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Abstract

We present a theoretical framework for understanding the roles of the hippocampus and neocortex in learning and
memory. This framework incorporates a theme found in many theories of hippocampal function, that the hippocam-
pus is responsible for developing conjunctive representations binding together stimulus elements into a unitary rep-
resentation that can later be recalled from partial input cues. This idea appears problematic, however, because it is
contradicted by the fact that hippocampally lesioned rats can learn nonlinear discrimination problems that require
conjunctive representations. Our framework accommodates this finding by establishing a principled division of labor
between the cortex and hippocampus, where the cortex is responsible for slow learning that integrates over multiple ex-
periences to extract generalities, while the hippocampus performs rapid learning of the arbitrary contents of individual
experiences. This framework shows that nonlinear discrimination problems are not good tests of hippocampal func-
tion, and suggests that tasks involving rapid, incidental conjunctive learning are better. We implement this framework
in a computational neural network model, and show that it can account for a wide range of data in animal learnin g, thus
validating our theoretical ideas, and providing a number of insights and predictions about these learning phenomena.
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4 Conjunctive Representations

Introduction

The role of the hippocampus in memory has been
characterized in many different ways, but one common
thread is the idea that the hippocampus binds together
the sensory features of a situation or episode to create a
unitary representation of the experience. Thus, the hip-
pocampus is said to construct configural representations,
support the acquisition of a spatial map, represent the
conjunction or co-occurrence of the stimulus features,
or to chunk or bind these features into a unitary repre-
sentation. This binding process enables the the original
conjunction of features to be recalled from a subset of its
parts, and allows the conjunction to be treated differently
from the sum of its parts.

Specifically, the idea that the hippocampal formation
stores representations of stimulus conjunctions is critical
to the following important approaches to understanding
the hippocampal formation:

e Human amnesia associated with damage to the hip-
pocampal formations has been attributed to the in-
ability to bind together novel stimulus conjunctions
(e.g., Marr, 1971; Squire, 1992; Teyler & Discenna,
1986).

o Spatial learning that is dependent on the hippocam-
pal formation has been explained in terms of the
ability to acquire a map-like representation of the
environment (O’ Keefe & Nadel, 1978) or an auto-
association process that binds together the stimulus
features specific to locations (McNaughton & Mor-
ris, 1987; McNaughton & Nadel, 1990).

¢ Impaired performance in a variety of discrimination
learning problems involving ambiguous cues result-
ing from damage to the hippocampus is said to oc-
cur because the subjects cannot use contextual la-
bels (Hirsh, 1974), or acquire configural represen-
tations (Schmajuk & DiCarlo, 1992; Sutherland &
Rudy, 1989)

e Many computational and/or biologically-based the-
ories of the hippocampal formation emphasize the
auto-associative binding properties in areca CA3
of the hippocampus (e.g., the Hebb-Marr theory
and its descendants; Hebb, 1949; Marr, 1971; Mc-
Naughton & Morris, 1987; Rolls, 1989). Re-
lated theories emphasize the role of sparseness and
conjunctivity in avoiding interference during rapid
learning of novel information (e.g. McClelland, Mc-
Naughton, & O’Reilly, 1995).

Given that these approaches all incorporate the idea
that the hippocampus stores representations of stimulus

conjunctions, they would predict that damage to the hip-
pocampal formation should significantly impair perfor-
mance on problems that require the subject to use such
representations. However, several direct tests of the hy-
pothesis that the hippocampus stores stimulus conjunc-
tions indicate that this prediction is false (see Rudy &
Sutherland, 1995, for a review). Although much of this
literature has focused on specifically disproving Suther-
land and Rudy’s (1989) configural association theory, we
argue that these data undermine all of the other theories
of the hippocampus that rely on the assumption that the
hippocampus stores representations of stimulus conjunc-
tions, creating a major crisis in our understanding of hip-
pocampal function. :

In this paper, we will provide a potential resolution to
this crisis by considering (a) the capacities of the neocor-
tex to learn in the absence of the hippocampus, and (b)
more generally the appropriate dimensions along which
the hippocampus and neocortex differ (and the ways in
which they are similar).

Many theorists have assumed that the neocortex has
relatively limited learning capacities, either implicitly by
assuming that cortex without the hippocampus could not
learn to represent stimulus conjunctions (e.g., Suther-
land & Rudy, 1989), or as an explicit and central part
of the theory (e.g., Gluck & Myers, 1993; Schmajuk &
DiCarlo, 1992). If, however, the neocortex is recognized
as being considerably more powerful (e.g., including the
ability to learn conjunctive representations), then the ap-
parent crisis can be resolved. This line of reasoning
alone, however, undermines the importance of assigning
special significance to the hippocampus in the first place
— if the neocortex is so powerful, then what additional
benefit does the hippocampus impart?

We think that McClelland, McNaughton, and
O’Reilly (1995) have provided an important functional
perspective for understanding the division of labor be-
tween the hippocampus and neocortex. They argued that
the role of the hippocampus is to learn novel informa-
tion rapidly, while the neocortex slowly integrates infor-
mation over many repetitions and thereby represents the
underlying (statistical) regularities of: the environment.
One unified system cannot both rapidly acquire novel
information and support representations of environmen-
tal regularities because rapid learning produces too much
interference with previous knowledge. By keeping rep-
resentations highly separated from each other, the hip-
pocampus can learn rapidly while avoiding this inter-
ference. However, efficient representation of the struc-
ture of the environment requires distributed, overlapping
representations (which can only be developed through
slow learning). This perspective is related to the con-
junctive idea in that the separation of representations re-
quired for fast learning is thought to take place through



sparse, conjunctive representations (e.g., as explored in
a biologically-based computational model of the hip-
pocampus; O’Reilly & McClelland, 1994).

Thus, we argue that stimulus conjunctions can be ac-
quired by two neural systems. One system depends crit-
ically on the hippocampus, but also requires the cortical
pathways to and from the hippocampus, which we will
refer to simply as the hippocampal system. The other
system depends primarily on the neocortex and can func-
tion without the hippocampal formation. We hypothesize
that the operating characteristics of these systems differ
in two important ways: (a) learning rate, where the hip-
pocampal system rapidly acquires stimulus conjunctions,
whereas the cortical system learns relatively slowly; and
(b) bias towards developing conjunctive representations,
where the hippocampal system automatically and con-
tinuously constructs representations of stimulus conjunc-
tions, whereas the cortical circuit must be driven to con-
struct such representations by the demands of a task, and
does not otherwise naturally do so. Thus, the cortex
develops conjunctive representations in problem solving
situations (e.g., discrimination learning) in which the so-
lution forces the development of conjunctive representa-
tions.

This characterization of the differences between
learning in the hippocampal system and the cortex makes
sense of the recent literature that disproved the Suther-
land and Rudy (1989) configural association theory. In
all of the cases where no significant deficits from selec-
tive hippocampal lesions were observed on conjunctive
tasks, these tasks could have driven the remaining corti-
cal system to learn the necessary stimulus conjunctions.
Further, many trials of learning were required in both in-
tact and lesioned animals, allowing enough time for slow
cortical learning to have acquired the conjunctive rep-
resentations. In light of this, we conclude that the in-
volvement of the hippocampal system is best revealed by
studying tasks where the acquisition of stimulus conjunc-
tions is not forced by task demands (i.e., incidental con-
junctive learning tasks). This conclusion is supported by
several studies which show significant effects of selec-
tive hippocampal lesions on incidental conjunctive learn-
ing tasks (e.g., Fanselow, 1990; Good & Honey, 1991;
Hall & Honey, 1990; Honey, Watt, & Good, 1998; Kim &
Fanselow, 1992; Save, Poucet, Foreman, & Buhot, 1992).

In addition to resolving the conflict between the con-
junctive theory and behavioral data, our characterization
of the differences between the cortex and hippocampus
can be used to explain the finding that the hippocampus
appears to impart a level of flexibility that is not present
in hippocampally lesioned animals (e.g., Eichenbaum,
1992). We argue that this flexibility derives from hip-
pocampal pattern completion — the ability to complete
a hippocampal conjunctive representation from partial
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cues. Several unique features of the hippocampal forma-
tion facilitate pattern completion (McNaughton & Mor-
ris, 1987; O’Reilly & McClelland, 1994; Rolls, 1989).
In essence, pattern completion enables flexibility by al-
lowing relevant knowledge to be accessed (completed)
in novel circumstances. In contrast, the cortex lacks
these specialized pattern completion mechanisms, and
thus cannot support certain types of flexible behaviors.
Nevertheless, we believe that the cortex is capable of
other kinds of flexible behaviors that are more consistent
with its ability to extract general aspects of environmen-
tal structure (e.g., pronouncing novel non-words; Plaut,
McClelland, Seidenberg, & Patterson, 1996).

The paper will proceed in several stages. First, we
will provide a historical overview of the emergence of
the view that the hippocampus contributes to learning
and memory by enabling the acquisition of represen-
tations of stimulus conjunctions, We will then detail
the crisis for this class of theories brought about by the
tests of Sutherland and Rudy’s (1989) configural associ-
ation theory. We will then describe in greater detail the
proposed solution to this crisis as outlined above, and
present a biologically-based computational model of the
hippocampal-neocortical system, which instantiates our
ideas about the dimensions along which the hippocam-
pus and neocortex differ. This model then will be used to
explain the observed patterns of intact and hippocampal
lesion data on a wide range of tasks, including nonlinear
discrimination tasks, rapid incidental learning tasks, con-
textual fear conditioning tasks, and hippocampal flexibil-
ity tasks.

In summary, we show that a single model of the com-
bined cortical and hippocampal systems can account for
a wide range of behavioral data in animals. We focus on
the animal data here in part because of its relative sim-
plicity, but the same model has also been used to account
for human memory data (O’Reilly, Norman, & McClel-
land, 1998). Because all of the major aspects of our
model can be motivated independently based on compu-
tational and biological considerations, it is not merely
an ad hoc attempt to preserve the conjunctive account in
the face of conflicting data, but rather situates this data
within a richer overall framework.

Historical Overview

Human Amnesia Studies

It is well known that the story of the hippocampus
as a major contributor to human memory begins about
40 years ago with the work of Milner and her colleagues
(Milner, 1966; Penfield & Milner, 1958; Scoville & Mil-
ner, 1957). Based on extensive neuropsychological ex-
amination of a number of patients with unilateral and
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bilateral damage to the medial temporal lobes, (most
notably, the famous patient H.M.), Milner (1966) con-
cluded that it was damage to the hippocampal formation
that was critical to the extensive anterograde and the lim-
ited retrograde amnesia that was observed in these pa-
tients.

Since Milner’s original reports, extensive research
has been aimed at characterizing the fundamental deficits
common to patients with medial temporal lobe damage
and other amnesics. One of the major ideas that has
emerged from this research is the view that memory is
not a single entity, but rather consists of multiple pro-
cesses or systems, and that the hippocampal formation
is only important for a particular kind of memory (see
Squire, 1992 for an interesting review of the history of
this development).

The early, more mechanistically oriented accounts
of human hippocampal function emphasized the idea
that the hippocampus stores stimulus conjunctions (Marr,
1971; Wickelgren, 1979; Teyler & Discenna, 1986). This
notion continues to be central as an explanation of how
we recall and recognize episodes from our past. For ex-
ample, this idea was clearly embedded in the memory
indexing theory of Teyler and Discenna (1986). They
suggested that each experiential event is represented in
a unique spatial and temporal array of neocortical mod-
ules. By virtue of neocortical-hippocampal information
flow, a memory index of the cortical pattern is estab-
lished in the hippocampus. Subsequently, activation of
the memory index by some subset of cues that comprised
the original experience will be sufficient to activate the
entire array of cortical modules originally activated and
provide the basis for recall and recognition.

More recently, Squire (1992) concluded his review
with a similar idea of how the hippocampus supports
declarative memory. In his words, “In the present ac-
count the possibility of later retrieval is provided by the
hippocampal system because it has bound together the
relevant cortical sites. A partial cue that is later pro-
cessed through the hippocampus is able to reactivate all
of the sites and thereby accomplish retrieval of the whole
memory” (p. 224). Note in both of these accounts the
hippocampus represents the conjunction of the stimulus
features that comprised a particular event or experience
and it is the activation of the conjunction that allows
memories to be recalled or recognized. These views of
hippocampal function correspond well with the notion of
episodic memory — memory for the specific contents of
individual episodes or events (Tulving, 1972, 1983).

In terms of characterizing the contrast between hu-
man hippocampal and cortical function, one influen-
tial modern view is that the hippocampal formation is
important for declarative/explicit memory but not for
non-declarative/implicit memory, which can be sub-

served by the cortex and other brain areas (Squire, 1987,
1992). One important property of declarative memory
is that it is accessible to conscious recollection. Among
other things, declarative memory enables people to an-
swer questions like: “Have you seen this person be-
fore?” “Where did you park your car?” “What did
you have for lunch yesterday?” Patients with medial
temporal lobe damage cannot answer such questions.
Nevertheless, they are able to acquire skills and have
their behaviors modified by experience — they pos-
sess some other forms of non-declarative/implicit mem-
ory (e.g. Graf & Schacter, 1985). The evidence for
the distinction between declarative/explicit versus non-
declarative/implicit has been reviewed many times (e.g.,
Squire, 1992, 1987), so we will not do so here. Further,
we note that these are descriptive categories of memory
and not explanations of how memory works.

Behavioral/Conditioning Studies in Animals

Milner’s conclusion that the hippocampus plays an
essential role in human amnesia also generated a large
volume of animal experimental work. The first wave of
studies was summarized in a thorough review by Dou-
glas (1967). From the standpoint of understanding the
role of the hippocampal formation in memory, this lit-
erature might be considered a major disappointment be-
cause, unlike the human literature, the data overwhelm-
ingly demonstrated that rats and primates with extensive
damage to the hippocampus and related cortical struc-
tures displayed no anterograde or retrograde amnesia.

This epoch, however, contained empirical findings
that provide an important link to the development of
conjunctive/configural theories. Specifically, Douglas
(1967) noted that animals with damage to the hippocam-
pal formation were often impaired in tasks that required
the animal to learn a behavior that was incompatible with
a previously learned or prepotent response. For exam-
ple, damage to the hippocampus produced animals that
were highly resistant to extinction and slow to learn dis-
crimination reversals (e.g., where the conditioned asso-
ciation is reversed for two stimuli). Based on this pat-
tern of results, Douglas (1967) offéféd the reasonable
hypothesis that the hippocampus was critical to the pro-
cesses that enable animals to withhold responding — the
response inhibition view. Douglas, however, realized
that a simple view of the concept of response inhibition
could not be right. As he put it, “Hippocampally ab-
lated animals do not continue to walk until they bump
into a wall..., continue to eat until stuffed..., or continue
to groom or scratch for prolonged periods of time once
these responses have been initiated. Thus, they are fully
able to cease making a response when the initiating stim-
ulus is no longer present” (Douglas, 1967, pp. 434-435).

In refining the concept of inhibition to eliminate this



weakness, Douglas put forth an the idea that contributed
to the view that the hippocampal formation stores rep-
resentations of stimulus conjunctions. Specifically, he
suggested that “...the hippocampus might function to in-
hibit stimulus-response bonds” (Douglas, 1967, pp 435).
This refinement is important for two reasons. First, it
puts inhibition into a neural system involved in the mod-
ulation of associations and thus kept alive the possibility
that the hippocampal formation was involved in memory
processing of animals. Second, indirectly, he becomes
the first theorist to speculate that the hippocampus plays
an important role in solving what we will call the am-
biguous cue problem. This problem emerges because
the same stimulus can be associated with fundamentally
incompatible outcomes and consequently, a major prob-
lem for a mature memory system is to provide a mecha-
nism for solving the problem of associative interference
— keeping these different outcome associations sepa-
rate from each other. Many theorists now assert that
the hippocampal formation makes a fundamental contri-
bution to memory by reducing associative interference
(e.g., Hirsh, 1974; McClelland et al., 1995; O’Keefe &
Nadel, 1978; O’Reilly & McClelland, 1994; Shapiro &
Olton, 1994; Sutherland & Rudy, 1989; Rudy & Suther-
land, 1994, 1995; Wickelgren, 1979).

Although Douglas alluded to the problem of associa-
tive interference and to the potential contribution of the
hippocampal formation, he did not provide a mechanism
for how this might happen. Here the credit goes to Hirsh
(1974), and to Nadel and O’Keefe (1974), O’Keefe and
Nadel (1978) as discussed in the next section. Hirsh rec-
ognized that the associative interference that accompa-
nies ambiguous cues poses a major problem to animals
with damage to the hippocampus. In dealing with this
problem, he not only proposed a potential way in which
the hippocampal formation could act to reduce associa-
tive interference, he also offered what was one of the
first examples of a multiple memory view of hippocam-
pal formation function.

Hirsh argued that a learning experience leaves its
impact on two different memory systems — the per-
formance line storage system, and the memory system.
These two systems operate quite differently. Generally
speaking, experience leaves its effect on the performance
line by altering the strength of connection between the
neural elements activated by a stimulus and neural ele-
ments responsible for the response. Thus, when faced
with an ambiguous cue, an organism with only per-
formance line memory must respond solely on the ba-
sis of the relative strengths of connection, regardless of
whether or not the behavior generated by the strongest
connection is appropriate to the task at hand. In con-
trast, Hirsh’s memory system encoded information in a
more contextualized fashion in terms of stimulus envi-
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ronments, behaviors, and associated outcomes from the
performance line.

It is in Hirsh’s view of the operating characteristics
of the memory system that a connection between the
hippocampal formation and the concept of a conjunctive
representation first appears. First, Hirsh argued that dam-
age to the hippocampal formation impairs the operations
performed by the memory system. Second, he proposed
that the memory system solves the interference problem
because it is governed by contextual retrieval principles,
which insure that context-appropriate associations will
be selected and made available to the performance line
for action. As Hirsh puts it, “Systems utilizing contex-
tual retrieval do not require deletion of previous learning.
The conflicting items of information can be differenti-
ated by the addition of a contextual label indicating that
the previously acquired information was formally true”
(Hirsh, 1974, p. 426).

For example, suppose the subject is required to learn
a biconditional discrimination of the following descrip-
tion. In Context 1 (C1), in the presence of stimulus
A the response will be rewarded (4), but in the pres-
ence of stimulus B that response will not be rewarded
(=). In Context 2, the contingencies will be reversed.
We can represent this biconditional discrimination as:
Cl: A+,B— and C2 : A—, B+. In Hirsh’s view, the
context is stored in the memory system along with the
specific events, and it labels which association is appro-
priate as a function of the contextual cues (C'1 and C'2),
thus resolving the otherwise ambiguous meaning of the
A and B stimuli. We interpret Hirsh’s concept of a con-
textual label to be equivalent to the use of conjunctive
representations that bind together contextual and stimu-
lus features.

The idea that the hippocampal formation con-
tributes to memory by representing stimulus conjunc-
tions emerged unambiguously in a paper by Wickelgren
(1979). He argued that the hippocampus is essential to
the process of chunking. In Wickelgren’s words, chunk-
ing “...stands for a learning process by which a set of
nodes representing constituents (components, attributes,
features) of a whole become associated with a new node
that there by represents the whole chunk” (Wickelgren,
1979, p. 44). Wickelgren’s concept of chunking is
clearly equivalent to the concept of conjunctive repre-
sentations.

The idea that the hippocampal formation stored stim-
ulus configurations (conjunctions) was also embedded in
a theory put forth by Mishkin and Petrie (1984) that in-
cluded many of the same assumptions associated with
Hirsh’s position. They distinguished between a habit and
a memory system and assumed that the memory system
depends on the hippocampal formation and supported the
acquisition of stimulus conjunctions.
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Spatial Learning in Animals

The idea that the hippocampus stores representations
of stimulus conjunctions also emerged in the extremely
influential view of the hippocampal formation published
by O’Keefe and Nadel (1978) in their now classic (but
unfortunately out of print) book, The Hippocampus as
a Cognitive Map. They also distinguished between two
memory systems, a locale system and a taxon system.
Motivated in part by the discovery of place cells in the
hippocampus (O’ Keefe & Dostrovsky, 1971), they linked
the hippocampal formation with the locale system. It
supports the acquisition of a map-like representation of
the environment, where a map is composed of “a set of
place representations connected together according to the
rules which represent distances and directions amongst
them” (O’Keefe and Nadel, 1978, p. 488). The taxon
system is conceptually similar to Hirsh’s performance
line system as it represents consistent rules, routes, pro-
cedures, and stimulus-response habits.

Clearly, the notion that the hippocampus-dependent
locale system represents experience as connections be-
tween stimulus features (e.g., distance, directions) qual-
ifies it as a stimulus conjunction theory. However,
O’Keefe and Nadel (1978) limited the kind of infor-
mation the locale system could represent exclusively to
spatial information in the form of an allocentric spatial
map. Their view of the hippocampus has generated an
enormous amount of research on both the physiology
of the hippocampus and the memory based behavior it
supports. Its fundamental behavioral prediction — that
damage to the hippocampus will impair performance in
spatial learning tasks — has been confirmed many times
(c.f., Barnes, 1988).

Not all theorists agree that the deficit in spatial learn-
ing associated with damage to the hippocampal forma-
tion implies that the subject has lost its ability to acquire
a spatial map. The idea that the hippocampus serves
as an auto-associator or represents stimulus conjunctions
remains at the heart some of these alternative views (Mc-
Naughton & Morris, 1987; McNaughton & Nadel, 1990).
For example, the patterns of neural firing on an eight-arm
radial maze recorded by McNaughton and Barnes (1990)
show that neurons in the CA3 fire only in a particular lo-
cation on a particular arm in only one direction. This
apparently map-like encoding could also be explained if
the CA3 neurons are activated by particular conjunctions
of sensory features that are only present in very specific
locations.

Biological and Computational Models

The idea that the hippocampus can represent stim-
ulus conjunctions also emerged independently based on
neuroanatomical and computational considerations. As

Squire, Shimamura, and Amaral (1989) noted, after the
hippocampus was discovered to play a critical role in
human amnesia, it became important to have a precise
description of hippocampal connections. The reader is
referred to Squire et al. (1989) and other detailed sum-
maries of the anatomical and physiological properties
of the hippocampus (e.g., Van Hoesen, 1982; Amaral &
Witter, 1989; Rolls, 1989; Risold & Swanson, 1996).
Here, we will just focus on the the general organizing
principles.

Unimodal cortical areas are known to project to poly-
sensory association areas which in turn project to perirhi-
nal cortex and to the parahippocampal gyrus. These
structures project to the entorhinal cortex which provides
the hippocampus with much of its sensory innervation
via the perforant pathway. Thus, the hippocampal for-
mation receives information from virtually all associative
areas in the neocortex and “...has available highly elab-
orated multimodal information which has already been
processed extensively along different, and partially inter-
connected sensory pathways” (Rolls, 1996, p. 607). In
addition, to receiving sensory innervation from polysen-
sory associational corticies via the entorhinal cortex, the
hippocampus also projects back to these areas via return
connections from the entorhinal cortex.

This pattern of connectivity has led a number of theo-
rists to the view that the hippocampus is especially well-
suited to represent the pattern of activity or conjunction
of specific sensory features of the environment. For ex-
ample, Rolls (1989) suggests that, “The hippocampus is
ideally placed for detecting such conjunctions in that it
receives highly processed information from association
areas...” (p. 242). McNaughton and Nadel (1990) con-
cluded that, “The activity projected back toward the as-
sociation cortex by individual neurons can be shown to
represent the conjunctions of a broad range of specific
sensory features” (p. 25).

A consideration of the computational properties af-
forded by the hippocampal formation also suggest that it
is involved in representing stimulus conjunctions. Many
contemporary computational models of the hippocam-
pal formation are influenced by Marr’s (1971) theoriz-
ing. He sought to infer the computational properties of
the hippocampus from its anatomy and physiology. Two
of his ideas are especially relevant here. One idea is
that the hippocampus provides the substrate for a rapid-
storage intermediate/temporary memory system that in-
teracts with a more long-term cortical storage system.
The other idea is that it does so as an auto-associator
- a neural network that can learn to associate the in-
dependent elements or components of an stimulus input
pattern with each other.

An auto-associator clearly has properties similar to
that of a conjunctive representation, as it stores a unitary



representation of a stimulus pattern composed of many
separable features. McNaughton and Nadel (1990) note
the similarity of Marr’s concept of an auto-associator to
Hebb’s (1949) idea of a cell assembly and refer to such
networks as Hebb-Marr networks (see also Gluck & My-
ers, 1997). The idea that the hippocampus serves as an
auto-associator and/or represents stimulus conjunctions
is a core assumption of a number of contemporary com-
putational models of the hippocampus (e.g., McClelland
et al.,, 1995; McNaughton & Nadel, 1990; O’Reilly &
McClelland, 1994; Rolls, 1989).

In summary, this brief review indicates that signif-
icant aspects of the behavioral, neuroanatomical, and
computational literatures have converged over past 25
years on the idea that the hippocampal formation pro-
vides a substrate for representing stimulus conjunctions.
This idea emerged early in the history of the field and it is
at the core of many contemporary theories of hippocam-
pal function.

Conjunctions in Crisis

Given that the idea that the hippocampus stores stim-
ulus conjunctions has such broad support, it is surpris-
ing that there is now a substantial literature that seriously
challenges this idea. We will now review the events that
led to the current state of affairs.

Of the several theories that have been mentioned, its
fair to say that O’Keefe and Nadel’s cognitive mapping
theory was the most comprehensive and most influential.
In spite of its success, however, their idea that the hip-
pocampus only represents topographic spatial relations
has never been fully accepted. First, many researchers
believe that this idea does not easily account for the ba-
sic facts of human amnesia because it is difficult to ex-
plain all the facts as a deficit in a spatial map (Hirsh,
1980; Squire, 1992, 1994). Second, in the animal do-
main, there also exist “exceptions to the rule of space”
(Sutherland & Rudy, 1989). Thus, the idea that the hip-
pocampus only stores representations of spatial relation-
ships was thought to be too limited encompass the data.

This state of affairs existed when Sutherland and
Rudy (1989) published their configural association the-
ory of the hippocampus. Their theory had much in
common with the ideas of Hirsh (1974) and Wickelgren
(1979). At its core was the assertion the hippocampus
was essential to acquisition, storage and retrieval of con-
figural associations. The configural association system
combines the representations of the elementary stimu-
lus events to construct unique representations. In other
words, it represents stimulus conjunctions.

Sutherland and Rudy’s paper is distinguished by two
contributions. First, it renewed the challenge to the
idea that the hippocampus only represents topographi-
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cal spatial relations, and showed how a more general
idea could in principle explain both the place learning
and non-spatial impairments associated with hippocam-
pal damage. Second, and more importantly, Sutherland
and Rudy explicitly noted how to provide a strong test of
the configural/conjunction theory in nonverbal animals.
They argued that there is a set of discrimination problems
that are solved by normal animals that require configu-
ral associations. The central feature of these problems is
that they do not have a linear solution: They cannot be
solved by combining the individual associative strengths
of component cues that are relevant to the solution.

A prototype example of these nonlinear discrimina-
tion problems is called negative patterning, which is also
referred to in the computational modeling literature as
the exclusive (X) OR problem (XOR) (Minsky & Papert,
1969; Rumelhart, McClelland, & PDP Research Group,
1986b). Here, the subject is rewarded (+) for responding
when either feature A or B is present, but is not rewarded
(-) when the compound stimulus AB is present. To solve
this A+, B+, AB— problem, the subject must respond
less to AB than to A and B alone. Note that a linear sys-
tem that can only combine the associative strengths of the
elements could not solve this problem because it would
always produce more responding to the compound than
to the component cues. So, the solution to such prob-
lems requires a system that can represent stimulus con-
junctions and differentiate conjunctions from their com-
ponents.

Because nonlinear discrimination problems like neg-
ative patterning require a configural/conjunctive repre-
sentation, and such representations depend on the hip-
pocampus, Sutherland and Rudy made a strong predic-
tion: damage to the hippocampus should impair perfor-
mance on any discrimination problem that does not have
a linear solution. Thus, they provided to directly test the
configural/conjunctive theory of hippocampal function.

Given the existing literature, one would have thought
that nonlinear tasks would have been extremely sensi-
tive to the effects of damage to the hippocampal for-
mation. Indeed, Rudy and Sutherland (1989) reported
that damage to the hippocampus impaired both the ac-
quisition and retention of the negative patterning prob-
lem and this result has been replicated by several inves-
tigators (e.g., Alvarado & Rudy, 1995b; Sutherland, Mc-
Donald, Hill, & Rudy, 1989a). Nevertheless, when Rudy
and Sutherland (1995) reviewed the literature generated
to provide additional tests of the theory, they were forced
to conclude that the strong position they staked out in
1989 could not be maintained. To be sure, there were re-
ports that supported the theory (e.g., Alvarado & Rudy,
1995c; Sutherland, McDonald, Hill, & Rudy, 1989b).
More importantly, however, there were clear examples
in which damage to the hippocampal formation either
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did not prevent animals from solving nonlinear discrimi-
nation problems or had no measurable effect (Davidson,
McKernan, & Jarrard, 1993; Gallagher & Holland, 1992;
Whishaw & Tomie, 1991).

We will only describe two results here and refer the
reader to the Rudy and Sutherland (1995) review of this
literature. First, Whishaw and Tomie (1991) reported
that rats with damage to the hippocampal formation were
able to solve a simultaneous biconditional discrimina-
tion of the form AB+, CD+, AC—, BD—. The stim-
ulus elements were two different diameter strings (A
and C) and two odors (B and D). On a trial (e.g.,
AB+ vs. AC—) a food pellet was attached to the end
of a scented string and the rat was required to pull up
the string that contained the food pellet. Second, Gal-
lagher and Holland (1992) reported that rats with dam-
age to the hippocampal formation were not impaired on
a discriminated operant problem, AC+, B+, AB—, C—
that is very similar to negative patterning (A+, B+,
AB-). Their findings were replicated by Alvarado and
Rudy (1995b). In each of these cases the damage to the
hippocampal formation produced by neurotoxic chemi-
cals was extensive. So, there was little doubt that even
without a functional hippocampal formation, rats could
solve problems that require a system to represent stim-
ulus conjunctions. Since Rudy and Sutherland’s 1995
review, there have been additional reports that the hip-
pocampal formation is not necessary to solve problems
that require configural solutions (Bunsey & Eichenbaum,

1996; Cho & Kesner, 1995; McDonald, Murphy, Guar-

raci, Gortler, White, & Baker, 1997).

The Crisis

Many researchers agree that the literature on non-
linear discrimination problems with hippocampally-
lesioned rats provides ample evidence against Rudy and
Sutherland’s assertion that the hippocampal formation is
essential for the acquisition, storage and retrieval of con-
figural/conjunctive representations (Alvarado & Rudy,
1995b; Davidson et al., 1993; Gallagher & Holland,
1992; McDonald et al., 1997; Nadel, 1994; Rudy &
Sutherland, 1995; Whishaw & Tomie, 1991). What has
not been generally appreciated, however, is that the same
data that undermines Sutherland and Rudy’s (1989) the-
ory should also be fatal to any theory that assumes that
the hippocampus represents stimulus conjunctions.

As we reviewed previously, many different perspec-
tives on hippocampal function share this idea that the
hippocampus is uniquely specialized for constructing
conjunctive representations. Consequently, the behav-
ioral data that undermines Sutherland and Rudy’s quali-
tative theory appears to be equally problematic for all of
these different theories. Without additional argument, it
seems unreasonable to assert that the lesion data is fatal

to Sutherland and Rudy’s position, and yet ignore the im-
plications of the data for all the other theories that make
the same assumption as Sutherland and Rudy. Thus, in
our view, there is a far-reaching crisis that needs to be
resolved to place theorizing about the hippocampus on
rational ground.

A Complementary Cortical/Hippocampal
Memory System Framework

In this section, we describe a framework that resolves
the crisis between conjunctive theories of hippocampal
function and the literature suggesting that the hippocam-
pal formation is not always necessary for constructing
conjunctive representations. Our approach is to couch
the role of the hippocampal formation in establishing
conjunctive representations in a broader framework for
understanding the division of labor between the cortex
and the hippocampus. This framework recognizes that
under well-specified circumstances the cortex alone can
support the acquisition and retention of stimulus con-
junctions. It also makes strong predictions about the
situations in which hippocampal damage will reliably
show behavioral impairments in conjunctive learning.
We show that this prediction is consistent with some re-
cent empirical data.

We start by introducing and substantiating some ba-
sic principles of cortical function, and then contrast them
with principles of hippocampal function. We then show
how, in principle, this framework can explain why the
hippocampal formation is not necessary for represent-
ing the stimulus conjunctions needed to solve nonlinear
discrimination tasks. We next elaborate the strong pre-
diction that this framework makes regarding situations
where the hippocampus is essential for learning stimu-
lus conjunctions, and describe some of the literature that
supports our view. Having provided a general overview
of the framework, we then explore an explicit computa-
tional implementation of our views and apply this model
to a wide range of learning tasks.

Principles of Cortical F unction

Various cognitive neuroscience literatures (e.g., elec-
trophysiology, neuropsychology, neuroimaging) suggest
that the cortex is responsible for many of the most im-
portant and sophisticated aspects of human and animal
cognition — object recognition, spatial processing, lan-
guage, working memory, planning, etc. Furthermore,
the cortex is generally regarded as a highly plastic sys-
tem capable of powerful experience-dependent learning
(e.g., when visual inputs are redirected to auditory cor-
tex, neurons there develop characteristic visual receptive
field properties; Sur, Garraghty, & Roe, 1988). Thus,



based on these kinds of data, one might conclude that
the cortex should be a highly capable system even in the
absence of the hippocampal system.

However, several theoretical perspectives and some
data suggest that when the medial temporal lobe in-
cluding the hippocampus is damaged or removed, learn-
ing and memory become severely constrained (Squire,
1992), and what is learned has been characterized as
highly specific, rote, and inflexible (e.g., Glisky, Schac-
ter, & Tulving, 1986; Squire, 1992; Cohen & Eichen-
baum, 1993). In the next two subsections, we summa-
rize two general approaches can be taken towards un-
derstanding the learning capacities of the cortex, which
we call the co-dependent cortex view and the indepen-
dent cortex view. We adopt the later view, and describe it
in more detail after first characterizing the co-dependent
view.

The Co-dependent Cortex View

The co-dependent cortex view assumes that the cor-
tex can act as a repository of knowledge, but that it is not
capable of sophisticated learning by itself, and must rely
on other brain structures such as the hippocampal for-
mation for acquiring its impressive cognitive functions.
One example of this approach can be found in the model
of Gluck and Myers (1993). They assume that the hip-
pocampus uses a relatively powerful learning mechanism
(error backpropagation), and that the cortex is effectively
a slave to this hippocampal mechanism for anything but
the most simple forms of learning. The Schmajuk and
DiCarlo (1992) model adopts a similar view, as does
Rolls (1990) and Wickelgren (1979). They assume that
the hippocampus plays an essential role in enabling pow-
erful error-driven learning. In a similar but less computa-
tionally explicit account, Cohen and Eichenbaum (1993)
attribute the ability to flexibly use acquired information
to the hippocampus while maintaining that the cortex is
a relatively inflexible subservient system. We also note
that the Sutherland and Rudy’s (1989) theory assumed
that when divorced from the hippocampal formation, cor-
tex was unable to learn difficult nonlinear problems.

The co-dependent cortex view has recently been
called into question by several lines of evidence. For ex-
ample, we have already noted that the animals with dam-
age to the hippocampal formation solve complex non-
linear discrimination learning problems. This suggests
that the cortex alone is sufficient for learning these dif-
ficult problems. However, perhaps the most dramatic
evidence comes from a group of human amnesics who
suffered bilateral selective hippocampal damage at rel-
atively young ages (Vargha-Khadem, Gadian, Watkins,
Connelly, Van Paesschen, & Mishkin, 1997). Despite
having significantly impaired hippocampal function (as
was supported by brain scans and evidence of specific
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episodic memory deficits), these individuals had ac-
quired normal or nearly normal levels of cognitive func-
tioning in language, semantic knowledge, and had nor-
mal 1Qs. Thus, the cortex appears to acquire many of
its complex abilities without the assistance of the hip-
pocampus, which is the perspective of the independent
cortex view.

The Independent Cortex View and Neural Network Mod-
els

The independent cortex view holds that the cortex is
a self-sufficient learning system that can develop sophis-
ticated cognitive abilities even in the absence of other
systems such as the hippocampus. In addition to the
data reviewed previously, this view is consistent with
the main body of computational neural network mod-
els of human learning, where powerful learning mech-
anisms have been used to develop models of human lan-
guage, perception, and many other sophisticated cogni-
tive abilities. These models are typically based on either
error-driven backpropagation learning (Rumelhart, Hin-
ton, & Williams, 1986a), or on statistically-based self-
organizing learning mechanisms that utilize Hebbian-
like mechanisms (e.g., Miller, Keller, & Stryker, 1989).
We adopt a model of cortical learning that incorpo-
rates both of these forms of learning, providing an over-
all framework that incorporates a number of impor-
tant biological, computational, and cognitive principles
(O’Reilly & Munakata, in press; O’Reilly, 1998, 1996b).

The critical idea in our cortical model is that rep-
resentations are shaped through learning by two impor-
tant aspects of the environment: task demands (via error-
driven learning), and the extent to which different events
or features co-occur (via Hebbian learning). To enable
this information to be useful in novel future situations,
only the more general aspects are encoded by the cortex,
because the specifics are unlikely to be repeated. Thus,
the cortex learns how to generally solve different tasks
(e.g., climbing up trees to get fruit), and about which
things generatly co-occur (e.g., smoke and fire), but not
so much about the specific details of a single individual
experience. In both error-driven and Hebbian cases, cor-
tical learning abstracts over the details of individual in-
stances and extracts the enduring properties. We will ex-
plore some ramifications of this view in the next section.
First, however, we will provide a slightly more elabo-
rated view of our model of cortical learning.

Error-driven learning (also called supervised learn-
ing) is important for shaping representations according
to task demands by learning to minimize the difference
between a desired outcome and what the network ac-
tually produced (i.e., the error). Backpropagation is a
powerful implementation of this idea that uses gradient
descent on the error signal to adjust the weights of the
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network. Critically, it can use hidden layers of units in-
terposed between the input and output units, that enable
it to learn nonlinear discrimination problems of the sort
discussed above (e.g., the exclusive-or (XOR) problem,
that has been studied in the behavioral literature as the
negative patterning problem, A+, B+, AB—; Minsky &
Papert, 1969; Rumelhart et al., 1986a). Thus, if we as-
sume that the cortex is using something like the back-
propagation learning mechanism, we would expect that
it could indeed learn non-linear discrimination problems
without assistance from the hippocampus.

One possible obstacle for thinking that the cortex
uses something like backpropagation is that its biolog-
ical plausibility has been widely questioned. This is pri-
marily because it requires the propagation of error sig-
nals in a manner inconsistent with known neurobiolog-
ical properties (e.g., Crick, 1989; Zipser & Andersen,
1988). Specifically, backpropagation would require in
biological terms that an error value be propagated back-
wards from the dendrite of the receiving neuron, across
the synapse, into the axon terminal of the sending neu-
ron, down the axon of this neuron, and then integrated
and multiplied by some kind of derivative, and then prop-
agated back out its dendrites, and so on. As if this
weren’t problematic enough, nobody has ever recorded
anything that resembles an error signal in terms of the
electrical or chemical properties of the neuron.

However, a well-documented property of the cortex,
bidirectional activation propagation, can be used to per-
form essentially the same error-driven learning as back-
propagation (O’Reilly, 1996a). The basic idea is that
instead of propagating an error signal, which is a dif-
ference between two terms, one can propagate the two
terms separately as activation signals, and then take their
difference locally at each unit. Furthermore, the form
of synaptic modification necessary to implement this al-
gorithm is consistent with (though not directly validated
by) known properties of biological synaptic modification
mechanisms. Also, there are many potential sources for
the necessary teaching signals in the form of actual envi-
ronmental outcomes that can be compared with internal
expectations to provide error signals (McClelland, 1994;
O’Reilly, 1996a). Thus, it is difficult to continue to ob-
ject to the use of error-driven learning on the grounds that
it is not biologically plausible.

The representation of co-occurance via Hebbian
learning mechanisms (Hebb, 1949) is important for
forming internal representations (i.e., internal models)
of the general (statistical) structure of the environment,
without respect to particular tasks. We will also re-
fer to this as model learning. Biologically, Hebbian
learning requires that the synaptic strength change as a
function of the co-activation of the sending and receiv-
ing neurons. NMDA-mediated long-term potentiation

(LTP) has this Hebbian property (e.g., (Collingridge &
Bliss, 1987)). Thus, Hebbian learning is almost uni-
versally regarded as being biologically plausible. At
a functional level, the co-occurrence of items suggests
that there might be a causal relationship between them.
Furthermore, co-occurring items can be more efficiently
represented together within a common representational
structure. Mathematical analyses have shown that Heb-
bian learning performs something like principal compo-
nents analysis (Oja, 1982), which extracts the principal
dimensions of covariance within the environment. An in-
teresting demonstration of the power of this kind of Heb-
bian model learning was recently provided in the form of
a model that performs principal components analysis on
the co-occurrence statistics of words within large texts,
yielding surprisingly powerful representations of word
meaning (Landauer & Dumais, 1997).

Hebbian model learning and error-driven task learn-
ing have complementary objectives, and the combina-
tion of both typically performs better than either alone
(O’Reilly, 1998; O’Reilly & Munakata, in press). Both
appear to be necessary to account for the preserved per-
formance of subjects with damage to the hippocam-
pal formation: Error-driven learning is necessary for
learning nonlinear discrimination problems that cortical
Hebbian learning typically cannot solve (McClelland &
Rumelhart, 1988; O’Reilly & Munakata, in press). How-
ever, Hebbian learning can explain phenomena such as
preserved repetition priming in amnesics (e.g., Schac-
ter & Graf, 1986), where there are no obvious sources
of error or task demands to drive the learning. Although
we think that Hebbian learning is an important aspect of
cortical learning, much of the remainder of the discus-
sion will focus on the error-driven component, primarily
because it enables the cortex to learn conjunctive repre-
sentations to solve nonlinear discrimination problems.

Limitations of Cortical Learning and the Need for Com-
plementary Systems

Although we believe that the model described above
provides a good characterization of the cortex, and that
such a cortical system has powerful independent learn-
ing abilities, we do not think that it can service all the
adaptive functions that the environment requires from or-
ganisms. Indeed, the cortical model itself provides some
important theoretical leverage for more precisely charac-
terizing the division of labor between the cortex and the
hippocampus, by noting where the cortex fails (McClel-
land et al., 1995).

The failure of standard neural-network models to ac-
count for all aspects of human learning was dramatized
by McCloskey and Cohen (1989), who noted that a stan-
dard error-backpropagation network suffers catestrophic
levels of interference when applied to a list learning task.



Although many attempts were made to remedy this fail-
ure, McClelland et al. (1995) concluded instead that this
failure reflects a fundamental tradeoff in learning. On
the one hand, the objectives of extracting and represent-
ing the general properties of the environment must be
accomplished. On the other hand, successful adaptation
also requires that organisms learn and remember many
of the important specifics of the world — where you
parked your car today, the name of the person you just
met, where food or predators were encountered, etc.

These objectives are incompatible, because one rep-
resentation cannot simultaneously capture both generali-
ties and specifics. Furthermore, the learning mechanisms
required to form these different kinds of representations
have contradictory properties — acquiring the general-
ities requires slow learning that integrates over specific
instances, whereas acquiring specifics often requires fast
learning that keeps the specific instances separate. Thus,
it makes sense that the brain would employ two com-
plementary learning and memory systems that to opti-
mize these objectives separately. Like McClelland et al.
(1995), we believe that the primary role of the cortex is to
extract and represent the general features of the environ-
ment and the primary role of the hippocampal formation
is to represent specifics.

To summarize, when integrating across items to ex-
tract generalities, each item contributes a little bit to the
representation (i.e., slow learning). When learning about
specifics, one needs to keep the items separate from each
other, and, because the specifics are more unique and un-
likely to recur, one must often learn about them more
rapidly. By associating this slow, integrating learning
of generalities with the cortex, and the rapid learning of
specifics with the hippocampus, we obtain a principled
understanding of the division of labor between the two,
that is consistent with their respective biological proper-
ties, and provides a satisfying interpretation of the learn-
ing data.

One key idea that emerges from this division of labor
idea is that conjunctive representations are a necessary
aspect of rapid, specific learning in the hippocampus, as
we will see in more detail in the next section. Thus, we
can situate conjunctive representations within the some-
what broader perspective of rapid, specific learning to
more precisely characterize the role of the hippocampus
and its relationship with the cortex.

Principles of Hippocampal Function

According to the foregoing characterization, the hip-
pocampus should be capable of rapidly learning spe-
cific information without suffering undue interference,
even when the new information is similar to previously
learned information (e.g., where you parked your car to-
day versus yesterday). Thus, the hippocampal system
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Figure 1: Pattern separation in the hippocampus. Small circles
represent units. Circles A and B in the cortex and hippocam-
pus indicate two sets of representations composed of patterns
of active units. In the cortex, they are overlapping, and en-
compass relatively large proportion of active units. In the hip-
pocampus, the representations are sparser as indicated by their
smaller size, and thus overlap less (more pattern separation).
Also, units in the hippocampus are conjunctive and are acti-
vated only by specific combinations of activity in the cortex.

must be able to perform pattern separation to keep rep-
resentations separate and thus avoid interference. We
will see in the next section that pattern separation can
be achieved by using sparse, conjunctive representations,
where a relatively few, highly selective units represent a
given input pattern.

However, the hippocampus must also be capable of
performing pattern completion, where a subset of cues
from a previous experience are used to activate or retrieve
the memory (stored pattern) of that experience. If only
pattern separation were operating, memories could not
be retrieved because instead of treating the subset as a re-
trieval cue, the hippocampus would just store it as a sep-
arate pattern. Thus, to actually use the memories stored
in the hippocampus, a countervailing pattern completion
mechanism is needed. This mechanism is discussed in
the subsequent section.

Pattern Separation

Sparse representations (having relatively few active
units) lead to conjunctive representations and pattern
separation. To understand why, first imagine a situa-
tion where the hippocampal representation is generated
at random with some fixed probability of a unit getting
active. In this case, if fewer units are active, the odds
that the same units will be active in two different patterns
will go down (Figure 1). For example, if the probability
of getting active for one pattern (i.e., the sparseness) is
.25, then the probability of getting active for both pat-
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Figure 2: Conjunctive, pattern-separated representations re-
sult from sparseness. The extreme case where only one receiv-
ing unit (in the upper layer, representing the hippocampus) is
allowed to be active is shown here for simplicity. Each receiv-
ing unit has roughly the same number of randomly distributed
connections from the input units. The two shown here have
overlapping input connections, except for one unique unit each.
Thus, two very similar input patterns sharing all the overlap-
ping units and differing only in these unique units (shown in
panels a and b) will get completely non-overlapping (separated)
memory representations. In this way, the conjunctive memory
representation resulting from sparseness produces pattern sep-
aration.

terns would be .25% or .0625. If the patterns are made
more sparse so that the probability is now .05 for being
active in one pattern, the probability of being active in
both patterns falls to .0025. Thus, the pattern overlap is
reduced by a factor of 25 by reducing the sparseness by
a factor of 5 in this case. However, this analysis assumes
that units are activated at random, ignoring the fact that
they are actually driven by weighted connections with
the input patterns.

A more complete understanding of pattern separation
can be achieved by considering the concept of a unit’s
activation threshold — how much excitation it requires
to overcome the inhibitory competition from other units
(Marr, 1969; O’Reilly & McClelland, 1994). To pro-
duce sparse representations, this threshold must be rel-
atively high (e.g., because the level of inhibition is rela-
tively strong for a given amount of excitatory input). Fig-
ure 2 shows how a high inhibitory threshold leads simul-
taneously to both pattern separation and conjunctive rep-
resentations, where the hippocampal units depend criti-
cally on the conjunction of active units in the input. The
central idea is that sensitivity to the conjunction of activ-
ity in the input produced by a high threshold leads to pat-
tern separation because even if two input patterns share a
relatively large number of overlapping inputs, the overall
conjunction (configuration) of input activity can be dif-
ferent enough to activate different hippocampal units.

A high threshold leads to conjunctive representations
because only those units having the closest alignment of
their weight patterns with the current input activity pat-
tern will receive enough excitation to become activated.
In other words, the activation a unit receives must be a
relatively high proportion of the total number of input

units that are active, meaning that it is the specific com-
bination or conjunction of these inputs that are responsi-
ble for driving the units. Figure 2 illustrates this effect in
the extreme case where only the most excited receiving
unit gets active. In reality, multiple (roughly 1-5%) units
are activated in the hippocampus at any given time, but
the same principle applies.

For pattern separation to work optimally, it is impor-
tant that different receiving units are maximally activated
by different input patterns. This can be achieved by hav-
ing relatively diffuse, random-looking patterns of partial
connectivity with the inputs, which we will see is a prop-
erty of the hippocampus.

Pattern Completion

Pattern completion is the mechanism that takes a par-
tial input pattern that is a subset of a stored memory,
and fills in the missing parts. Thus, when you are asked
“where did you park your car today,” this input cue is
sufficient to trigger the completion of the full encoded
memory, enabling you to respond “over by the stadium”.
Pattern completion is facilitated by particular properties
of the hippocampal system, most notably a strong set of
lateral connections within a particular layer (CA3) that
enable partial activity to spread and fill in the missing
pieces.

There is a fundamental tension between pattern sep-
aration and pattern completion. Consider the following
event: a good friend begins to tell a story about some-
thing that happened to them in college. You may or may
not have heard this story before, but you have heard sev-
eral stories about this friend’s college days. How does
your hippocampus know whether to store this informa-
tion as a new memory and keep it separate (using pattern
separation) from the other memories, or to instead com-
plete this information to an existing memory and reply
“you told me this story before.” In one case, your hip-
pocampus has to produce a new activity pattern, and in
the other it has to.produce a old one. If you have per-
fect memory and the stories are always presented exactly
the same way each time, this problem has an obvious so-
lution. However, imperfect memories and noisy inputs
(friends) require a judgment call. Thus, there is a trade-
off operating within the hippocampus itself between pat-
tern separation and completion. Optimizing this tradeoff
can actually be used to understand several features of the
hippocampal biology (O’Reilly & McClelland, 1994), as
will be summarized below.

Summary

In summary, these basic ideas about sparse, con-
junctive representations for pattern separation, combined
with the need for pattern completion, are critical for un-
derstanding the functional role of many biological prop-
erties of the hippocampus. They provide a basis for un-



derstanding at a mechanistic level why the hippocampus
has a strong tendency for creating conjunctive represen-
tations, and thus play a central role in our theoretical
framework.

It is important to emphasize that although we think
the hippocampus is specialized, it still shares many basic
properties with the cortex in terms of types of biologi-
cal learning mechanisms, and the general interconnectiv-
ity between and dynamics of excitatory pyramidal neu-
rons and inhibitory interneurons. Thus, we view the hip-
pocampus as a parametrically extreme system that never-
theless utilizes the same basic principles as the cortex —
the two systems can be viewed as lying on a continuum
instead of as being qualitatively different.

The Junction Between Cortex and Hippocam-
pus

A set of cortical areas provide the interface between
the hippocampus and the rest of the cortex, including the
parahippocampal, perirhinal, and entorhinal areas. For
convenience, we’ll refer to these areas collectively as rhi-
nal cortex. Until fairly recently, these areas were gener-
ally damaged whenever a hippocampal lesion was per-
formed (so it is often called an H+ lesion). With the ad-
vent of more selective lesioning techniques, it became
possible to lesion only the hippocampus proper, leaving
the adjacent cortex intact (a pure H lesion). It turns out
that some of the behavioral impairments that had been
attributed to the hippocampus proper appear to be more
dependent on this adjacent cortex instead (Squire, 1992).

Aggleton and Brown (in press) have recently re-
viewed a considerable literature that supports the notion
that the memory functions of rhinal areas can be distin-
guished from those of the hippocampus. Specifically,
these appear to provide a familiarity signal, which re-
flects recent experience, but, critically, does not contain
a full conjunctive, recollectable representation of such
experiences. Thus, the ability to perform explicit recall
of prior events appears to be unique to the hippocampus
proper.

In terms of the nonlinear problem learning litera-
ture, this cortical area can be seen as a uniquely privi-
leged higher-order representational area which is one of
the few, if not only, places in the cortex where conjunc-
tive representations of multiple elemental stimuli can be
formed. Thus, if this area is also damaged along with the
hippocampus, especially in the rat, there just isn’t any
other place where the necessary broad-reaching connec-
tivity is present to enable the formation of novel repre-
sentations of stimulus conjunctions.

To summarize, we think that the learning and pro-
cessing properties of the rhinal areas can be understood
in terms of basic cortical principles, and not as some kind
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of grey area between the cortex and hippocampus. How-
ever, architecturally, these areas share some of the priv-
ileged connectivity of the hippocampus, in that they are
interconnected with such a wide range of other cortical
areas. Thus, it is not entirely surprising that damage to
these areas in addition to hippocampal damage often ap-
pears to be just a more severe version of pure hippocam-
pal damage.

Principled Account of Conjunctive Learning

In this section we will describe how our theoretical
framework can, in principle, provide an account of per-
formance on tasks that require the learning of conjunc-
tive representations. The principles we use are the major
characteristics of the cortical and hippocampal learning
systems as just developed. To summarize, the cortex and
hippocampus differ on two critical dimensions: (a) learn-
ing rate, and (b) relative bias for developing conjunctive
representations, but share (c) the ability to learn based on
both error-driven and Hebbian mechanisms:

Learning rate. The cortical system learns incremen-
tally and slowly and the hippocampal system learns
rapidly.

Conjunctive bias. The cortical system has a bias to-
wards integrating over specific instances to extract
generalities. The hippocampal system is biased by
its intrinsic sparseness to develop conjunctive repre-
sentations of specific instances of environmental in-
puts. However, this conjunctive bias trades-off with
the countervailing process of pattern completion, so
the hippocampus does not always develop new con-
junctive representations (sometimes it completes to
existing ones).

Learning mechanisms. The error-driven aspect of
learning responds to task demands, and will cause
the network to learn to represent whatever is
needed to achieve goals or ends. Thus, the cortex
can overcome its bias and develop specific, con-
Jjunctive representations if the task demands require
this.  Also, error-driven learning can shift the
hippocampus from performing pattern separation
to performing pattern completion, or vice-versa, as
dictated by the task. Hebbian learning is constantly
operating, and reinforcing the representations that
are activated in the two systems.

We can use these principles to provide a relatively
straightforward account of the behavioral data on con-
junctive learning. The basic idea is that although the hip-
pocampal system is biased to encode representations of
stimulus conjunctions, the cortical system also will store
representations of conjunctions if they occur repeatedly
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and are part of the structure of environment that must be
represented to successfully guide goal directed behavior,
or if they predict important events (i.e., via error-driven
learning). However, the cortical system will have to learn
this information slowly over many trials. Thus, we do
not expect the hippocampus to be essential for learning
nonlinear discrimination tasks because they are typically
acquired over many trials, and under conditions where
the contingencies of the environment will engage corti-
cal error-driven learning to acquire the necessary con-
junctive representations.

Thus, one important conclusion from our framework
is that although nonlinear discrimination problems re-
quire that the subject develop representations of stimu-
lus conjunctions, these problems are not the most appro-
priate or most informative ones for revealing the unique
contributions of the hippocampal system. So, although
we agree with Sutherland and Rudy’s (1989) proposal
that the hippocampus makes a special contribution to
learning and memory because it stores representations of
stimulus configurations (conjunctions), we think that the
use of nonlinear discrimination problems to test this idea
was problematic because these problems do not capture
the fundamental way in which the hippocampal system
learns stimulus conjunctions.

Our framework suggests that a different class of tasks
will be more useful in revealing that the hippocampal
formation is fundamentally involved in storing repre-
sentations of stimulus conjunctions. Our assertion is
that the hippocampal system learns stimulus conjunc-
tions rapidly, incidentally and automatically as a function
of exposure to environments. In such situations, there is
no pressure from the reinforcement contingencies to rep-
resent conjunctions. Yet, normal subjects acquire these
representations. This rapid, incidental conjunctive learn-
ing can be revealed by transfer tasks in which perfor-
mance is influenced by rearranging the elements of the
previous experienced environment. In the next two sec-
tions, we will describe several examples of this type that
support our view that the hippocampal formation makes
an essential contribution to learning these conjunctions.

Rapid, Incidental Conjunctive Learning in An-
imals

Perhaps the simplest demonstration of rapid, inciden-
tal conjunctive learning comes from the study of the role
of the hippocampal formation in exploratory behavior. In
a well-designed study, Save et al. (1992) repeatedly ex-
posed control rats and rats with damage to the dorsal hip-
pocampus to a set of objects that were arranged on a cir-
cular platform in a fixed configuration relative to a large
and distinct visual cue. After the exploratory behavior of
both sets of rats habituated, the same objects were rear-

ranged into a different configuration. This rearrangement
reinstated exploratory behavior in the control rats but not
in the rats with damage to the hippocampus. In a third
phase of the study, a new object was introduced into the
mix. This manipulation reinstated exploratory behavior
in both sets of rats. This pattern of data suggests that both
control rats and rats with damage to the hippocampus
encode representations of the individual objects and can
discriminate them from novel objects. However, only the
control rats encoded the conjunctions necessary to repre-
sent the spatial arrangement of the objects. Note that this
was not a requirement of the task. All subjects could
have habituated simply because they stored representa-
tions of the individual objects.

A more recent paper by Honey et al. (1998) makes
a similar point. They habituated the rat’s orienting re-
sponse to different sequences of auditory and visual stim-
uli. On the left side of the apparatus, a tone was followed
by the presentation of constantly illuminated light, while
the right side had a train of clicks followed by a flashing
light. The orienting response to the constant and flashing
light habituated in both control rats and rats with exci-
totoxic hippocampal lesions. However, during a transfer
test, in which the anditory and visual combinations were
switched (the clicks preceded the constant light and the
tone signaled the flashing light) the orienting response to
the light was reinstated in the control rats, but not in the
rats with damage to the hippocampal formation. Thus,
whereas Save et al. (1992) reinstated the habituated re-
sponse by rearranging the spatial locations of the objects,
Honey et al. (1998) reinstated the habituated response
simply by altering the stimulus sequence. In both cases,
the acquisition of incidental conjunctive representations
by the hippocampus, but not the cortex, provides a good
account of the data.

There is also eviderice from Pavlovian conditioning
studies that normal rats learn stimulus conjunctions that
are not required by the task. This phenomenon, termed
the context specificity effect, is observed in intact rats
(Hall & Honey, 1990; Honey, Willis, & Hall, 1990). If
rats are conditioned to cue A in Context 1 and cue B in
Context 2, they will display more conditioning to cue A
in Context 1 than in Context 2 and more conditioning to
cue B in Context 2 than in Context 1. Context speci-
ficity cannot occur unless the animal stores a conjunctive
representation of the cue and the context features, be-
cause all the elemental features of the experiment should
be equally associated with the unconditioned stimulus
(Rudy & Sutherland, 1995). Thus, if responding was
Jjust controlled by the associative strengths of the inde-
pendent elements, there should be no context specificity
of conditioning.

Although intact rats display the context specificity ef-
fect, Good and Honey (1991) (see also Good & Banner-



man, 1997) reported that rats with damage to the hip-
pocampal formation do not. They respond equally to
the cues, regardless of context. Again, it should be em-
phasized that there is nothing about the original training
which demanded that the normal rat learn the conjunc-
tions needed to demonstrate the context specificity effect
— they were learned incidentally.

Evidence for the involvement of the hippocampal for-
mation in the incidental learning of stimulus conjunc-
tions has also emerged with the report that rats with dam-
age to the hippocampal formation do not express fear to
a context or place in which shock occurred but will ex-
press fear to an explicit cue paired with shock (Kim &
Fanselow, 1992; Phillips & LeDoux, 1992, 1994 but see
Maren, Aharonov, & Fanselow, 1997). This finding has
been interpreted by several theorists to mean that the
hippocampal formation stores unitary/conjunctive repre-
sentations of the features that make up the context or
place where shock occurred (Fanselow, 1990; Rudy &
Sutherland, 1994, 1995). This argument rests on a behav-
ioral analysis of contextual fear conditioning provided by
Fanselow (1990). On the surface, there is no obvious rea-
son why damage to the hippocampal formation should
interfere with contextual fear conditioning because one
might expect that conditioning to one or more of the el-
ements comprising the context could support the condi-
tioned response. Fanselow (1990), however, reached the
conclusion that for rats to show normal levels of contex-
tual fear conditioning they must construct a representa-
tion the joint occurrence of the elements that compose
the context. It is this conjunctive representation that gets
associated with shock, and without this representation
the animal displays reduced fear of the context.

Fanselow (1990) based his argument on his analysis
of what is sometimes called the immediate-shock effect
(Fanselow, 1986). If animals are given a single strong
shock immediately after being placed in the condition-
ing chambers, they fail to show fear of the condition-
ing context when tested 24 hours later. However, they
do show fear if they are in the conditioning chamber for
about 2 minutes before being shocked. Fanselow sug-
gested that animals in the immediate shock group failed
to condition because they did not have time to construct
the conjunctive representation of the conditioning con-
text before the shock occurred. He provided support for
this interpretation by showing that, if the animals were
preexposed for 2 minutes to the conditioning context 24
hours prior to conditioning, they would then condition
to context even when shock occurred immediately. Pre-
sumably, this 2-minute exposure was sufficient to permit
the animals to construct the configural representation of
the context needed for conditioning when shock occurred
immediately after placement in the chamber. Kiernan
and Westbrook (1993) replicated Fanselow’s results and
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offered a similar explanation. Thus, we have another ex-
ample of a task in which normal rats construct represen-
tations of stimulus conjunctions simply as a product of
exploring and environment.

In summary, the above examples make it clear that
there are conditions under which animals automatically
acquire representations of stimulus conjunctions just as
a natural consequence of being exposed to the environ-
ment. Consistent with our theoretical framework, these
examples also show that animals with damage to the hip-
pocampal formation do not acquire these representations.

Rapid, Incidental Conjunctive Learning in Hu-
mans

Although the human literature provides less defini-
tive evidence, it too is generally consistent with the main
prediction of our framework. The primary evidence
comes from well known context specificity effects in in-
tact humans, which closely parallels that observed in in-
tact rats. In one dramatic demonstration, Godden and
Baddeley (1975) had divers learn a list of 40 unrelated
words in one of two environmental contexts: on shore
or 20 feet under water. When asked to recall the words
in either the same or different context, performance was
much better in the same environment than in the differ-
ent one. This can be interpreted as the effects of the hip-
pocampus automatically forming conjunctive represen-
tations that combine together the encoded features of the
external environment with the list items.

To identify the hippocampus as being specifically re-
sponsible for this incidental contextual encoding in in-
tact humans, data from amnesic patients would be re-
quired. A study by Mayes, MacDonald, Donlan, and
Pears (1992), showed that global amnesics were not
helped by the presence of incidental contextual cues in
a recognition memory experiment using word stimuli,
whereas normal subjects were. Control and amnesic sub-
jects were matched for performance on recognizing the
words without context, so the lack of facilitation in am-
nesics cannot be attributed to a floor effect. Thus, al-
though the hippocampal localization is not as precise
as in the rat studies, it appears that the hippocampus is
likely responsible in large part for incidental conjunctive
learning in humans.

The generally accepted view that human hippocam-
pal lesions produce specific impairments in episodic
memory is also generally consistent with our framework.
An episodic memory is one that encodes the specific con-
junction of environmental and temporal context features
together with properties of an event that defines a par-
ticular episode (Tulving, 1972). Because such episodes
are generally unique, they must be learned rapidly as
the episode unfolds. Further, the contextual informa-
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tion is typically incidental to any task that might be be-
ing performed at the time, yet it appears to be encoded
automatically. Perhaps the best available evidence that
the hippocampus proper is specifically necessary for this
kinds of rapid, incidental, episodic learning comes from
the Vargha-Khadem et al. (1997) study of a group of
people with early, selective hippocampal damage. They
showed that while several forms of learning where repe-
tition and/or non-conjunctive familiarity signals could be
used were relatively spared, those forms of learning that
required rapid, conjunctive, episodic encodings were im-
paired.

In summary, the human data appears to be gener-
ally consistent with the animal literature in supporting
the main prediction of our framework. We will now
proceed to demonstrate that this framework can provide
an explicit account of both the spared learning of task-
dependent conjunctive information by the cortex, and
this rapid incidental learning of conjunctions by the hip-
pocampus.

A Computational Neural Network Model

We now describe an explicit computational model
that implements the framework outlined in the previous
section. The model is based on a computational frame-
work called Leabra (O’Reilly & Munakata, in press;
O’Reilly, 1998, 1996b), that provides a biologically-
based set of activation and learning mechanisms that
enable the modeling of both cortical and hippocampal
networks within one common framework. The net-
work mechanisms are briefly summarized, followed by
a discussion of the architectural properties of the imple-
mented model. Then, we apply intact and hippocampally
lesioned versions of the model to a range of learning
tasks, and conduct other manipulations to illuminate the
basis of its behavior.

Basic Mechanisms

The equations for these mechanisms are all presented
in Appendix A, with the main properties summarized
here. The basic unit is modeled after the ionic channels
present in actual neurons, but the spatial geometry of the
neuron has been reduced to a single point. This point-
neuron formulation maintains close ties to the underly-
ing biology, while remaining nearly as simple as more
abstract network formalisms. The modeled units corre-
spond to excitatory pyramidal neurons of both the cortex
and hippocampus. The inhibitory interneurons are sim-
ulated through the use of a k-winners-take-all (kWTA)
inhibitory function, which enables a maximum percent-
age of units (k out of N) to be active at any given time,
though fewer than this can be active. This kWTA func-

tion approximates set-point negative feedback inhibition
from the interneurons, and is implemented by computing
a level of inhibitory current that when applied uniformly
to all units within a layer allows only & units to be at or
above threshold. By setting this k& parameter low (e.g.,
around 5% or less), we obtain the sparse representations
of the hippocampat system, and their corresponding con-
junctive representations. By setting it higher (e.g., 15-
25%), we obtain more integrative, distributed represen-
tations characteristic of the cortex.

Learning takes place using two basic mechanisms —
a biologically plausible error-driven learning mechanism
called GeneRec (O’Reilly, 1996a), and a simple Hebbian
learning mechanism that has been used in a number of
other models (Rumelhart & Zipser, 1986; Nowlan, 1990;
Kohonen, 1984). Weight changes are computed by sim-
ply adding these two mechanisms together (with a nor-
malized weighting factor).

Overall Architecture and Connectivity

The architecture of the model was designed to cap-
ture some very basic and important aspects of the struc-
ture of the cortex and hippocampus, while simplifying as
much as possible to facilitate analysis of the model’s be-
havior. For most behavioral paradigms, the model learns
to associate an input stimulus pattern with an output re-
sponse pattern, where this response pattern could reflect
either the expectation of a reward or punishment, or a
specific behavioral response. These input/output associ-
ations can be learned both by the cortex (in two different
ways) and by the hippocampus, as will become clear.

The overall architecture and connectivity of the
model is shown in Figure 3. There are two major com-
ponents, the cortex and the hippocampus. The cortex in-
cludes the basic input/output pathways for carrying out
a sensory-motor mapping, including input and response
layers that contain simple representations of sensory and
motor activity patterns, and three levels of internal rep-
resentations (elemental, associative, and output). These
will be described in greater detail in the next section. The
hippocampus interfaces with the cortex via the entorhinal
cortex (EC), that captures the information represented in
the cortex. The EC then drives the basic anatomical re-
gions of the hippocampal formation, including the den-
tate gyrus (DG), and the fields of Ammon’s Horn, CA3,
and CAl. Another input/output area, the subiculum, is
not represented here, but is likely to play a similar role to
the EC, perhaps with an greater emphasis on subcortical
and motor representations. The hippocampal areas form
a sparse, conjunctive representation of the entire EC in-
put pattern. Partial input of this pattern can trigger recall
of the rest, enabling the hippocampus to take the cortical
input pattern and produce an appropriate corresponding
output pattern.
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Figure 3: The model], showing both cortical and hippocam-
pal components. The cortex has 12 different input dimen-
sions (sensory pathways), with 4 different values per dimen-
sion. These are represented separately in the elemental cortex
(Elem). Higher level association cortex (Assoc) can form con-
junctive representations of these elements, if demanded by the
task. The interface to the hippocampus is via the entorhinal
cortex, which contains a one-to-one mapping of the elemental,
association, and output cortical representations. The hippocam-
pus can reinstate a pattern of activity over the cortex via the EC.

The Cortical System

All of the representations in the cortical system are
organized into groups of 4 units (shown in Figure 3 as
the smaller boxes within the cortical layers), with only
one out of these 4 units allowed to be active at any given
time (yielding a relatively high expected activity level of
25%). This is important for simplifying the interface of
the cortex with the hippocampal system as described in
the next section. It also simplifies the representational
system, and provides a reasonable means of instantiating
the tasks that the mode! will simulate.

The first (elemental) level of internal representation
in the cortex is assumed to contain specialized process-
ing pathways that encode information separately along
different stimulus dimensions (e.g., different sensory
modalities and pathways within modalities such as form,
color, or location). Each such pathway is mapped onto
a group of 4 units, representing 4 different values along
each dimension, and there are a total of 12 such dimen-
sions. Note that values within a dimension are mutually
exclusive, but any combination of values across dimen-
sions can be represented. The input simply provides a
one-to-one activation of these feature values, but the ac-
tivations over the elemental layer also reflect the influ-
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ences from the other layers it is interconnected with.

The association cortex has distributed representations
over six active units (one per 4-unit group). Each asso-
ciation unit receives from all of the elemental units, en-
abling conjunctive representations that combine multiple
elemental representations to develop here if required by
task demands. This layer may correspond to the rhinal
areas in a rat.

Although it typically only represents a binary
reward/no-reward value, the output layer also has a
population-coded representation over four active units.
This distributed output representation is important for
providing a sufficiently substantial representation of the
output in the hippocampal system, relative to the other
cortical areas (which all contribute several active units to
the hippocampal input). The output receives full connec-
tivity from the elemental and association cortical areas,
in addition to the hippocampal output via the EC. Thus,
it can learn a mapping from these areas to a desired out-
put response. Note that because the output receives from
all of these areas, each area competes to some extent for
influence over the actual output response made.

To more easily decode a binary response from the
distributed output layer, the first units in each of the four
output groups all project to the first unit in the response,
and so on, so that the single unit activated in the response
is the one that has received the most “votes” across the
four output groups. Thus, the network’s behavior is mea-
sured as which of the four response units is active.

The cortical areas are all bidirectionally connected,
as is consistent with the known biology (e.g., Felleman &
Van Essen, 1991). This is important for enabling the bi-
ologically plausible GeneRec error-driven learning algo-
rithm to communicate error signals, as described previ-
ously. The error-signals in the model come from the dif-
ference between an expected reward value over the out-
put layer, and the actual reward value that is received.
Thus, the network settles in the expectation phase with
the output values updating freely, and then in the out-
come phase, the output values are clamped to the ac-
tual values. The differences in these two activation states
throughout the network are the propagated error signals
used in learning.

The Hippocampal System

Our implementation of the hippocampal model is
based on what McNaughton has termed the “Hebb-
Marr” model (Hebb, 1949; Marr, 1969, 1970, 1971; Mc-
Naughton & Morris, 1987; McNaughton & Nadel, 1990).
This model provides a framework for associating func-
tional properties of memory with the mechanisms of
pattern separation, learning (synaptic modification), and
pattern completion. Further, it relates these mechanisms
to underlying anatomical and physiological properties of
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the hippocampal formation. Under this model, the two
basic computational structures in the hippocampus are
the feedforward pathway from the EC to area CA3 (via
DG), which is important for pattern separation and pat-
tern completion, and the recurrent connectivity within
CA3, which is primarily important for pattern comple-
tion. The model relies on the sparse, random, projections
in the feedforward pathway from the EC to the DG and
CA3, coupled with strong inhibitory interactions within
DG and CA3, to form sparse, random, and conjunctive
representations. We also emphasize the importance of
the CA1 region as providing a means for translating the
separated CA3 representation back into the language of
the EC, which is necessary to recall information. This
can happen if CA1 forms an invertible representation of
the EC, such that the CA1 pattern can recreate the EC
pattern that gave rise to it in the first place (McClelland &
Goddard, 1996).

The general scheme for encoding new memories
in the hippocampus is that activation comes into the
EC from the cortex, and then flows to the DG and
CA3, forming a pattern separated representation across
a sparse, distributed set of units in these layers. These
active units are then bound together in an auto-associator
fashion by rapid Hebbian learning within the recurrent
CA3 collaterals. Learning in the feedforward pathway
also helps to encode the representation. Simultaneously,
activation flows from the EC to the CAl, forming a
somewhat pattern separated but also invertible represen-
tation in CAl. The two different representations of the
EC input in CA3 and CA1 are bound together by learn-
ing in the connections between them.

Having encoded the information in this way, retrieval
from a partial input cue can occur as follows. Again,
the EC representation of the partial cue (based on inputs
from the cortex) goes up to the DG and CA3. Now,
the prior learning in the feedforward pathway and the
recurrent CA3 connections leads to the ability to com-
plete this partial input cue and recover the original CA3
representation. This completed CA3 representation then
activates the corresponding CAl representation via fa-
cilitated connections, which, because it is invertible, is
capable of recreating the complete original EC represen-
tation. If the EC input pattern is novel, then the weights
will not have been facilitated for this particular activ-
ity pattern, and the CA1 will not be strongly driven by
the CA3. Even if the EC activity pattern corresponds to
two components that were previously studied, but not to-
gether, the conjunctive nature of the CA3 representations
will prevent successful recall.

The rough sizes and activity levels of the hippocam-
pal layers in the rat, and corresponding values for the
model, are shown in Table 1. Note that the DG seems
to have an unusually sparse level of activity (and is also

Rat Model
Area Neurons  Activity (pct) | Units  Activity (pct)
EC 200,000 7.0 96 25.0
DG 1,000,000 0.5 250 1.6
CA3 160,000 2.5 160 6.25
CAl 250,000 2.5 256 9.4

Table 1: Rough estimates of the size of various hippocam-
pal areas and their expected activity levels in the rat, and
corresponding values in the model. Rat data from (Squire
et al., 1989; Boss, Turlejski, Stanfield, & Cowan, 1987; Boss,
Peterson, & Cowan, 1985; Barnes, McNaughton, Mizumori,
Leonard, & Lin, 1990)

roughly 4-6 times larger than other layers), but CA3 and
CAL1 are also less active than the EC input/output layer.
The model has very roughly proportionately scaled num-
bers of units, and the activations are generally higher to
obtain sufficient absolute numbers of active units for rea-
sonable distributed representations.

In a similar manner, the model incorporates rough
approximations of the detailed patterns of connectivity
within the hippocampal areas (e.g., Squire et al., 1989).
Starting with the input, the EC has a columnar struc-
ture, and there are topographic projections to and from
the different cortical areas (Ikeda, Mori, Oka, & Watan-
abe, 1989; Suzuki, 1996). This is approximated by the
one-to-one connectivity between the cortex and EC. The
perforant path projections from EC to DG and CA3 are
broad and diffuse, but the projection between the DG and
CA3, known as the mossy fiber pathway, is sparse, fo-
cused, and topographic. Each CA3 neuron receives only
around 52-87 synapses from the mossy fiber projectionin
the rat, but it is widely believed that each synapse is sig-
nificantly stronger than the perforant path inputs to CA3.
In the model, each CA3 unit receives from 25% of the
EC, and 10% of the DG. The lateral (recurrent) projec-
tions within the CA3 project widely throughout the CA3,
and a given CA3 neuron will receive from a large number
of inputs sampled from the entire CA3 population. Sim-
ilarly, the Schaffer collaterals, which go from the CA3 to
the CA1, are diffuse and widespread, connecting a wide
range of CA3 to CA1. In the model, these pathways have
full connectivity. Finally, the interconnectivity between
the EC and CAl is relatively point-to-point, not diffuse
like the projections from EC to DG and CA3 (Tamamaki,
1991). This is captured in the model by the columnar
structure and connectivity of CA1, that is described next.

We noted that for the CA1 to serve as a translator of
the pattern-separated CA3 representation back into acti-
vation patterns on the EC during pattern completion, it
must have invertible representations. At the same time,
to minimize interference in the learning of CA3-CAl
mappings, it must also achieve some amount of pattern



separation. Indeed, this pattern separation in CA1 may
explain why the hippocampus actually has a CAl, in-
stead of just associating CA3 directly back with the EC
input. Thus, the challenge in implementing the CA1 is
to achieve both invertibility (which requires a systematic
mapping between CA1l and EC) and pattern separation
(which requires a non-systematic mapping where simi-
lar inputs get mapped to very different representations).
This is done in the model by training the CA1-EC map-
ping to be invertible in pieces (referred to as columns),
using pattern-separated CA1 representations. Thus, over
the entire CA1, the representation can be composed more
systematically and invertibly (without doing any addi-
tional learning) by using different combinations of repre-
sentations within the different columns, but within each
column, it is conjunctive and pattern separated (McClel-
land & Goddard, 1996). .

The CA1l columns have 32 units each, so that the
entire CAl is composed of 8 such columns. Each col-
umn receives input from 3 adjacent EC groups of 4 units
(i.e., 12 EC units), which is consistent with the rela-
tively point-to-point connectivity between these areas.
The weights for each CA1 column were trained by taking
one such column with 9.4% activity level (3 units active)
and training it to reproduce any combination of patterns
over 3 EC_1in slots (64 different combinations) in a cor-
responding set of 3 EC_out slots. Thus, each CAl has a
conjunctive, pattern separated representation of the pat-
terns within the 3 EC slots. The cost of this scheme is that
more CA1 units are required (32 per column vs. 12 in the
EC), which is nonetheless consistent with the relatively
greater expansion in humans of the CA1 relative to other
hippocampal areas as a function of cortical size (Seress,
1988). A further benefit is that only certain combina-
tions of active CA1 units (within a column) correspond
to valid EC patterns, allowing invalid combinations (e.g.,
due to interference) to be filtered out. We imagine that in
the real system, slow learning develops these CAl invert-
ible mappings in all the columns separately over time.

Finally, we emphasize that although our implemen-
tation of the hippocampus is specialized relative to the
cortex in terms of patterns of connectivity and levels of
activity, the basic processing mechanisms are all funda-
mentally the same, including the use of inhibitory com-
petition, and a combination of Hebbian and error-driven
learning. The inhibitory competition is parameterized
differently in the hippocampus and cortex, to achieve the
necessary different levels of activity. Also, we have hy-
pothesized that the hippocampus learns incidentally and
automatically, so we have set the balance of influence
between Hebbian and error-driven learning in the hip-
pocampus to favor Hebbian more strongly. Nevertheless,
error-driven learning still plays an important role in the
hippocampus, as we’ll see when we apply the model to
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nonlinear discrimination problems.

Application of the Model

We now apply our model to a representative set of
findings that are relevant to understanding the role of
the hippocampal formation in learning stimulus conjunc-
tions. We first describe simulations of nonlinear discrim-
ination problems, where we find that the model captures
the complex patterns of behavior on these tasks exhib-
ited by intact and hippocampally lesioned rats. We then
apply the model to problems in which stimulus conjunc-
tions are learned but are not required by the demands of
the task. It is in these incidental conjunctive learning
tasks where we expect to see the most reliable effects of
hippocampal damage. Next, we explore the role of the
hippocampus in forming conjunctive representations of
context in contextual fear conditioning tasks. In addition
to capturing the basic patterns of intact and lesioned be-
havior, we simulate generalized fear in terms of pattern
completion in the hippocampus. Pattern completion also
plays a critical role in our final exploration, where we
simulate the “flexibility” of hippocampal representations
in transitivity tasks.

Nonlinear Discrimination Problems

We begin by reviewing the fundamental property of
nonlinear discrimination problems: the individual ele-
ments are equally often associated with a rewarded (+)
or nonrewarded (—) outcome, so that the problem cannot
be solved simply combining the associative strengths of
the elements. The negative patterning (XOR) problem
discussed earlier is one example, but several other im-
portant variations have been employed. These problems
can be solved by developing conjunctive representations
of the elements, which is what led Sutherland and Rudy
(1989) to suggest that these problems should provide a
good test of the conjunctive/configural hypothesis.

Although there are some nonlinear discrimination
problems where the hippocampus does appear to be nec-
essary (Alvarado & Rudy, 1995¢; Dusek & Eichenbaum,
1998; McDonald et al., 1997; Rudy & Sutherland, 1989;
Sutherland et al., 1989a), there are others where hip-
pocampal lesions do not impair learning performance
(Alvarado & Rudy, 1995b; Gallagher & Holland, 1992;
Whishaw & Tomie, 1991). Thus, the simple conjunctive
learning story is insufficient to account for the data. An
important contribution of our model is to show that it can
provide a plausible and principled account of the wide
array of results that have emerged from the literature ex-
amining the contribution of the hippocampal formation
to nonlinear discrimination problems.



22 Conjunctive Representations

a) Negative Patterning

b) Gallagher—Holland
AC+

L] & L]
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Figure 4: Input/output patterns for the a) negative patterning
and b) Gallagher-Holland problems. For each of the four trial
types in each problem, the input stimuli (stim) and output re-
ward (rew) are shown. Mutually exclusive values (e.g., + vs -
reward) are represented as different values within a dimension,
while independent values (e.g., A, B, C) are represented across
different dimensions arbitrarily using the first value. The input
stimuli in this case are each represented by four dimensions,
and the output across six dimensions for reasons described in
the text.

Negative Patterning, Gallagher-Holland, and Bicondi-
tional problems

We begin by analyzing three problems: (a) the nega-
tive patterning problem, A+, B+, AB—, (b) the AC+,
B+, AB—, C— discrimination problem introduced by
Gallagher and Holland (1992), and (c) a version of the bi-
conditional discrimination, CA+, CB—, DA—, DB+.
These problems are quite similar and all clearly require
the subject to represent stimulus conjunctions. Yet, they
are differentially dependent on the hippocampal forma-
tion. Thus, this analysis can provide insight into the as-
pects of these problems that determine whether the hip-
pocampal formation makes a detectable contribution.

First we compare negative patterning (NP) and the
Gallagher-Holland problem (GH). There are a num-
ber of reports that damage to the hippocampal forma-
tion impairs performance on the NP problem (e.g., Al-
varado & Rudy, 1995b; Rudy & Sutherland, 1995; Mc-
Donald et al., 1997) but has no apparent effect on the GH
problem (Gallagher & Holland, 1992; Alvarado & Rudy,
1995b). Indeed, in spite of their similarity, Alvarado and
Rudy (1995b) reported that the same animals that were
impaired on NP were not impaired on GH.

The NP and GH problems were implemented in the
model by presenting the patterns shown in Figure 4. Note
that, following Alvarado and Rudy (1995b), we added
the C'— trial to the NP problem, making it even more
similar to GH without changing its logical structure (i.e.,
the network learns C'— very quickly, because it does not
conflict with anything at the elemental level). Thus, the
only difference between the two problems is the addition

of the C stimulus in the AC'+ trial of the GH problem.

In both cases we compared the performance of the
intact model with that of the model with the hippocam-
pal formation component removed (the hippocampal le-
sion condition). In this case and all subsequent nonlinear
discrimination problems, we ran 40 replications with dif-
ferent random initial weights for each condition and the
model was trained for 400 epochs (an epoch is one pass
through all trial types). The total number of errors was
the dependent variable, where an error was defined as a
trial inappropriate response. For example, if the model
generated a + response on the AB trial, this was an er-
ror. Typically, the model made errors until it learned the
problem, after which point it performed accurately, so
it is possible to interpret this measure as corresponding
to the number of trials to criterion. It has the advantages,
however, of not requiring the use of a criterion, and of be-
ing applicable across different training paradigms (e.g.,
blocked versus interleaved training, which we explore
later).

Figure 5a compares the performance of the intact and
lesioned model on the NP problem, and Figure 5b com-
pares intact and lesioned performance in the GH prob-
lem. The important finding is that the lesioned model
performed worse than the intact model when trained in
the NP problem, but the two models were essentially
equivalent in the GH problem. Thus, our model is consis-
tent with the findings in the literature — the hippocampal
formation is more important for good performance on the
negative patterning problem than it is on the Gallagher-
Holland problem. We will explain the reasons for the
model’s behavior in a moment, but first it is useful to
consider the biconditional problem.

McDonald et al. (1997) examined the role of the
hippocampal formation in several nonlinear discrimina-
tions, including the negative patterning problem and a
biconditional problem. They found that performance on
the negative patterning problem was more impaired by
damage to the hippocampal formation than performance
on the biconditional problem. In fact, depending on
whether one looks at the transformed or non-transformed
data, damage to the hippocampus either has no effect
or a modest effect on performance on the biconditional
discrimination. As discussed previously, Whishaw and
Tomie (1991) also found no hippocampal lesion effect in
the biconditional.

Our model can also capture this relative sparing of
biconditional learning with hippocampal lesions. The
stimulus elements in the McDonald et al. experiment
were two auditory cues and the presence or absence of
a visual cue. Because the auditory cues (A and B) share
common features, their similarity was represented by
having a 50% overlap in the stimulus patterns that repre-
sented their presentation. Similarly, we assumed a 50%
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Figure 5: Model results for the a) negative patterning and b) Gallagher-Holland problems. Intact is an intact network, and HL is
a network with the hippocampal component removed (“lesioned”). N=40 different random initializations. Negative patterning is
differentially impaired with a hippocampal lesion, due to greater presence of elemental stimuli.
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Figure 6: Input/output patterns for the biconditional discrim-
ination problem. a) Shows overlapping case, simulating Mc-
Donald et al. (1997), where A and B stimuli overlap 50%, as
do C and D. b) Shows non-overlapping case where all stimuli
are encoded by different units.

overlap in the input patterns representing the visual cues
(C and D). The Whishaw and Tomie (1991) stimuli were
also overlapping (two diameters of string and two odors).
To evaluate the importance of stimulus similarity in this
problem, we also simulated the case where there was no
overlap in the input patterns representing the stimulus el-
ements.

Figure 6 shows the two versions of the patterns we
used to implement the biconditional (50% overlapping
and completely non-overlapping stimuli). As shown in
Figure 7, the intact and lesioned models did not dif-
fer when the input patterns representing the stimulus el-
ements overlapped 50%. This finding is thus consis-
tent with the findings of McDonald et al. (1997) and
Whishaw and Tomie (1991) indicating that damage to
the hippocampus has little if any effect on the bicondi-
tional problem. It is interesting to note however that a

somewhat different pattern emerged when there was no
overlap in the stimulus patterns. Under these conditions,
the problem was learned more rapidly overall, and the
intact model learned more rapidly than the lesioned one.
Thus, the model predicts that the biconditional problem
will be learned faster and that it might be possible to de-
tect a hippocampal lesion effect as the stimuli are made
more distinctive (e.g., if the stimuli are from different
sensory dimensions).

Explanation of the Model’s Behavior

Our network clearly replicates the basic findings
from the literature — the negative patterning problem
is significantly impaired by hippocampal damage, while
the Gallagher-Holland problem is virtually unaffected
and the biconditional problem is only mildly affected,
and in some cases not affected at all. By analyzing the
behavior of the model, we should be able to gain insight
into the reasons for animal’s behavior on these prob-
lems. We focus this analysis on two important and re-
lated questions: (a) Why does the intact network (and
intact animal) require so many trials to solve these prob-
lems, even though the hippocampal formation is special-
ized for rapidly learning conjunctive representations, and
(b) How do the differences between these problems in-
teract with the hippocampal and cortical systems such
that damage to the hippocampal formation impairs per-
formance on some problems but not others?

Our general answer to the first question is simply that
the patterns in these nonlinear problems are perversely
similar (overlapping), so much so that they stymie the
natural pattern separation tendencies of the hippocam-
pus. We noted that the hippocampus has to wrestle with
the opposing demands of pattern separation and pattern
completion. Thus, if two inputs are sufficiently similar,
the hippocampus will have a tendency to perform pat-
tern completion, not pattern separation. So, the notion
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Figure 7: Model results for both versions of the biconditional problem, a) with overlapping stimuli and b)- wrth non-overlapping
stimuli. Whether there is an effect of a hippocampal lesion depends on whether the patterns overlap.

that the hippocampus should just automatically separate
the patterns in these nonlinear problems is clearly a mis-
conception that fails to appreciate the equally important
function of pattern completion.

Given that the hippocampus does not naturally and
automatically separate perversely overlapping stimulus
inputs, it must rely on the same kinds of error-driven,
task-based learning that also shapes the cortical repre-
sentations. Thus, both the cortical and hippocampal sys-
tems must rely on the accumulation of error gradients
over multiple presentations to eventually achieve correct
performance on these tasks. We think that this is why
learning is relatively slow even in the intact network.

Even though the hippocampus and cortex both rely
on relatively slow gradient-based learning, the hip-
pocampus still retains an advantage in the form of its
more sparse representations and concomitant bias to-
wards pattern separation. This advantage can be seen
in both the NP problem and the biconditional problem
with non-overlapping stimuli, but not in the GH prob-
lem or the standard biconditional with overlapping stim-
uli. This leads to the second question: What factors lead
to the variability in the contribution of the hippocampus
to performance across the different nonlinear discrimina-
tion problems?

To answer this question, we first identify the essen-
tial difference between the three problems (NP, GH, and
biconditional). Both Gallagher and Holland (1992) and
Rudy and Sutherland (1995) proposed that the essential
difference is the extent to which the individual stimulus
elements (e.g., A, B, C) appear alone versus in combina-
tion with other elements. In the NP problem, both A and
B (and C) appear alone, whereas in GH, only B (and C)
appear alone. In the biconditional, no elements appear
alone.

It is important that stimulus elements appear together
because it is impossible to form a conjunction with only

)
CA DA

a) b)
CA DA CA DA

Figure 8: Example of how the presence of multiple stimuli
enables the network to easily represent conjunctions in the bi-
conditional problem. If just A is presented, CA and DA are
equally activated, but in the presence of C, C' A is favored, and
in the presence of D, DA is favored.

one stimulus input, and we know that conjunctive repre-
sentations enable the pattern separation necessary to as-
sociate different outcomes with different combinations
of stimuli. For example, consider how the network can
represent C'A separately from DA in the biconditional
problem. In Figure 8 we see that there are two repre-
sentational (hidden) units, that happen to have relatively
strong weights to two out of the three input units. Thus,
when C and A are presented, the C'A unit is differen-
tially excited, and similarly for D and A and the DA
unit. However, if we were to just present the A alone,
both the CA and DA units would be equally excited.
Thus, the presence of multiple input stimuli greatly fa-
cilitates the formation of separated conjunctive represen-
tations by capitalizing on a kind of interaction effect be-
tween the two stimuli.

To understand the observed pattern of results, we
need to appreciate that the cortex by itself can take ad-
vantage of the benefits of multiple inputs for forming
conjunctive, pattern separated representations, whereas
the extra pattern separation bias of the hippocampus
becomes differentially important for solving problems
where stimuli appear alone (e.g., NP). In other words,
the conjunctive learning capabilities of the cortex are



sufficient for all but the most difficult problems, which
strongly reveal the extra contribution of the hippocam-
pus.

It is also possible that biconditional problems that
use non-overlapping stimuli will engage the natural hip-
pocampal pattern separation abilities enough to enable
the intact model to learn more rapidly than the lesioned
model. However, it may be difficult to detect such differ-
ences in an experimental context.

To summarize, when compound stimuli (e.g. AB
and AC) are present (as in the GH and biconditional
problems), the interactions between the elements enable
the cortical network to form separated conjunctive rep-
resentations. However, when a compound stimulus pat-
tern must be separated from its individual elements (as
in the NP problem), the extra pattern separation power
provided by the hippocampus will be important. In all of
these difficult nonlinear problems, many trials are needed
because gradient-based error-driven learning is required.
However, if the input patterns are sufficiently distinct, it
can be possible for the natural hippocampal pattern sep-
aration to provide a learning advantage. Thus, the GH
and overlapping biconditional problems lie in an inter-
mediate zone of problems with compound, overlapping
stimuli, where the hippocampal advantages will be neu-
tralized, and effects of hippocampal lesions will not be
reliably detected.

Assessment of Pattern Separation and Blocked versus In-
terleaved Training

Our analysis suggests that the hippocampus becomes
important for solving nonlinear discriminations when the
subject is forced by the contingencies of the problem to
form separated representations based on elemental inputs
(e.g., A and B alone). It also suggests in cases such as
the GH problem, where the A element is never experi-
enced alone, that the subject will not have to represent
A separately from the AB compound. In contrast, the
NP problem forces the subject to represent A separately
from AB.

Alvarado and Rudy (1995a) provide evidence rele-
vant to issue of the degree to which the A element is
represented separately from the AB compound in these
problems. They trained one set of rats to solve the GH
problem and another set to solve the NP problem. Then,
all rats received several sessions in which they received
only A+ trials. All rats were then tested on the NP prob-
lem. Of particular interest was the effect of the A+ train-
ing on the rat’s response to the AB— compound. If the
animals had constructed separated representations of A
and AB, then the additional A+ trials should have no
influence on the rats performance on AB trials — they
should be protected from interference. However, if the
A representation had not been separated from the AB
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Figure 9: Model results for AB— errors in the NP problem af-
ter A+ trials. The interference from the A+ trials is the least in
the interleaved NP problem relative to the other problem types
(GH and NP trained in a blocked fashion), indicating that the
representation of A is truly separated from that of AB in this
case, but not in the others.

representation, then A+ trials should increase errors on
AB- trials. Alvarado and Rudy reported that A+ tri-
als dramatically increased errors on AB trials for rats
previously trained on the GH problem but had no effect
on the errors made by rats trained on the NP problem.
This result suggests that rats trained on the NP problem
were forced by the task to construct separated represen-
tations of A and AB, whereas this was not the case for
rats trained on the GH problem.

We simulated the Alvarado and Rudy (1995a) experi-
ment in our model, and found the same results. As shown
in Figure9, additional A+ training increased the number
of errors on the AB— trials made by rats trained on the
GH compared to rats trained on the NP problem.

When trained on the GH problem, both rats and the
intact model failed to acquire pattern separated represen-
tations of A and AB. These findings support our anal-
ysis of why the GH problem is less influenced by dam-
age to the hippocampus than is the NP problem. Clearly,
the network (and presumably the animals) are relying on
the interaction between A and C in the AC+ trials to
activate a representation of AC that is separated from
the representation of AB. Thus, when A alone is pre-
sented, it activates both the AC' and AB representations
(as shown in Figure 8), resulting in interference for the
AB— trials. In contrast, the task demands of the NP
problem forces the animal and the model to acquire pat-
tern separated representations of A and AB.

Alvarado and Rudy (1995a) also compared two ver-
sions of the negative pattering problem. In one case rats
were trained in a standard way: All trial types (A+, B+
and AB-) were pseudo-randomly interspersed in each
session. In another case, the rats received blocked pre-
sentations of the trial types, with A+ trials presented in
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Figure 10: Model results for learning performance in the
blocked version of negative patterning for both the intact model
and the model with the hippocampal component removed (HL),
as compared to the standard interleaved intact and HL data pre-
sented earlier.

one block, and B+ & AB-— trials in another. These rats
were then tested on the A+ and interleaved NP trials
as described previously. Rats in the blocked condition
increased their errors (responses) on AB— compounds
compared to the standard condition. This result suggests
that the blocked NP problem also can be solved without
truly separated representations of A and AB.

We also trained the model on the blocked version of
the NP problem. Following additional A+ training, the
model also made more errors on the standard NP prob-
lem when it had been trained on the blocked problem
than when it had been trained on the standard model (see
Figure 9).

We can explain the results of the blocked version
of negative patterning by noting that the model reliably
made errors at the start of each block, but then rapidly
learned (usually within one trial) to produce the appro-
priate output. Thus, it is clear that the same represen-
tation was being used for A and AB, with the mapping
between this representation and the response output be-
ing rapidly updated for each block (this was confirmed
inspecting the representations in the model). This anal-
ysis shows that the network must be forced by the task
to separate the overlapping representations in these non-
linear problems, and it does not do so if it can minimize
errors without separating (e.g., by this rapid re-mapping
in the blocked condition). It also supports the idea that
the hippocampus in an intact animal is naturally doing
pattern completion in these tasks, not pattern separation.

Based on our analysis of how the blocked version of
NP is being solved, rats with damage to the hippocam-
pal should not be impaired on the blocked NP problem
compared to rats trained to solve the standard NP prob-
lem. This is because rats trained on the blocked problem
do not have to deal with the difficult task of construct-

ing pattern separated representations of A and AB. The
model training results, shown in Figure 10, support this
interpretation because there was very little difference be-
tween the intact and lesioned model on the blocked ver-
sion of the problem. This is in contrast with the lesion
effect on the standard interleaved version as discussed
previously and reproduced in the figure for comparison.

Thus, our model makes a very detailed prediction
about the effects of hippocampal lesions on performance
in the blocked NP task: Overall error rate should be much
lower than in the interleaved, and the differences between
the lesioned and intact animals should be concentrated at
the beginning of the blocks.

Transverse Patterning

Damage to the hippocampal formation impairs per-
formance on another nonlinear discrimination problem,
the transverse patterning (TP) problem (Alvarado &
Rudy, 1992, 1995c¢, 1995b; Dusek & Eichenbaum, 1998).
At first glance, this result appears to violate the explana-
tion of why the NP problem is more dependent on the
hippocampus than are the GH and biconditional prob-
lems, because the TP problem looks like a version of the
biconditional problem. However, a more detailed con-
sideration of this problem reveals that it is more similar
to the NP problem than the biconditional problem. Thus,
the analysis we developed to explain why the hippocam-
pus makes a contribution in the NP problem can also be
applied to the TP problem.

An important difference between TP and the other
problems we have described is that it requires the subject
to make a choice between two stimulus elements. Specif-
ically, the animal has to concurrently solve 3 simulta-
neous discrimination problems constructed from only 3
elements. Representing the correct choice as + and the
incorrect choice as -, we can describe the problems as
follows: A+ vs. B—; B+ vs. C—, and C+ vs. A—.
Thus, each element is correct or incorrect depending on
the other stimulus that is present. The elements could be
visual stimuli such as black, white or striped cards (Al-
varado & Rudy, 1992, 1995c, 1995b) or odors (Dusek &
Eichenbaum, 1998). Typically, the animal is presented
with both stimuli, and has to direct a response to one of
the elements to indicate their choice.

Because two stimuli are present on each trial, and the
correct choice depends on their combination, this task
resembles the biconditional. However, the single chosen
stimulus is probably in the focus of the animal’s attention
when the behavioral contingency (reward or no reward)
is applied. It is this difference that makes the problem
closer to the more difficult negative patterning problem,
where stimuli appear individually — revealing the con-
tribution of the hippocampus. Thus, conjunctive repre-
sentations must be constructed largely from single stim-
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Figure 11: Input/output patterns for the transverse patterning
problem. The first set of stimuli (A-C) represent the initial
configuration prior to choice, and the second set (a-c) repre-
sent which choice was made, with the reward being based on
whether the correct choice was made.

uli in the TP problem, and the greater pattern separation
bias of hippocampus makes a measurable contribution.

The typical training regime for TP in rats involves
three phases. First, they learn the A+ vs. B— prob-
lem, then the B+ vs. C'— problem is introduced, and
finally the third problem (C'+ vs. A—) is introduced re-
quiring the animal to deal with all three problems in a
random mixture of trial types. Note that it is not until
the third phase that the problem becomes nonlinear and
requires conjunctive processes. Thus, it is interesting to
note that rats with damage to hippocampal formation are
not impaired until the final phase of the experiment (Al-
varado & Rudy, 1995¢, 1995b; Dusek & Eichenbaum,
1998).

We implemented transverse patterning in the model
in a manner similar to the previous problems. As shown
in Figure 11, the network is trained to predict the correct
reward associated with making each of the two possible
choices in a given trial type (e.g., choosing either A or
B in the A+ vs. B— trial). We used 3 units in the input
space to represent each of the stimuli in the initial con-
figuration (e.g., AB) and 3 units to represent the choice
made (e.g., A). Thus, as compared to the biconditional
problem, the combination of multiple stimuli is reduced
in salience as a result of the space allocated to the choice
stimulus. This should make the formation of conjunctive
representations more difficult, and therefore increase the
dependence on the superior pattern separation bias of the
hippocampus.

To test the model, we compared the intact and hip-
pocampally lesioned networks on both the full transverse
patterning problem (i.e., all three trial types interleaved),
and just the second phase with only two of the three trial
types. As is shown in Figure 12, the model captures the
pattern of results reported in the literature, with the hip-
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pocampal lesion condition impairing performance on the
full problem, but not on just the second phase of the prob-
lem (which is relatively easy for both the intact and le-
sioned model, and any differences in performance would
not be easily detected in an experimental context). In
summary, this problem provides a further confirmation
of our previous analysis that having a stimulus appearing
alone makes the problem more difficult.

Incidental Conjunctive Learning

We have described how the hippocampus together
with the cortex contributes to the solution of nonlinear
discrimination problems. We argued earlier, however,
that the hippocampal formation makes its most impor-
tant contribution to memory by automatically and rapidly
storing incidental stimulus conjunctions. This function
is revealed in experiments on exploratory behavior, inci-
dental learning, and contextual fear conditioning. In this
section we apply our model to a representative example
of this type of experiment, and in the next section we
explore a range of phenomena in contextual fear condi-
tioning.

We noted previously that Good and Honey (1991)
provided evidence of hippocampal-formation involve-
ment in incidental learning by studing the context speci-
ficity of conditioning. They conditioned rats to cue A
in Context 1 an Cue B in Context 2. Normal rats not
only condition to the two cues, they also incidently learn
where the cues occured because responding to the cues
was disrupted if Cue A was tested in Context 2 and Cue
B was tested in Context 1. Rats with damage to the hip-
pocampal formation did not display this incidental learn-
ing because responding to the cues was independent of
the test context.

We applied the intact and hippocampally lesioned
model to the context specificity effect to see if it would
replicate the Good and Honey (1991) findings. Specifi-
cally, we trained the network on two different simple dis-
crimination problems in two different contexts (i.e., C1:
A+, B—; C2: C+, D—). Although Good and Honey did
not explicitly provide nonreinforced cues in each con-
text (i.e., B— and D-), their rats were nonreinforced
for most of the duration of the training. Thus, we added
these nonreinforced cues to neutralize the significance of
the contexts. Consequently, although the contexts have
no net reward value, the individual stimuli do, and the
problem is linearly separable. In effect, one could sim-
ply ignore the context, and learn based just on the indi-
vidual stimuli. However, if the hippocampus is automat-
ically encoding stimulus conjunctions, then a test where
the context-stimulus pairs are switched (i.e., C2: A+,
B—; C1: C+, D—) should reveal any contribution from
such conjunctive representations.

To obtain the relevant data, following training with
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Figure 12: Model results for the transverse patterning problem, for both phase 2 (a), where only two out ofithe three trial types
are used, and the full problem (b), with all three trial types. Only the full problem requires separated conjunctive representations,
and it shows an effect of hippocampal lesion (HL) relative to the intact model (Intact). Although the phase 2 effect is statistically
significant in the model, the small magnitude of differences involved make it unlikely to find an effect in an experimental context.
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Figure 13: Input/output patterns for the incidental learning
context specificity effect. Note cues A and B have equally as-
sociative values and that the two contexts C1 and C2 have no
net association with reward. If rats respond only to the lin-
ear combination of context and cue associative values, then re-
sponding should be the same regardless of the context in which
the cues are presented.

either the intact or lesioned model, we tested the model
under two conditions: (a) the cues were presented in their
original contex and (b) the cues were presented in the
switched context. The dependent variable was the per-
centage of correct expectations of the rewards as defined
during training. Context specificity then is revealed by
the fact that reward outcomes are expected less accu-
rately when the contexts are switched than in the cues
are tested in their original training contexts.

The specific patterns we used to train the network are
shown in Figure 13. In this and all subsequent simula-
tions, the data are based on 25 replications with random
initial weights. Figure 14 shows that the intact model dis-
played the context specificity effect: Its reward expecta-
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Figure 14: Model results that replicate the Good & Honey,
1991 findings. Shown are the proportion errors during test-
ing with both the original (training) and recombined (switched)
contexts. Even though the contexts are completely incidental
to the task, the intact model makes errors, whereas the model
without the hippocampus (HL) does not.

tions were less accurate when the cues were presented in
the switched context than when they were presented in
the original context. The model lacking the hippocam-
pus, however, did not display the context specificity ef-
fect. It was roughly equally accurate independent of test
context.

One interesting parameter that can affect the extent
to which the model exhibits the incidental encoding of
context is the amount of training time given. For the re-
sults shown above, the network was trained to the point
where successful performance was achieved. If a longer
training period is used, the evidence of conjunctive en-
coding tends to decrease or go away entirely. This may
explain the difficulties that some people have had in ob-
taining these conjunctive context effects (Hall & Honey,



1990).

Contextual Fear Conditioning

As we noted previously, several researchers have
suggested that contextual fear conditioning involves
conjunctive representations of the conditioning context
(Fanselow, 1990; Fanselow & Rudy, 1998; Maren et al.,
1997; Rudy & Sutherland, 1994), and there is evidence
the hippocampus makes an important contribution to
contextual fear conditioning. In this section we will ap-
ply the model to some of the relevant contextual fear con-
ditioning data, showing that the hippocampal system in
the model makes an important conjunctive contribution,
and that hippocampal pattern completion plays a role in
generalized fear conditioning.

The idea that contextual fear conditioning depends
on the subject constructing a unitary or conjunctive rep-
resentation of context first emerged out of Fanselow’s
analysis of the immediate shock effect. Recall that rats
shocked immediately after being placed in the context
fail to display fear of that context, whereas rats that
experience delayed shock display a substantial fear re-
sponse. Fanselow (1990) reported that the immediate
shock deficit could be ameliorated if the subjects were
preexposed to the context prior to the immediate shock
session. He argued that context preexposure allowed
rats to construct a unitary representation of the context,
so that when the rats only briefly encounter a subset of
the features on the immediate shock session, the whole
pattern is activated and conditioned. We first apply our
model to this immediate versus delayed shock effect.

There are three phases to a contextual fear condi-
tioning experiment that must be captured in our model.
The first phase is exposure to the context. During ex-
posure, rats explore the environment and presumably are
exposed to sequences of stimulus feature conjunctions
that, integrated together over time, facilitate the develop-
ment of a unitary representation of context. The second
phase is the delivery of shock. In the third phase the rat is
tested by being placed in the conditioning environment,
and the percentage of time it spends freezing (exhibiting
the fear response) is measured.

In the simulation, we represented the context as four
separate stimulus features. We implemented the expo-
sure phase of the experiment by presenting all possible
pairwise stimulus feature conjunctions to the network,
and allowing it to learn without providing any task in-
puts (Figure 15). To simulate the kind of temporal in-
tegration over individual trials that rats presumably ex-
perience, we did not completely reset the activations be-
tween trials. Instead, we decayed activations .8 of the
way towards O from their values in the prior trial. This
procedure facilitated the network’s ability to form a con-
junctive representation of context that integrated over all

O’Reilly & Rudy 29

Stim  Fear

Stim  Fear Stim  Fear Stim  Fear

Figure 15: Input/output patterns for the exposure phase of
contextual fear conditioning. All possible pairwise combina-
tions of the 4 context features for the A environment are ex-
perienced, enabling the hippocampus to encode a conjunctive
representation of the fear conditioning context.
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Figure 16: Input/output patterns for the shock phase of con-
textual fear conditioning. The + output represents a fear re-
sponse induced by the shock. The input stimulus is assumed to
be a single context feature, which is arbitrarily chosen to be the
first feature. The fact that the rat views the environment for a
brief period prior to being shocked is represented by the initial
trial without the fear output activated.

of the individual features.

The shock phase was implemented by activating the
fear output pattern in the context of a single input feature,
representing the fact that the rat receives a relatively nar-
row view of the environment when shocked (Figure 16).
Only a single shock was given. The final phase of fear
response measurement was computed as the average fear
output activation produced by exposing the network to
the sequence of all possible stimulus conjunctions for the
conditioning environment (Figure 15). Thus, a strong
fear response would be produced if the single shock trial
could be associated with a conjunctive representation of
context that would be generally activated during testing.

The network was identical to that used previously,
with two modifications. The first modification was nec-
essary to ensure that the network did not produce a strong
fear response without having first been shocked. This
was done by setting the bias weights on the fear out-
put units to -1, a negative bias that must be overcome
by learning for these units to become strongly active.
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The second modification was necessary to compensate
for the fact that the network tends to activate units in the
EC layers corresponding to the output layer units even
when no external activations to these units are being pro-
vided (e.g., in the exposure phase). This has not been
an issue previously because the networks were always
trained with specific output patterns. However, in this
case the spurious activation during exposure causes the
network to associate the input stimulus with a non-fear
output pattern, which then interferes with the ability of
the network to learn the shock-induced fear association
during the shock phase. Thus, without supressing these
activations, the exposure training has opposing effects —
it builds a coherent representation of the context, but it
also associates this context representation with a compet-
ing output pattern, which interferes with the shock learn-
ing'. The solution we adopted was to add a negative bias
to the appropriate EC units so they will be inactive during
exposure.

The first set of simulations demonstrate that the in-
tact model captures the immediate versus delayed shock
effect. We compared the level of fear conditioning pro-
duced by immediate shock with that produced by expo-
sure to the context for 100 epochs. As shown in Fig-
ure 17, the intact model showed a strong level of fear
when it was trained for 100 epochs before the shock but
almost no fear when it was trained with only a single
shock epoch. This exposure facilitation was not evident
in the model with the hippocampal component removed,
suggesting that the hippocampal system in the model is
primarily responsible for the formation of conjunctive
context representations.

Preexposure to the context reduces the impaired
fear conditioning that results from immediate shock
(Fanselow, 1990; Kiernan & Westbrook, 1993). Obvi-
ously preexposure to the context would eliminate the im-
mediate shock effect displayed by the intact model be-
cause, from the model’s standpoint, all that matters is
that it be given the opportunity to learn a conjunctive rep-
resentation of the context prior to the shock — there is
no difference between exposure and preexposure in the

I This issue of learning a competing output pattern during preexpo-
sure affects the extent to which the network exhibits latent inhibition
(LI), where context exposure results in subsequently slowed condition-
ing in that context (Lubow, 1989). One way that LI has been under-
stood, and the way it works in our model, is that a representation of
context is being associated with a “no response” representation, which
then interferes with the acquisition of the conditioned response (Bou-
ton, 1993). Experience in our own lab has shown that LI is difficult
to demonstrate in the contextual fear conditioning paradigm (Rudy &
O’Reilly, submitted), and where it has been reported, a considerable
amount of preexposure was necessary (Kiernan & Westbrook, 1993).
Therefore, the reported results are for complete supression of outputs
during exposure, producing no LI effect. However, it is also possible
to model a continuum of LI effects by manipulating the activation level
of the outputs.
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Figure 17: Effects of exposure to the context on level of fear
response in the model. Fear response is the activation level for
fear output units minus the baseline measure of fear response
activation without any conditioning. The immediate shock con-
dition (Immed) is one trial of shock conditioning without any
prior training in the environment, showing virtually no condi-
tioning. The delayed shock condition (Delayed) has 100 epochs
of training in the environment prior to the shock, and the level
of conditioning is strongly elevated in the intact network, but
not elevated in the network with a hippocampal lesion (HL).

model.

Is the Representation of Context Conjunctive?

Fanselow and others have assumed that preexpo-
sure ameliorates the immediate shock effect because
it provides subjects the opportunity to learn a uni-
tary/conjunctive representation of the features that make
up the context, but there has been relatively little direct
evidence for this assumption. Recently, we provided in-
dependent support for this view in a series of fear con-
ditioning experiments with intact rats (Rudy & O’Reilly,
submitted). In one experiment, we compared the effects
of preexposure to the conditioning context with the ef-
fects of preexposure to the separate features that made up
the context. Only preexposure to the context facilitated
contextual fear conditioning, suggesting that conjunctive
representations across the context features were neces-
sary. The next simulation shows that the model behaves
in a similar manner.

To implement the separate-features condition in our
model, we exposed the network to a series of 4 different
environments (for 100 epochs each), where each such
environment had one of the four conditioning context
features (Figure 18). The results of this simulation are
shown in Figure 19, which compares the effects of expo-
sure to the elements and exposure to the context with the
immediate shock baseline. As in the Rudy and O’Reilly
experiment, there was a pronounced facilitation of con-
textual conditioning when the intact model was exposed
to the context as compared to exposure to the features
separately. The hippocampally lesioned network showed
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Figure 18: Input/output patterns for exposure to the condition-
ing context features separately. The first feature of the condi-
tioning context (A1) is mixed in with other features defining a
separate environment where this feature was experienced (B2-
4). The second conditioning context feature (A2) was similarly
experienced in another different environment (C2-4), etc.
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Figure 19: Effects of exposure to the features separately com-
pared to exposure to the entire context on level of fear response
in the model (see previous figure for details). The immediate
shock condition (Immed) is included for reference. The intact
network shows a significant effect of being exposed to the en-
tire context together compared to the features separately, while
the hippocampally lesioned network exhibits slightly more re-
sponding in the separate condition, possibly because of the
greater overall number of training trials in this case.

very little benefit of preexposure to either the context or
the features, and if anything responded more in the sepa-
rate feature exposure condition than in the together con-
dition. This could be due to the greater total number of
exposure trials in the separate condition. Thus, as we
would expect, the cortex alone does not appear to be sen-
sitive to the stimulus conjunctions in the incidental expo-
sure learning situation.

Pattern Completion and Generalized Fear
An important property of stimulus conjunctions
stored in the hippocampus is that they support pattern
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completion: a subset of an original training pattern can
activate the complete pattern. The pattern completion
process is central to the contextual fear conditioning phe-
nomena we have just discussed, because it is presumably
what enables the testing cues to reactivate the conjunc-
tive context representation and its association with the
shock. Recently, we provided novel evidence for the pat-
tern completion processs by studying generalized con-
textual fear conditioning (Rudy & O’Reilly, submitted).
In this section, we show that our model replicates these
pattern completion findings.

In Rudy and O’Reilly (submitted), we constructed
two contexts, A and B, which shared several features,
and a context C that shared none with either A or B.
Rats were preexposed to either Context A or Context C,
and then conditioned in Context B. Preexposure to Con-
text A should establish an integrated conjunctive repre-
sentation of that context. Because Context A and B share
several features, during the conditioning session, the fea-
tures common to both A and B should pattern complete
to the representation of A, and the A representation will
thus become associated with the shock. This means that
following conditioning to Context B, rats pre-exposed
to Context A will display more generalized fear to A
than will rats not preexposed to A (e.g., those preexposed
to C). We found that indeed, prexposure to Context A
markedly enhanced the rats generalized fear to A. This
result strongly supports the idea that rats use a conjunc-
tive representation of the context.

We simulated this experiment in the model by con-
structing a context A that overlapped with context B by
50% (i.e., shared 2 out of the 4 features), and a context
C which overlapped with neither A nor B. Just as in
the experiment, the model was then exposed to either A
or C (for 100 epochs as before), conditioned in B (with
100 epochs of exposure to B prior to shocking), and then
tested in both the A and B environments. The results for
the intact and hippocampally lesioned model are shown
in Figuré 20, which match those of Rudy and O’Reilly
(submitted). Preexposure to A and conditioning on B
produces an equivalent level of fear when tested on ei-
ther A or B, but preexposure to C' yields less fear in
the A test than the B test, because the network did not
pattern complete to A when conditioning in B, and thus
the A representation did not get associated with shock.
However, because there is some level of fear response to
A even when preexposed to C, we conclude that the net-
work is also pattern completing somewhat to B in the A
testing environment. The lesioned network exhibited a
low level of conditioning that did not appear to vary sys-
tematically as a function of condition. Thus, we would
predict that rats with damage to the hippocampal forma-
tion would not reliably exhibit the enhanced generaliza-
tion effect reported by Rudy and O’Reilly (submitted).
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Figure 20: Effects of preexposure to contexts that overlaps with the conditioning context (B) by an amount indicated in the
horizontal axis (A has 50% overlap, C has 0% overlap). Testing performed in both A and B contexts. (a) shows the intact network,
and (b) shows the hippocampally lesioned network. Pattern completion is indicated in the intact network because the amount
of conditioning to A was similar to that shown for B (due to pattern completion based on the 50% overlap). For 0% overlap
preexposure (C), A did not get as much facilitation, but still does produce fear, indicating that the effect is a result of pattern
completion both at the time of conditioning and at the time of testing. The lesioned network did not show any differentiable effects.

Summary

To summarize, we have been able to account for sev-
eral of the major properties of contextual fear condition-
ing using the same basic model that we used on the non-
linear discrimination problems. We see a reliable ef-
fect of the hippocampal system in this paradigm because
the development of conjunctive representations is not re-
quired by the task, and thus the cortical system is not
driven to develop such representations. In contrast, the
hippocampal system naturally develops these represen-
tations, which can be assessed in various ways (e.g., the
separate versus conjunctive feature preexposure and pat-
tern overlap conditions as described above).

Transitivity and Flexibility

Several theorists have described memories stored by
the hippocampus as being flexible, meaning that (a) such
memories can be applied inferentially in novel situations
(Eichenbaum, 1992) or (b) that they are available to mul-
tiple response systems (Squire, 1992). Some of the best
evidence for this comes from studies of transitivity in an-
imals (Bunsey & Eichenbaum, 1996; Dusek & Eichen-
baum, 1997). In one set of problems, Dusek and Eichen-
baum (1997) trained rats to solve a set of concurrent odor
discriminations that took the form A+ vs. B—, B+ vs.
C—,C+vs.D—,and D+ vs. E—. Following training to
criterion on these problems, rats were then given probe
trials with B vs. D and A vs. E. When confronted with
the A vs. E choice both control rats and rats with dam-
age to the hippocampal formation chose A. This is not
especially surprising because A was always reinforced
and E' was never reinforced. The interesting comparison
then was how subjects behaved on the transitivity test,
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Figure 21: Logic of the Bunsey & Eichenbaum (1996) version
of the transitivity test.

the B vs. D probe, because both B and D were equally
often reinforced and not reinforced. Control rats consis-
tently chose B, but rats with damage to the hippocampal
formation chose randomly. -

In the Bunsey and Eichenbaum (1996) version of the
transitivity test, rats were trained on two sets of condi-
tional odor discrimination problems (Figure 21). In the
first set, they sampled an initial odor (4 or X) and then
had to choose between two odors (B and V). When A
was the sample the correct choice was B but when X
was the sample the correct choice was Y. Then, in the
second set, the same rats sampled either odor B or Y’ (the
choice odors of the first set) and had to choose between
odors C and Z, where C was correct for sample B and
Z was correct for sample Y. After rats had solved these
two sets of conditional discriminations, they were given
a transitivity test by presenting A and X as samples but




the choice was now between C' and Z. Normal rats rat
chose C' when the sample was A and Z when the sample
was X. Rats with damage to the hippocampal system,
however, chose randomly.

Eichenbaum and his colleagues argued that the re-
sults from both of these experiments support the theory
that the flexible nature of hippocampally-mediated mem-
ories enables the rats to perform a kind of logical infer-
ence. In the Dusek and Eichenbaum (1997) version, they
argued that the rats apply a transitivity operation to the B
vs. D case, and infer that because B > C, and C > D,
that it must be that B > D. Specifically, they propose
that their rats had stored the problems as an orderly hi-
erarchy that includes all 5 elements of the 4 problems
(A > B > C > D > FE) that can be used flexibility
in the service of supporting logical inferences. Similar
arguments were made regarding the Bunsey and Eichen-
baum (1996) version.

Our analysis of the two tasks used to demonstrate
transitivity suggests that both results are a product of
the pattern completion properties of the hippocampus,
not the use of logical reasoning. Furthermore, our ac-
count shows that the detailed means for achieving tran-
sitivity in these two tasks are somewhat different, and
that both depend critically on the specific training proce-
dures used. Both tasks depend on hippocampal pattern
completion to activate a representation developed during
the training procedure that produces the correct transi-
tivity response. Because the transitivity test probes (B
vs. D in Dusek & Eichenbaum and AX, C'Z in Bunsey
& Eichenbaum) overlap with multiple training patterns,
producing the correct transitivity response requires that
a specific hippocampal representation be favored in this
pattern completion process over other possible such rep-
resentations that also overlap with the test probes. We
show below that the two tasks differ in the way that this
specific hippocampal representation is favored as a func-
tion of the training parameters.

The A > B > C > D > E Transitivity Problem

The key to understanding how the rats solve the
Dusek and Eichenbaum (1997) transitivity test is in the
training procedure. They trained the rats in ordered trial
blocks, starting with 10 trials on the A+ vs. B— problem
always followed by 10 trials on the B+ vs. C'— problem,
always followed by 10 trials on the C'+ vs. D— prob-
lem and so on. Over the course of training, the number
of trials per block was reduced gradually to the point of
single trials of each type, and then randomly interleaved
trials were run at the very end. This training likely caused
nearby trial types in theinthe A > B > C > D > E
sequence to have overlapping hippocampal representa-
tions, because each problem overlaps 50% with the next
one, so it is likely that some hippocampal units exhibited

O’Reilly & Rudy 33

Response

Hippocampus

Input

Figure 22: Tlustration of how overlapping hippocampal rep-
resentations can lead to correct transitivity response for the B
vs. D probe. The large circles each represent the collection
of hippocampal units encoding a given comparison, as labeled
(e.g., AB is A+ vs. B—). The overlap in representations is
shown as overlap in these circles. Representative units from
each region are shown as small filled circles, with the activa-
tion of each unit indicated by the darkness of the circle. The
B vs. D probe preferentially activates the overlapping region
between the BC' and C D representations, because units in this
region receive from both B and D inputs, while units in all
other regions only receive from one input. The pattern comple-
tion property of the hippocampus will tend to complete to either
the BC or C D representation, and activate the corresponding
response output (B or C, respectively). The C' response, not
being a valid option for the B vs. D probe, will instead activate
the input representation of C, which will then bias the network
in favor of completing to BC instead of C' D, and thus making
the correct response (B).

pattern completion and were activated for the two adja-
cent trial types.

As Figure 22 shows, the overlapping hippocampal
representations can then activate the correct B response
for the B vs. D probe via pattern completion. Specifi-
cally, if the hippocampal representations for B+ vs. C—
(BC) and C+ vs. D— (CD) overlap, then the overlap-
ping portion of these representations will be activated by
both B and D in the B vs. D probe. Due to pattern com-
pletion, one of the two hippocampal representations will
be activated (BC or C' D), and produce the correspond-
ing response (B or C, respectively). However, because C
is not available as a choice option on the B vs. D probe,
the rat is unlikely to make use of the C'D representation
directly. Instead, it is likely that the C response will trig-
ger the representation of C' as an input, which would then
favor the activation of the BC' hippocampal representa-
tion, producing the correct B response to the B vs. D
probe.

To evaluate this account in our model, we first pre-
trained the network to associate responses with input
stimuli (e.g., so that the C' response will preferentially
activate the C' input representation via the pre-existing
bidirectional connectivity between them), which we as-
sume the rat would naturally do. Then, we trained the



Discourse Context Effects on Inferences
always before DRINKing it is first necessary to OPEN the container. The model
treats necessary and plausible links in different ways. Instruments are connected to
events (actions) via the instrument (INSTR) link type. For example, to express
'pounding something with a hammer’, (POUND, ?AGT, ?0B]) is connected to (USE,
?AGT, HAMMER) by the instrument (INSTR) link, where ?AGT and ?OBJ denotes

an unspecified agent and object. (see also Figure 4).

Connection strengths for each link are free parameters. They could be
estimated based on some empirical data. In the present study, however, the main
objective for the modeling work is to provide qualitative simulations for the
experimental results rather than quantitative predictions, and thus a priori values

are used and then adjusted if necessary to produce desirable outcomes.

Simulation Walkthrough
We will walk through a sample simulation to illustrate the retrieval and

construction-integration processes. The following text is used for illustration:

3.3. John took the hammer out of the garage. He pounded the boards together in

the afternoon.

In this study, parsing processes are excluded from consideration. Analysis of the text
begins with propositional representations which are assumed to be constructed by
the parsing component of the system (Kintsch, 1974). The text is analyzed into the

following propositions:

P1 (TAKE , JOHN, HAMMER)
P2 (LOC, PROP P1, GARAGE)
P3 (POUND, JOHN, BOARD)
P4 (TIME, P3, AFTERNOON)
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The propositions, P1 and P2, come from the first sentence, and P3 and P4 from the
second sentence. It is assumed that the basic unit of processing is a sentence. Hence,
P1 and P2 are processed together first while P3 and P4 are processed together in a

later processing period.

STEP 1:

The elaboration process was performed after processing all the propositions
from the text since it is legitimate to assume that the comprehender does not engage
in extensive elaboration of a text until all sentences are read especially when the
length of the text is very short and in an experimental setting where the
comprehender usually does not have a motivation for elaboration. The initial
propositional network is constructed with the propositions P1 and P2, which are
connected to each other with a bi-directional link with the strength of 1.0. The
propositions P3 and P4 are processed in the same manner as P1 and P2 are processed.
In the network shown in Figure 5, the black nodes and the connections among them

are constructed here.

Now the elaboration process begins; the text propositions retrieve pieces of
knowledge related to them from LTM. In order for a proposition to serve as a
retrieval cue for elaboration, it needs to be a node newly added to the network and
must have the activation value equal to or greater than the threshold. In this
example, the threshold is set to 0.4. The four text propositions in the current
network qualify because they are new propositions and their activation values are
1.0. These nodes retrieve the long-term memorypropositions P5 (USE, JOHN,
HAMMER), P7 (TOOL, HAMMER, POUND)?, P8 (FIND, JOHN, HAMMER), and P9
(HAVE, JOHN, HAMMER), which are connected to their retrieval cue propositions

2Not only propositions but also arguments within the propositions can serve as retrieval cues. In this
case, the object HAMMER in P1 retrieves (TOOL, HAMMER, POUND), which represents that
HAMMER is a TOOL for POUNDing.
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with the link types specified in the LTM, and assigned the activation value of 0.0
and the self-strength of 1.0. For example, P9 (HAVE, JOHN, HAMMER) is
connected to P1 (TAKE (AGT JOHN) (OB] HAMMER)) with the link type of
CONSEQ), and it denotes that John took a hammer and as a result he had it. Note
that P3 (POUND, JOHN, BOARD) has retrieved P5 (USE, JOHN, HAMMER) and
P6 (NOT (USE, JOHN, HAMMER))? and they are connected to each other by an
inhibitory link. The negation proposition P6 thus competes with P5. This means
that given (POUND, JOHN, BOARD), it is probable that he used a hammer, but he
may not have. However, the connection strength between (POUND, JOHN,
BOARD) and (USE, JOHN, HAMMER) is twice as great as that between (POUND,
JOHN, BOARD) and (NOT (USE, JOHN, HAMMER)). This indicates that there is a
bias toward the affirmative proposition; namely, it is more likely that one assumes
that John used a hammer than one assumes otherwise. Then the network goes
through the integration phase. In the construction phase of the next step, those
long-term memorypropositions that have been added to the network in Step 1 are
potential retrieval cues. In fact, propositions P7, P8, and P9 have gotten the
activation values greater than the threshold of 0.4 as a result of integration, and

thus serve as retrieval cues (marked by a thick circle in Figure 5).

STEP 2:

The sytem further elaborates the representation with P7 (TOOL, HAMMER,
POUND), P8 (FIND, JOHN, HAMMER), and P9 (HAVE, HAMMER) as retrieval cues
in Step 2. P7 (TOOL, HAMMER, POUND) connects itself to P5 (USE, JOHN,
HAMMER) when it retrieves (USE, JOHN, HAMMER). Note that connections
between P1 and P8, and P1 and P9 are now bi-directional. This is because P8 (FIND,
JOHN, HAMMER) and P9 (HAVE, HAMMER) retrieve (TAKE, JOHN, HAMMER)

3The knowledge base does not contain negation propositions. A negation proposition such as this one is
generated during the construction phase.
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and make connections to it. As a result of the construction process in Step 2, the
network as shown in Figure 5 is built in the working memory. Again, the network
is submitted to the integration phase. When the integration process is done, the
system checks the activation values of those newly added propositions (i.e., P10
through P15), and finds that none of them has gained an activation value equal to
or greater than the threshold. Thus, no more knowledge is retrieved from LTM,

and the processing is completed.

Insert Figure 5 about here.

Simulation Results

Several simulation runs were conducted with different texts. The main goal of
these simulations is to provide an adequate account for the experimental data of the
present study. For this purpose, simulations were intended to be qualitative in that
hey showed the major trends in the expérimental results, and extensive parameter
estimation was not attempted.? As in the experiments, texts were constructed by
combining each of the four context sentences and the action sentence as shown

below:

3.4a. John broke the hammer in the garage. (Contradictory)
3.4b. John looked for the hammer in the garage. (Weak)
3.4c John found the hammer in the garage. (Moderate)
3.4d. John took the hammer out of the garage. (Strong)

3.5. He pounded the board in the afternoon. (Action)

40f course, there are drawbacks of qualitative simulations. For example, there is no statistical
evaluation, and thus it leaves room for disagreement about validity of a model (Kintsch, 1992).
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Simulations of Experiments 1 and 2

Experiments 1 and 2 showed that instrument inference was drawn only when
the context strongly supports the inference. We assume that in these experiments
the participants did not have any specific goals and hence were not motivated to
adopt an elaborative reading strategy. In the simulation, this assumption is realized
by setting a high activation threshold (0.4). The simulation run with the strongly
related context has been shown in the above walkthrough (see Figure 5). The
contradictory text and the moderately related text were also submitted to simulation

in the same manner as the walkthrough.

Figure 6 shows the time course of activation of the instrument proposition for
the strong context (i.e., the TAKE-HAMMER text) and moderate context (i.e., the
FIND-HAMMER text). For the first ten processing cycles (Step 1) the activation
patterns are identical for both the strong and moderate contexts. This is because in
Step 1 of processing, for both contexts, the inference proposition is retrieved by the
action proposition (POUND, JOHN, BOARD) and receives activation from it.
However, in Step 2, for the strong context, the propositions (HAVE, JOHN,
HAMMER) and (TOOL, HAMMER, POUND) make connections to the USE-
HAMMER proposition and send activation to it, and as a result a higher activation

is achieved (see Figure 5).

Insert Figure 6 about here.

On the other hand, for the moderate context, while the TOOL proposition
sends some activation to the USEFHAMMER proposition, (HAVE, JOHN,
HAMMER) does not make a connection to the USE-HAMMER proposition because

it does not reach the activation level high enough to be a retrieval cue (see Figure 7).
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As a result, the activation steadily decreases. When the networks were settled after
24 processing cycles, the activation of the inference for the strong context was higher
than that for the moderate context. In Experiment 2, the results showed the mean
reaction time for the strong context was faster than that for the moderate context.

Thus, the model has successfully simulated the results.

Insert Figure 7 about here.

The simulation run with the contradictory context exhibited a different pattern
of behaviors. The activation of negation proposition (NOT (USE, JOHN,
HAMMER)) shot up quite rapidly and kept a high value throughout the processing,
whereas (USE, JOHN, HAMMER) received some activation initially but lost it
quickly. This is because the NOT-USE-HAMMER proposition is connected to the
BREAK-HAMMER proposition and receives activation and wins the competition
against the USE-HAMMER proposition, which receives only much smaller amount
of activation from the POUND-BOARD proposition due to the smaller link strength
for the INSTRUMENT link. Thus, the simulation predicted that for the
contradictory condition, the instrument inference would not be drawn. Indeed,
Experiment 1 found the instrument priming for the strongly related context but not

for the contradictory context.

Simulations of Experiment 3

In Experiment 3, the participants were trained to attend to the use of the
instrument by answering comprehension questions about instruments, and
instrument priming was observed for both the moderate and strong contexts. This

result showed that when the comprehender was engaged in a deeper processing to
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make more elaboration, instruments were inferred as long as the context is

compatible with such an inference.

To simulate these results, the activation threshold was lowered to 0.1 in the
subsequent set of simulations. This made the system pay attention to and make use
of those propositional nodes with lower activation, which did not function as
retrieval cues in the earlier simulations. The same sets of texts were used for these
new simulations. Figure 8 shows the comparison of the final activation of the
inference between the high threshold and the low threshold simulation runs for
each text. For the strong context, the inference achieved high activation for both
thresholds. For the weaker contexts, where the activation of the inference was low
for the high threshold, higher level of activation resulted when the threshold was
lowered. For the contradictory context, the change in the threshold did not have
any effect; namely, the inference node was not activated at all in either case. These

outcomes are consistent with the experimental results.

Insert Figure 8 about here.

A closer look at the model's comprehension process for the FIND-HAMMER
text reveals more details about how these results came about. The activation
patterns for the inference proposition in both simulation runs look identical during
the first two steps of the processing. However, in Step 3, the activation increased
because the HAVE-HAMMER proposition, which had been added to the network in
Step 2, made a connection to the USE-HAMMER proposition and sent activation to
it (compare Figures 7 and 9). This indicates that the integration of the proposition
(HAVE, JOHN, HAMMER) into the representation is crucial in activating the

inference proposition because it functions as the major source of facilitation for the
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inference. In other words, as discussed in the experiment section, the presence of
the HAVE-HAMMER proposition serves as a precondition for the inference to be

drawn.

Insert Figure 9 about here.

4. SUMMARY AND CONCLUSIONS

In the present study, we hypothesized that the structure of a situation model
influences elaborative instrument inferences during comprehension. The
experimental results give support to the hypothesis. The results showed that under
normal reading without any specific reading goals, the degree of elaboration
involved in construction of a situation model is not extensive. However, if the
comprehender is motivated to elaborate and retrieve more knowledge during the
process, the inference is computed even in the context that weakly supports the
inference. The CI model successfully displayed the behaviors that are qualitatively
in agreement with the experimental results reported in the previous section. The
model provides an explicit account for the inference computation processes and

makes predictions about such processes.

In conclusion, On-line inference processes, particularly elaborative inferences,
are influenced by the trade-off between the demand for constructing a rich situation
model and the limited capacity of the human cognitive system. On the one hand,
the comprehender tries to activate and integrate as much world knowledge as
possible to construct a situation model as much elaborated by world knowledge as
possible. On the other hand, due to the limited capacity, the comprehender can

allow only a limited amount of resources for the on-line inference processes. As a
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