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1. Problem Solving and Comprehension

Problem solving is the quintessential cognitive activity. But there is
probably no single, unitary psychological process of problem solving.
" There are many different problems to be solved and many different
ways to solve a single problem. A dimension along which these ways
can vary ranges from apparently fixed, precompiled, highly
automated procedures to flexible, compositional procedures,
involving a great deal of deliberation. These psychologically
different processes may contribute to different degrees and even
interact in the same problem solving episode, as when a chess expert
analyzes -precompiled. moves which have been retrieved via pattern
matches.

On the one extreme there are fixed procedures which are run -off-
more or less automatically in familiar situations. Highly overlearned
action sequences like starting a car belong to this class. Colloquially,
one does not even use the term problem solving in cases like this,
although a person unfamiliar with cars would have to do a certain
amount of problem solving in this situation. At the other extreme,
there are problems like designing a kitchen, requiring, a great deal of
time and conscious effort, planning, goal and subgoal formation, and
evaluation. This is the kind of behavior typically thought of as real
problem solving.

1.1 The .Construction-Integration Model
There is, however, a class of behaviors that fall in between these two

extremes, where fixed, precompiled responses no longer suffice, but
which do not the have the deliberate character of real problem
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solving. Colloquially, these processes are often said to involve
comprehension. Text comprehension provides a good example:
subjectively, reading an easy text is more akin to perception than
problem solving. We don't think much, we just read along, as long as
all goes well. Of course, when we get stuck, some real problem
solving is done, unless we choose to just disregard the difficulty and
go on with the easy reading. As has been argued -in Kintsch (1988), -
most theories of text comprehension have not done justice to this
phenomenal feature of comprehension processes. Rather, they liken
comprehension to deliberate problem solving. The model of
,,.comprehensmn proposed by Kintsch (1988), on the other hand,
breaks ‘with this tradition. It is a computational model of text
comprehension, describing the construction of a mental
representation of a text with simple, though rough and crude rules as
a bottom-up, data driven, highly automated process that requires
little conscious control. Crude rules create a crude representation,
however. Fine-tuning is therefore necessary, which can be achieved
through a wholistic integration process in the connectionist manner:
- elements - of -the -representation that fit together strengthen each
‘other, and reject irrelevant or contradictory parts. Comprehension is
thus seen as consisting of a-construction “phase,where~quick -and - -
dirty, imprecise rules are used promiscuously, followed by an
integration phase in which a coherent picture emerges from what
had been carelessly put together before.

A -good illustration of how sophisticated understanding -can be
achieved in this way is given by the application of the construction-
integration model to word problems. Young children solving simple
arithmetic- word problems experience a great deal of difficulty and
make highly characteristic errors which can be used to infer their
cognitive processes (Cummins, Kintsch, Reusser, & Weimer, 1988).
Their behavior can be modelled in two ways: as a schema-driven
highly sophisticated inferencing system employing complex, smart
rules (Kintsch & Greeno, 1985), or in terms of the construction-
integration model (Kintsch, 1988). In the latter, instead of trying to
come up with exactly the right arithmetic interpretation for a given
problem, all plausible hypotheses are formed in parallel, and the one
is chosen that is supported best, even if not fully, by the context
provided by the text of the problem. This approach has certain
advantages over the powerful-rule alternative in that it accounts for
some empirical phenomena which are difficult to handle otherwise.
It is also attractively simple computationally.
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It is this type of model that we propose to extend here to a different
type of problem solving, the domain of routine computing tasks. The
basic assumption is that you don't try to figure out what to do when
performing such a task, but let the textual instructions and the
dynamic situational context select what to do from a broad range of
alternatives. Thus, problem solving in the word arithmetic domain is
seen as involving the contextual selection of one of a number of
automatically activated arithmetic hypotheses, and problem solving
in the routine computing domain as involving the contextual
selection of one of a number of possible commands.

1.2 ‘Associative Networks

A central assumption of the model of discourse processing proposed
by Kintsch (1988) and extended here, is that of human memory as an
associative knowledge base. Associative networks have a long
history, but they have been overshadowed in recent years in both
psychology and artificial intelligence by more structured knowledge
--representations, - such as semantic networks, frames, and schemata
(e.g., Collins & Loftus, 1975; Minsky, 1975; Schank & Abelson, 1977).
Although - the structure- of asschema provides: great,advantages- when .
it comes to the control of cognitive or simulation processing, the same
structure can easily turn into a straightjacket when it cannot be
adjusted with sufficient flexibility to an. ever -changing. environment.
Associative networks, without fixed global structures, offer a

- -promising .alternative in this respect, as long as it is possible to
generate global structures from the local information contained in
the network in response to particular task demands. In this way, at
least in principle, the generated structure would always be
contextually appropriate, because it was derived in response to the
constraints imposed by that context. There is no need to modify a
schema that never quite fits the specific context. Rather, a schema 1is
created on the spot, suitable for that-specific context. That such
contextual generation of global schemata out of the local relations in
an associative network is possible under some special conditions has
been shown by Rumelhart, Smolensky, McClelland, & Hinton (1986)
and Kintsch & Mannes (1987). The work reported below extends this
approach in new directions.

1.3 Routine Computing Tasks

Routine computing tasks (i.e. tasks which are done in a semi-
automatic manner on a regular basis), for expert users, belong to the
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intermediate class of problems discussed at the beginning of this
paper. They cannot be solved with fixed scripts, because although
each component of the task is highly familiar and script like, the
whole sequence that needs to be performed may never have
happened in quite the same way before. Simple actions like
displaying a directory, or editing a file are not at issue here; how to
do that can be represented by fixed, stable, decontextualized
knowledge elements. In the tasks considered here, these knowledge
elements have to be put together in ever new sequences and in ever
new variations. Some of these sequences might recur frequently
enough and, as a result, be compiled into scripts themselves, but at
present. these exceptions are neglected. Instead, the focus of the
present paper is on the more usual case where partly or entirely new
action sequences must be generated to perform the assigned task.

Traditional psychological theory and artificial intelligence programs
can deal with tasks at both ends of the composition continuum.
Many of these works carry out effortful problem solving, as

. .characterized-by GPS (Ernst & Newell, 1969) which solves game type

problems with which humans find difficulty and MOLGEN (Stefik,
1981) which designs- ,molecular- genetics-.experiments..requiring -too = -
many constraints for a human processor to keep track of effectively.
Alternatively, artificial intelligence has also produced programs
which produce aspects of -cognition which people exhibit when they
solve a problem effortlessly, as in swapping the top blocks of two
blocks .world towers (e.g., Sacerdoti, 1977).

Here an alternative is proposed, in terms of the kind of middle-of the
road, comprehension-based account referred to above. This is done
for two reasons: deliberate problem solving is hard work, under
conscious control - but in protocols which subjects performing
routine computing tasks have provided there is little evidence of

- that. . Subjects seem to just understand what they are supposed to do.

Secondly, the exploration of how a theory of discourse
comprehension can deal with these tasks that, at a descriptive level,
obviously involve solving problems, is desireable. Where are the
boundaries between the domains of perception, comprehension, and
problem solving? We do not present here any empirical results that
could sharply discriminate between the comprehension model
proposed here and more traditional problem solving explanations.
Our goal is merely to establish the feasibility of our approach and to
explore its implications.
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In the next section an outline of the NETWORK simulation is
presented. It is an implementation of the construction-integration
model for the routine computing domain. The subsequent section
describes how this system understands and plans to solve some
prototypical tasks. Finally, it is shown how case-based reasoning can
be incorporated into the system. These topics are further discussed
in Mannes (1989).

2. The Simulation: NETWORK

The goal of the simulation is to understand brief texts that request a
computer user to perform certain simple, routine computing tasks.
Understanding here means, inter alia, knowing what to do. More
specifically, the simulation must compose a series of actions that, if
executed, perform what was requested. The simulation knows about
a set of basic actions - called plan elements - and it attempts to
string together the right ones as needed - i.e., it forms a plan to
perform the task.

NETWORK has two components, a general knowledge base and
procedures for understanding specific. tasks. .. The:knowledge - base *
about how computer systems work and what routine tasks involve is
used in understanding the instructions to perform specific tasks.
This knowledge base is referred to as the long-term memory of the
system. Given a specific instruction text, specifying a state of the
world and.a task to be performed, NETWORK uses its procedures to
form a task representation which consists of a representation of the
text itself plus certain knowledge enrichments, including the
aforementioned set of plan elements. Following this construction
phase, an integration process activates the plan elements
differentially, depending upon the strength of their connections with
the rest of the text and each other. The simulation executes the most
highly activated plan element whose conditions are met in the world.
This action changes the state of the world, and the whole process
recycles, executing another plan element, until the desired outcome
has been achieved.

2.1 The Long-term Memory Network

Long-term memory is conceptualized as an associative network. The
nodes of this network are propositions (or concepts, which can be

regarded as a type of proposition). Propositions were chosen as the
basic unit for NETWORK because they allowed information about the
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domain to be distributed in the system's memory and because of the
psychological validity of propositions as the basic processing unit in
text comprehension (Goetz, Anderson, & Schallert, 1981; Kintsch &
Keenan, 1973). Nodes representing concepts that are in some way
related - because of spatio-temporal associations, or because they are
intrinsically related (e.g. semantically or causally) - are linked
together, some links being strong, some weak, and many zero.

Our simulation of this complex and intricate associative network is
rather crude and perfunctory. We do not do justice to either the
magnitude or complexity of human memory. Instead, only a small
set of. nodes are used which are more or less directly relevant to the
tasks to be performed, and these are linked in a way that
approximates human memory organization. It would certainly be
desirable to work with a more sophisticated knowledge base, but
that would be a major project in itself at the present level of
understanding of the issues involved, and it is not the focus here.
For present purposes, this simplified approach to simulating long-
term memory suffices, if just barely so.

2.1.1 Protocol Analyses

- To obtain the nodes for the simulated long-term memory network, a
protocol study was performed.in: which .6 .experienced. computer -
users were given several routine computing tasks to perform while
providing -concurrent think-aloud protocols. All tasks involved
routine actions such as handling and editing files and using the mail
system, and the tasks that will be discussed in Section 3, where they
are used to illustrate the present model, are among these. The
verbal protocols were propositionalized (according to the standards
of Bovair & Kieras, 1985 and following Kintsch, 1974) and used to
form the basis for the long-term memory network. They represent
the. core of what our simulation knows about performing these tasks
and can be categorized as two types of information; general
knowledge about computers and the tasks to be done, and knowledge
about plan elements which are commands to execute in order to
accomplish the tasks.

2.1.2 Enrichments to Protocol Contents
This core of long-term memory contents was enriched in three ways.

First, six different subjects were asked to provide free associations to
the original nodes in the network (i.e. the original propositions
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obtained from the protocols), and their responses were added as
further nodes to the network. Secondly, for all propositions which
stated requests (to enter mail, to send a message, to edit a file, to
read a file, etc.) a second proposition was added that stated what the
outcome in the world would be if this request were satisfied. This
information was needed for the simulation to work, and, although it
was sometimes generated spontaneously in the verbal protocols or as
a free association, it was necessary to make sure that the system
always knew what the results of completing the tasks that it was
requested to do would be. Finally, a set of 26 plan elements were
included in the long term memory matrix.

Plan elements are the basic actions that the system has available.
They are derived from the verbal protocols of users performing the
kinds of tasks with which NETWORK deals, such as Edit-a-file, Read-
a-File, Reply-to-a-Mail-Message, Enter-Mail, etc. Some additional
plan elements were also introduced which were necessary to
perform a few tasks for*which NETWORK was designed but which

- subjects were . not specifically asked to execute in the protocol study.

A complete list of plan- element.names is given in Table .I. . Planning
in our simulation consists of putting these known plan elements
together in the right sequence to produce the requested results.

Plan elements are formally propositions, like all other nodes in the
network. They take three arguments: a plan name (e.g., REPLY to a
message), a set of conditions which must exist in the world for this
plan element to be executable (e.g., there must be a message to
which to reply), and a set of outcomes of the execution of the plan
element (e.g., someone receives the reply). The outcome(s) of these
plan elements may change dynamically from step to step, depending
upon previous actions. For example, the outcome of pasting a text
into a buffer will differ depending upon what has happened
previously. If the text has already been either pasted or typed into
the buffer, the outcome of paste would change from there being a
single copy of the text in the buffer to there being two copies of the
text in the buffer. Similar outcome changes occur, e.g., to the [EXIT
FILE] plan element as editing operations take place.
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2.1.3 Connectivity in Long-term Memory

All elements in the simulated long-term memory matrix are
connected in a way that is intended to roughly correspond to the
associative and semantic relations among the items. The
approximation used here is argument overlap: all propositions
sharing a common argument are linked, as are propositions which
are embedded in other propositions. For all its shortcomings, this
procedure has proven reasonably satisfactory in simulations of text
comprehension and memory, and is simple and objective
computationally. It yields, however, only rough approximations of
link strengths. While this is sufficient for our long-term memory
simulation, several more specific procedures for estimating link
strengths are used in constructing the actual task networks below.

The long-term memory network thus constructed has 81 nodes,
yielding a 81 x 81 matrix, the entries of which correspond to the link
strength between each pair of nodes. Since this matrix is used only

- to 'sample. nodes that are related to other nodes, rows are normalized
to sum to 1, so that link strengths are directly interpretable as
probabilities.

This long-term memory matrix is the general knowledge that
NETWORK has of the to-be-performed tasks.and -the -domain related -
information. When given a text which is a request to perform a
certain - task,” the simulation employs that knowledge to figure out
what to do. Specifically, in understanding the task instructions and
performing the requested task, NETWORK uses this general
knowledge to elaborate and enrich the input it received, and then
calculates a solution from the knowledge-enriched textual input.

2.2 Task Networks
2.2.1 Cdnstruction of the Task Network

The texts to be understood by NETWORK are always brief requests to
perform some routine computing task. Texts were given to the
system in propositional form (after Kintsch, 1974), categorized as
INTHEWORLD or REQUEST propositions. An example of an
INTHEWORLD proposition might be, [EXIST FILEALETTER
INTHEWORLD] to represent that "there is a file called letter in the
world". An example of a REQUEST proposition might be [REQUEST
[SEND YOU MESSAGE TO-SOMEONE]].
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2.2.1.1 Generating the Elements of a Task Network

Given this propositional input, the simulation constructs various
knowledge enrichments, using its long-term memory as a source:

(a) Given a REQUEST, the simulation looks in its long-term memory
for the corresponding OUTCOME, and adds it to the the proposition
list. This is accomplished using a modification of the Raaijmaker &
Shiffrin (1981) search of associative memory model. In this model a
composite cue is used to search memory, activating only items which
are related to all components of the cue. Here, the composite cue
consists of two propositions; the REQUEST proposition and a
proposition of the form [OUTCOME-OF REQUEST $]. The intersecting
search utilizes these propositions to select an appropriate OUTCOME
proposition from long-term memory.

(b) For each proposition in a task proposition list, the simulation

- samples -with replacement from long-term memory n related nodes
with the probabilities specified by the entries of the long-term
memory matrix. These propositions are also added to the proposition
list.

(c) All plan elements are bound to relevant task objects in the world,
and added to the proposition list. The plan elements in long-term
'memory have variable slots, such as FILE?, TEXT?, etc. Given an
INTHEWORLD proposition such as [EXIST FILEALETTER INTHEWORLD],
the variable FILE? in each plan element would be bound to
FILEALETTER. If there is another FILE in the world, a second plan
element would be created, where FILE? is bound accordingly. Thus,
depending on the state of the world and the particular task to be
done, a varying number of bound plan elements is constructed from
the long-term memory set. These three types of knowledge
enrichment and the original propositions provide the input for the
next process.

2.2.1.2 Connectivity in the Task Representation
Having thus constructed the elements of the task representation,

their interrelations are constructed next. There are five specific
cases, and a general default rule used to determine these:
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(a) Given a text proposition which is a request, it is linked to all plan
elements with the same name. Thus, if there is a request to SEND
something to someone, this request is linked to all plan elements
with the name SEND (there are three such plan elements in Table 1).
(On the other hand, if there is a request to INCLUDE something in a
file, this request is not linked to any plan element, because there is
no plan element with the name INCLUDE.)

(b)

1. The OUTCOME proposition is linked to all plan elements that have
the selected outcome. Thus, if the outcome of a request is that
someone - receives the file "Letter”, this proposition is linked
positively to all plan elements that have the outcome [RECEIVE
SOMEONE FILEALETTER], i.e. all SEND and REPLY plan elements.

2. Likewise, a plan element which would produce an outcome
inconsistent with the requested outcome is given an inhibitory link
to the OUTCOME proposition.

(c) -All.plan elements that have all of their outcomes already existing
in the world are inhibited by the corresponding INTHEWORLD

_ proposition(s). - For. example,. the. plan-element [FIND 'FILEALETTER] is- -
inhibited if the proposition [KNOW FILEALETTER LOCATION
INTHEWORLD] exists in the world.

The next two cases .concern the interconnections among the plan
elements  themselves:

(d) If a plan element requires a condition X, this plan has a positive
link to all plan elements that produce the outcome X, resulting in a
type of causal chaining in the matrix. An example is shown in Figure
1.

(e)-If a plan element requires condition X, it has an inhibitory link to
all plan elements that have the outcome NOT-X, i.e. would destroy
condition X in the world. An example is also shown in Figure 1.

(f) The final case for determining interrelations is a default case,
creating a link between all propositions that share a common
argument. As discussed above in the section on long-term memory
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connectivity, this is used here as a substitute for a more precise
specification of the actual associative and semantic relations among
the propositions. All propositions sharing a common argument are
linked. This includes the case where one proposition is embedded as
an argument of another proposition.

The precise link strengths for the six cases described above are
parameters to be estimated for the model, subject to certain general
constraints. Inhibitory links (Cases b2, ¢, and e.above) must be made
relatively strong numerically, because they must not be
overwhelmed by the many positive connections in the network.
Specific. connections (Cases a, bl, and d above) should be stronger
than the default connection (Case f). Where no link is specified,
connections are set to zero.

It is important to note that these links are created dynamically for
each step of a task. Because, as mentioned earlier, previous actions
can change plan element outcomes, plan element outcomes can
-change from producing a specified outcome to not producing that
outcome and vice versa. Also, depending upon the actions selected,
propositions can either become added to or deleted from the -
-network. The benefits of this dynamic linking are revealed in a
subsequent section of this paper.

2.2.2 Integration of the Task Network

Through the above operations a coherence matrix C, consisting of the
relations between all pairs of task description, general knowledge
and plan element propositions, is created for each task NETWORK is
given to do. A vector is created with an element for each

proposition, the values of which specify a current activation value for
each. [Each element of the vector is assigned an initial activation
value:. the original k text propositions and the proposition.
representing the selected outcome are assigned a value of 1/k and all
other elements (i.e. associated general knowledge and plan

elements) are assigned a value of 0. From this starting vector A1
activation is propagated throughout the coherence network, C, until a
final stable activation vector Az is obtained. Formally, this means
that A1 is multiplied repeatedly by the matrix C, until it stabilizes,
i.e. the average change in activation value is less than some value e.
After each multiplication, elements with negative activation values
are set to 0, and all activation values are normalized, so that the sum
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of activation remains constant at 1 (Rumelhart & McClelland, 1986).
The final pattern of activation among the plan elements given by the
resulting activation vector Az determines the extent to which
NETWORK wants to execute each plan element. A very simple
decision rule is employed: execute the most strongly activated plan
element in Az.

2.2.2.1 Can-do and Want-to Nodes

At this point a complication arises, for frequently the most strongly
activated plan element has conditions necessary for its execution
‘which are not satisfied in the world. For instance, one cannot reply
to a mail message by sending a file, if there is no file to be sent, or if
one is at the system rather than at the mail level. It will not do
simply to inhibit all plan elements whose conditions in the world are
not satisfied, for understanding the instructions usually requires
planning future actions and thinking about hypothetical states of the
world. This impasse is solved by creating for each plan element an
associated can-do node. Thus, all calculations take place in the
network as described above, without regard for what is currently
possible in the world and what - is not. : The most activated-plan -
element "that results from these calculations, however, only portrays
what the system wants to do. The can-do brothers of these want-to
nodes determine what -actually happens:: they -are:-activated : only
from their corresponding want-to nodes and are inhibited by in-the-

-.++world - propositions unless: their conditions are -satisfied in the world.

Thus, one would find in general a state of affairs where the most
highly activated want-to planning node is not.the same as the most
highly activated can-do node. The latter, however, determines what
action will be taken immediately, and the former guides what will
happen during the course of solution.

There is, however, one further restriction on can-do nodes. If there
is a set of plan elements with the same name and outcome (e.g., SEND
by typing your message, and SEND by transmitting an existing file
both result in someone receiving the text), only the most strongly
activated want-to node transmits its activation to its can-do
counterpart, while the other "same outcome" can-do nodes are set to
a value of 0. Thus, in a field of plan elements that are all

alternatives for performing the same action, the system will always
insist on the most strongly activated alternative, even though it may
not be possible in the present state of the world: NETWORK will try to
change the state of the world so as to satisfy the conditions for what
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it wants to do, rather than execute a less desirable but feasible
alternative.

2.2.2.2 Adding Outcomes to the World: Planning Steps

Suppose that the most highly activated can-do node has been found.
Its execution will have a certain outcome. This outcome is
represented by one or more propositions (which are specified in the
outcome field of each plan element - see Figure 1), which are now
added to the network as in-the-world propositions. They are linked
to the already existing network by the same rules that were used in
creating the original network.. Thus, a new expanded network is
obtained, with somewhat different interrelationships among the
nodes. Most importantly, the newly added in-the-world propositions
will now inhibit the plan element that was just executed (by Rule c in
Section 2.2.1.2) and any other which would produce the same
outcome.

The -whole process of integration via spreading activation is now
repeated with the new network. As a result, a new can-do plan
-element will be executed, .its outcome will be added. to the network
~ as in-the-world propositions, and the integration cycle can be
repeated. The process stops when a can-do plan element is executed
that. produces as its -outcome: the: outcome :associated with :what -was.
originally requested in the task instructions. That is, of course, if the
-«simulation successfully understands the task. If not, the process will
go awry with irrelevant plan elements being executed. At present
we are only concerned with a simulation of correct solutions. An
error theory is not yet part of our model. The following section
explains how NETWORK uses the described processes to understand
and plan solutions to a subset of the specific tasks which it has been
given.

3. Understanding Tasks
3.1 The INCLUDE Task
3.1.1 The Instructions
NETWORK is presented with the following text: "Include an address

that you know in a letter that is in a file, starting at the system
level". In propositional form we get
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P1 [EXIST FILEALETTER INTHEWORLD]

P2 [EXIST TEXTALETTER INTHEWORLD]

P3  [EXIST TEXTAADDRESS INTHEWORLD]

P4  [IN TEXTALETTER FILEALETTER INTHEWORLD]

P5 [KNOW TEXTAADDRESS CONTENTS INTHEWORLD]

P6 [REQUEST [INCLUDE TEXTAADDRESS FILEALETTER] INTHEWORLD]
P7 [AT-LEVEL SYSTEM INTHEWORLD]

Obviously, the step from the text to these seven propositions is a
non-trivial one. Several inferences requiring situational knowledge
have been made. This aspect of the problem is not dealt with in our
model at -present, however. .- NETWORK's attempt at understanding
starts with P1-P7. These propositions have been marked as
INTHEWORLD, to distinguish them from knowledge elaborations and
plan-elements which do not have the same status.

3.1.2 Knowledge Elaborations

- There are-three components to the knowledge elaboration process.
First, the system calculates the outcome of what it has been

requested to do..-In-other words, NETWORK searches long-term
memory for the outcome of the request to include a text into a file.

It finds [OUTCOME-OF [INCLUDE TEXTAX FILEAY] [IN TEXTAX FILEAYX]]
and:binds X to ADDRESS and-Y. to-LETTER.: To produce this* outcome - - -
INTHEWORLD becomes the goal of the system.

Second, NETWORK uses P1-P8 (the original seven task propositions
and the newly selected outcome) to sample two associated
propositions each from long-term memory2. For INCLUDE, only four
associates were generated in this way, however, because the
sampling with replacement led to frequent duplications, and because
there were no long-term memory entries to sample from for certain
- propositions. . None of these associates turned out to have much
effect on the further course of events. Thus, associative knowledge
elaboration plays only a minor role in the solution of the INCLUDE
task. However, this phase plays a major part in understanding other
types of discourse (Kintsch, 1988), as well as in the extended
NETWORK simulation described in Section 4 below. Third, the whole
set of plan elements is selected from long-term memory and used in
the subsequent binding process.

2The number two is arbitrary; in various applications we have tried values
between two and ten. -
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3.1.3 Task-Appropriate Plan Elements

The variables contained in the plan elements available in long-term
memory (Table 1) are bound to the appropriate objects
INTHEWORLD. Specifically, FILE? is bound to FILEALETTER, and
TEXT? is bound once to TEXTALETTER and once to TEXTAADDRESS.
Thus, 33 plan elements are created from the original 26 for the task
network of the INCLUDE task: all plan elements containing the
variable TEXT? are duplicated, once for TEXTAADDRESS and once for
TEXTALETTER. Then the task connectivity matrix is created using the
- algorithms previously described in section 2.2.1.2.

3.1.4 Integration Cycles

The relationships between all pairs of the seven INTHEWORLD
propositions derived from the text, the outcome proposition, the four
associates generated by the knowledge elaboration process, and the
33 can-do and want-to-do pairs of plan elements are used to form
the entries of the 78 x 78 matrix C. Numerical link strengths were
assigned to C on the basis of informal trial-and-error explorations for
. a workable parameter set. Default links via argument overlap were
given the least weight, .4. Links among plan elements, which provide
the causal chaining, .were assigned a value.of .7, and request and
outcome links were weighted most heavily, 1.5. All inhibitory links
were- set. at--10.. This asymmetry was necessary to assure that the
few inhibitory connections were not overwhelmed by the many
positive links in the network.

A 1 x 78 activation vector A1 was defined with 1/8 for the first
eight INTHEWORLD elements (the seven given text propositions and
the selected outcome) and O for the remaining elements. A1 was

- multiplied by C nine times, until the average change in .activation
values was less than .0001.

Figure 2 shows the final activation values for the plan elements of
the network for the INCLUDE task. The original text propositions,
which are not shown in the figure, retained a relatively high level of
activation, but of more interest is the pattern of activation of the
can-do and want-to nodes. NETWORK wants most strongly to PASTE
the TEXTAADDRESS into the FILEALETTER; its next choice is to TYPE the
TEXTAADDRESS. However, neither of these plan elements have their
preconditions satisfied in the world, so that the corresponding can-do
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plan elements have activation 0. The strongest can-do plan element
is [FIND FILEALETTER]. It will fire, and, as a consequence a
proposition stating that the location of the FILEALETTER is now
known will be added to the INTHEWORLD list.

A new integration cycle begins in which the initial -activation vector
for step 2, A2, is multiplied by C until it stabilizes. The same two
want-to plan elements as before are still the most highly activated
ones, but they still do not have their preconditions met (Figure 3).
However,. the third-strongest plan element from the first settled
integration cycle, [EDIT FILEALETTER] now does have its precondition
satisfied - we know where the file is - the corresponding can-do is
activated and the system therefore enters the editor. This step, once
again, changes the state of the world. Not only does it change the
level at which NETWORK is operating, but is also results in the

- creation of several other propositions. These propositions reflect the
fact that what was true at the system level of the FILEALETTER is
now true of the BUFFERALETTER in the editor.

On the third integration cycle NETWORK (Figure 4), although it still
cannot act on its first choice because the TEXTAADDRESS is not in a
buffer that could be pasted into FILERALETTER-(a -precondition  for
PASTE), manages to [TYPE TEXTAADDRESS]. The outcome of this step
close to what we want (i.e. [IN TEXTAADDRESS
FILEALETTERADDRESS]), but not quite right yet.

At this time, the outcome of [EXIT FILE] changes. Whereas before the
text editing took place,the outcome of [EXIT FILE] was [NOT-AT
LEVEL EDIT], this has now been supplemented with an additional
proposition- which states that executing [EXIT FILE] now will also
result in the TEXTAADDRESS being in the FILEALETTERADDRESS, the
selected outcome for the specified request. This allows it to receive a
link from the strongly activated outcome proposition and permits
NETWORK to distinguish between quitting and exiting the editor, a
difference which it neglected prior to editing (see relative activation
values for QUIT and EXIT for steps 1, 2, and 3).

Another integration cycle is therefore performed, with the result of
the [EXIT EDITOR] plan element being most active as shown in Figure
5. Exiting the editor has the consequence that we are no longer at
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the edit level but at the system level, which is inconsequential for
present purposes. It also changes [IN TEXTAADDRESS
BUFFERALETTERADDRESS] into [IN TEXTAADDRESS
FILEALETTERADDRESS], which matches the outcome of the original
request to include the address in the letter. The task is solved, the
instructions have been understood.

3.2 The SEND Task

The second task to be described here does not illustrate any new
principles, but is considerably more complex than the INCLUDE task.
The - to-be-understood instructions are: "You have received a mail
message from a friend asking for you to send a paragraph from a file
containing a manuscript of yours. Start at the mail level after having
read the message." Table 2 shows these instructions in propositional
form, the outcome of the request to send the paragraph to someone,
and several associative knowledge elaborations, as well as the
original set of plan elements that NETWORK created for this task.

In the first step, the can-do node that fires is [ENTER SYSTEM]. There
were, - however, several want-to plan- elements..that - were more highly
“ activated than the one that could actually be:executed. Figure 6
shows the pattern of activation at this point.

At the bottom of Table 2 the outcome of this step is shown, as it has
now been added to the list of INTHEWORLD propositions. The next
integration step brings [FIND FILEAMANUSCRIPT] to the top of the
can-do elements, and once again the state of the world is slightly
changed thereby. In Step 3, the system enters the editor, with the
result that there is not just a FILEAMANUSCRIPT, but also a
BUFFERAMANUSCRIPT. That creates a new set of nodes, as it did in
INCLUDE, also shown at the bottom of Table 2, which are added to
the network. Next, the TEXTAPARAGRAPH is copied from the
FILEAMANUSCRTIPT in Step 4, and now resides in a buffer. In Step 5,
the TEXTAPARAGRAPH is pasted into a different buffer, which, in Step
6, becomes the FILEAPARAGRAPH when the system chooses to EXIT
the editor (rather than QUIT, which would have had a different
outcome). Since there is now a new file INTHEWORLD, all plan
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elements dealing with a file are duplicated, and the duplicates are
bound to FILEAPARAGRAPH.

Throughout these steps, NETWORK wanted to [SEND
TEXTAPARAGRAPH MAIL], as requested. In Step 7, however, this
plan element is blocked, because one of its preconditions, [NOT-EXIST
FILEAPARAGRAPH INTHEWORLD], has now been violated.3 On the
other hand, the newly created plan element [SEND FILEAPARAGRAPH
MAIL] is receiving some activation now. But all NETWORK can do is
to [ENTER MAIL]. Finally, in Step 8 [REPLY FILEAPARAGRAPH MAIL]
fires (its can-do node is actually tied with the corresponding SEND
element, and was chosen randomly, but either one would have had
the same effect; REPLY just saves typing in the receivers mail
address). The outcome implied by the original request has now been
produced, and the process stops. Figure 7 shows the final set of plan
element nodes in the network created for the SEND task and their
activation values4.

NETWORK has reasoned its way through eight different steps to

arrive at this result. Only the last of these was directly cued by the
instructions. The rest were. inferred by elaborating the .task
instructions with what NETWORK knows about the task and the
computer system on which it is to be executed, tracking the changes
that would. occur in the world if certain actions were . performed. . The -
processes ‘involved are those ordinarily involved in text ‘

-..comprehension. » What is special is that these processes operate - Sy

within a knowledge-rich domain. A lot of detailed knowledge about
what can be done and what the consequences of doing are has made
this rather intricate understanding process possible.

3.3 The REVISE Task

3Previously [KNOW TEXTAPARAGRAPH CONTENTS INTHEWORLD] was missing.
This was produced by the COPY plan element but before REPLY can take
advantage of it, this other violation occurs.

4Here the addition of the semantic information mentioned in section 2.2.1.2
makes a difference in NETWORK's solution. Because it was selected as general
information during knowledge activation, the proposition [ISA REPLY-
COMMAND SEND-COMMAND] allows the request to become bound to REPLY as
well as SEND. Activity thus flows from the REQUEST to the REPLY plan element,
which in turn further activates [ENTER MAIL], one of its preconditions.
Without this knowledge, NETWORK would try to SEND the file at the system level
instead.
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In Kintsch & Mannes (1987) it has been observed that subjects
providing verbal protocols of scriptal actions, for example "buying
groceries", employed special linguistic signals such as "and then" to
mark the major boundaries between the scriptal units. We have
therefore assumed that if such a linguistic marker occurs in an
instruction, it would lead the comprehender to segment the task at
this point into separate pieces. Thus, the instruction "You are to
revise a manuscript you are working on with a colleague by
removing a paragraph, and then send the revised manuscript to that
person” should be interpreted as two separate tasks, to be performed
in sequence.

That is how NETWORK approaches this task. It reads only up to the
"and then", and proceeds to revise the manuscript as requested: it
first finds the FILEAMANUSCRIPT, enters the editor, cuts the
TEXTAPARAGRAPH from the manuscript, and creates a file containing
the revised manuscript when exiting the editor. This finishes the
first part of the task, and NETWORK now reads the remainder of the
instructions. In the final integration cycle [SEND FILEAMANUSCRIPT
SYSTEM] turns out to be the strongest want-to as well as can-do
node, and the problem is solveds.

If the "and then" in the task instructions is neglected, NETWORK still
understands : the REVISE task, with the main difference being - that the
SEND-element is now strongly activated from the very beginning.
-.However, -longer, - more -complex -tasks very- likely could not be solved .. ...
without explicit linguistic markers that show how the problem can be
segmented.

3.4 The PRINT-AND-DELETE Task

Conflict resolution has long been of interest in the planning

_ literature. A well known example of a problem with conflicting
subgoals is "paint the ceiling and paint the ladder" (Sacerdoti, 1977).
"Print and delete the file eggplant" is an analogue to this problem in
NETWORK's domain. This class of problems has often proved difficult
for artificial intelligence programs to handle because of the explicit
task subgoaling procedures these programs use. Standard subgoaling
procedures would separate the compound task into its constituent

SNote that in solving this task NETWORK chose to send a file from the system
level. In the SEND task, there was a mail message to reply to so NETWORK had
the opportunity to reenter the mail system in order to complete the request.
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subparts, painting the ceiling and painting the ladder, with no
immediate regard for interactions among these parts. Sophisticated
conflict resolution procedures must then be employed, as in the work
of Sussman (1975), to take task sub-part interdependencies into
account.

Figure 8 shows how NETWORK handles this situation. For brevity,
only a subset of relevant-plan elements are shown. In the first step,

- PRINT is most highly activated among the want-to nodes, but not

DELETE, because it is inhibited by PRINT (deleting the file would
remove a precondition for printing it just as it does for finding it, see
Figure 1). -Thus, NETWORK .first finds the file, prints it in the second
step, and, with the inhibition from PRINT removed because [PRINT
FILEAEGGPLANT] itself is now inhibited by the already existing
printed copy of that file INTHEWORLD, deletes it in the third step.
Here the causal chaining has done the work which typically required
resolution procedures.

4. Case-Based Reasoning

The plan elements are generalized, decontextualized knowledge

»eXpert: -computer- <users --are vpresumed to have and employ in . e

B

understanding tasks like the ones described above. It is, however,
entirely unreasonable to assume that experts who have learned
these rules do not also have any episodic memory traces of having
solved such problems. It is equally implausible that such memory
traces should play no role in their understanding of similar problems.
Indeed, the large literature on reminding provides many illustrations

- of *the importance that the memory of specific problem solving

episodes plays (e.g. Schank, 1982). Current conceptualizations of
case-based reasoning are strongly influenced by the seminal work of
Kolodner in this field (e.g. Kolodner & Simpson, 1984). Basically,
case-based reasoning systems attempt to retrieve plans from
memory, select a relevant one, modify it as needed, and evaluate its
usefulness. There is no doubt that this kind of reasoning sometimes
occurs in peoplé's problem solving, and that it can be an effective
artificial intelligence device. There are also, however, other ways in
which episodic memory can influence the understanding process, less
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deliberate ones, which do not make extensive demands on processing
resources.

In a comprehension model like the present one, remembered
episodes become themselves part of the associative network, thereby
influencing the course of future events. Remembered problem
solving episodes will be sampled during the construction of a task
representation through the process of associative knowledge
elaboration. In fact, the more similar a new task is to a remembered
episode, the more likely it will be that the remembered episode will
be retrieved from long-term memory, because the representation of
the memory trace and the propositional representation of the to-be-
understood text share a considerable amount of argument overlap.
Once incorporated in the task representation, the memory episode
becomes linked with plan elements that were used in past solutions
of the task, often changing the spread of activation, sometimes
considerably. The effects might be beneficial, if the remembered
plan elements are, in fact, relevant in the new situation, or they
might misdirect the whole process if they are not.

This is a quite different model.than most other approaches to.case- . .
based reasoning. These often require selection, evaluation, and
modification processes which can be difficult to implement. In
NETWORK, there are no case selection processes, no case evaluation,
and no modification of plans by analogy, etc. Because cases are

e

new selection procedure must be introduced for cases and because a
number of cases can play a role in selectively activating certain plan
elements, no case evaluation procedures are required to choose
among alternatives. Finally, NETWORK does not choose a case and
follow it in completing a task. Hence there are no plan modification
techniques because we don't run into the situation of there being no
. appropriate- case to follow. When NETWORK understands a problem
text, we simply add a trace of that episode to its long-term memory,
thus changing the context for future understanding. We need no new
model of case-based reasoning at all, rule-based and case-based
reasoning involve the same processes in NETWORK.

There is a problem, however, in deciding exactly what information is
contained in a memory episode. It is clear that it cannot be the

whole processing trace of the solution process. However, it is not -
clear exactly which aspects of the process are represented in the
memory trace. The available psychological data are not sufficiently
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informative on this point. A perusal of the AI and case-based
reasoning literature did not reveal any obvious principles for case
construction either. We therefore were reduced to making some
quite arbitrary choices. We decided to construct memory episodes
which consisted of the arguments of three propositions from a task
- network which were not plan elements and which were most highly
activated at the time the task was completed, plus the plan elements
that were fired in the course of planning the task. For example, the
memory trace formed as a result of solving the INCLUDE problem
(Section 3.1) consists of the episode name, the six arguments of the
three most strongly activated non-plan element propositions, plus
.the four plan elements (in italics) needed for that task:

[CASEINCLUDE TEXTALETTER FILENLETTER TEXTAADDRESS FILEALETTER
TEXTAADDRESS FILEALETTER FIND EDIT TYPE EXIT]

Note that FILEALETTER appears three times as an argument of
CASEINCLUDE, and hence will be linked with any proposition or plan
element containing FILEALETTER three times, with a resulting link
strength of 1.2 instead of .4 as would result from a single argument
overlap. Therefore, any.new .problem.involving a FILEALETTER will
tend to make NETWORK want to FIND,-EDIT, TYPE and EXIT again.
‘(Note that the sequence in which these arguments occur in the case
propositions is irrelevant and: just “happens to follow -the. temporal ..
order of the solution in this example.)

Figure 9 shows the performance of NETWORK on the first step of the
REVISE task (Section 3.3) with and without memory for cases. The

. only ,memory for cases NETWORK had at this .point were for. the
INCLUDE, SEND, and REVISE (two part) tasks. Of these four cases,
three were actually picked up by the knowledge elaboration process
(Section 3.1.2): the two REVISE episodes and the SEND episode. Thus,
the system remembered having done this problem before, but it also
remembered having done a similar problem that also involved
sending a mail message and dealt with a manuscript. Because these
remembered cases are linked strongly to both the text propositions
and plan elements, they become strongly activated. Appropriately,
the REVISE1l episode is the most strongly activated element in the
task representation at this point. However, as far as the want-to
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plan elements go, their overall pattern of activation is similar to the
non-case based pattern. The presence of cases served mostly to
further increase the strength of relevant plan elements, like FIND
and decrease that of irrelevant ones (like READ and FIND MESSAGE).
On the other hand, the irrelevant plan element [PASTE
TEXTAPARAGRAPH BUFFER] which was quite weak in the original
REVISE solution is also strengthened because it gets activation from
the SEND episode, ‘where it was relevant. Thus, by allowing cases to
support different plan elements to different degrees, neither case
selection nor evaluation procedures are necessary. This is desirable
because it requires no extension of the model to incorporate cases
and .make them useable. . We presume, however, that given a richer
episodic memory, fatal interference effects could arise in this way.
Of course, since we are concerned with a simulation of how real
people solve these routine problems, similar interference effects can
probably be observed in people, too.

The most attractive feature of the treatment of case-based reasoning
within NETWORK is the fact that we did not need to introduce any

new machinery to deal with it. NETWORK doesn't really make a
distinction between .rule-based and - case-based -reasoning.. - Nor. does. .-
it distinguish between- generic, semantic knowledge (e.g. we write
letters to friends) and-episodic or case knowledge (e.g. I sent a letter
to Mike yesterday) in contrast to what has been .suggested by

Tulving (1972). Remembered cases are simply part of the context in

e -rivwhichsinstructions :.are--understood. . They help .or interfere with

understanding in just the same way as, say, textual information
would.

At present it is not possible to provide a fuller treatment of case
memory within NETWORK. The research findings needed to decide
many of the open questions are unfortunately not yet available. How
-much and what of an episode is actually remembered? What is the
course of forgetting? To what extent do generalizations occur? (At
present, having printed and deleted the FILEAEGGPLANT would be of
no use when told to do the same for the FILEALETTER.)

5. Conclusion

NETWORK does some interesting things, in interesting ways. It is not
meant to be an Al program to help us solve routine computing tasks
- although some of the ideas developed here might turn out to be
useful in that respect. NETWORK is a simulation of how people
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understand and perform such tasks. It is, however, only loosely
‘rooted in empirical fact: its basic notions are derived from human
‘protocols, but no attempt has as yet been made to validate the model
empirically. It is, rather, an elaborate Gedankenexperiment which
includes a computer simulation. On the one hand, such a project can
be seen as a necessary preparatory step for further empirical and
theoretical research on understanding instructions as texts and for
testing the model, as will be suggested below. = Equally important,
however, is another feature of the research reported here. By
exploring in detail how a theory of discourse comprehension can
account for planning behavior, we have taken a significant step

- towards *delimiting : the proper, somewhat expanded, domain- of
comprehension theories.

The performance of routine tasks such as the ones studied here

cannot be understood in terms of fixed scripts. Any model for these

tasks must be generative, like models of language production, and for

much the same reason. Familiar elements are recombined in ever

novel ways. We have seen above that NETWORK can do that; Mannes

(1989) has shown that NETWORK has no trouble performing a truly

unique -nonsense task, -planning a- sequence- of actions -that..would

make no sense to a user. But just as an experienced user could do so

upon request, NETWORK was able to do so also, while it would be

absurd to assume the existence of a.script for a nonsensical .action:

sequence. Fixed- scripts: cannot be the solution for these problems, :
coremss - wand, <asewephave rargued. elsewhere (Kintsch & Mannes, 1987), ‘they do <

not provide a satisfactory solution in other situations which require

scriptlike knowledge either. Structures like scripts must be

generated themselves.

One type of process that can generate such structures has been
described by problem solving theories. For specificity, we take these
to be the theories directly or indirectly derived from the General
Problem Solver of Ernst and Newell (1969), although they have, of
course, a longer history than that. Generally, these theories describe
processes that are under conscious control at least in part, that are
relatively resource demanding, that are often time consuming, and
that are characteristic of tasks which are typically experienced as
difficult, e.g. the cannibals and missionaries problem. On the other
hand, the processes involved in performing routine computing tasks
are more or less automatic, non-demanding, rapid, and easy. In
terms of their subjective experience, they are more like
comprehension or perception than "real" problem solving. We have
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shown here that, in accordance with that subjective impression, these
processes can, indeed, be modelled by a theory of comprehension as
a largely automatic process. This in no way proves that the
comprehension view is more adequate than the problem solving
interpretation, but we at least provide a specific, worked-out
alternative to the traditional view.

The construction-integration -model of discourse - comprehension -
emphasizes bottom-up processes. It does not try to understand a
text by attempting to capture it with an already derived
interpretation from a ready-made schema over it. Instead, it
carefully analyzes the input it receives and generates a structure
appropriate for it. NETWORK chooses plan elements in response to
the dynamically changing state of the world, making planning more
like a reaction to the environment than a conscious process which is
divorced from the world. NETWORK lets the environment help to
guide the planning. The situation is not a static constraint to
NETWORK, but it is the continually changing context which drives the
action. This sort of interleaving of planning and action has been
advocated for planning systems before, e.g. by McDermott (1978)
and Agre & Chapman (1987). Indeed, NETWORK probably comes.
closer to a model of situated cognition (Greeno, 1989) than traditional
accounts of problem solving.

NETWORK reacts to changes in the situation, somewhat like persons

<. #swho-have~acquired - some. routine with the Tower of-Hanoi puzzles do . . .

when they let their moves be cued by the actual configuration of the
stacks (Simon, 1975), or in the examples of display-based problem
solving-such as making coffee-discussed by Larkin (1989). There is,
however a difference that should be of considerable interest to
system designers between environmental events such as moving a
disk to another peg, or putting a filter into the filter holder, and
finding a file, or exiting the editor. The former are perceptually
salient, so that changes in the environmental state can hardly be
missed and thus can safely guide behavior. The events NETWORK is
concerned with, on the other hand, are signalled either by subtle
perceptual cues, or have no direct perceptual effects at all (the
contents of a buffer are now in a file) the user has to know what
happens! NETWORK, therefore, models the experienced user; to allow
a novice to use a computer system more like an experienced user one
would have to redesign the system so as to shift much of the burden
of keeping track of the changing environment from the user's
knowledge to the external world.



Routine Computing
26

Future work on NETWORK will concentrate most urgently on
providing an error theory for routine computing tasks. Only at that
point would a detailed empirical evaluation of the model be feasible,
along the lines of what Cummins et al. (1988) did for word
arithmetic problems. The consequences of specific bugs (e.g. what if
there is no causal facilitation among plan elements, what if inhibitory
links are too weak, etc.?) on NETWORK's performance could be
explored and compared with human error data.

Psychological research on memory for cases might put the use of

. case-based reasoning in NETWORK on a more stable foundation, as
discussed in Section 4. In addition, to make NETWORK even more
reactive to its environment, a richer representation of that
environment and its non-propositional aspects will be required.
Finally, there are questions as to how learning might be incorporated
in a system like NETWORK, which we don't understand at present, or
how explanations could be incorporated into NETWORK, which seems
rather more obvious, in principle.

Thus, the NETWORK project has rich developmental possibilities. Of
course, NETWORK does not stand alone, but is part of an effort to
model human understanding in a variety of situations in terms of the
construction-integration model. . The : theory . of - comprehension :.should
have the same central role within cognitive science as understanding

... stexts..and - situations .has human cognition.
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Three plans in their generic (unbound) form.

NAME (FIND FILE)
PRECONDITION(S) (AT-LEVEL SYSTEM)
(EXIST FILE)
~ OUTCOME(S) (KNOW FILE LOCATION)
NAME (DELETE FILE)
PRECONDITION(S) (AT-LEVEL SYSTEM)
(EXIST FILE)
OUTCOME(S) (KNOW FILE LOCATION)
NAME (PRINT FILE)
PRECONDITION(S) (AT-LEVEL SYSTEM)
(EXIST FILE)
(KNOW FILE LOCATION)
OUTCOME(S) (EXIST HARDCOPY FILE)
TO A PLAN ELEMENT PROVIDING
THAT SPECIFIC OUTCOME
FIND DELETE  PRINT
FIND -
FROM THE PLAN
ELEMENT REQUIRING

A SPECIFIC OUTCOME  DELEIE

PRINT

+ -

1. A sample of three plan elements are shown in the top panel and the
resulting causal chain in matrix form in the bottom panel.



EDIT FALETTER |
CUT TADDRESS FALETTER |
COPY TAADDRESS FALETTER |

PASTE T*ADDRESS FALETTER
PASTE T*ADDRESS B

TYPE TAADDRESS

QUIT FALETTER

EXIT FALETTER

FIND FALETTER

DELETE FALETTER

READ FALETTER

DUPLICATE FALETTER

ENTER MAIL
REPLY FMLETTER MAIL
REPLY TAADDRESS MAIL

PLAN-NAME

SEND FALETTER SYSTEM

READ MESSAGE |
FIND MESSAGE |
DELETE MESSAGE |
COPY MESSAGE |

CUT TALETTER FALETTER

COPY TALETTER FMETTER |

PASTE TALETTER FMLETTER
PASTE TALETTER B

TYPE TALETTER

REPLY TALETTER MAIL
SEND TALETTER MAIL

RENAME FALETTER FANEWNAME |

DIFFERENCES FALETTER FALETTER
PRINT FALETTER

0.00

2. Activation values for all plan elements for the first step of the INCLUDE
task. Decisions are based on the can-do values.

ENTER SYSTEM |

SEND FALETTER MAIL |
SEND TAADDRESS MAIL |
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EDIT FALETTER |

CUT T*ADDRESS FALETTER
COPY T"ADDRESS FALETTER

PASTE TAADDRESS FALETTER |

PASTE T*ADDRESS B
TYPE T*ADDRESS

QUIT FALETTER

EXIT FALETTER

FIND FALETTER

DELETE FALETTER

READ FALETTER
DUPLICATE FALETTER
ENTER SYSTEM

ENTER MAIL

REPLY FALETTER MAIL
REPLY T*ADDRESS MAIL
SEND FALETTER MAIL
SEND TAADDRESS MAIL
SEND FALETTER SYSTEM

PLAN-NAME

READ MESSAGE |

FIND MESSAGE

DELETE MESSAGE

COPY MESSAGE

CUT TALETTER FALETTER
COPY TALETTER FALETTER
PASTE TALETTER FALETTER
PASTETALETTER B

TYPE TALETTER [

REPLY TALETTER MAIL

SEND TALETTER MAIL

RENAME FMETTER FANEWNAME
DIFFERENCES FALETTER FALETTER
PRINT FALETTER
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3. Activation values for all plan elements for the second step of the
INCLUDE task. Decisions are based on the can-do values.



EDIT FALETTER |
CUT TAADDRESS FALETTER |

COPY TAADDRESS FALETTER
PASTE TAADDRESS FMETTER
PASTE TAADDRESS B

TYPE TAADDRESS

QUIT FALETTER

EXIT FMLETTER

FIND FALETTER

DELETE FALETTER

READ FALETTER

DUPLICATE FALETTER
ENTER SYSTEM

ENTER MAIL

REPLY FALETTER MAIL
REPLY TAADDRESS MAIL
SEND FALETTER MAIL

SEND T*ADDRESS MAIL

PLAN-NAME

READ MESSAGE

SEND FALETTER SYSTEM |

FIND MESSAGE |

DELETE MESSAGE |

COPY MESSAGE |

CUT TALETTER FALETTER |

COPY TMLETTER FALETTER
PASTE TALETTER FALETTER
PASTE TALETTERB

TYPE TALETTER

REPLY TALETTER MAIL
SEND TALETTER MAIL

RENAME FMETTER FANEWNAME |
DIFFERENCES FALETTERFMETTER |

PRINT FALETTER

0.00

4, Activation values for all plan elements for the third step of the INCLUDE
Decisions are based on the can-do values.

task.
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EDIT FALETTER |

CUT TAADDRESS FALETTER
COPY T*"ADDRESS FALETTER

PASTE T"ADDRESS FALETTER |

PASTE TAADDRESS B
TYPE T*"ADDRESS
QUIT FALETTER

EXIT FALETTER

FIND FALETTER
DELETE FMETTER

READ FALETTER |

DUPLICATE FALETTER
ENTER SYSTEM

ENTER MAIL

REPLY FALETTER MAIL
REPLY T*ADDRESS MAIL
SEND FALETTER MAIL
SEND T*ADDRESS MAIL
SEND FALETTER SYSTEM
READ MESSAGE

PLAN-NAME

FIND MESSAGE |

DELETE MESSAGE

COPY MESSAGE ]
CUT TALETTER FALETTER |

COPY TALETTER FMETTER

PASTE TALETTER FALETTER |

PASTE TMLETTERB

TYPE TMLETTER |

REPLY TALETTER MAIL

SEND TALETTER MAIL

RENAME FALETTER FANEWNAME
DIFFERENCES FALETTER FALETTER
PRINT FALETTER

5. Activation values for all plan elements for the fourth step of the
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INCLUDE task. Decisions are based on the can-do values.
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EDIT FAMANUSCRIPT

CUT T"PARAGRAPH FAMANUSCRIPT |

COPY TAPARAGRAPH FAMANUSCRIPT ——

PASTE TAPARAGRAPH FAMANUSCRIPT

PASTE TAPARAGRAPH Btz

TYPE TAPARAGRAPH |
QUIT FAMANUSCRIPT

EXIT FAMANUSCRIPT  frmmmrreey

FIND FAMANUSCRIPT 7=

DELETE FAVANUSCRIPT |
READ FAMANUSCRIPT |
DUPLICATE FAMANUSCRIPT |
ENTERSYSTEM 9

ENTERMAL |7

REPLY FAMANUSCRIPT MALL |

PROPOSITION

REPLY TAPARAGRAPH MAIL |

SEND FAMANUSCRIPT MAIL

SEND TAPARAGRAPH MAIL bz

SEND FAMANUSCRIPT SYSTEM [
READ MESSAGE

FIND MESSAGE &

DELETE MESSAGE |

COPY MESSAGE &

RENAME FAMANUSCRIPT FANEWNAME |
DIFFERENCES FAPARA FAMANU |

PRINT FAMANUSCRIPT

J cAN-DO

WANT-TO

6. Activation values for all plan elements for the first step of the SEND
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task. Decisions are based on the can-do values.
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EDIT FAMANUSCRIPT
CUT TAPARAGRAPH FAMANUSCRIPT
COPY TAPARAGRAPH FAMANUSCRIPT
PASTE TAPARAGRAPH FAMANUSCRIPT |
PASTE TAPARAGRAPH B |

TYPE TAPARAGRAPH |

QUIT FAMANUSCRIPT
EXIT FAMANUSCRIPT
FIND FAMANUSCRIPT
DELETE FAMANUSCRIPT
READ FAMANUSCRIPT

DUPLICATE FAMANUSCRIPT |
ENTERSYSTEM |

ENTER MAIL |

REPLY FAMANUSCRIPT MAIL

REPLY TAPARAGRAPH MAIL

SEND FAMANUSCRIPT MAIL |
SEND TAPARAGRAPH MAIL ]
SEND FAMANUSCRIPT SYSTEM |

READ MESSAGE
FIND MESSAGE
DELETE MESSAGE
COPY MESSAGE
EDIT FAPARAGRAPH
CUT T*PARAGRAPH FAPARAGRAPH
COPY TAPARAGRAPH FAPARAGRAPH
PASTE TAPARAGRAPH FAPARAGRAPH
QUIT FAPARAGRAPH
EXIT FAPARAGRAPH

PROPOSITION
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FIND FMPARAGRAPH |

DELETE FAPARAGRAPH

READ FAPARAGRAPH
DUPLICATE FiLEAPARAGRAPH
REPLY FAPARAGRAPH MAIL

SEND FAPARAGRAPH MAIL |
SEND FAPARAGRAPH SYSTEM |
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RENAME FAMANUSCRIPT FANEWNAME |
RENAME FAPARAGRAPH FANEWNAME |

DIFFERENCES FAPARA FAMANU
PRINT FAMANUSCRIPT
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PRINT FAPARAGRAPH |

B CcAN-DO

WANT-TO

M i
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7. Activation values for all plan elements for the last step of the SEND task.
Decisions are based on the can-do values.
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PRINT ]
RENAME ]
COPYMS |

DELETEMS ]
FINDMS ]
- READMS ]
SENIFS ]
SENDTM ]
SEMDEM ]
REPLYTM ]
REPLYFM
ENTER ML
ENTERSYS
DUPLICATE
READ |
DELETE |
FIND
EXIT
QuIT
TYPE
PASTE BUFFER
PASTE FILE
copY
cut
EOIT

M PR/DELSTEP2

M PR/DEL STEP3

PRINT
REMAME
COPYLIS
DELETELS
FINDMS
READMS
SENTFS
SENDTM
SEHDFM
REPLYTM
REPLYFM
ENTER ML
ENTERSYS
DUPLICATE
READ
DELETE
FIND
EXIT
QuIT
TYPE
ASTE BUFFER
PASTE FILE
ﬁ« M PR/DEL STEP1
EDIT
1 v T L) v
0.0 0.1 0.2 0.3
PRINT
REMAME
COPYMS |
DELETEMS ]
FINDMS |
READMS |
SENTFS |
SENDTM ]
SENDFM |
REPLYTM ]
e
ENTE
ENIERSYS r
DUPLICATE |
READ
DELETE
FIND
EXIT
QuiT
TYPE
PASTE BUFFER
PASTE FILE
coPY
cut
EDIT ]
0.0

T
0.1

0.2 0.3

ACTIVATION VALUE

0.2

Activation values for all plan elements for the three steps of the

PRINT/DELETE task.

3.




EDIT FAMANUSCRIPT

CUT T"MMANUSCRIPT FAMANUSCRIPT
COPY TAMANUSCRIPT FAMANUSCRIPT
PASTE TAMANUSCRIPT FAMANUSCRIPT
PASTE TAMANUSCRIPT BUFFER
TYPE TAMANUSCRIPT

QUIT FAMANUSCRIPT

EXIT FAMANUSCRIPT

FIND FAMANUSCRIPT

DELETE FAMANUSCRIPT

READ FAMANUSCRIPT
DUPLICATE FAMANUSCRIPT
ENTER SYSTEM

REPLY FAMANUSCRIPT MAIL
REPLY TAMANUSCRIPT MAIL
SEND FAMANUSCRIPT MAIL
SEND TAMANUSCRIPT MAIL
SEND FAMANUSCRIPT SYSTEM
READ MESSAGE

FIND MESSAGE

DELETE MESSAGE

COPY MESSAGE

CUT T"PARAGRAPH FAMANUSCRIPT
COPY TAPARAGRAPH FAMANUSCRIPT
PASTE T"PARAGRAPH FAMANUSCRIPT
PASTE T"PARAGRAPH BUFFER

TYPE TAPARAGRAPH

REPLY TAPARAGRAPH MAIL

SEND TAPARAGRAPH MAIL

RENAME FAMANUSCRIPT FANEWNAME
DIFFERENCES FAMANUSCRIPT FA
PRINT FAMANUSCRIPT

0

PROPOSITION

9. Activation values for the first step of REVISE using NETWORK with and

without cases.
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Table 1

Plan element names

(EDIT FILE?)
(CUT TEXT? FILE?)

(COPY TEXT? FILE?)
(PASTE TEXT? FILE?)
(PASTE TEXT? BUFFER)
(TYPE TEXT?)

(QUIT FILE?)

(EXIT FILE?)

(FIND FILE?)

(DELETE FILE?)

(READ FILE?)

(DUPLICATE FILE?)

(ENTER SYSTEM)

(ENTER MAIL)

(REPLY FILE? MAIL)
(REPLY TEXT? MAIL)
(SEND FILE? MAIL)

(SEND TEXT? MAIL)

(SEND FILE? SYSTEM)
(READ MESSAGE)

(FIND MESSAGE)

(DELETE MESSAGE)

(COPY MESSAGE)

(RENAME FILE? FILEANEWNAME)
(DIFFERENCES FILE? FILE?)
(PRINT FILE?)



Table 2

Contents of the Input List for SEND

Task Description

(P13 (EXIST TEXTAMANUSCRIPT INTHEWORLD))
(P14 (EXIST TEXTAPARAGRAPH INTHEWORLD))
(P15 (EXIST FILEAMANUSCRIPT INTHEWORLD))
(P16 (EXIST MESSAGE INTHEWORLD))

(P17 (KNOW MESSAGE LOCATION INTHEWORLD))
(P53 (IN MESSAGE MAIL INTHEWORLD))

(P18 (READ MESSAGE INTHEWORLD))

(P19 (IN TEXTAPARAGRAPH FILEAMANUSCRIPT INTHEWORLD))

Task Request
(P20 (REQUEST MESSAGE P21 INTHEWORLD))
(P21 (RQSEND TEXTAPARAGRAPH INTHEWORLD))

Task Outcome Selected from Long-term Memory
(P22 (OUTC21RECEIVE TEXTAPARAGRAPH))

Some General Knowledge

(P36 (USE MAIL STUDENTS))

(P52 (NOTIN TEXTAPARAGRAPH FILEAMANUSCRIPT))
(P34 (IS MESSAGE SHORT))

(P26 (OUTC25NOTIN TEXTAPARAGRAPH FILEAMANUSCRIPT))
(P49 (KNOW FILEAMANUSCRIPT LOCATION))

(P56 (ISA REPLY-COMMAND SEND-COMMAND))

(P51 (IN TEXTAPARAGRAPH BUFFER))

(P31 (SUBMIT MANUSCRIPT))

(P30 (ISA TEXTAPARAGRAPH TEXT))

(P43 (IS TEXTAPARAGRAPH LONG $P22))

The Original Set of Plan-elements

(L1 (EDITF FILEAMANUSCRIPT))

(L2 (CUTTF TEXT"PARAGRAPH FILEAMANUSCRIPT))
(L3 (COPYTF TEXTAPARAGRAPH FILEAMANUSCRIPT))
(L4 (PASTETF TEXTAPARAGRAPH FILEAMANUSCRIPT))
(L5 (PASTETB TEXT"PARAGRAPH BUFFER))

(L6 (TYPET TEXTAPARAGRAPH))

(L7 (QUITF FILEAMANUSCRIPT))

(L8 (EXITF FILEAMANUSCRIPT))

(L9 (FINDF FILEAMANUSCRIPT))



(L10 (DELETEF FILEAMANUSCRIPT))

(L11 (READF FILEAMANUSCRIPT))

(L12 (DUPLICATEF FILEAMANUSCRIPT))

(L13 (ENTERSYS SYSTEM))

(L14 (ENTERML MAIL))

(L15 (REPLYFM FILEAMANUSCRIPT MAIL))
(L16 (REPLYTM TEXTAPARAGRAPH MAIL))
(L17 (SENDFM FILEAMANUSCRIPT MAIL))
(L18 (SENDTM TEXTAPARAGRAPH MAIL))
(L19 (SENDFS FILEAMANUSCRIPT SYSTEM))
(L20 (READM MESSAGE))

(L21 (FINDM MESSAGE))

(L22 (DELETEM MESSAGE))

(L23 (COPYM MESSAGE))

(L24 (RENAME FILEAMANUSCRIPT FILEANEWNAME))
(L25 (DIFFERENCES FILEAMANUSCRIPT FILEA))
(L26 (PRINT FILEAMANUSCRIPT))

Outcome Propositions from Steps One through Three

(P41 (AT-LEVEL SYSTEM INTHEWORLD)) Step 1

(P201(KNOW FILEAMANUSCRIPT LOCATION INTHEWORLD)) Step 2
(P202(AT-LEVEL EDIT BUFFER"MANUSCRIPT INTHEWORLD)) Step 3
(P203(EXIST BUFFER"MANUSCRIPT INTHEWORLD)) Step 3

(P204(IN TEXTAPARAGRAPH BUFFER"MANUSCRIPT INTHEWORLD)) Step 3



