The Construction-lntegration Model:
A Framework for Studying Memory for Text.

Walter Kintsch & David M. Welsch

Institute of Cognitive Science
Box 345
University of Colorado
Boulder, Colorado 80309-0345
303/492-8663

Institute of Cognitive Science
Publication Number 90-15



To appear in Hockley, W. E. & Lewandowsky S. (Eds.) Relating theory
and data: Essays on human memory. Hillsdale, NJ: Erlbaum.

The construction-integration model:
A framework for studying memory for
text.

by

Walter Kintsch & David M. Welsch
University of Colorado

Models of memory need not be restricted to list learning studies but
can be extended to account for how people comprehend and
remember text. The basic memory processes appear to be the same
in both cases, but what is considerably more complex in the case of
texts are the comprehension and encoding processes involved. Below
we sketch a model of discourse comprehension and memory for text
that has evolved over a number of years. In particular, we focus on
the question how the information in a text is combined with and
integrated into the reader's knowledge and personal store of
experience. We use this model to account for two results that have
been reported in the literature on priming. First, we analyze a study
that explores the differences in the accessibility of the first- and
second-mentioned actors in a sentence, as measured by priming
methods. Secondly, we consider a study demonstrating that it is not
the words of a sentence by themselves, but the whole discourse
context that determines knowledge activation, and hence the degree
of priming that is obtained experimentally. Our purpose in
presenting these analyses is to show that the model presented below
is able to account for these phenomena in a simple and consistent
way, without complex auxiliary assumptions, although it was not
specifically designed to do so.



1. The construction-integration model
as a cognitive architecture

The construction-integration (CI) model is a general theory of
comprehension. It has evolved from studies of story comprehension
and memory for text to a point where it can be considered seriously
as a possible architecture for that large area of cognition that we
locate between "perception” on the one hand and "problem solving"
on the other. In everyday language we name these processes
"comprehension”, although we do not make precise distinctions, say,
between "perceiving” a scene and "comprehending” it, or "solving" a
word algebra problem and "understanding” it. The CI framework
allows us to construct explicit computational models of processes
within that general domain.

The principle characteristics of the CI model are the following:

(1) The CI theory extends and incorporates earlier work on discourse
comprehension, specifically Kintsch & van Dijk (1978) and van Dijk &
Kintsch (1983). The primary feature that it adds to this earlier work
is a model of knowledge activation and knowledge use in discourse
comprehension (Kintsch, 1988).

(2) Comprehension in the CI framework arises from an interaction
and fusion between the to-be-comprehended object, usually a text,
and the general knowledge and personal experience the
comprehender brings to the situation.

(3) Knowledge is represented as an associative network, the nodes of
which are concepts and propositions. Global knowledge structures
such as frames and schemata are generated in the context of the
particular task in which they are used from the local relations of this
associative net.

(4) The CI theory is a hybrid approach, combining features of
symbolic systems (its first phase, construction, involves a rule-based
system that constructs a network representation of the text and the
knowledge that has been activated) and connectionist systems (the
second phase of the model, integration, uses a constraint satisfaction
mechanism that generates a consistent interpretation of the to-be-
comprehended text.

(5) Purely symbolic systems need "smart" rules and sophisticated
control structures such as schemata to assure that the right
inferences are made at the right time, and that the relevant
knowledge, and only the relevant knowledge, gets activated in each



situation. In the CI model we can do with weaker, more general,
more robust rules, because the rules will not have to be precisely
correct. A process of contextual integration follows the construction
of a mental representation of the text, ensuring that contextually
irrelevant items become deactivated in the network. In other words,
the CI model does a lot of parallel inferencing with weak, simple
rules, and then eliminates the inferences that are irrelevant in a
given context.

Below, we briefly outline how this construction-integration model
works in general, and then apply it to some interesting experimental
phenomena that have been reported in the literature on priming
effects.

2. The construction-integration model
2.1 Construction processes.
2.1.1 Text-based constructions: Levels of representation

There is no single representation of a text that is appropriate for all
purposes. Instead, different levels of representations must be
distinguished, primarily the verbal or linguistic level, the level of
meaning, and the level of the situation, though at times additional
levels need to be considered.

The units at the linguistic level are the words that make up the text
and the (hierarchical) sentence constituents to which these words
belong. The rules that are used to form these units are those of
conventional phrase-structure grammars. In many applications of
the CI model, this level of analysis has been neglected because
surface effects play only a negligible psychological role. In some
situations, however, it is crucial to include this level of analysis (e.g.,
to describe memory for sentences, as in Kintsch, Welsch,
Schmalhofer, & Zimny, 1990).

At the semantic level, the representation used is the propositional
analysis proposed in Kintsch (1974), though various related
representation systems developed by other authors in linguistics,
artificial intelligence, and psychology could be readily adapted for
that purpose. The rules for generating text propositions can be
formulated as productions. Both local meaning units and global
meaning units (macropropositions) must be considered. A sketch of



what a complete system would look like has been presented in
Kintsch (1985). However, an explicit and complete set of rules to
formally derive propositions from a text (except for restricted
domains) is not available at this point, either for the Kintsch (1974)
model or any of the other systems in use. Since conventions for
hand-coding are well developed and highly reliable, this is not a
serious problem. In the applications of the CI model that have been
developed so far, the semantic/propositional level is typically central
(except in poetic language use, as analyzed in Kintsch, in press, a).

While it makes some sense to postulate general rules for generating
propositional representations of texts (even if we can't specify all of
these rules at this point), general, comprehensive, formal rules for
constructing situation models are quite implausible. Situation models
are by definition domain specific and hence depend on special
domain knowledge, in contrast to verbal and semantic
representations which are more general and domain independent.
The model of the situation described by a given text is developed
from the interaction between the information provided by the text
and further information derived from the reader's knowledge.
Situation models emerge from this interaction. Linguistic cues in the
text (Kintsch, in press, b) guide the reader in forming a situation
model. The semantic relations specified by the text constrain what is
situationally relevant, and activate the knowledge that is needed for
building a mental model of the situation. These processes are most
easily analyzed in well-defined, highly structured situations, hence
much of the work done with the CI model has involved such
situations (word arithmetic problems in Kintsch, 1988; computer
systems in Mannes & Kintsch, in press; the UNIX operating system in
Doane, Kintsch, & Polson, submitted).

2.1.2 Knowledge-based constructions

Knowledge in the CI model is represented as a long-term memory
network of propositions (concepts are treated as a special kind of
proposition). The links between these propositional nodes vary in
strength, as determined by the associative and/or semantic relations
between the concepts or propositions in question.

Propositions and concepts from this long-term memory network are
added to the text representation (the “textbase") under construction
in two ways. First, in the construction of text propositions long-term
memory nodes are used as templates (Kintsch, 1985), and nodes in



the neighborhood of these templates are randomly sampled from
long-term memory and added to the textbase as knowledge
elaborations, their sampling probability being determined by the
strength of their association to the template. This associative
knowledge activation plays a major role in some applications, such as
Kintsch, 1988, or Mannes & Kintsch, in press, but not in others, such
as Kintsch et al., 1990, and Doane et al. (submitted). A second way in
which knowledge from the long-term store gets included in the text
representation is through special reading goals and/or task demands.
Thus, when reading a word arithmetic problem, the reader's
complete knowledge about arithmetic is activated (Kintsch, 1988); all
the knowledge about a computer system is activated in parallel when
comprehending instructions to perform a computing task (Mannes &
Kintsch, in press; Doane et al., submitted).

As a result of these text- and knowledge-based construction
processes, a set of n+m elements is obtained, n elements derived
from the text (words, phrase units, concepts, propositions, or model
elements), plus m; knowledge propositions which have been
selected from the long-term memory net by the associative
activation process described above, and m2 knowledge propositions
that have been selected in response to specific task demands, m; +m)
= m.

2.2 Integration processes

The n+m elements that have been constructed are linked together to
form a network. The links among the n text propositions are
determined by the relationships among these elements specified by
the text: words are linked to the phrases they are a component of,
phrases to sentences and so on (Kintsch et al., 1990); propositions are
linked via argument overlap to their nearest neighbors (Kintsch, in
press, a, b) or even to other propositions one or more steps away
(Kintsch, 1988; Kintsch et al.,, 1990), and similarly for elements of the
situation model. Numerical link strengths constitute a free parameter
in the model, subject to the restriction that link strengths decrease
the greater the distance between nodes.

The m; knowledge propositions that were activated associatively are
linked to the text elements through which they were selected in the
first place. Their interconnections are the same as in the long-term
memory net.



For the m) task-specific knowledge propositions, a variety of links
exist: they are related to the rest of the network through argument
overlap, and they inherit whatever pattern of interrelationships
existed in long-term memory (e.g., contradictory arithmetic
hypotheses have negative connections in Kintsch, 1988; action plans
may have negative or positive connections, depending upon whether
the actions support or interfere with each other in Mannes & Kintsch,
in press, and Doane et al., submitted), but there are further
considerations. For instance, propositions describing the state of the
world inhibit action plans that would produce the already existing
state, and propositions describing the desired outcome of an
instruction or command activate action plans that would produce
these outcomes (Mannes & Kintsch, in press, and Doane et al.,
submitted). Once again, the numerical values of these positive and
negative link strengths are free parameters in the model.

Thus, a matrix C of n+m items is obtained, where the element cij,

1< i,j < n+m, specifies the link strength between items i and j. We
shall call this matrix the coherence matrix. We define a row vector
A1 which specifies an activation value a; for each of the n+m items
in the coherence matrix. Initially, all items that were constructed
from the text are equally activated with activation strength 1/n,
while the m items selected from long-term memory have an initial
activation value of 0, so that Za; = 1.

Activation is allowed to spread in this network by taking the
products A1*C=A2, A2*C=A3,.....Af-1*C=Af, or A1*(C)k = A, where
the vector Aj ' is renormalized after each multiplication with C, so
that Za; = 1, and k is selected so that the change in mean activation
value after a multiplication is less than some criterion value, e.g.
<.0001. The final activation vector A shows how strongly each item
that was generated during the construction process, either from the
text or from long-term memory, is activated after comprehension. If
the integration process did what it was supposed to do, related items
should have strengthened each other, while unrelated or
contradictory items should have a negative or 0 activation value. In
most applications it is useful to avoid negative activation values, so
that all such values are set to 0 before normalization after each cycle
of multiplication.

Table 1



Table 1 shows the final activation vector A for the n+m nodes in the
network, as well as the interconnections among these nodes specified
by the coherence matrix C. Note that, in general, some of the
elements in A will have O activation, that, is, they will have become
deactivated in the integration process either because they are not
sufficiently strongly connected with the main part of the network
(e.g., an irrelevant piece of knowledge that was generated by the
sloppy knowledge elaboration rules of the model), or because they
are inhibited by strongly activated nodes in the network (e.g., the
contextually inappropriate meaning of a homonym).

The CI model achieves by means of this integration process what
other approaches do with complex, powerful - but fragile - control
process rules: it assures that the inferences and knowledge
elaborations which have been generated will be contextually
appropriate. In most theories of comprehension this happens because
only the right inferences and elaborations are made in the first place.
In the CI model it happens because the integration process has
filtered out the contextually inappropriate inferences and
elaborations that had been generated in the initial phase.

2.3 Long-term memory for text

So far, the CI model has constructed a set of n+m items, each with a
certain activation value, and a coherence matrix specifying the
interrelationships among these items. Welsch (1989) has shown that
these two pieces of information can be combined to yield a more
convenient representation of the outcome of the comprehension
process, as in pure connectionist models. In connectionist models,
learning affects the connections among the nodes in the network. In
the CI theory as described so far, comprehension has not affected the
connections among the elements - the coherence matrix C - but
rather the activation values of the elements - the activation vector A
after integration. We can define a new matrix M, the memory
strength matrix, of size p+q * p+q, with elements mjj, such that

mijj = cjj*aj*aj
where p +¢q is the number of elements in A with positive activation
values (p < n, ¢ < m), cjj is an element of C, and a; is the final
activation value of the i-th element. M 1is the long-term memory
representation the CI model produces. The knowledge elaborations
that were created during the construction process that were
contextually irrelevant or contradictory have been eliminated. The
diagonal values of M represent the strength of an item in long-term



memory (the square of its final activation value). The off-diagonal
elements represent the strength of the relation between any two
items in memory.

Whether M is best characterized as a surface representation of the
text, a semantic textbase, a situation model, or some combination
thereof, depends upon the nature of the construction processes that
have taken place. If these were dominated by surface features, with
little contribution from the semantics, and none from the situation, as
in the children's counting rhyme analyzed in Kintsch (in press, a), M
is primarily a surface representation. On the other hand, in Section
(4) of this chapter we construct a pure textbase, arguing that the
contributions of the surface structure as well as the situation model
are negligible in this case. Contrast this with Mannes & Kintsch (in
press), where the emphasis is entirely on the situation model: the
texts are brief and simple, and we are primarily concerned with the
elaborate knowledge structures that emerge in these situations. Thus,
M represents the sum total of the construction processes that
occurred during comprehension at various different levels, from the
linguistic surface analysis to the building of a situation model.
Surface structure, textbase, and situation model, however, are not
separate mental objects, but convenient terms for us to designate the
focus of text processing in different comprehension tasks.

2.4 Text Memory and Knowledge Modification

It is important to separate two effects of comprehension. On the one
hand, an episodic memory trace for the text comprehended has been
established - the memory matrix M - which supports a number of
text-based behaviors, such as recognition, recall, summarization,
question answering, and the like. On the other hand, the reader's
long-term memory will be modified, at least temporarily, as a
consequence of reading the text.

Sentence recognition (Kintsch et al., 1990) and priming (Sections 3
and 4 below) in the CI theory involve connecting the to-be-
recognized sentence with the appropriate episodic memory trace as if
it were itself part of the text, and noting the amount of activation
that will flow into the subnet corresponding to the target item.

Recall predictions can be obtained from M by selecting a first-cycle
element with a probability proportional to its memory strength, and
then probabilistically selecting the next element, and so on, tracing a




path through the whole memory network (this process needs to be
elaborated with rules for backtracing and repetitions). Each such
path corresponds to a single predicted recall protocol. Summarization
can be handled in the same way by including a threshold, such that
only sufficiently important nodes are selected (Kintsch, in press b).

We shall not describe here the modification of long-term memory
effected by the establishment of an episodic memory trace of a text,
because the various alternatives have not yet been explored in
enough detail. It is important, however, to understand that forming
an episodic text memory is a different problem, with different
empirical consequences, than adding to or modifying the knowledge
base itself (e.g., Mannes & Kintsch, 1987).

This brief sketch of the CI theory must suffice here. Additional detail
can be found in the publications cited above. Below, we take two
experimental phenomena that have been reported in the literature
and show how ‘the CI model can deal with them. If the model
provides, indeed, anything like an adequate account of human
comprehension processes, the phenomena observed in these studies
should be explainable in terms of the CI model, without modifying its
assumptions, and without the need for ad hoc mechanisms. We also
want to avoid extensive parameter estimations, hence we shall
restrict ourselves to qualitative simulations of the major trends in
the experimental results. Our goal is simply to find out whether the
CI model can account for these reasonably complex experimental
data for which the model was never designed specifically. Both
experiments have to do with priming effects after or during
discourse comprehension.

3. First mention versus recency: Some priming results.

Gernsbacher, Hargreaves, & Beeman (1989) report some interesting
results that reconcile two seemingly contradictory phenomena that
have been frequently reported in the literature. On the one hand it is
well known that the first-mentioned participant in a sentence has an
advantage over the second-mentioned participant (it is accessed
more readily, functions better as a recall cue, etc.), while on the other
hand a similar advantage for the most recent clause is equally well
established. Gernsbacher et al. have shown that the recency
advantage holds for tests that coincide and overlap with the
processing of the sentence, while for tests delayed for 1.4 sec after
the end of the sentence, a first mention advantage is found.



What does this observation mean? Does it imply some new principles
of comprehension, or is it an implied empirical consequence of
comprehension processes as described by the CI model? If so, the CI
model should be able to account for the findings of Gernsbacher et al.
without requiring additional assumptions. We should simply be able
to simulate the experimental procedures of Gernsbacher et al., and
find their results.

This is indeed the case, as we shall show by means of an illustrative
simulation of the example sentence discussed by Gernsbacher et al.
In one case, we simulate comprehension of this sentence up to the
last word, coincident with which the probe was presented (either the
first mentioned or second-mentioned participant in the sentence). In
the other case, we allow the model to complete comprehension of the
sentence and then present the probe. In the first case, the more
recent probe should be more activated, and the in the second case
the the first-mentioned probe.

The sentence we use is
(1) Tina gathered the kindling as Lisa set up the tent.

In line with Gernsbacher et al.'s claim that subjects represent each
clause in its own substructure, we let the CI model process (1) in two
cycles, one for each clause. We simulate processing both at the level
of the linguistic surface structure and that of the propositional
textbase, while neglecting the level of the situation model, which
probably plays no role when subjects are working with lists of
unrelated sentences. Furthermore, we assume a very simple form for
the coherence matrix: only neighboring nodes are linked directly, and
semantic connections are twice as strong as surface connections.
Thus, we obtain for the first clause of (1)

(2)
Tina gather kindl N1 V1l TINA G(T,K) KINDL

Tina 1 0 0 1 0 1 0 0
gather 0 1 0 0 1 0 1 0
kindlg 0 0 1 0 1 0 0 1
N1 1 0 0 1 1 0 0 0
Vi 0 1 1 1 1 0 0 0
TINA 1 0 0 0 0 2 2 0
G(T,K) 0 1 0 0 0 2 2 2
KINDL 0 0 1 0 0 0 2 2

oy
<




where V1 is the verb phrase gather the kindling, and N1 the whole
clause; the first three nodes are the words "Tina", etc., the last three
are the propositions TINA, GATHER(TINA, KINDLING), and KINDLING.
Initially, the eight nodes of this network are equally activated. After
three cycles of spreading activation, a reasonably stable activation
vector is obtained.! The five surface nodes have activation values of
.07, .09, .07, .07 and .05, respectively, while the final activation
values for the three semantic nodes are .19, .27, and .19,
respectively. Thus, GATHER(TINA, KINDLING) is the most highly
activated node in the first cycle and it is carried over to the second
processing cycle.

The area labeled "Working Memory" in Figure 1 shows what happens
when the second clause of (1) is processed. Words are presented one
at a time, and Figure 1 shows the network that has been constructed
when all but the last word of the sentence have been read. Once
again, we assume links of strength 1 among the surface elements of
the sentence, and strength 2 among the meaning elements. The last
word, "tent", is presented simultaneously with either the test word
"Tina" or "Lisa", the first- or second-mentioned participant,
respectively. Only the proposition (concept) TINA ties directly into
working memory at all when the target item is "Tina", while both the
word "Lisa" and the corresponding semantic element LISA connect to
fairly strongly activated nodes in the working-memory network.
Hence the results in Figure 2: the more recent participant is more
strongly activated than the first-mentioned participant. Under these
conditions, the mean reaction time in Gernsbacher et al. (Exp. 1) was
1,118 msec for the first-mentioned participant, but only 1,065 msec
for the more recently mentioned one.

Figures 1 & 2

Now consider what happens when the same probes are presented
well after the sentence has been read. Both clauses of the sentence
are now represented as a long-term memory trace in which the
original links have been modified by the activation values of the
nodes connected. For (1), we obtain the network shown in the area
labelled "Long-term Memory" in Figure 3. Both the probes "Tina" and

1 Changes at this point are no more than .01; this loose criterion will be used
throughout in this example.
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"Lisa" connect to this network in three places, as shown in Figure 3,
but the first-mentioned participant "Tina" is linked to stronger nodes,
and hence receives more activation than the more recent "Lisa". The
activation values on a delayed test for these two probes are shown in
Figure 4. In Gernsbacher et al. (Exp. 3), we find a reaction time of
726 msec for the more highly activated first-mentioned participant,
versus 788 msec for the second-mentioned participant.

Figures 3 & 4

The CI model thus implies the Gernsbacher et al. results without any
additional assumptions. It is true that the model has a large number
of parameters, but these predictions do not depend so much on
particular parameter choices: if we choose a buffer of size 2, so that
the proposition TINA also gets carried over into the second
processing cycle, the difference in the activation values between the
first- and second mentioned participants is somewhat reduced on the
concurrent test, but the pattern of predictions remains the same.
Likewise, if we weight the original link strengths less heavily in
favor of semantic links a similar pattern is nevertheless obtained..

The CI model implies that the Gernsbacher et al. results occur for
structural reasons and not because we made some lucky guesses
about the parameters of the model.These reasons are quite in
agreement with the explanation given by Gernsbacher et al.
themselves, as well as with many other results in the memory
literature. The model gives the kind of results that it does as long as
we let it process the two clauses of (1) separately, in agreement with
Gernsbacher et al.'s separate structure assumption. While it is still
working on the second clause, the partial representation it has
constructed is active in working memory, and information in the
second clause must be more accessible than in the first clause. On the
other hand, if we are dealing with the long-term memory
representation of the sentence, a primacy effect will be obtained for
much the same reason as in list learning studies. More resources are
available for processing the first part of the sentence, resulting in a
stronger memory representation. One should be able to reduce this
primacy effect by making the first clause longer than the second
(and thereby reducing the activation available per element in the
representation), or by providing more processing opportunities for
the relevant material in the second clause, e.g., by adding a suitable
third clause. Nevertheless, it is hard to see how one could completely
avoid a primacy effect by such means.

12



Figures 2 and 4 also illustrate a limitation of the CI model as it is
presently formulated. In the actual experiment, concurrent targets
took much longer overall than delayed targets, a result which is
intuitively quite plausible. However, the average activation values
for the two targets that were predicted by the model are not directly
comparable at all. This is an undesirable consequence of the
normalization procedure used in the calculations: if activation vectors
are always made to sum to 1, we cannot meaningfully compare
vectors of different length. Hence we have no way of accounting for
the different overall levels of performance on the two tests.

4. Contextually relevant aspects of meaning: More priming.

In a well-known study McKoon & Ratcliff (1988) demonstrated that
priming effects were highly dependent upon the meaning of a text as
a whole, not just on the words used in the text. Which feature of a
word is important depends on what is stressed in the context.
McKoon & Ratcliff point out that a model in which activation spreads
from words whose meanings are fixed regardless of context to
related words is counterindicated by these data. We shall show,
however, that a spreading activation process such as that posited by
the CI model provides a good account of their data. In the CI model,
words "mean" different things in different contexts because their
pattern of associations with other concepts and propositions is
different.

Consider the three texts (3), (4) and (5), and the priming pair (6a and
b):

(3) The still life would require great accuracy. The painter searched
many days to find the color most suited to use in the painting
of the ripe tomato.

(4) The child psychologist watched the infant play with her toys. The
little girl found a tomato to roll across the floor with her nose.

(5) While eating his bacon and tomato sandwich, the painter

searched for the colors most suited to the still life painting of
the rustic English countryside.

13



(6) (a) Tomatoes are red.
(b) Tomatoes are round.

Tomatoes are red is a semantic feature emphasized in (3), but not in
(4) and (5). On the other hand, (4) emphasizes Tomatoes are round ,
while neither of these aspects is particularly relevant in the case of
(5). Correspondingly, McKoon & Ratcliff (1988; Exp.1) observed a
matching effect in the response times for sentence targets such as
(6a) and (6b): when the text emphasized color, red was more primed,
but when the text emphasized rolling, round was more primed.
Response times for matching targets averaged 1,270 msec (with 4.7%
errors), versus 1,390 msec (with 9.7% errors) for targets that did not
match. For control sentences such as (5), both targets were
responded to equally, on the other hand. Intuitively, this context
dependency of meaning makes a great deal of sense. We seem to be
dealing here with an important characteristic of the semantic
processing of text. Is it implied by the basic architecture of the
construction-integration model, or do we need to introduce some ad
hoc mechanism to account for this phenomenon?

We proceed by simulating comprehension and test in the same way
as in the example above. The CI model "reads” the three texts in a
succession of iterative cycles, and is then given either one of the
target sentences (6a or b). More activation should flow into (6a) after
reading (3) than after reading (4), and conversely for (6b), but there
should be no difference after reading (5). Once again, we do not
attempt a quantitative fit and estimate no parameters. We are
simply working with illustrative numbers, attempting to

demonstrate the right kind of qualitative trends.

Since we are not dealing with on-line priming effects as in the
previous example (the target sentences are presented after the
whole text has been read), we can neglect surface relations and
simply construct a propositional network in which neighboring
propositions are related by a value of 1, all other relations being 0.
Thus, among the propositions derived from the first sentence of (3),
(REQUIRE, STILLIFE, ACCURACY) turns out to be the most strongly
activated one once the integration process has settled. It is therefore
carried over to the next cycle which is comprised of the first part of
the second sentence (seven propositions, up to the word color.) Up to
now we have not included any knowledge elaborations in our
network, for the simple reason that including them would not have

14



made much difference for our purposes. Now, however, we encounter
a knowledge association that will make a difference, namely, the
association red to color. We add that as a 9th proposition to our
matrix, but since textual relations should probably be weighted more
strongly than knowledge elaborations, we assign it a link strength of
only .5 (this differential weighting merely decreases quantitatively
the priming effects predicted by the model). Performing the
integration now yields (FIND, PAINTER, COLOR) as the most highly
activated proposition of this cycle. The third cycle then consists of
this buffer proposition, 5 more text-derived propositions from the
latter part of the sentence, and two knowledge elaborations, the
associations red and round to tomato.

The long-term memory trace which is the product of these three
cycles of processing is illustrated graphically in Figure 5. We also
show in this figure the two target sentences Tomatoes are red and
Tomatoes are round (although in actual fact they are never
presented simultaneously and the calculations are made separately,
of course). It is obvious from Figure 5 that more activation will flow
into Tomatoes are red than into Tomatoes are round. Indeed, this is
what happens. We add (RED,TOMATO) to the LTM matrix graphically
represented in Figure 5, connecting it in the same way as the matrix
element RED. This new coherence matrix is then used to integrate a
starting vector in which the activation of each element is equal to the
corresponding diagonal element in the matrix, except for the target
sentence, which starts out with an activation of 0. The integration
process yields an activation value of 7 (normalized value x 10,000).
Using (ROUND,TOMATO) in the same way produces an activation
value of 4, on the other hand.

Figures 5 & 6

However, if we process (4) in exactly the same way, once with RED
and once with ROUND, as shown in Figure 6, we find an advantage for
ROUND over RED, with activation values of 31 and 1, respectively.
Thus, the matching effect reported by McKoon & Ratcliff turns out to
be a byproduct of comprehension in the CI model. Understanding a
sentence implies contextual semantic elaboration. We should note
that, once again in agreement with the experimental results, (6a) and
(6b) are equally activated if they derive their activation from (5):
both have activation values of 1 in that case.

15



While the CI model thus correctly predicted greater activation of (6a)
than (6b) after reading (3), and the opposite effect after reading (4),
the model also predicted a much greater differential in the activation
values in the second case than in the first. We don't know whether
that is a correct prediction or a flaw in the model. The experimental
data are averaged over many sentences like (3) and (4). Even though
the experimenters will have tried to make all these sentences as
comparable as possible, there certainly remain large inter-sentence
differences - the matching effect will be bigger for some sentences
than for others. The CI model should be able to account for all of
these differences - if we simulate all the experimental materials
separately, and determine the optimal parameter values. Thus, at
some point we shall no longer have to maintain the fiction that all
sentences are alike, with normally distributed random error. We can
fully deal with the idiosyncratic properties of each sentence. The CI
model also has the potential for dealing with differences between
readers, who of course are not all alike either, in terms of differences
in the buffer capacity and knowledge base.

5. Conclusion

We have taken two results from priming experiments in the
literature and presented calculations that show that the CI model can
generate predictions that are qualitatively in accord with these data.
What is the point of such an exercise? We have not predicted any
surprising new phenomena - clearly, these are postdictions. We have
not even proposed any surprising new explanations for these
experimental phenomena. In the case of Gernsbacher et al. (1989), all
the CI model does is provide an explicit mechanism for processes
that the authors claimed were involved. ("Separate substructures” is
mapped into the processing cycles of the model, "primacy" appears as
a consequence of resource availability). The CI model explanation in
terms of spreading activation for the McKoon & Ratcliff (1988) data
is hardly novel either, though these authors had rejected a simple,
word based spreading activation theory. Nor have we presented
elegant fits of model predictions to the data.

If not novel data, nor novel explanations, and not even precise fits,
then what does the CI analysis offer? If the CI theory is supposed to
serve as an architecture for cognition, or at least that part of
cognition that we term "comprehension”, and if it is supposed to be a
viable alternative to architectures such as SOAR or ACT*, then '
demonstrations that the CI framework offers a flexible and powerful
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framework for the analysis of a wide variety of phenomena, such as
the ones offered here and in Kintsch (in press), play a very
important role. They show that without having to introduce all sorts
of ad hoc mechanisms and without the need for tricky parameter
estimations, the CI model can indeed account for experimental
results for which it was never specifically designed. (Note that to do
so, we need to have reliable data: nothing but confusion would have
resulted had we tried to apply the model to the contradictory,
apparently inconsistent data on first- and second-mention before
Gernsbacher et al. established just what the experimental facts
were.)

We also need to find out the limits of the CI approach . How far does
the realm of "comprehension” extend, and is the model really
adequate throughout that range? Where and how does it have to be
complemented by more controlled, goal-directed problem-solving
processes on the one hand, and perceptual mechanisms on the other?
In terms of Newell's analysis (Newell, 1990), comprehension is at the
mid-level of cognitive processes. The CI theory is not well developed
at the millisecond level (though our analyses of priming phenomena
reach down to that level), nor at the level of minute- and hour-long
deliberations (though Doane, Kintsch, & Polson, submitted, certainly
makes some inroads there). Informal, qualitative theoretical analysis
of existing experimental results, like those presented above, are a
quick and simple means for exploring and testing the limits of the CI
theory of comprehension proposed here. By demonstrating that the
explanations that have been proposed in the literature for well-
established experimental phenomena already have corresponding,
explicit mechanisms in the CI model, as we have done in the case of
the the Gernsbacher et al. data, or that there exist plausible
alternative mechanisms within the model to explain the phenomena
in question which have not been considered fully by the original
authors, as was the case with McKoon & Ratcliff, we are making a
strong case for the generality of the CI theory of comprehension.
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List of Figures

Figure 1. The contents of working memory at the moment when the
target items are presented. The proposition
GATHER|[TINA,KINDLING], shown in the highlighted area, is
carried over from the first cycle in the short-term memory
buffer. Surface elements are printed in small letters,
propositions in capitals. The activation values of each element
are indicated. The target items Tina or Lisa occur concurrently
with the last word of the sentence, tent.

Figure 2. Activation values (x 100) for the targets Tina and Lisa
when tested concurrently with the last word of the sentence.
The extent to which the activation derives from the
propositional and surface level is indicated.

Figure 3. The target items with the long-term memory trace of (1).
S2, N2, and V2 represent word groups, S1 the whole sentence.
Surface elements are printed in small letters, propositions in
capitals. Strength values are shown for the memory elements
directly connected with the target items.

Figure 4. Activation values (x 100) for the targets Tina and Lisa
when tested against the long-term memory trace of the
sentence. The extent to which the activation derives from the
propositional and surface level is indicated.

Figure 5. A fragment of the long-term memory trace for (3) with the
targets Tomatoes are red and Tomatoes are round. The
memory strength values (x 10000) of the nodes are also
indicated.

Figure 6. A fragment of the long-term memory trace for (4) with the
targets Tomatoes are red and Tomatoes are round. The
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memory strength values (x 10000) of the nodes are also
indicated.
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