: CONTROL VOCABULARY *
CONTROL VOCABULARY FOR FAMILY, GENUS, SPECIES*
CONTROL VOCABULARY FOR NAME OF INSTRUCTOR#*



-22=-

The following statements cause changes in the control vocabu-

lary:

DEFINE DESCRIPTORS

DEFINE MORE DESCRIPTORS .

DELETE STATE

Item Definition) when these introduce new state names

CORRECTION to descriptors defined under the
NAME option

In any run in which statements of the above types appear, the user
is advised to follow the last of these statements with a CONTROL
VOCABULARY statement requesting at least the descriptors affected.

BOOLEAN EXPRESSIONS

The power to retrieve information selectively from a data
bank is the power to name subsets of interest from the total bank.
The language of boolean algebra is the language of choice for this
purpose. The set whose elements are all the possible subsets of
a set P is called the power set of P. If n is the number of ele-
ments in P, then the number of elements in the power set of P is
2. If a data bank contains 10000 different items, then there are
a total of 210000
algebraic expressions in the Taxir language.

different subsets that can be specified by boolean

A boolean expression consists of a series of operators and
operands. A set of rules defines how the operators act on the
operands to yield a result. In ordinary arithmetic expressions,
for example, the operators are addition (+), subtraction (-), mul-
tiplication (x) and division (%) and the operands and the result
are numbers (or variables like x, y, z, which stand for numbers).
In boolean expressions the operators are complement (NOT),
intersection (AND), and union (OR). The operands are sets and
the result is a set.




-23~-

Boolean Operators

The three operations of boolean algebra are defined as follows:
1. The complement of a set P (written NOT P) is the set of all ele-
ments in U which are not in P.

07///////////
Wi

NOT P is the set
shown by the shaded area.

all the people

at the party

P = those with hats
NOT P = those without
hats

Example:'ﬁ

2. The intersection of a set P and a set Q (written P AND Q) is the
set of all elements in U which are in both P and Q.

)

P AND Q is the set
shown by the shaded area.

all the people

at the party

= those with hats

= those with coats

AND Q = those with both
hats and coats

Example: U

wow

3. The union of a set P and a set Q (written P OR Q) is the set of
all elements in U which are in P or Q or both.

]

all the people

at the party

= those with hats

= those with coats

OR Q = those with hats
or coats or both

Example: U

Yo

P OR Q is the set
shown by the shaded area.



-24-

Here follows a list of true statements about any sets P and Q.
It is not necessary to learn these, but you may consider it a good
sign if your intuition is satisfied of their truth. Remember that
U = universal set and ¢ = null set.

If P = U, then NOT P = ¢,

If P = ¢, then NOT P = U.

If P and Q are disjoint, i.e., have no elements in common, then
P AND Q = d.

If P is a subset of Q, then P AND Q = P.

If P is a subset of Q and Q is a subset of P, then P AND Q = P = Q.

P AND U = P.

P AND @ = d&.

P AND P = P,

P AND NOT P = .

If P is a subset of Q, then P OR Q = Q.

P ORU = U.

PORY = P.

P ORP =P,

P OR NOT P = U,

P AND Q is a subset of P OR Q.

Note that complement operates on a single operand, such as NOT P,
while intersection and union operate on 2 operands, such as P AND Q
and P OR Q.

Taxir Boolean Operands (Type 1)

In a Taxir boolean expression the basic operand is of the form
d,ds where d is any descriptor name chosen from the control vocabu~
lary and ds is the name of one of the states of that descriptor,
also chosen from the control vocabulary. Such a pair is always
separated by a comma.

Examples: GENUS, ROSA
FLOWER COLOR, RED
YEAR, 1965
MONTH, JUNE
RELATIVE HUMIDITY, 30

The set specified by an operand of the type d,ds is the set of all
items in the data bank that have been assigned to the state ds for
the descriptor d. o

In addition to the descriptor-states defined by the user, each
descriptor is automatically assigned by Taxir a state called UNKNOWN.
This state may also be used in query operands.



~25«~

Examples: GENUS, UNKNOWN
. FLOWER COLOR, UNKNOWN
YEAR, UNKNOWN
MONTH, UNKNOWN
RELATIVE HUMIDITY, UNKNOWN

In descriptors defined under the FROM-TO option there is a
further option to define a label (see p. 12). In such cases it
is permissible, but never necessary, to include the label in the
query operand.

Example: In a data bank dealing with weather records, one of the
descriptors is defined as MAXIMUM TEMPERATURE (FROM -50 TO 110 IN
DEGREES F.). Some valid query operands would be:

MAXIMUM TEMPERATURE, 75
MAXIMUM TEMPERATURE, 75 DEGREES F.

Taxir Boolean Operands (Type 2)

In a series of operands connected by OR's such as d,ds OR
d,ds OR...OR d,ds, if.d is the same for all members of the series,
then the user may employ for his convenience a second form of operand:

d,ds OR ds OR...OR ds

Example: Instead of GENUS, ROSA OR GENUS, SPIRAEA OR GENUS, PRUNUS
OR GENUS, CRATEAGUS the user may substitute GENUS, ROSA OR SPIRAEA
OR PRUNUS OR CRATAEGUS.

No such practice is permitted for series of operands connected
by AND's. Since the states of a single descriptor are mutually ex-
clusive, i.e., describe disjoint subsets of the data bank, then
d,ds AND d,ds (where d is the same in both operands) must yield
the null set. RELATIVE HUMIDITY, 30 AND RELATIVE HUMIDITY, 40 is
a legal expression, but yields the null set, as there can be no
item in the bank assigned to both those states. Taxir does not
permit an operand such as RELATIVE HUMIDITY, 30 AND 40.

Taxir Boolean Operands (Type 3)

A third type of Taxir operand is of the form 4, FROM dsl TO ds2
where 4 is any descriptor name chosen from the control vocabulary




=26

which was defined under the ORDER or FROM-TO options, and dsl and
ds2 are the names of two of the states of the descriptor 4, also
chosen from the control vocabulary. dsl must be earlier in the
order already defined than ds2.

Example: Here is part of a DEFINE DESCRIPTORS statement: TEMPERATURE
(FROM -50 TO 110 BY 2 IN DEGREES F.), MONTH (ORDER, JAN., FEB.,
MAR., APR., MAY, JUNE, JULY, AUG., SEPT., OCT., NOV., DEC.), DAY
(FROM 1 TO 31), COLOR (ORDER, RED, ORANGE, YELLOW, GREEN, BLUE,
VIOLET) , COUNTRY (NAME,'loo). The following are valid operands
chosen from the above bank:

TEMPERATURE, FROM 0 TO 10

TEMPERATURE , FROM 0 TO 10 DEGREES F.
TEMPERATURE, FROM 0 DEGREES F. TO 10 DEGREES F.
MONTH, FROM MAY TO AUG.

DAY, FROM 7 TO 9

COLOR, FROM RED TO YELLOW

An operand of the type 4, FROM dsl TO ds2 is logically equiv-
alent to d, dsl OR a OR b OR c OR...OR ds2, where a, b, ¢, etc. are
all the states between dsl and ds2 in the order defined.

Examples: DAY, FROM 7 TO 9 = DAY, 7 OR 8 OR 9
MONTH, FROM MAY TO AUG. = MONTH, MAY OR JUNE OR JULY OR
AUG.
TEMPERATURE, FROM -4 TO 6 = TEMPERATURE, -4 OR -2 OR
0O OR 2 OR 4 OR 6

Whereas an operand such as COST, FROM 1 TO 1000000 is logically
equivalent to a series of a million descriptor-states connected
by OR's, Taxir generates for actual execution a much more effi-
cient equivalent boolean expression. See Estabrook G.F. and R.C.
Brill, 1969, The Theory of the Taxir Accessioner, Mathematical
Biosciences, 5:327-340.

Still in the framework of the above examples, the following
attempts at operands are invalid:

TEMPERATURE, FROM 10 TO 0 (dsl is not earlier in the order defined
than ds2.)

MONTH, FROM AUG. TO MAY (Same reason as above.)

TEMPERATURE, FROM 90 TO 114 (One of the states is not in the de-
scriptor, i.e., out of the numeric range defined.)




27~

TEMPERATURE, FROM 90 TO 99 (One of the states is not in the de-
scriptor, i.e., not obtainable by increments of 2 from the
initial value defined.)

COLOR, FROM YELLOW TO BROWN (One of the states is not in the de-
scriptor, i.e., not in the list provided in the DEFINE DE-
SCRIPTORS statement.)

COUNTRY, FROM ALBANIA TO DENMARK (No order has been defined under
the NAME option.) ‘

The FROM dsl TO ds2 portion of a type 3 operand may play the
role of a ds portion in a type 2 operand.

Examples: YEAR, 1910 OR FROM 1920 TO 1931 OR 1938
MONTH, FROM JAN. TO MAR. OR FROM JUNE TO OCT. OR DEC.
TEMPERATURE, FROM 0 TO 10 OR FROM 30 TO 60 OR FROM
80 TO 100

Taxir Boolean Operands (Type 4)

Finally there is a fourth type of operand, which is simply
the word RESULT. This refers to the subset of the data bank spe-
cified by the boolean expression of the previously posed query.

Combining Operators and Operands

The rules for combining operators and operands into boolean
expressions now follow:
1. If P is an operand, then P is a boolean expression.

All the examples of operands shown in the previous sections are
also examples of boolean expressions.

2. If P and Q are boolean expressions, then NOT (P), (P) AND (Q),
and (P) OR (Q) are boolean expressions.

Examples: NOT (GENUS, ROSA)
(GENUS, ROSA) AND (YEAR OF COLLECTION,. 1910)
(GENUS, ROSA) OR (LEAF LENGTH, FROM 10 TO 30 MM.)

This rule.implies that boolean expressions may themselves be
operands in yet larger boolean expressions.

Examples: ((FLOWER COLOR, RED OR PINK) AND (COUNTRY OF COLLECTION,
MEXICO)) AND (NOT (PROVINCE OF COLLECTION, JALISCO))

( (SEMESTER, SPRING) AND (DEPT., BIOLOGY)) AND
(INSTRUCTOR, JONES OR CARTER)



-2 8=~

The subsets specified by the boolean expressions in the above
two examples are shown by the shaded areas in the diagrams below:

U = 100000 herbarium specimens

FLOWER COLOR, RED
FLOWER COLOR, PINK
COUNTRY OF COLLECTION, MEXICO

URYw

hbouan

U = 12000 university courses

S = SEMESTER, SPRING
S F = SEMESTER, FALL
B = DEPT., BIOLOGY
F B e J = INSTRUGTOR, JONES
C = INSTRUCTOR, CARTER
F

3. If P is a boolean expression, then P, (P), ((P)), (((P))), etc.
are equivalent boolean expressions.

Examples: TEMPERATURE, 50 = (TEMPERATURE, 50) = ((TEMPERATURE, 50))
TEMPERATURE, 50 AND HUMIDITY, 45 = (TEMPERATURE, 50 AND
HUMIDITY, 45) = ((TEMPERATURE, 50 AND HUMIDITY, 45))

= ((TEMPERATURE, 50 AND (HUMIDITY, 45)))

Two or more pairs of parentheses enclosing a boolean expression

are permitted, but are always redundant. A single pair of pa-
rentheses is sometimes redundant and sometimes essential.

The Use of Parentheses in Boolean Expressions

In the examples illustrating rule 2 above the parentheses re-
flect the manner in which boolean expressions are built up from
smaller boolean expressions by the recursive power of the rule.

In all such cases, the innermost pairs of parentheses enclose bool-
ean expressions that may be simple operands of type 1 through 4.
The next, more outward, level of parentheses may enclose more com-
plex expressions that include one operator. The-levels may proceed
outward indefinitely, introducing new operators and more complex
expressions. During query execution, such complex expressions must
have their internal operations performed before they can serve as

PROVINCE OF COLLECTION, JALISCO



-29-

operands in more outward level expressions. So parentheses indi-
cate the order of operations in boolean expressions. The operations
called for within innermost parentheses are performed first, there-
after operations proceed outwards.

Examples: (CUSTOMER, TOLSTOY L. AND MONTH OF SALE, MARCH) OR
CUSTOMER, GOGOL N.
CUSTOMER, TOLSTOY L. AND (MONTH OF SALE, MARCH OR
CUSTOMER, GOGOL N.)

In the first example the AND is performed first on its neighbor
operands, then the result of that operation is OR'd with CUSTOMER,
GOGOL N.. In the second example the OR is performed first on its
neighbor operands, then the result of that operation is AND'd with
CUSTOMER, TOLSTOY L.. The sets specified by these two boolean ex-
pressions are not the same. The first expression yields the set
of Tolstoy's March purchases and all of Gogol's purchases. The
second expression yields only Tolstoy's March purchases. If Gogol
has bought even one bottle of hair spray these cannot be the same
sets. U = purchases at Economo Drugs. T = Tolstoy's purchases.

G = Gogol's purchases. M = March purchases. P = intermediate re-

sult. Q = final result.
9] U

(CUSTOMER, TOLSTOY L. AND ///,aP OR CUSTOMER, GOGOL N. =
MONTH OF SALE, MARCH) = P(shaded) Q(shaded)
U U
VZ
AN

(MONTH OF SALE, MARCH OR ””,;7P AND CUSTOMER, TOLSTOY L. =
CUSTOMER, GOGOL N.) = P(shaded) Q(shaded)



-30-

Parentheses are needed to resolve ambiguity over the desired
order of operations. However, there are some other rules, about
to be stated, which permit resolution of ambiguity without paren-
theses, and in fact, most typical Taxir queries will not need pa-
rentheses at all. ,

In the absence of parentheses Taxir follows a built-in prior-
ity of operations. The first operations performed are those called
for by simple operands of types 2 or 3.

Examples: NOT FLOWER COLOR, RED OR BLUE = NOT (FLOWER COLOR,

RED OR BLUE)

MONTH, FROM JAN. TO MAR. OR JULY AND YEAR, FROM 1920
TO 1930 = (MONTH, FROM JAN. TO MAR. OR JULY) AND
(YEAR, FROM 1920 TO 1930)

DEPT., BIOLOGY OR MICROBIOLOGY OR INSTRUCTOR, JONES
OR CARTER = (DEPT., BIOLOGY OR MICROBIOLOGY) OR
(INSTRUCTOR, JONES OR CARTER)

We distinguish here between two kinds of OR's. The OR of an oper-
and type 2 takes priority over the OR connecting two boolean ex-
pressions. After the operations called for by simple operands,
the built-in priority continues in the order: NOT's, then AND's,
then OR's.

Examples: NOT WAREHOUSE, A AND DISTRICT, 4 = (NOT WAREHOUSE, A)

AND DISTRICT, 4

NOT SHELF, 7 OR CABINET, A22 = (NOT SHELF, 7) OR
CABINET, A22

GENUS, ROSA AND YEAR, 1910 OR LEAF LENGTH, 40 =
(GENUS, ROSA AND YEAR, 1910) OR LEAF LENGTH, 40

NOT COLOR, GREEN AND NOT SIZE, MEDIUM OR NOT
STYLE, 3450 = ((NOT COLOR, GREEN) AND (NOT SIZE,
MEDIUM)) OR (NOT STYLE, 3450)

Parentheses are used to indicdate that the operators within
parentheses are to operate before those immediately outside to
right or left. Therefore, it is never necessary to enclose simple
operands of types 1 or 4, because they have no operators. It is
never necessary to enclose simple operands of types 2 or 3, be-
cause their operators always operate first by rules of priority.
It is never necessary to enclose a complete boolean expression,
because there are no operators outside.



-31-

It is necessary to enclose only sub-expressions containing
at least one operator, and then only when at least one of the oper-
ators inside is of lower priority than those immediately outside
to right or left. If the operators inside are of higher priority
than those immediately outside, then the parentheses are in agree-
ment with the rules of priority and are not needed. If the oper-
ators inside are of the same priority with those immediately out-
side, again the parentheses are redundant, as the order of opera-
tions at the same priority level does not affect the result.

Examples: YEAR, 1970 AND MONTH, SEPT. AND DAY, 3 = (YEAR, 1970

AND MONTH, SEPT.) AND DAY, 3 = YEAR, 1970 AND
(MONTH, SEPT. AND DAY, 3)

AGE, FROM 18 TO 22 OR EYESIGHT, 20/20 OR SAFETY
RATING, Al = (AGE, FROM 18 TO 22 OR EYESIGHT,
20/20) OR SAFETY RATING, Al = AGE, FROM 18 TO 22
OR (EYESIGHT, 20/20 OR SAFETY RATING, Al)

NOT NOT STYLE, H = NOT (NOT STYLE, H) = STYLE, H

NOT NOT NOT STYLE, H = NOT (NOT (NOT STYLE, H)) =
NOT STYLE, H

Not only are no parentheses needed for series of NOT's, but the
series of NOT's are themselves redundant, as all such series re-
duce either to P or to NOT P,

The priority of an operand type 2 or 3 cannot be overridden
by parentheses. Expressions such as (NOT FLOWER COLOR, RED) OR
PINK are invalid. Therefore, it is never necessary to enclose in
parentheses a sub-expression whose only operator is NOT.

This leaves but a few situations where parentheses are es-
sential:

To give AND priority over NOT, as in NOT (BUILDING, OLD MAIN AND
ROOM, 100).

To give OR priority over NOT, as in NOT (LENGTH, 40 FT. OR WIDTH,
40 FT.). Or as in NOT (HEIGHT, 10 FT. AND LENGTH, 40 FT. OR
WIDTH, 40 FT.).

To give OR priority over AND, as in CUSTOMER, TOLSTOY L. AND (MONTH
OF SALE, MARCH OR CUSTOMER, GOGOL N.). Or as in (CUSTOMER,
TOLSTOY L. AND MONTH OF SALE, MARCH OR CUSTOMER, GOGOL N.)

AND ARTICLE PURCHASED, HAIR SPRAY,

This section ends with an example illustrating most of the
topics discussed in this section. If this example makes sense,
then you know all you need to know about parentheses in Taxir
boolean expressions. All parentheses shown here are needed.



-32-

cxample: In a data bank in which each item is associated with a
date, that is, with the descriptors YEAR, MONTH, DAY, we wish to
specify those items which fall into the continuous daily time pe-
riod from Oct. 7, 1960 to May 25, 1964, but excluding the dates
April 1, 2, 3, 4, 5, and 7, 1963.

(YEAR, 1960 AND (MONTH, OCT. AND DAY, FROM 7 TO 31 OR MONTH, NOV.
OR DEC.) OR YEAR, FROM 1961 TO 1963 OR YEAR, 1964 AND (MONTH, FROM
JAN. TO APR. OR MONTH, MAY AND DAY, FROM 1 TO 25)) AND NOT (YEAR,
1963 AND MONTH, APR. AND DAY, FROM 1 TO 5 OR 7)

STATEMENT TYPE: HOW MANY

There are 5 statement types in the Taxir language that call
for the use of boolean expressions. We are now ready to describe
the simplest of these. 1Its general format is:

bWITHDb

bHAVEb} boolean expression#*

HOW MANY noise

_noise = any combination of characters except the words bWITHb
or bHAVEb. Noise may be omitted, but the noise terminator (bWITHb
or bHAVEDb) must appear.

ExamEles:
HOW MANY SPECIMENS IN THE MUSEUM HAVE FLOWER COLOR, RED*

HOW MANY COURSES ARE THERE WITH DEPT., HISTORY AND BUILDING, HELLEMS=*

HOW MANY EMPLOYEES WITH MARITAL STATUS, MARRIED AND SEX, MALE AND
NOT DEPENDENTS, O

HOW MANY WITH RESULT AND SALARY, FROM 8000 TO 10000%*

The system responds to such queries by printing 3 lines of infor-
mation, answering the question hoW many, as well as stating what
percentage of the total bank this represents.

ExamEle:

NO. OF ITEMS IN QUERY RESPONSE = 172

NO. OF ITEMS IN THE DATA BANK = 11535
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 1.49



-33-

STATEMENT TYPE: PRINT

This statement type is the most powerful of the Taxir query
statements. Its general format is:

. . ¢bWITHb .
PRINT noise: descriptor list bFORb noise bHAVEb} boolean expressions

The system responds with the same 3 line printout as it does to the
HOW MANY statement. 1In -addition the system prints the states of
whichever descriptors the user selects (in the descriptor list) for
each item that is a member of the set specified by the boolean ex-
pression.

In the first instance noise = any string of characters except
colon (:). In the second instance noise = any string of characters
except the words bWITHb or bHAVEb. Noise may be omitted, but the
noise terminator (colon in the first instance and bWITHb or bHAVEDb
in the second instance) must appear.

Descriptor Lists

In its simplest form a descriptor list is a series of descrip-
tor names chosen from the control vocabulary and separated by com-
mas. The list may have from one to as many members as there are
descriptors defined for the bank. If the list has one member, no
commas are used.

Examples: NAME OF CUSTOMER, ACCOUNT NO., DATE OF TRANSACTION
MONTH, DAY, YEAR
COURSE NO., BUILDING, ROOM NO., STARTING TIME, INSTRUCTOR
ROOM NO.
FAMILY, GENUS, SPECIES
GENUS

For each item in the subset specified by the boolean expression,
the system will print the appropriate descriptor-state for each of
the descriptors in the list. 1In the simpleét case of a one member
descriptor list, the printout will be nothing more than an ordered
list of states for that descriptor with duplicates omitted. It
will, in fact, be a subset of the control vocabulary and will be
ordered as it is. If the descriptor was earlier defined (in the



-34-~

DEFINE DESCRIPTORS statement) under the NAME option, the order will
be alphabetic. If it was defined under the FROM-TO option, the order
will be numeric and if it was defined under the ORDER option, the
order will be that specified in the DEFINE DESCRIPTORS statement. Ih
all cases, the UNKNOWN state (which is printed as 3 dashes) occurs
last in the printout order. ;

Example: In a data bank where the items are university courses the
descriptor list in a query might be the single descriptor, DEPARTMENT,
previously defined under the NAME option. Query printout will be
alphabetically ordered and might look like this:

AEROSPACE ENGINEERING
ASTROGEOPHYSICS
BIOLOGY

EDUCATION

FINE ARTS

GEOLOGY

MATHEMATICS

ZOOLOGY

Example: In the same data bank the descriptor list for another
query might be the single descriptor, COURSE LEVEL, previously
defined as follows: COURSE LEVEL (ORDER, UNDERGRAD, GRAD,
SPECIAL) . Query printout will follow the order defined:

UNDERGRAD
GRAD
SPECIAL

If the descriptor list has more than one member, and this is
the typical case, the printout will be ordered hierarchically and
indented to reveal this hierarchical structure. The first descrip-
tor (left-most) in the list will be assigned the highest order in
the hierarchy, the second descriptor in the list will be assigned
the second highest order, and so forth.

Example: In the same bank of university courses the descriptor list
for a query might be DEPARTMENT, COURSE LEVEL, COURSE NUMBER. The
printout would look like this (if the boolean expression happened
to specify the following 19 items):

AEROSPACE ENGINEERING
UNDERGRAD
100
101
105



-35-

GRAD
500
501
510
SPECIAL
150
160
BIOLOGY
UNDERGRAD
105
110
GRAD
500
512
513
CHEMISTRY
UNDERGRAD
100
111
152
175
SPECIAL
40
41

Example: A query with the same boolean expression but with the de-
scriptor list permuted to COURSE LEVEL, DEPARTMENT, COURSE NUMBER
would generate the following printout:

UNDERGRAD
AEROSPACE ENGINEERING
100
101
105
BIOLOGY
105
110
CHEMISTRY
100
111
152
175
GRAD
AEROSPACE ENGINEERING
500
501
510
BIOLOGY
500
512
513
SPECIAL
AEROSPACE ENGINEERING
150
160
CHEMISTRY
40
41



-36-

Example: The same boolean expression and yet another permutation
of the descriptor list to COURSE NUMBER, COURSE LEVEL, DEPARTMENT
would generate the following printout:

40
SPECIAL
CHEMISTRY
41
SPECIAL
CHEMISTRY
100
UNDERGRAD
AEROSPACE ENGINEERING
CHEMISTRY
101
UNDERGRAD
AEROSPACE ENGINEERING
105
UNDERGRAD
AEROSPACE ENGINEERING
BIOLOGY
110
UNDERGRAD
BIOLOGY
111
UNDERGRAD
CHEMISTRY
150
SPECIAL
AEROSPACE ENGINEERING
152
UNDERGRAD
CHEMISTRY
160
SPECIAL
AEROSPACE ENGINEERING
175
UNDERGRAD
CHEMISTRY
500
GRAD
AEROSPACE ENGINEERING
BIOLOGY
501
GRAD
AEROSPACE ENGINEERING
510
GRAD
AEROSPACE ENGINEERING
512
GRAD
BIOLOGY
513
GRAD

BIOLOGY



-37-

Notice in the three preceding examples that the number of lines
printed in each example is not the same, even though the same de-
scriptor-states for the same set of 19 items are represented. As
long as the system is printing the staﬁes of a descriptor which
fall hierarchically under the same state of another descriptor,

it is unnecessary to repeat the name of the state of higher order.
In the first of the three examples:

AEROSPACE ENGINEERING
UNDERGRAD
100

represents a single item. The next item could be represented as:

AEROSPACE ENGINEERING
UNDERGRAD
101

but it saves two print lines and provides a more lucid printout
to represent both items as:

AEROSPACE ENGINEERING
UNDERGRAD
100
101

The differences in the number of lines printed in the three exam-
ples arise then, not from differences in the items or descriptors
selected, but from differences in the memberships of the different
hierarchies established by permuting the descriptor list. The rule
then is that before each item is printed it is compared state for
state with the previous item printed. Duplicate states are omitted
until the first difference occurs. All states from the first dif-
ference onward are printed. The only exception to this rule is
when an item falls at the top of a new page, in which case the en-
tire item is printed so that reference need not be made to a pre-
vious page in picking up the names of duplicate states. (Page
break never occurs in the middle of an item.)

Line Combos

In the above illustrations each descriptor-state is printed
on a line of its own. The user has an option to cause as many de-
scriptor-states to be printed on the same line as will fit. When
any series of contiguous descriptor names in the descriptor list



-38-

is enclosed in parentheses, their states will appear on the same
line in the query printout.

Examples: The descriptor list ALPHA, BETA, GAMMA, EENY, MEENY, MINY,
MO will generate printout in the following format:

ALPHA
BETA
GAMMA
EENY
MEENY
MINY
MO

But the descriptor list (ALPHA, BETA), GAMMA, (EENY, MEENY, MINY,
MO) will alter that format to:

ALPHA BETA
GAMMA
EENY MEENY MINY MO

The descriptor list ALPHA, (BETA, GAMMA), (EENY, MEENY), (MINY, MO)
will generate printout in the following format:

ALPHA
BETA GAMMA
EENY MEENY
MINY MO

The descriptor list (ALPHA, BETA, GAMMA) will generate printout in
the following format:

ALPHA BETA GAMMA

The rule on omission of duplicate states is the same in line combos,
except that the line combo is treated as though it were a single
state. The whole line combo will be printed or omitted, never a
portion only.

Example: Under the control of the descriptor list STATE, CITY we
might see the following printout: ‘

COLORADO
BOULDER
DENVER

MASSACHUSETTS
BOSTON
WORCESTER

Under the control of the descriptor list (STATE, CITY) the same
items would appear as:

COLORADO BOULDER
COLORADO DENVER
MASSACHUSETTS BOSTON
MASSACHUSETTS WORCESTER



-39-

One use of the line combo option is to place in closer associ-
ation a series of related descriptors. The above example illustrates
this, as does the following:

Example: The descriptor list MONTH, DAY, YEAR might generate the

following:
MAY
14
1962
JUNE
22
1962

But the descriptor list (MONTH, DAY, YEAR) would yield instead:

MAY 14 1962
JUNE 22 1962

Line combos save print lines, yielding a more compact (i.e.,
cheaper) printout. This is especially valuable in long book-length
printouts. Remember that a query can cause an entire data bank to
be printed and in many applications it is quite useful to generate
such a book periodically. In such cases the line combo option can
be used to advantage even if the descriptors combined have no spe-~
cial relation to each other.

It can also be used to permit more descriptors in the printout
than could otherwise fit. The Taxir system will print under the
control of any valid descriptor list, but will truncate at the
right-hand margin any information that cannot fit on the print
line.

There are 135 character positions in a print line. Under the
control of a descriptor list A, B, C, b, E, F, G, H, I, J, K the
states of K will begin in character position 51 on the page. This
is a result of the indentation rule, which prints each state of
the highest order descriptor at the left-hand margin and indents
each print line of lower order an additional 5 character positions.
If K has any states longer that 85 characters they will be trun-
cated. If line combos are used, the number of print lines and
hence the length of indentation of the last print line are reduced.
The descriptor list (A, B, ¢, pb), (E, F, G, H), I, J, K, for in-
stance, will cause K to start in character position 21 instead of
51, leaving plenty of room for the long states of K.



-40-

On the other hand, the use of line combos can cause line trun-
cation. If in the case above the states of E, F, G and H are long
their combination can exceed the limits of the print line.

Print Fields

All descriptor-~states printed which belong to the same descrip-
tor will line up on the same character position, either all start-
ing in the same character position (left-justified) or all ending
in the same character position (right-justified). This rule holds
whether the descriptor is a member of a line combo or not. Descrip-
tors whose states are known to be numbers (i.e., which have been de-
fined under the FROM-TO option) are right-justified. All other de-
scriptors are left-justified.

Example: The descriptor list is (FRUIT, AMOUNT). FRUIT has been
defined under the NAME option, AMOUNT has been defined under the
FROM-TO option. The printout might be:

APPLES 2
BANANAS 14
ORANGES 17
PEARS 952

Remember that descriptors defined under the FROM-TO option may
have a label and that this label always appears as part of the
state in query printouts. '

Example: LENGTH is a descriptor defined as follows: LENGTH (FROM
0 TO 10000 IN FT.). Printout might be:

l H.

2 FT.
18 FT.
300 FT.
4575 FT.

Taxir keeps track while data banks are being built or corrected of
the number of characters in the longest state of each descriptor.
This information is printed as part of the control vocabulary to
help the user in calculating printout fits. When query printout
is being prepared by the system, a print field is reserved for each
descriptor in the descriptor list, its length being the value just
mentioned. |



-41-

Example: Descriptor list = A, (B,C). The number of characters in
the longest states of A = 10, B = 14 and C = 6.

The print field for descriptor A will be character positions 1
through 10. If A is numeric its states will be right-justified
on position 10. Otherwise, they will be left-justified on posi-
tion 1.

The print field for descriptor B will be character positions 6
through 19. If B is numeric its states will be right-justified
on position 19. Otherwise, they will be left-justified on posi-
tion 6.

Position 20 will be blank to guarantee at least one space between
the states of B and C.

The print field for descriptor C will be character positions 21

through 26. If C is numeric its states will be right-justified

on position 26. Otherwise, they will be left-justified on posi-
tion 21.

12 3 4 5!6 7 8 9 10/11 12 13 14 15 16 17 18 19| 20 |21 22 23 24 25 26
Print [Field A

)

Print Field B Print Field C

The minimum print field length is 3 character positions. This is
because all descriptors have the missing information (UNKNOWN)
state, which appears in query printout as 3 dashes. The maximum
print field length is 90, as this is also the maximum on descrip-
tor-state length.

Example: Descriptor list = NAME OF EMPLOYEE, (SOCIAL SECURITY NO.,
YEAR OF BIRTH, MONTH OF BIRTH, DAY OF BIRTH, SEX, MARITAL STATUS,
NO. OF DEPENDENTS). The number of characters in the longest states
of NAME OF EMPLOYEE = 20, SOCIAL SECURITY NO. = 11, YEAR OF BIRTH
= 4, MONTH OF BIRTH = 5, DAY OF BIRTH = 3, SEX = 3, MARITAL STATUS
= 8, NO. OF DEPENDENTS = 3. Print field rules will cause printout
to appear as follows:



-42-

ALI'ENRQ Ho

134-72-1539 1951 MAY 13 M SINGLE 0
AXELROD G. D.

175-14-9326 1940 JULY 3 M MARRIED 2
BAKER J. L. :

922-54-6693 1948 SEPT. 15 F DIVORCED 1

Print Field Override Options (L and R Parameters)

Taxir provides the user additional flexibility in controlling
the printing formats of query printouts. The user can override
the rules for print fields described above and specify exactly on
which character positions he wants his descriptors to be left- or
right-justified. He does so by including an override parameter
in parentheses immediately following each descriptor in the de-
scriptor list he wishes to so control. The parameter consists of
the letter L (for left-justify) or R (for right-justify), followed
by the number of the desired character position (must be in the
range 1 to 135).

Example: In the previous example the printout appeared crowded and
confusing. This can be improved by altering the descriptor list
as follows: NAME OF EMPLOYEE, (SOCIAL SECURITY NO. (L15), YEAR OF
BIRTH (L33) , MONTH OF BIRTH, DAY OF BIRTH, SEX(L54) , MARITAL STATUS,
NO. OF DEPENDENTS). The printout now looks like this:

ALLEN R. H.

134-72-1539 1951 MAY 13 M  SINGLE 0
AXELROD G. D.
: 175-14-9326 1940 JULY 3 M  MARRIED 2
BAKER J. L.
922-54-6693 1948 SEPT. 15 F DIVORCED 1

Example: Descriptor list = WEATHER STATION (L9Y), (MONTH(R4) , DAY (L6),
MINIMUM TEMPERATURE (R12), MAXIMUM TEMPERATURE, MINIMUM RELATIVE
HUMIDITY (R24), MAXIMUM RELATIVE HUMIDITY).

MORGAN CREEK

JAN 9 ~50 10 30 35
JULY 10 55 76 20 27
SUMMIT RIDGE
JAN 9 -40 7 32 36

JULY 10 61 72 21 30



-f3-

Notice that the amount of indentation may be controlled as well
as the length of the print fields and that descriptors which are
ordinarily left-justified can be right-justified and vice-versa.
Descriptors without override parameters (such as MAXIMUM RELATIVE
HUMIDITY above) are subject to the ordinary rules of indentation,
justification and print field length described earlier.

In general the override options are used to create more blank
space around the printed matter to improve readability. It is pos-
sible, however, to reduce the length of a print field. A look at
the control vocabulary may show that in one descriptor the length
of the longest state is 85 characters, but that the second longest
state is only 40 characters long. It may be desirable to reduce
the length of the print field to 40 in order to make a line combo
fit without truncation, especially if it is known that the 85 char-
acter state will not show up in the query response. If it does
show up it will be truncated to 40 characters, which will probably
leave enough to identify it. Any descriptor-state which exceeds
a reduced print field length is truncated to fit, at the right if
it is left~justified, at the left if it is right-justified.

Print Field Override Options (F Parameter)

Taxir provides one additional override option. The rule that
each descriptor lines up on a character position, left- or right-
justified, can be .overridden for any member of a line combo but the
first. In this way the members of a line combo can be made to fol-
low one another with some specified amount of space between them.
The parameter is an F (for follow) followed by the number of blanks
desired between the last character of the previous member of the
line combo and the first charactet of this one (must be in the range
0 to 133).

Example: Descriptor list = (MONTH, DAY, YEAR). Printout will be
in the format below:

JANUARY 1l 1910
FEBRUARY 13 1912
MAY 6 1915



But with the descriptor list modified to: (MONTH, DAY (Fl), YEAR(Fl)),
the printout changes to:

JANUARY 1 1910
FEBRUARY 13 1912
MAY 6 1915

Example: Descriptor list = (LAST NAME, FIRST NAME, MIDDLE NAME) .
This might yield something like this:

BURNETT IVY COMPTON
MACPHERSON , AMY SEMPLE
THOMAS JOHN CHARLES

But with the descriptor list modified to: (LAST NAME, FIRST NAME(F4),
MIDDLE NAME(Fl)), the printout will be:

BURNETT IVY COMPTON
MACPHERSON AMY SEMPLE
THOMAS JOHN CHARLES

Example: Descriptor list = (CODE PREFIX, CODE NO.)

AB 452
ANK 399
TX 21
Z 4

But with this modification: (CODE PREFIX, CODE NO.(FO0))

AB452
ANK399
TX21
z4

Any F parameter associated with a solo descriptor or with the first
member of a line combo will be ignored by the system and the normal

rules will apply.

SAME Option

Finally the user may substituté for any of the descriptor lists
described above the word SAME. This will cause the descriptor list
of the previous query to be applied again for this query.

Example: PRINT: ALPHA, BETA, GAMMA FOR ITEMS WITH boolean expression
#1* PRINT: SAME FOR ITEMS WITH boolean expression #2% The printout
for both queries will be in the same format.



-45-

HOW TO QUERY

Here follow some hints and examples dealing with both statement
types HOW MANY and PRINT. Their general formats are repeated below:

bWITHDb

bHAVEb}boolean expressions*

HOW MANY noise‘{

PRINT noise: descriptor list bFORb noise {ggisgg} boolean expression#

Examples: The following examples present some simple solutions to
problems that might arise in a marketing situation. The items in
this hypothetical data bank are units sold. A customer comes in
with Gidget #100425. It is broken and he has lost his sales slip.
Is the 90-day warranty still in effect?

PRINT: (MONTH OF SALE, DAY OF SALE, YEAR OF SALE) FOR ITEMS WITH
ARTICLE, GIDGET AND SERIAL NO., 100425=

NO. OF ITEMS IN QUERY RESPONSE = 1
NO. OF ITEMS IN THE DATA BANK = 5310
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.02

SEPT. 27 1969
What color widgets sold best last summer?

HOW MANY UNITS WERE SOLD WITH ARTICLE, WIDGET AND YEAR OF SALE,
1969 AND MONTH OF SALE, FROM JUNE TO AUG. AND COLOR, RED*

NO. OF ITEMS IN QUERY RESPONSE = 5
NO. OF ITEMS IN THE DATA BANK = 5310
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.09

HOW MANY UNITS WERE SOLD WITH ARTICLE, WIDGET AND YEAR OF SALE,
1969 AND MONTH OF SALE, FROM JUNE TO AUG. AND COLOR, WHITE=*

NO. OF ITEMS IN QUERY RESPONSE = 3
NO. OF ITEMS IN THE DATA BANK = 5310
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0,06

HOW MANY UNITS WERE SOLD WITH ARTICLE, WIDGET AND YEAR OF SALE,
1969 AND MONTH OF SALE, FROM JUNE TO AUG. AND COLOR, BLUE#

NO. OF ITEMS IN QUERY RESPONSE = 7
NO. OF ITEMS IN THE DATA BANK = 5310
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.13

How does that break down by month and who were the salesmen involved?
PRINT THE FOLLOWING: COLOR, MONTH OF SALE, (SERIAL NO., SALESMAN)

FOR UNITS WITH ARTICLE, WIDGET AND YEAR OF SALE, 1969 AND MONTH OF
SALE, FROM JUNE TO AUG. AND COLOR, RED OR WHITE OR BLUE#*



-46-

NO. OF ITEMS IN QUERY RESPONSE = 15
NO. OF ITEMS IN THE DATA BANK = 5310
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.28

BLUE
JUNE
101772
103428
103589
JULY
106675
107781
AUG.
107919
108832

JUNE
102445
102787
103481
JULY
105334
106622
WHITE
JUNE
101355
AUG.
107445
108916

IKE
IKE
MIKE

JOE
MOE

IKE
JOE

JOE
MOE
IKE

MIKE
MIKE
JOE .

IKE
MOE

How did Ike do in the first quarter of this year?

HOW MANY UNITS WERE SOLD WHICH HAVE SALESMAN, IKE AND YEAR OF SALE,
1970 AND MONTH OF SALE, FROM JAN. TO MAR.*

NO. OF ITEMS IN QUERY RESPONSE = 22
NO. OF ITEMS IN THE DATA BANK = 5310
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.41

How does that break down?

PRINT A LIST OF:

ARTICLE, COLOR, (MONTH OF SALE, DAY OF SALE, SERIAL

NO.(L25)) FOR ITEMS WITH RESULT#*

NO. OF ITEMS IN QUERY RESPONSE = 22
NO. OF ITEMS IN THE DATA BANK = 5310
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.41

FIDGET
BLACK
JAN.
JAN.
FEB.
FEB.
FEB.
MAR.

3 149723
17 153209
7 158334
7 158335
15 167444

21 176550



BROWN
JAN, 29 155001
JAN. 31 156499
FEB. 8 159900
GIDGET
GREEN
JAN. 15 100779
JAN. 17 100893
MAR. 22 100998
PURPLE
JAN, 11 100565
JAN. 12 100578
FEB. 1 100672
FEB. 3 100675
MAR. 4 100877
WIDGET
BLUE
JAN. 22 456090
JAN. 24 456098
RED
JAN. 7 422989
MAR. 30 488722
WHITE
FEB. 24 467023

Examples: The following examples deal with a data bank keeping track
of the specimens in a botanical museum. A worker wants to know what
specimens the museum has of a certain genus that were collected dur-
ing a series of expeditions in the 1930's.

PRINT: CATALOG NO. FOR SPECIMENS WITH GENUS, MANIHOT AND YEAR OF
COLLECTION, FROM 1932 TO 1938«

NO. OF ITEMS IN QUERY RESPONSE = 8
NO. OF ITEMS IN THE DATA BANK = 103170
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.01

624420
650063
687552
688105
710429
724487
725800
753216

These catalog numbers are enough for him to retrieve the actual
specimens from the herbarium, provided the museum curator has ar-
ranged the specimens in numeric order on the shelves. In many mu-
seums the specimens are arranged alphabetically by geographical
location and within geographical location alphabetically by taxo-
nomic name and within taxonomic name numerically by catalog num~
ber. In such a museum the user might request:



-48~

PRINT: COUNTRY OF COLLECTION, TAXONOMIC NAME, CATALOG NO. FOR
SPECIMENS WITH GENUS, MANIHOT AND YEAR OF COLLECTION, FROM 1932
TO 1938%*

NO. OF ITEMS IN QUERY RESPONSE = 8
NO. OF ITEMS IN THE DATA BANK = 103170
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.0l

BR. HONDURAS
MANIHOT GUALANENSIS

753216
HONDURAS
MANIHOT AESCULIFOLIA
687552 ’
MEXICO
MANTHOT ESCULENTA
624420
688105
724487
725800
MANIHOT PARVICOCCA
650063
MANIHOT PRINGLEI
710429

The worker may not need to look at specimens. There may be enough
information in the data bank to answer his questions. Perhaps his
principal interest is in the collectors' names and collecting dates
of the specimens in question, all of which are descriptors in the
bank. In this case he might ask:

PRINT: COLLECTOR, (YEAR OF COLLECTION, MONTH OF COLLECTION(Fl), DAY
OF COLLECTION (Fl)), (CATALOG NO., TAXONOMIC NAME, COUNTRY OF COLLEC
TION, PROVINCE OF COLLECTION) FOR SPECIMENS WITH GENUS, MANIHOT AND
YEAR OF COLLECTION, FROM 1932 TO 1938%

NO. OF ITEMS IN QUERY RESPONSE = 8
NO. OF ITEMS IN THE DATA BANK = 103170
PERCENTAGE OF RESPONSE/TOTAL DATA BANK = 0.01

BANGHAM W.N.
1935 AUG. 10
687552 MANIHOT AESCULIFOLIA HONDURAS CORTES
GENTLE P.H.
1938 MAY 1
753216 MANIHOT GUALANENSIS BR. HONDURAS EL CAYO
HINTON G.B.

1933 JUNE 21

624420 MANIHOT ESCULENTA MEXICO SAN LUIS POTOSI
1936 JULY 7

710429 MANIHOT PRINGLEI MEXICO SAN LUIS POTOSI
1937 JUNE 20

724487 MANIHOT ESCULENTA MEXICO GUERRERO

1937 NOV. 19
725800 MANIHOT ESCULENTA MEXICO GUERRERO



-49 -

MATUDA E.
1934 JULY 9
650063 MANIHOT PARVICOCCA MEXICO CHIAPAS
1935 SEPT. 7 ‘
688105 MANIHOT ESCULENTA . MEXICO SAN LUIS POTOSI

In another situation the museum worker may wish to look at some
specimens, but he is not sure of how to specify the subset of inter-
est, so he poses a broad query where he hay expect say 800 instead
of the 8 items in our last example. He can then use the printout to
help him narrow further the subset, pose another query, if necessary,
and continue in this way taking better and better approximations un-
til he has few enough items selected that he can turn conveniently
to the specimens themselves.

Sometimes it is desirable to print a reference book of an en-
tire data bank. In museum applications, for example, it is possi-
ble to print the catalog in this way. In fact several books can be
printed, each ordered on a different leading descriptor, such as a
book ordered on catalog number, a book ordered on country of col-
lection, a book ordered on taxonomic name, etc. These can be re-
printed periodically and distributed to interested cooperating mu-
seums and libraries, thus making up-to-date catalogs widely avail-
able to other workers in the field.

If the descriptor list for such a book is complicated, it is
a good idea to print first a small sample of the book by using a
boolean expression that is guaranteed to specify no more than about
a dozen items. The descriptor list with its formating options can
then be varied and another small sample printed, until a satisfac-
tory, easily readable printout is obtained. Then using this suc-
cessful descriptor list and a boolean expression of the type P OR
NOT P (e.g., MONTH, JAN. OR NOT MONTH, JAN.) the entire book can
be printed.

STATEMENT TYPE: GENERATE

GENERATE noise: descriptor list bFORb noise={§gisg§} boolean exp.#*

This statement is very much like statement type PRINT, except
that instead of a printout, a machine-readable file is generated.



-50~-

(This file will be on tape or disk or some other external device,
depending on the options available at the user's computer installa-
tion.) This file has been designed to serve as input to a package
of statistical analysis routines.

The same hierarchical ordering rules apply to the descriptor
list as in statement type PRINT, but the various printout options
(line combos and print field overrides) are ignored. The SAME op-
tion applies and refers to the descriptor list of the previous GEN-
ERATE or PRINT statement. '

Inasmuch as the purpose of this file is to undergo statistical
analysis, only numeric descriptor-states are generated. Descriptors
known to be numeric (i.e., defined under the FROM-TO option) will
have their states transmitted to the file as floating point values.
Descriptors defined under the ORDER option with an alphanumeric list
of descriptor-states will have the code numbers of their states (not
their alphanumeric names) transmitted to the file as floating point
values. Descriptors defined under the NAME option are not permitted
in the descriptor list.

File Structure

The first record in the file consists of a single integer
whose value, n, = the number of descriptors in the descriptor
list = the number of words per record in the subsequent records
of the file.

Following this first record there is a record (n words long)
for each item in the set specified by the boolean expression. These
n words are the floating point values of the states of each descrip-
tor in the descriptor list (in descriptor list order) for a single
item.

Following these is an end-of-file mark.

Each GENERATE statement creates one such file, and in any one
Taxir run, these files are stacked up on the same output device
(i.e., tape, disk, etc.). After the last file an extra end-of=-
file mark is written.

Example: Here is part of a DEFINE DESCRIPTORS statement for a bank
of weather information: MONTH (ORDER, JAN., FEB., MAR., APR., MAY,



-5]1-

JUNE, JULY, AUG., SEPT., OCT., NOV., DEC.), DAY (FROM 1 TO 31),
MAXIMUM TEMPERATURE (FROM -30 TO 120 IN DEG. F.), MINIMUM TEMPERATURE
(FROM =50 TO 100 IN DEG. F.). And here is a query to this bank.
PRINT: MONTH, (DAY, MAXIMUM TEMPERATURE, MINIMUM TEMPERATURE) FOR
ITEMS WITH WEATHER STATION, 1 AND YEAR, 1965 AND MONTH, JUNE OR

JULY AND MAXIMUM TEMPERATURE, FROM 80 TO 120%

We might get the following printout:

JUNE
5 86 DEG. F. 62 DEG. F.
7 82 DEG. F. 65 DEG. F.
12 85 DEG. F. 61 DEG. F.

JULY

8 82 DEG. F. 68 DEG. F.
24 88 DEG. F. 65 DEG. F,

The equivalent GENERATE statement, i.e., the same statement with
the word GENERATE substituted for the word PRINT, will yield a file
with the following structure and content:

Record 1 = 4

Record 2 = 6.0 5.0 86.0 62.0
Record 3 = 6,0 7.0 82.0 65.0
Record 4 = 6.0 12.0 85.0 61.0
Record 5 = 7.0 8.0 82.0 68.0
Record 6 = 7.0 24.0 88.0 65.0
End-of-file mark

Other Possible Applications

At the CDC 6400 installation at the University of Colorado a
package of statistical analysis programs has been adapted to accept
these Taxir generated files as input. Coupling Taxir to the sta-
tistics package provides users at this installation with a great
flexibility in choosing data samples for analysis.

In a similar manner other data processing packages can be
linked to Taxir. We can envision Taxir serving as the central
hub of an information management system with Taxir handling the
basic maintenance of the data bank (i.e., input of raw data and
updating) as well as the selection of data subsets either for di-
rect printout or for further computation by the various ancillary
systems attached. The particular file structure described above
was designed with the statistics package in mind, but it is not
difficult to vary the output structure to interface with other sub-
systems, including those which accept data in alphanumeric form.

-—-o-——



-52=

4. CORRECTING A TAXIR DATA BANK

STATEMENT TYPE: CORRECTION

With this statement the user may correct errors or update ob-
solete information in his data bank. The general format is:

CORRECTION (d,ds) (d,ds)...(d,ds) noise:{gﬂiggg} boolean expression#*

d is any descriptor name chosen from the control vocabulary
and the ds paired with it is the name of one of the states of that
descriptor. 1If 4 has been defined under the ORDER or FROM-TO op-
tions, then ds must be chosen from the control vocabulary or be the
state UNKNOWN. If d has been defined under the NAME option, then
ds may be chosen from the control vocabulary or be the state UNKNOWN
or be a new name which will be added to the control vocabulary dur-
ing the correction procedure.

Every item in the set specified by the boolean expression is
reassigned to the descriptor-state ds for the descriptor d with
which it is paired. This is done for all d,ds pairs included in
the statement, which may number from one to as many pairs as there
are descriptors defined for the data bank.

Examples:
CORRECTION (GENUS, VOLVOX) FOR ALL ITEMS WITH GENUS, VOLVEX%*

CORRECTION (INSTRUCTOR, ASQUITH) (BUILDING, CHEMISTRY) (ROOM, 302)
FOR COURSES WITH DEPARTMENT, CHEMESTRY AND COURSE NO., 400 OR 401

CORRECTION (LOCATION, UNKNOWN) FOR ITEMS WITH CATALOG NO., FROM
104622 TO 104629«

In general it is good to define one's descriptors so that any sin-
gle item in the bank may be selected by a boolean expression. This
not only permits great flexibility in querying, but also permits
corrections of individual items, such as:

CORRECTION (MINIMUM TEMPERATURE, ~-12) FOR THE ITEM WITH WEATHER
STATION, 5 AND YEAR, 1965 AND MONTH, JAN. AND DAY, 15%

CORRECTION (SIZE, 18) (COLOR, GREEN) (STYLE, K39) FOR THE ITEM
WITH ITEM NO., 173354%



-53-

STATEMENT TYPE: DELETE STATE

DELETE STATE d,ds*

The descriptor-state ds of the descriptor d is removed from
the control vocabulary, if 1) descriptor 4 has been defined under
the NAME option, and 2) there are no items in the bank assigned
to state ds, and 3) ds ¥ UNKNOWN.

Example: Typically this statement type is used to clean spurious
states out of the control vocabulary. After a correction like:
CORRECTION (GENUS, VOLVOX) FOR ALL ITEMS WITH GENUS, VOLVEX* the
misspelling can be purged from the control vocabulary by: DELETE
STATE GENUS, VOLVEX#

STATEMENT TYPE: DELETE ITEMS

bWITHb

ion*
bHAVEb}-boolean expression

[ DELETE ITEMS noise {

Every item in the set specified by the boolean expression is
removed from the data bank. This very powerful statement should
be used with caution. It is possible, easy in fact, to wipe out
an entire data bank with one statement. The only way to restore
deleted items is to define them again from scratch (unless a re-
serve copy of the data bank is maintained).

Despite the danger this statement type is quite useful, espe-
cially in data banks with a large turnover of information.

Example: In a warehouse inventory bank, new items are continually
being defined or deleted as shipments arrive at or leave the ware-
house. This procedure must be kept faithfully up to date if there
is to be any hope of getting accurate replies to queries asking how
many gidgets are currently in stock. Every time a shipment is made,
a statement such as one of the following can be addressed to the
bank:

DELETE ITEMS WITH SHIPPING NO., 47298«

DELETE ITEMS WHICH HAVE CUSTOMER, GOLDBERG AND ARTICLE, GIDGET OR
WIDGET#*



-54=

DELETE ITEMS WITH YEAR OF SHIPMENT, 1970 AND MONTH OF SHIPMENT,
AUG. AND DAY OF SHIPMENT, 7%

The Taxir system responds to statements of this type with 3
lines of printout giving the former item count, the number of items
deleted and the current item count.

Examgle:
FORMER NO. OF ITEMS IN THE DATA BANK = 47312
NO. OF ITEMS DELETED = - 82

CURRENT NO. OF ITEMS IN THE DATA BANK = 47230

STATEMENT TYPE: DEFINE MORE DESCRIPTORS

DEFINE MORE DESCRIPTORS d(p), d(p),...d(p)*

This statement type permits tie user to add new descriptors

to a data bank already in existence. It is exactly like DEFINE

DESCRIPTORS in all particulars except the following:

l. The addition of the word MORE.

2. Although a DEFINE DESCRIPTORS statement appears only once in the
life of a data bank, DEFINE MORE DESCRIPTORS statements may ap-
pear as often as desired.

3. Descriptor numbers continue from that of the last descriptor al-
ready defined. For example, if in some data bank with 10 descrip-
tors a DEFINE MORE DESCRIPTORS statement adds 3 more descriptors,
then these additions will be descriptors 11, 12 and 13.

4. Any items defined after the appearance of a DEFINE MORE DESCRIP-
TORS statement must include states for the new as well as the old
descriptors. Any items defined previous to such a statement will
automatically be assigned to the UNKNOWN states of the new de-
scriptors. These can be updated by means of CORRECTION statements.

5. When using the equals facility it is permissible to refer to de-
scriptors defined in the original DEFINE DESCRIPTORS statement or
in previous DEFINE MORE DESCRIPTORS statements.

--—o--—-



-55-

5. MISCELLANEOUS TAXIR STATEMENTS

STATEMENT TYPE: ID

ID noise

noise = any string of characters.

Every Taxir program must begin with an ID statement. This
statement appears as a header at the top of every page of Taxir
output and serves as a means of identifying the printed output
with the user. Typically the user will include in his ID state-
ment his name or a brief description of the job. The date need
not be included as this is added to the header line by the system,
as is a page number.

ID statements may be inserted as often as desired in the pro-
gram. Each time an ID statement is encountered in a Taxir program,
the system adopts it as the header line and begins a new page, re-
paginating from 1.

Examgles:
ID---PONSONBY, QUERIES OF DATA BANK Q4

ID: ADDING SOME ITEMS TO CLIMATE BANK, J. CLARK

Sometimes it is desirable to physically separate portions of
the printed output, as for example, when a number of queries are
run together but the printout from each query is to be sent to a
different person. To guarantee that such separations can always
be made at the perforation between printout sheets, place an ID
statement just before and just after any section of the program
to be so isolated.

STATEMENT TYPE: END

This statement informs the system that the program is finished.
It must appear once and only once in each Taxir program as the last



statement of the program. It also prints the total time for the

run.

STATEMENT TYPE: TIME

TIME noise

noise = any string of characters.

This statement typé causes a printout of the elapsed time in
seconds and milliseconds since the last TIME statement (or if this
is the first such statement in the program, since the beginning of
the run). Both central processor and peripheral processor times

are given.

Examples:

TIME

TIME TO ANSWER THE ABOVE 6 QUERIES
TIME TO BUILD BRYOPHYTE DATA BANK

STATEMENT TYPE: MEMO

MEMO noisex*

noise = any string of characters except asterisk (x).

This statement type provides the user with a means of embellish-
ing his output with commentary. MEMO statements may be inserted any-
where in the program. The system merely copies them into the output.

Examples:

MEMO: THE FOLLOWING 3 QUERIES ARZ FOR THE ATTENTION OF MR. ARBUTHNOT*

MEMO TO LYDIA, I ADORE YOU, REGINALD=*

MEMO
LYDIA
I ADORE YOU

REGINALD
*%



-57-

STATEMENT TYPES: READ DATA BANK and WRITE DATA BANK

-READ DATA BANK-
WRITE DATA BANK

Data banks are permanently stored on tape, disk or some other
external device, depending on the options available at the user's
computer installation. It is necessary to request (in the control
language of the operating system in use at the user's installation)
that the external device in question be connected to the computer.

READ DATA BANK causes Taxir to read the data bank from the ex-
ternal device into the computer, where it is then available for
Taxir processing.

WRITE DATA BANK causes Taxir to write the data bank from the
conmputer onto the external device, thus preserving it for future
use.

If any of the following data bank altering statements appear
in a Taxir program, a WRITE DATA BANK statement should appear after
the last of them in order to capture these efforts for later use.

DEFINE DESCRIPTORS
DEFINE MORE DESCRIPTORS
DEFINE ITEMS

DEFINE AND PRINT ITEMS
CORRECTION

DELETE STATE

DELETE ITEMS

If none of the above statements appear, a WRITE DATA BANK statement
is not necessary, as the bank still exists in its current form on
the external device.

In any run in which a bank is built for the first time (i.e.,
contains a DEFINE DESCRIPTORS statement) no READ DATA BANK statement
is necessary or useful. 1In all other runs a READ DATA BANK statement
is needed prior to any processing of the bank. Only one Taxir data
bank can be handled in any one Taxir run.

Note that WRITE DATA BANK wipes out the data bank stored on the
external device by replacing it with the current bank in the com~
puter. Only one WRITE DATA BANK statement is needed in any one pro-
gram. If more than one such statement appears, only the bank at the
time of the last such statement will be preserved, as each WRITE
DATA BANK statement will wipe out the effect of the previous one.



=58

There is a convenience in this feature. If the Taxir language
is properly used, the external device will always contain the most
up-to-date bank at the end of each run. There is also a danger.

If the statements which modify the bank are disastrously invalid
(such as an accidental DELETE ITEMS statement that wipes out the
bank) , then the new-replaces-old feature can cause considerable
hardship. As a safety procedure, it is good to maintain a reserve
copy of the data bank. This can be done through the control lan-
guage of the operating system following each run which updates the
bank (i.e., contains a WRITE DATA BANK statement).



-59-

APPENDIX A: TAXIR ERROR MESSAGES

During the processing of Taxir statements the system checks
for a large number of user errors. When such errors are encount-
ered Taxir prints out a message of the type:

ERROR TYPE # "
If the user receives such a message from Taxir he should look up
the error # in the following list to discover the nature of the
difficulty.

Any error arising from a DEFINE DESCRIPTORS, DEFINE MORE DE~
SCRIPTORS, DEFINE ITEMS, DEFINE AND PRINT ITEMS or READ DATA BANK
statement causes the run to terminate. There is no point in con-
tinuing the run if there is a faulty or no data bank in the machine.

All other errors cause the system to skip over the balance of
the faulty statement and continue with the next Taxir statement. 1In
the process of skipping over the faulty statement any other errors
in the same statement will be overlooked, so it is a good idea not
only to correct the error that is caught by the system, but to check
the entire statement for validity before resubmitting the Taxir pro-
gram.

When an error is caught in an Item Definition, the entire item
is rejected by the system and does not get into the data bank. Like-
wise, when an error is caught in a CORRECTION statement, none of the
corrections requested is made. However, any new state names that
are introduced in a faulty Item Definition or CORRECTION statement,
before the point at which the error is detected, will get into the
control vocabulary. If such names are not valid, they may be removed
from the control vocabulary by means of DELETE STATE statements.

Any Item Definition or CORRECTION statement rejected on errors may,
of course, be corrected and resubmitted to the system.



1.
2.
3.
4.

5.

6.

8.

9.
10.
11.
12,
13.
14.
15.
16.
17.

18.

-60-

Taxir Error List

Unrecognizable statement name.
Statement name not complete on first card of statement.
FROM-TO descriptor with a non-positive BY parameter.

Too many descriptors in a PRINT or GENERATE descriptor list
or too many (d,ds) pairs in a CORRECTION statement. Reduce
their number or recompile Taxir, enlarging tables DLIST (1lst
dimension), ITEM (lst dimension) and STAT, as well as the
constant DLXMAX. Set their values = each other and 2 the
number of descriptors in the data bank.

Descriptor name must not begin with a left parenthesis.

Too many descriptors being defined. Reduce their number or
recompile Taxir, enlarging tables DD, DDl, and DD2, as well
as the constant DDMAX. Set their values = each other and 2
the number of descriptors desired.

Too many descriptor or descriptor-state names containing > 10
characters. Reduce their number or recompile Taxir, enlarging
table OVRFLO and constant OVIiAY., Set their values = each other
and 2 the expected number of descriptor and descriptor-state
names that contain between 11 and 20 characters + twice the ex-
pected no. of names between 21 and 30 characters + 3 times the
expected no. of names between 31 and 40 characters + etc.

Not enough space dimensioned in the Taxir system for descriptor-
states. Either reduce the estimates on descriptors under the
NAME option or recompile Taxir, enlarging tables DSS, DSCODE
and the constant DSSMAX. Set their values = each other and 2
the sum of the estimates on descriptors under the NAME option

+ the sum of the number of states in descriptors defined under
the ORDER option.

Coded descriptor-state out of the range defined.

Equals reference to prior descriptor not valid.

Neither NAME, FROM-TO nor ORDER option is specified.

No number found where expected.

90 character limit on name length exceeded.

All blank name is not permitted.

Trying to define the same descriptor name twice.

Using a descriptor name never defined to Taxir.

Trying to define the same descriptor-state name twice.

Using a descriptor-state name never defined to Taxir.



19.
20.

21.

22.
23.
24.

25.

26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

-61-

No right parenthesis following descriptor parameters.

Not enough space reserved for base characteristic functions
in the data matrix. Reduce the size of some of the descrip-
tors or recompile Taxir, enlarging table IFILES (lst dimen-
sion) and the constant DMAX.

Too many printout lines per item specified in a descriptor
list. Reduce their number by combining descriptors into line
combos or recompile Taxir, enlarging table COMBO and the con-
stant COMMAX.

No closing parenthesis on a line combo in a descriptor list.
No comma or asterisk after coded descriptor-state.

No. of states in this descriptor has exceeded the estimate
given in the DEFINE DESCRIPTORS statement. At the present
time there is no remedy for this other than to redefine that
data bank from scratch.

This is not a user error, but is an indicator of trouble in
the Taxir system. Save all printout and input cards and con-
tact the author.

Like #18.
FROM-TO descriptor with decreasing FROM-TO range.

Estimate of number of states in a descriptor defined under
NAME option is not a positive integer.

Statement name not followed by asterisk or FOR,

Boolean expression too long for processing space reserved.
Break up query into a series of smaller queries or recompile
Taxir, enlarging table STRYNG and constant STRGMX .

Boolean expression too long for processing space reserved.
Break up query into a series of smaller queries or recompile
Taxir, enlarging table STACK and constant STKMAX.

Boolean expression does not have balanced parentheses, i.e.,
does not have same number of left and right parentheses.

Tryipg to operate on a data bank that is not present in the
machine, i.e., which has either not been defined earlier in
the run or has not been read into the machine from an external
device.

Cannot delete a state from a descriptor whose option is other
than NAME,

A dgscriptgr with option NAME has been included in the de-
scriptor list of a GENERATE statement.



36.

37.
38.
39.
40.
41.
42,
43,
44.
45.
46.
47.
48.
49.

50.

51.
52.

53.

54.

55.

56.
57.
58.

59.

-62-

Taxir is not properly dimensioned to hold this data bank.
One or more of the critical values printed for the stored
data bank exceeds the maximum permitted by the Taxir in use.
Use the Taxir which generated the stored bank or redimension
the one in use to accomodate the excess.

Neither CARDS nor TAPE nor DISK specified.

Cannot delete the UNKNOWN state from a descriptor.

Illegal FROM-TO range in a boolean expression.

FROM value >TO value in a boolean expression.

Boolean expression must not begin with AND or OR.

Illegal use of parentheses in a boolean expression.

TO missing from FROM-TO range in boolean expression.

Illegal operator in a boolean expression.

NOT or FROM expected but not found in a boolean expression.
NOT expected but not found in a boolean expression.

Like #25.

Like #46.

Like #42.

Expecting a FROM-TO descriptor-state, it turns out to be
neither numeric nor UNKNOWN.

FROM-TO descriptor-state not in the defined set of numbers.

In a descriptor list the left parenthesis denoting the begin-
ning of a line combo has occurred before the right parenthesis
denoting the end of the previous line combo.

Right parenthesis missing or TO expected but not found in a
boolean expression.

Illegal termination of a boolean expression.

AND, OR, NOT or TO expected but not found in a boolean expres-
sion.

Like #42.
Operator expected but not found in a boolean expression.
AND or OR expected but not found in a boolean expression.

The right parenthesis denoting the end of a line combo has
occurred with no previous left parenthesis.



60.
6l.
62.
63.
64.

65.

66.

-63=

Like #25.

No left parenthesis before (d,ds) pair.

No descriptor name or descriptor-state name where expected.
Asterisk encountered too soon or left parenthesis out of place.

A new descriptor-state has been introduced in a descriptor
whose option is ORDER or FROM=TO.

Too many FROM-TO descriptors. Reduce their number or recom-
pile Taxir, enlarging tables FROM, TO, BY, IN and constant
FTBIMX. Set their values = each other and 2 the number of
FROM-TO descriptors desired.

FROM-TO descriptor without a TO parameter.

-—--o———



-64-

APPENDIX B: PRELIMINARY PROBLEMS

Data Bank Design

In Chapter 1 there is a list of six questions which the poten-
tial Taxir user must ask and answer before he can create Taxir data
banks. In some simple cases answering these questions will be ob-
vious and the answers will be jotted down on a single sheet of pa-
per. In many cases, however, these will prove to be difficult de-
cisions complicated by cost factors, manpower availability, the na-
ture of the computer installation (its equipment, operating system
and policies) and by other special factors known only to the poten-
tial user.

Here then are some additional questions to be considered:

What will be the nature of information flow and work flow in my
shop? This includes the gathering and transcribing of data, the
setting up of computer runs for building, updating and querying
data banks, and the distribution and application of computer re-
sults. The answer to this question in any complex situation will
probably take the form of flow diagrams.

What are my financial capabilities and limitations? And what will
my operations cost? The answer to these guestions may take the
form of a cost analysis and/or a cash flow analysis, and possibly
after the operation has begun, a cost-effectiveness analysis.

Such analyses invariably raise a host of other related ques-
tions which may influence the final data bank design. For example,
the user may wish to include a certain descriptor but may discover
that the cost of gathering this information outweighs the expected
benefits. Or on the contrary, he may decide that in view of his
goals this descriptor is essential at all costs, but because of
its high cost, some other less vital descriptor(s) must be sacri-
ficed.

The design headaches can in some cases be considerable, espe-
cially if one's goals exceed one's resources. The six questions
included in the text are meant to help the user define his goals.
The questions that are raised here in this appendix are meant to
help the user define his resources. The final answers to the goal
questions will often be tempered by the answers to the resource
questions, and for this reason all of these questions must be con-
sidered simultaneously and in the total context of the problem and
its environment. In any complex data management situation the Taxir



system (or any other system for that matter) is only one link in
a larger system of information, money and manpower flow. The po-
tential Taxir user who needs help is advised to call in a systems
analyst with Taxir experience.

Fitting the Taxir System to the Data Bank

The Taxir system is quite general in its powers, however, the
system must always operate within the storage space limits of some
particular configuration of computer hardware. The Taxir system
itself occupies some of this space and the rest is used by Taxir
as working space, i.e., for holding various data parameters, data
elements, dictionaries, etc. The amount of space needed for each
of these tasks will vary from bank to bank according to a set of
formulas involving the number of items, the number of descriptors,
the number of states in each descriptor, the options chosen, etc.

In order to allocate this space to best advantage it is the policy
of the Taxir designers to fit the Taxir system on a custom basis
to each data bank in the context of a specific computer configuration.

The Taxir system is written in the Fortran programming language
and the working space in question takes the form of various Fortran
arrays. Fitting the system to the data bank consists of setting the
dimensions of these arrays large enough to accomodate the data and
small enough to fit within the hardware limitations. If the space
limits are exceeded the user may decide to choose larger hardware,
to decrease the size of the data bank or to store some of these ar-
rays on auxiliary storage devices and process them a piece at a time.
All of these decisions will affect the cost of operation which may
in turn force modifications in the data bank design.

In any case, to fit the system to the data bank advantageously
a good understanding of Taxir space allocation is required. Here
again a systems analyst with Taxir experience can be of great help.
This primer treats only the general powers of Taxir (those which
are invariant on all data banks and on all machines) and the prob-
lems involved in data bank fitting will vary from bank to bank and
from installation to installation. A Taxir analyst can either per-
form this task for the potential user or prepare for him a document
showing him how to do this for himself. If the user's estimates of



-66-

his data dimensions are not too small, this job need be done only
once per bank, just prior to the actual creation of the data bank.
As may be seen from a perusal of the Taxir Error List (Appendix a),
if any of the array sizes are exceeded during the course of opera-
tions, an error message is issued by the system indicating which
array(s) must be enlarged.

Running Taxir under the Operating System

In the present era -of electronic computing almost all computer
installations prohibit the direct hands-on use of the equipment by
anyone but professional machine operators. The computer's activi-
ties are under the combined control of the operators and a master
program called the operating system which coordinates the runs of
the various users and provides them with a variety of auxiliary
computing services.

Under the most sophisticated operating systems two modes of
operation are permitted, time-share mode and batch mode.

In time-share mode a large number of users (up to about 100
nowadays) at remote terminals are able to use the computer simul-
taneously and independently. From his own point of view such a
user appears to have the entire machine to himself. In particular,
if the program he is using is so designed he can engage in a two
way communication with his program, often at human reaction time
speeds. Actually the operating system is continually rescheduling
the use of the machine and running little snips of various programs
so as to maximize the overlapping of operations. While user A is
pondering what to do next, user B may be computing, user C may be
getting a printout over his terminal and user D may be typing a
message to his program, while the operating system runs the compu-
ter like an overworked short order cook trying to keep all his cus-
tomers happy at once.

This computing environment is ideal for the Taxir system.
Since each Taxir statement is executed independently of any other
Taxir statement, the user may freely dialogue with Taxir. For ex-
ample, he may type a query on his terminal keyboard and see the
response before typing the next query which may be a modification
of the first query. 1In this context the RESULT operand (p. 27)
becomes very powerful for rapidly taking better and better approx-
imations of a desired subset.



-67~-

In batch mode the operating system does some overlapping of
operations, but no rapid dialogue is possible. The user submits
his entire run at once (usually in the form of a card deck) and
patiently waits for the entire output of the run. Dialogue is pos-
sible only in slow motion by making a series of runs. Batch mode
is ideal for runs with no need for man-machine interaction, for ex-
ample, a Taxir run for entering a large series of Item Definitions
into a data bank.

There are numerous_adﬁantages both to an installation and to
its users in running under an operating system, whether in batch
or time-share modes. The principal price that the user must pay
for this service is that he must learn (at least a part of) the
control language of the operating system so that he can express his
wishes and requirements to the system and at the same time conform
to the demands the system places on him. With respect to Taxir the
user's wishes will consist largely of requests to hook up external
devices (tapes, disks, etc.) where the Taxir system and the user's
data banks permanently reside when not in use. The demands of the
operating system on the user will vary according to the operating
system, but as a minimum, the user is usually required to submit
an estimate of the time and space requirements of his run.

All of this is to inform the naive potential Taxir user that
the operating system is a fact of life that must be dealt with.
This is not especially difficult but it is necessary. The user
will have to familiarize himself with the basics of his operating
system or have available the services of someone who has already
done so. Here again the Taxir systems analyst can help, but he
must also be well versed in the operating system of the user's
particular installation.

Taxir System Conversion

The Taxir system is written in Fortran and although Fortran
programs run on virtually every computer in the world, intrinsic
hardware design differences among different computers have rendered
it impossible for programs written for one machine to run on anoﬁher
machine without some reprogramming, despite the universality of the
Fortran language. In some cases this reprogramming is minor. 1In



-68-

other cases a considerable conversion effort is required. In still
other cases the effort is not worthwhile as the efficiency of the
program is disastrously degraded in the process.

The potential Taxir user may avoid this problem altogether if
he chooses a computer on which Taxir is already operative. However,
sometimes a user's choice of egquipment is limited severely by what
his circumstances may dictate. If the user must operate on a com-
puter for which there as yet exists no Taxir system, then he must
consider first the technical feasibility of a conversion and sec-
ondly its cost. Only a skilled programmer should attempt such a
conversion.

At the time of this writing, the only complete version of Taxir
operates on the CDC 6400 in batch mode only. A limited (very early)
version operates on the IBM 360/65 with a choice of time=-share or
batch modes. Plans have been made and are awaiting funding for a
full version to run on the IBM 360/67 with a choice of time=-share
or batch modes. Plans also exist for adding time-share capability
to the CDC 6400 version, now that a time-share operating system is
available for that computer.

Summagz

The main point of this appendix is that getting started is
the most difficult part of using Taxir. Data design, cost analy-
sis, hardware limitations, fitting the system to the data bank,
learning to use the operating system, and sometimes Taxir system
conversion - these problems must be solved before Taxir can oper-
ate. It is in these areas that the potential user, especially if
he is inexperienced, can most benefit from the help of the profes-
sional. However, it is the author's firm belief that once the in-
telligent but inexperienced user has been helpéd over these pre-
liminary hurdles, he can easily use Taxir to manipulate his data
without further help, solely by drawing on this primer and his sub-
sequent experience.

Please refer any problems to the author, R. C. Brill, 1304 8th
St., Boulder, Colorado 80302. Phone: 303-443-6160. I will be glad
to help you or recommend some other qualified person to help you.

—-—o--—



-69-

INDEX

A

a (as in FROM a TO b) 12
alphabetic ordering iv, 34
alphanumeric mode 14

AND (intersection) 9, 21-23
asterisk (*) 6, 8, 21, 56

B

b (as in FROM a TO b) 12
b (required blank) 7
batch mode 66
BCD mode 14
blanks
embedded 6, 9
leading 6, 9
required 6, 7
trailing 6, 9
boolean algebra 2
boolean expressions 22, 27
boolean operands
type 1 (d,ds) 24
type 2 (d,ds OR ds OR...

OR ds) 25

type 3 (d, FROM dsl TO
ds2) 25

type 4 (RESULT) 9, 21,
27, 66

boolean operators
complement (NOT) 23
intersection (AND) 23
union (OR) 23

brackets (in general formats) 7

building data banks 8, 18
BY 12

C

¢ (as in Fixed Field Format)
14, 15

¢ (as in FROM a TO b BY c¢) 12

CARDS 14

cards 5, 6

CDC 6400 51, 68

character 8

code numbers 10

colon (:) 33

combining operators and
operands into boolean
expressions 27

comma (,) 8, 21

complement (NOT) 23

contains (as in set D contains
set E) 3

control language of operating
system 14, 57, 58, 67

CONTROL VOCABULARY 21

correcting data banks 52

CORRECTION 22, 52, 57, 59

cost analysis 64

D

d (descriptor name) 8, 9, 11-13,
21, 24-26, 52-54

dashes (-—) 34, 41

data bank (defined) 3

data bank design considerations
5, 64

date 55

decimal point (.) 12, 18

DEFINE AND PRINT ITEMS 17, 57, 59

DEFINE DESCRIPTORS 8, 22, 57, 59

DEFINE ITEMS 8, 14, 57, 59

DEFINE MORE DESCRIPTORS 22, 54
57, 59

DELETE ITEMS 53, 57

DELETE STATE 22, 53, 57, 59

descriptor (defined) 4

descriptor lists 33

descriptor names 8, 13

descriptor number 13, 54

descriptor-state (defined) 4

descriptor-state names 9

disjoint (sets) 3

DISK 14

disk 57

ds (descriptor-state name) 9-11,
17-18, 24-25, 27, 52, 53

dsl 10, 11, 25-27

ds2 10, 11, 25-27

d,ds (operand type 1) 24

d,ds OR ds OR...OR ds (operand
type 2) 25

d, FROM dsl TO ds2 (operand type 3)
25

E

element (of a set) 1
ellipsis (...) 7
embedded blanks 6, 9
empty set (@) 1
END 55
END OF ITEMS 8, 14, 18
end-of-file mark 14, 50
equal sign (=) 13
equals facility 13, 54
error list 60
error messages 59
essential parentheses 31
est (estimate of no. of states) 11
establishing membership of a set 3
external device 57, 67
cards 5, 6, 14
disk 14, 57
tape 14, 57
terminal 5



F

f (as in Free Field Format)
14, 16

F parameter (follow) 43

field 15-17

field order no. 16

fitting Taxir to data bank 65

FIXED 14

Fixed Field Format 15

FOR 9, 21, 33, 49

FREE 14

Free Field Format 16

FROM 9, 12, 21, 25

FROM-TO Option 12, 18

G
general formats 7
GENERATE 49

H

HAVE 32, 33, 49, 52, 53

header line 55

hierarchy of descriptors in
query response iv, 34

HOW MANY 32

I

i (descriptor no.) 13

IBM 360 68

ID 55

IN 12

indentation of query
response 39

information flow 64

intersection (AaND) 23

item (defined) 3

Item Definition 8, 14, 15,
17, 22, 59

J

j (descriptor name) 13
justification

left 40-43

right 40-43

L

L parameter (left-justify) 42

label 12, 25

language, Taxir iv, 2, 5

leading blanks 6, 9

left justification in query
response 40-43

left parenthesis [(] 8, 21

line combos 37

-70-

M

maximum print field length 41
member (of a set) 1

MEMO 56

minimum print field length 41
minus sign (=) 12, 18
mutually exclusive sets 4

N

NAME Option 11, 18

noise 14, 32, 33, 55, 56

noise terminator 14, 32, 33
NOT (complement) 9, 21-23

null set (@) 1

number of cards per statement 6
numeric ordering iv, 34

0

omission of duplicate states in
query response 37, 38

operands (see boolean operands)

operating system 66

operators (see boolean operators)

options (see F parameter, Fixed
Field Format, Free Field Format,
FROM-TO Option, L parameter,
NAME Option, ORDER Option,
R parameter, SAME Option)

OR (union) 9, 21-23

ORDER Option 9, 18

ordering of descriptor-states in
query response 33

overlap (of sets) 3

P

p (parameter list) 9
page number 55
parentheses
essential 31
in boolean expressions 28
in descriptor lists 37, 42
left 8, 21
right 8, 21
pictorial representation of sets 2
power set 22
PRINT 33
print field override options
F parameter (follow) 43
L parameter (left-justify) 42
R parameter (right-justify) 42
print fields 40
priority of operations in boolean
expressions 30
programs, Taxir 5



Q

query response (see rules)
querying data banks 21, 45

R

R parameter (right-justify)
42
READ DATA BANK 57, 59
required blanks 6, 7
reserve copy of data bank
53, 58
RESULT (operand type 4) 9,
21, 27, 66 .
right-justification in query
response 40-43
right parenthesis [)] 8, 21
rules for
...combining operators
and operands into bool-
ean expressions 27
.+.descriptor names 8
...descriptor-state
names 9
...establishing member-
ship of a set 3
.se.labels 12
.+.parentheses in bool-
ean expressions 28
.« spPrintout of query
response
hierarchy of de-
scriptors 34
indentation 39
left-justification
40-43
maximum print
field length 41
minimum print
field length 41
omission of dupli-
cate states 37, 38
ordering of de-
scriptor states 33
right-justifica-
tion 40-43
truncation 39
«s.priority of opera-
tions in boolean ex-
pressions 30
.+ .Statements 6

S

SAME 9, 14
SAME Format 17
SAME Option 44

-71-

set (defined) 1
contains 3
disjoint 3
element 1
empty 1
establishing membership 3
member 1
mutually exclusive 4
null 1
overlap 3
pictorial representation 2
power set 22
subset 1, 3
theory iv, 1
universal 1
state (defined) 4
statement names 5-7
statement types 5
statistical analysis 50
subset 1, 3
system conversion 67

T

TAPE 14
tape 57
Taxir
boolean operands 24
data banks 3
error list 60
error messages 59
general description iv
history v
language iv, 2, 5
operands 24
programs 5
statements 5
system conversion 67
user 5
terminal 5
three dashes (---) 34, 41
TIME 56
time-share mode 66
™ 9, 12, 21, 25
trailing blanks 6, 9
truncation of query response 39

U

U (universal set) 1

union (OR) 23

universal set (U) 1

UNKNOWN state 18, 21, 24, 52-54
updating data banks 52



-72-
W

WITH 32, 33, 49, 52, 53
work flow 64
WRITE DATA BANK 57

Special Symbols

* (asterisk) 6, 8, 21, 56
{} (brackets) 7

: (colon) 33

, (comma) 8, 21

. (decimal point) 12, 18
ees (ellipsis) 7

= (equal sign) 13 .

( (left parenthesis) 8, 21
- (minus sign) 12, 18

@ (null set) 1

) (right parenthesis) 8, 21
-=-- (three dashes) 34, 41







	2015_07_23_10_41_59
	OP. NO. 1

