Accounting for Script Generation:
A Model with Connectionist
and Symbolic Components

by
Suzanne M. Mannes and Stephanie M. Doane
Institute of Cognitive Science

University of Colorado
Campus Box 345
Boulder, CO 80309-0345

ICS Technical Report #89-8

Accounting for Script Generation:
A Model with Connectionist and Symbolic

Components

Suzanne M. Mannes and Stephanie M. Doane!l

Institute of Cognitive Science
University of Colorado

1The research reported in this paper was supported by grant number
ARIMDA903-86-C0143 from the Army Rescarch Institute and grant number
IRI-8722792 from the National Science Foundation. We gratefully acknowledge

the insightful comments of Mike Mozer on an earlier draft of this paper.

Abstract

For many years researchers have attempted to model human
behavior in familiar situations using the notions of schemata and
scriptre presentations. Much psychological data exists to support the
notion that humans use script or schema-like representations in their
interactions with the world (e.g., Bower, Black, and Turner, 1979).
Purely symbolic models and purely connectionist models each have
difficulty accounting for both the contents and sequentiality of
scripts. This paper will review several of the approaches that have
been proposed to account for human behavior regarding scripts and
schemata. Following this, a hybrid model is proposed which allows
us to model scriptal behavior. It is then shown how the model deals
effectively with traditional and non-traditional AI problems which
lend themselves to scriptal representations.

A major goal of cognitive science is to provide descriptions of well
established human cognitive phenomena. To accomplish this
effectively, it is essential that the behaviors chosen to be modeled
are well known and supported by a large quantity of experimental
data. This assures that cognitive scientists are modeling relevant
behaviors and allows significant comparisons between the modeling
process and those observed in human subjects.

We describe some experimental work that supports the notion of
scripts as psychologically real. We then discuss traditional symbolic
and recent connectionist methods for modeling these scripts. It is
argued that purely symbolic and connectionist methods each cannot
account for all of the data, and a hybrid model with symbolic and
connectionist components is described. We use this model to
simulate data from subjects describing how they perform routine
computing tasks, and subjects producing complex UNIX2 commands.
Benefits of the hybrid formalism will then be presented.

One of the most interesting and consistent findings in the
psychological literature concerns the psychological validity of scripts
and schemata as representations in memory (e.g., Bower, Black, &
Turner, 1979). Traditional approaches to modeling and accounting
for schemata have suggested large stable structures (as in the work
of Minsky, 1975 and Schank & Abelson, 1977). These have been
successful with regard to schemata which change little from
experience to experience, but not with unusual or novel instances of
schemata. More recent attempts at modeling schemata have quite
different characteristics. They tend to approach the concepts of
schemata in a bottom up manner: Composing schemata from a set of
primitive features (as in the room schemata work of Rumelhart,
Smolensky, McClelland, and Hinton, 1986). These methods have been
successful in modeling static schemata, but have weaknesses when it
comes to modeling schemata of a temporal or causal nature. In light
of the particular strengths and shortcomings of these past attempts,
the hybrid model we propose appears to be a suitable alternative to
either of these.

2UNIX is a registered trademark of AT&T.

Scripts and Schemata as a Domain

Schematic representations or schemata have typically been viewed
as the body of knowledge a person or culture has about a particular
event or state of the world; e.g., what a kitchen looks like or what
one would typically find at a zoo. Scripts can be seen as a
subcategory of schemata - causal schemata - in which the
information contained in the schemata is ordered sequentially.
Knowledge of what happens when we go to a restaurant for a meal or
to the grocery store to buy groceries are examples of the events
considered to be scriptal.

The original work of Bartlett (1932) showed how powerful schemata
can be in affecting comprehension and retention of stories and
pictures. In his experiments, Bartlett often found that topics or ideas
which were out of place in the context of the more general topic
being learned, were often not remembered at the time of recall. Out
of context knowledge which was not forgotten was often changed to
be more in accordance with the topic being learned, and contextually
appropriate items which were not studied often intruded in subject's
recollections. The converging evidence from many studies led
Bartlett to postulate the existence of a schema and researchers have
been trying to determine the nature of this concept ever since.

Experimental Evidence

Experimental evidence regarding scripts and their role in memory
has been provided by a series of experiments by Bower, Black, and
Turner (1979). In one experiment, they asked students to tell what
typically happens in the sorts of situations presented above, like
going to a restaurant for a meal. There was high agreement among
the participants’ protocols, and the items they produced were almost
exclusively produced in a temporal order (i.e. according to the way
they would happen in the real world). In a recall experiment, when
the script items were presented in a random order, they were
recalled by subjects in the appropriate temporal order.

Thus, evidence of Bower et al. supports the existence of scripts, but it
does not suggest anything about the structural form of scripts in
memory. This was addressed in further studies where Bower et al.
found evidence that these scripts do not exist in memory as stable
structures. They were able to determine this by assuming the

following: if scripts existed in memory as stable structures, then
when subjects were asked to comprehend sentences reflecting events
from a script, the further away from event A that event B occurs in
time, the longer it should take subjects to comprehend the sentence
portraying event B after reading about A. This was not the case.
They failed to find this "graded distance" effect. Hence, on the one
hand, scripts seem to exist; there is much agreement between
subjects on what constitute scriptal activities and subject recall is
quite faithful to the ordering that these events follow in real time.
On the other hand, evidence suggests that these are not structures
which merely reside in memory in a stable, pre-existing state.
Everyday experience suggests that exceptions to what we would
expect from a stable script are interpreted by people with little
difficulty and changes in their environments are adopted quite
readily. That is, given a situation in which certain events occur out
of their expected temporal sequence, people do not fail to act in the
situation but, rather, use their cognitive flexibility to interpret the
observed "violations" with respect to their expectations. For
example, going to a nice restaurant where you must pay for food
before it is served, thus violating expectations, does not prohibit
people from eating there. Rather, the experience serves to brings up
information relevant to other scripts, for instance a fast food
restaurant.

Behaviors which are consistent with scripts as a part of memory are
easily confused with the true existence of these structures. In light
of this it is not surprising that symbolic approaches to modeling
human script-like behavior has tended to represent these scripts in
stable structures such as frames, assuming that they exist as stable
structures in human memory. This methodology assures that
prototypical, script relevant, items can be produced in a correct
order. However, it seems to follow from closer examination of the
human data that scripts are not represented in human memory in
this manner, although they follow fairly strict temporal production,
because exceptions are dealt with easily, and are integrated with
remaining script material. As an example, consider restaurant
patrons who have been seated and have ordered their meals, and
then have been asked to move to another table for some reason, i.e.
they are reseated. This situation presents no problem (other than
inconvenience) for the patrons: They do not try to order their meals
again! Thus, an exception to the expected temporal order has been
incorporated into their behavior.

Connectionist schemes have also been applied to the domain of
scripts (e.g., Rumelhart, Smolensky, McClelland, & Hinton, 1986;
Golden, 1986). These assure that all items, even those which are not
in strict keeping with a script may be recalled as a result of their
becoming connected to actual script items during learning. However,
these models have difficulty producing series of temporally ordered
items. It seems that a hybrid model which draws on the strengths of
each of these approaches would be preferable and might possess
characteristics which allow it to meet the following criteria we would
require of a model of scriptal behavior.

First, and most importantly, the model must be able to produce items
associated with a single script without intrusions from others. This
will be referred to as the script criterion. Second, if this model is to
simulate the planning and execution of script behaviors, it must be
able to reason about these events such that it produces them in a
constrained temporal order; the temporal criterion. Third, this model
must be able to violate that temporality in cases where steps or
actions must be performed out of order, but do not conflict with the
causal structure of the episode;the temporal violation criterion. This
flexibility is identifiable in the restaurant example (i.e. moving to a
different table) given previously. Fourth, the model should be able
to begin at any point in a script and provide the remaining actions
(i.e. deal with partial scripts), as this ability has been observed in
human subjects (e.g., Mannes & Kintsch, 1987); the partial criterion.
The following is a description of several established models and the
degree to which they do or do not meet the mentioned criteria. Then
our hybrid model, fashioned after the Construction-Integration
theory of Kintsch (1988), will be evaluated with respect to these
same criteria.

Traditional Symbolic Accounts of Scripts

Many symbolic accounts of schema and script memory have been
proposed. The most influential of these have been put forth by
Minsky (1975) for schemata, and Schank and Abelson (1977)
specifically for scripts. Minsky's frame theory gained much
popularity due to the ease with which it dealt with visual scenes and
their interpretation.

A frame is a data-structure for representing a
stereotyped situation like being in a certain kind of
living room... We can think of a frame as a network

of nodes and relations. The 'top levels' of a frame are
fixed, and represent things that are always true
about the the supposed situation. The lower levels
have many terminals- 'slots’ that must be filled by
specific instances or data. (p.355)

In fact, these terminals can often be filled by default values and
these frames can be interconnected with other frames. In the
example of visual analysis the interconnection provides something
like different perspectives on the scene unfolding before the subject.
These frames have to be specialized and can perform quite
competently in well described fields, such as the micro-world of the
blocks domain, but fail to be effective in poorly circumscribed areas,
such as natural language understanding. In addition to this
shortcoming, the frames 'top levels', those parts which describe a
global series of events, were necessarily but unfortunately too rigid,
thus not allowing for the temporal violation criterion. If one thinks
carefully about the kind of data these structures were proposed to
account for, it becomes clear that there are many instances rigid
frames could not encompass. For example, a bird without wings is
still a bird.

Schank and Abelson's script theory gained notoriety for its ability to
deal with the typical activities of events like going to the grocery
store. In Schank and Abelson's formalism, knowledge about the
world is organized in small packets much like frames. (These
structures contain information about what usually happens in the
described situation - general knowledge - as well as slots to be filled
in by the particular episode under consideration - specific
information.) While this format afforded flexibility it was incurred
at some cost. Much general knowledge may be brought to bear in
understanding what typically happens in a restaurant, but exceptions
to the rule have to be explicitly filled in, sometimes contradicting a
piece of general knowledge from the currently active script. The
most popular example of this deviation from the norm comes from
the Legal Seafood Restaurant in Boston. This is the restaurant
mentioned earlier where customers are expected to pay for their
food before it is served. As mentioned, this is consistent with a fast
food restaurant script for a place like McDonald's, but as anyone who
has ever been to Legal Seafood knows, it is not like a fast food
establishment in any other respect (particularly the price). In this
example, we need to incorporate disparate pieces of information
from at least two existing scripts; the current 'mice place' script and

the 'fast food' one. In this model script determination is difficult and
in some instances no suitable pre-existing scripts can be found, again,
prohibiting the accomplishment of the temporal violation criterion.
Paying before being served is difficult to achieve in script based
systems because the necessary information resides in two separate
scripts.

The inability of these approaches to deal flexibly with the wing-less
bird (or a sink-less kitchen, for that matter) and the script
combination problems that occur when trying to understand, for
example, the Legal Seafood restaurant have led artificial intelligence
researchers and psychologists alike to search for a more suitable
representations for scriptal knowledge.

A Recent Symbolic Attempt

A more flexible, but still essentially symbolic, account of the script
data has been put forth by Kintsch and Mannes (1987). By adding an
additional control mechanism for dynamic cue composition (a cue
being an item or pair of items which is used to sample other items
from memory) to a standard psychological model of retrieval from
associative memory (Raaijmaker and Shiffrin, 1981), Kintsch and
Mannes were able to account for script retrieval data which they
collected, as well as that of Bower, Black and Turner. Instead of
representing scripts as large structures they use much smaller
portions of scripts as the basic unit of analysis. In their model,
memory is represented as an associative network with the matrix
entries standing for the degree to which the two connected items are
related to one another, this relationship being determined by
experimental evidence about the co-occurrence of and temporal
ordering between these items. The content of the matrix nodes is
represented propositionally with items such as MAKE(YOU,
RESERVATIONS) or TAKES(WAITRESS, ORDER). When given the title
of a script to be retrieved the model forms a search cue with the title
and searches the matrix probabilistically for items highly associated
with the cue. The cue changes dynamically when an associated item
is found. The associated item is included in the retrieval cue and the
search continues, now looking for items which are highly associated
with both elements of the cue - the title which was given (T) and the
particular proposition which was recalled (P). The model continues
retrieving cue associates, dynamically replacing (P) with
subsequently retrieved propositions until no more associates to the
current cue can be found. The control process then takes over and

goes on a search for a proposition containing some temporal
information about what happens next in the script. A simple pattern
match will find a proposition of the form AFTER(X, Y) where X is a
proposition currently in the cue. The newly found proposition is
added to the cue and the associative search is restarted using the
new ever-changing, compound cue. This cycle of probabilistic search
and controlled search continues until the entire script has been
recalled. The model produces most of the same actions as subjects in
the previously mentioned studies. It produces them in the correct
temporal order (the temporal criterion). It does not produce
intrusions from similar scripts although they are represented in the
network and there is much overlap between the different scripts in
terms of actions (e.g., no irrelevant intrusions from going to the shoe
store occur when trying to recall a grocery store script even though
they share features such as getting to the store, selecting an item,
and paying for purchases) (the script criterion), and the model can be
started at any point in the script and complete it successfully (the
partial criterion). In this formalism, then, scripts do not exist as
static structures, but are created on the spot in response to whatever
task or situation demands exist.

One major limitation of the Kintsch and Mannes work is that the
temporal relations between different script episodes are static, thus
not allowing for the temporal violation criterion. For the model,
when going to the grocery store, one must always go to the store
before one can peruse the aisles. This would therefore require a
separate set of temporal relation propositions to take into account a
circumstance where perusal may precede shopping, as in looking at a
store catalogue to decide what to buy before visiting the store.
Although representing scriptal information in this distributed
manner allowed for greater flexibility in terms of what piece of
scriptal information was produced when, the temporal ordering was
still somewhat constrained thus violating the temporal violation
criterion, that of being able to violate a strict ordering when
necessary.

A Local Connectionist Framework

An approach similar to Kintsch and Mannes' has been presented by
Golden (1986). In Golden's model, the basic concept is called a
"causal relationship” (CR) and is represented in a manner quite
similar to that used by Kintsch and Mannes, particularly for their
propositions which reflect the temporal information mentioned

10

previously. His node contents are of the form (S3,A3,S5), indicating
that through an action A3, state S3 is transformed into state SS5.
While Golden tries to make an argument for interpreting his model in
neural terms this is not necessary for the model to be useful and
comprehensible. Partial situations (e.g., the start of an event such as
going to a restaurant) are described in the model by multi-
dimensional subvectors of a total state vector whose entries are real
numbers representing the activity (or rate of neural firing in
Golden's terms) of each of the "neurons" in his system.

Unlike Kintsch and Mannes, Golden's model learns the connection
strengths by use of the autoassociative Widrow-Hoff learning rule.
As it learns, the model tries to minimize the difference between
some given, but improbable, vector X and a more likely
interpretation. It is in essence an error correcting model, correcting
the current state of the system to coincide more readily with the
input it is given.3 That is, given a story to learn containing a
stimulus (Y), it tries to update the weights in the network to
maximize the future probability of Y in that same story. When the
learning is complete, stimuli which have been experienced will have
a much higher likelihood of being produced than those which have
not. Interestingly, Golden models the Bower, Black, and Turner data
differently than do Kintsch and Mannes. He addresses the issue of
what script items are recalled, regardless of ordering, rather than the
function according to which this information is recalled. His data
make no claims about the sequentiality of scripts. Hence, the Golden
and Kintsch and Mannes results are not entirely comparable, but
some conclusions can be drawn nonetheless.

3As a related point, it is quite intcresting to note the relationship many
connectionist models have to the traditional concept learning literature. For
many years psychologists debated about exactly when and under what
circumstances learning took place. Through cxtensive contrived
experimentation most researchers came to the conclusion that human
learning in a concept identification task occurred only on trials where errors
had been made. Only when a subject was incorrect about a hypothesis he or
she held regarding the rules describing what an instance of the concept was
did they learn anything about the concept to be formed. It was shown that, in
traditional modeling efforts, the appropriate lecarning descriptions could only
be produced when this assumption, learning on error trials only, was made. In
the most typical conncctionist learning models this is also the case. Weight
adjustment, or learning of the system, only occurs when there is discrepancy
between the system "hypothesis” and the desired output which can be reduced
according to some rule. When the system "knows" what it is supposed to do and
performs correctly, no weight adjustment (i.c., no "lecarning") takes place.

11

The first step for Golden was to create the long-term memory which
Kintsch and Mannes had built in based upon subject data. His auto
associative network consisted of 107 possible causal relations; the
weights were trained using the Widrow-Hoff rule such that the
activity patterns representing the training stories became stable
configurations of the network. The model was then presented with
new stories and was tested for retrieval. While the stories were
quite impoverished, consisting of only five causal relationships each,
there were 24 of them, enough to present a challenge to the model.
During this phase

an incomplete C(ausal) R(elationship) representing
an initial situation (e.g., (S1,0,0)) is presented to the
BSB model which reconstructs the action field of the
CR. The effect of this action upon the environment
results in a new situation (e.g., (5§2,0,0)) that, in
turn, can be used by the BSB model to reconstruct
the second action in some action sequence. (p. 18)

This is analogous to the dynamic cue composition which takes place
in the Kintsch model and the effect is quite similar. As in the Bower,
Black and Turner study, mentioned items were recalled with a higher
frequency than unmentioned items and scriptal items which were
not mentioned were still recalled with greater probability than
nonscriptal intrusions. Again, it is impossible to know whether these
items were produced in an acceptable temporal order (the temporal
criterion) or whether Golden even intended for this to be so.

Distributed Connectionist Accounts

Of those distributed models proposed to deal with schemata that of
Rumelhart, Smolensky, McClelland and Hinton (1986) has been the
most successful and popular. Although they have not addressed the
problem of temporally organized schemata to the extent that Golden
and others have, their formalism is worthy of mention because it
deals with schemata in a distributed, rather than localized, memory
system.

Rumelhart et al. tried to instill the concept of room schemata in their
network. Forty different items which typically occur in rooms or are
descriptors of rooms were presented to subjects and they were asked
about how likely these items were to occur in rooms they were asked

12

to imagine.4# This enabled the modelers to create a network that
represented all of the items and their degree of interrelatedness. (It
is important to realize that although this might seem localist in the
sense that, for example, a television is represented locally, the
content of room schemata, which is what is at issue here, is indeed
distributed across the elements of the network.) The question, given
this network, concerned what the model would do when presented
with information regarding the presence of one of these items: Did it
have a sense of the schemata necessary to determine what room was
being implied by that item? This question was investigated by
"clamping on" one of the items and examining the network's pattern
of activation after it had been allowed to settle. Clamping in this
sense refers to setting the activity of the item to one. That is, the
system is told that this one item definitely occurred and its job is to
provide the other items which most likely occurred with it. Subjects
were asked to make judgements about five room types and there are
five maxima (i.e. five peaks in the multi-dimensional space which
represents the network) which represent each of the rooms
respectively. Although there are a number of possible states that the
model can get into, when one item is clamped on to begin, it only
settles into one of the possible five room states.

Schemata are not "things". There is no
representational object which is a schema. Rather,
schemata emerge at the moment they are needed
from the interaction of large numbers of much
simpler elements all working in concert with each
other. Schemata are not explicit entities, but rather
are implicit in our knowledge and are created by
the very environment that they are trying to
interpret-as it is interpreting them. (p. 20)

In a room schemata example, two elements might represent the
concept of a sofa and a television, with the link between specifying
that whenever one is present the other is very likely to be present
also. Note, though, that it is not necessary for these things to co-

4The fact that only two subjects werc used and that the rooms were presented
to them to use as criteria for their decisions has been criticized by
Schvaneveldt (1987). It is intercsting, and I think important, that when
Schvaneveldt's subjects were asked merely to judge the co-occurrence of pairs
of items with no mention of the room in which they might occur, very similar
results are obtained and the same room schemata emerge out of the resulting
network.

13

occur in order for the network to settle on an interpretation of the
stimuli. If one element is missing, the model's representation might
not be as stable (i.e. Smolensky's (1986) harmony measure might not
be as high) as it otherwise would be, but it does not have the sorts
of problems a symbolic representation, e.g., a production system,
would have.

Production system views of expertise entail a compilation of many
simple production rules, and we might expect such a system to
possess a rule that stated: IF (there is a sofa) AND (there is a
television) AND (there is a lamp) THEN (conclude that the room is a
living room). In this type of formalism, if one of the conditions
doesn't match, the system must either decide it doesn't know what is
being viewed or a complicated resolution procedure must be invoked
to reconcile the apparently inconsistent information.

A connectionist network does not have the same limitations
regarding missing and inconsistent data. The Rumelhart et al.
network settles upon one of the five possible room interpretations
almost exclusively, but more interestingly, it could be made to settle
in the state representing, for example, an efficiency apartment where
both a bed and a stove are present. Although this might seem
irrelevant, it becomes a desirable feature when we return to the
world of scripts and schemata on a larger level. It is only with this
flexibility that such a network can make sense out of situations like
the Legal Seafood Restaurant, the wing-less bird or finding an aspirin
for a headache in a restaurant.

The Rumelhart et al. approach dealt quite effectively with the room
schemata and can probably also account for other schema type
phenomena. This model does have a limitation though. At the
present time it is not obvious that this model can deal with the
temporal information required to represent causal schemata or
scripts (the temporal criterion). This is not a characteristic of all
connectionist networks however, connectionist approaches that can
describe the temporality necessary for this type of behavior have
been proposed by, among others, Jordan (1986), and Kohonen, Oja,
and Lehtio (1981).

Jordan and Kohonen et al. propose similar mechanisms to account for
temporal behavior in their models: recurrency and delayed feedback.
In recurrent networks and networks with delayed feedback, it is

possible for a unit to cycle back and affect its own activation. Hence,

14

the input a unit receives is not only a function of the environmental
input, but is also a function of the previous state of the elements.
Briefly, the Jordan and Kohonen et al. approaches amount to adding a
set of state nodes which essentially keep track of where in a
sequence the model is currently performing. This enables the model
to figure out what the next move or state should be. As elements of
a script are processed they superimpose their activation on these
state nodes allowing the total pattern of activation that the system
experiences after, for example, item A as the first element of a list to
be different from the pattern of activation that would result if item
A were repeated in the same sequence. For the item sequence ABA
the activation the system would receive on the first cycle would be
the activation of item A alone whereas when it tried to encode the
second item A, the pattern it would receive would be a combination
of the (second) item A pattern coupled with the activation of the
state nodes resulting from previous exposure to item A and item B.
This eliminates the problem of keeping track of the correct place
within a sequence at which the model is currently working and also
eliminates the problem of choosing a next action when a script
contains multiple instances of similar actions (like the generic action
of ordering in a restaurant, which can occur any number of times for
drinks, main course, dessert, etc.).

Though the Jordan and the Kohonen et al. models have been quite
successful in mimicking whole script retrieval and representation
they still fall short in one major area. Psychological data has shown
that when subjects are presented with an activity from an event
they are able to come up with the succeeding activity with very little
effort almost immediately. That is, they can deal with partial scripts
(the partial criterion). At this time, it seems that the models which
have been proposed do not have the capability to report the
remainder of a sequence when provided with a concept or activity
from the middle of the sequence. (One possible exception to this is
the cumbersome Geman (1981) formalism which we do not review
because it has not been fully fleshed out.) Because of the
superposition of information occurring in the stable state nodes, it
seems unlikely that the appropriate pattern of activation can be
imposed on these nodes by providing only one event from within the
causally connected chain of events. That is, it is difficult for these
models to recreate the appropriate context without actually going
through the sequence needed to create it initially. Hence, in a
sentence comprehension (or verification) paradigm like that used by

15

Bower, Black, and Turner, we would expect to see the graded
distance effect which was absent in humans.

It seems clear that the parallel distributed models of memory have
overcome some of the initial pitfalls which burdened symbolic
models of memory for schemata, of both causal and non-causal
natures. The approaches which have been taken to model room
schemata, for example, are much more flexible than the original
formulations in terms of frames and stable scripts. They allow the
system to make decisions in the face of incomplete and inconsistent
information, such as in the case of the efficiency apartment which is
neither a bedroom nor a kitchen. The models which have tried to
address the problem of the temporality inherent in scripts have also
been successful, though the models have not been designed to handle
all of the complexities of the issue.

Although the models of Jordan and Kohonen et al. are quite capable
of producing script like recall from start to finish, there remain
human data which must also be accounted for before any one of
these models can claim to have captured the essence of human
information processing in this domain. It appears that none of the
models presented are able to meet the four criteria mentioned at the
start of this paper: non-intrusiveness of other related scripts (the
script criterion), sequentiality of item production (the temporal
criterion), robustness to violations in script item order when
necessary (the temporal violation criterion), and ability to deal with
partial scripts (the partial criterion). Entirely connectionist schemes
have particular difficulty with the matter of sequentiality, whereas
purely symbolic frame and schema systems have difficulty with the
other three criteria because they require more flexibility than they
possess. It seems clear that other, perhaps combined, sophisticated
methodologies are required in order to deal effectively and
completely with the human phenomena of schemata and script
representation. It is with this in mind that we now turn to the
hybrid model which we have used to model a particular type of

scriptal behavior, the Construction-Integration model of Kintsch
(1988).

The Construction-Integration Model
The Construction-Integration model (Kintsch, 1988) is a hybrid

model initially developed to explain certain phenomena of text
comprehension, such as word sense disambiguation. The model has

16

been extended to model the planning of scriptal behavior, and it will
be shown how it can meet criteria the "pure" models previously
mentioned cannot. It uses a set of symbolic production rules to
construct an associative network of interrelated items. These rules
are weak in that they construct connections between items without
respect for the current context or task at hand. This network is the
basis for a second phase in which the integration takes place via
connectionist constraint-satisfaction search. This process propagates
activation throughout the network, serving to strengthen the
connections between items which are consistent with each other and
the context, and deactivating those items which initially were
connected to others in the network, but are inconsistent. This model
is implemented in the NETWORKS simulation. (Note: A model with
similar goals and constitution has been proposed by Elman, 1989, but
is beyond the scope of this paper.)

As the domains of human-computer interaction, computer usage, and
intelligent system design have grown, our work has gravitated
towards modeling scriptal behavior in the computer domain.
Specifically, we are interested in how experienced computer users
accomplish standard computer tasks, such as command production, in
a seemingly automatic way. We hypothesized that because these
procedures are overlearned for our users, they formed a certain type
of domain dependent script and we are modeling them as such.
Looking at users interacting with a computer to accomplish particular
goals one may observe them producing orderly sequences of events
(the temporal criterion) without intrusions from other tasks (the
script criterion). They are able to modify their interactions
depending upon the context (the temporal violation criterion) and
they can complete a task regardless of the point at which they begin
(the partial criterion).

Two sets of experimental studies (Mannes & Kintsch, 1988; Doane,
Pellegrino, & Klatzky, in press) provide evidence for this approach.
In one set, subjects were asked to provide verbal protocols about
performing computer tasks, while in the other, subjects were asked
to produce typed protocols consisting of UNIX commands to
accomplish particular goals. In the verbal protocol study, seasoned
computer users were asked to provide protocols according to the

SNote that in the remainder of this paper NETWORK will be used to refer to the
program which implements the model, whereas, network in lower case will be
used to refer to associative networks as thcy are traditionally understood.

17

standards set forth by Ericsson and Simon (1984). In general, the
experimenter derived representations of the coded protocols
resembled quite closely those obtained from researchers
investigating standard scripts (e.g., Bower, Black, & Turner, 1979;
Kintsch & Mannes, 1987). This work is described in detail in Mannes
& Kintsch, 1988). In the other set of studies (Doane, Pellegrino, &
Klatzky, in press) subjects were asked to produce efficient UNIX
commands that varied in complexity while working at a computer
terminal.

Initial Model Construction

The areas mentioned above, routine computing and UNIX command
composition, were modeled using the NETWORK system and will be
described below. After evaluating the verbal protocols three types
of information could be identified; information subjects produced
about their plans of action (or script for the particular task), meta
information where general knowledge (e.g., about computing and
computers) played a role in the solution attempt, and also keystroke
information which is of no interest in the current investigation.

Both the plan of action and the meta information were
propositionalized according to standard procedures (Bovair & Kieras,
1985; Turner & Greene, 1978) and each proposition then became a
node in the network representation of the domain. In this format
each proposition is an atomic unit which contains a predicate and
some number of arguments. For example, the propositionalization of
the sentence "Mike throws a ball." would appear as (THROW MIKE
BALL). (Note: Propositions may also take as arguments other
propositions, resulting in propositional embedding.)

Plan information was described as a set of plan elements, simple
actions out of which entire plans could be synthesized. These were
represented in an extended propositional format with three
propositional fields, a name, preconditions, and outcomes. By
representing information propositionally, knowledge about the
domain and even a particular task is represented in a distributed
manner although the node content remains symbolic and identifiable.
The manner in which the relationships between these items were
derived is described next.

Several rules were used to establish connections among items in the
network. That is, to assign the various weights relating propositions.

18

Because this is an extension of a model of text comprehension to
planning command sequences and we are treating this effortless type
of problem solving as a matter of comprehension, certain linguistic
relations, such as argument overlap and propositional embedding,
were used for deriving links between propositions. These provide a
crude approximation to the types of metrics people are hypothesized
to use when comprehending a text (Kintsch & van Dijk, 1978) and
thus, when propositions shared an argument or were embedded
within one another a weight specifying this relationship was entered
in the matrix representing the network.

In addition, several relationships of a non-textual nature played a
role in specifying the weights in the development of the network. In
particular, items which were associated to each other, as determined
by a free association study (see Mannes & Kintsch, 1988), were
related with each other with a particular weight, and the plan
elements which NETWORK uses to produce a plan of action
dynamically, step by step, were linked to each other in a causal
chain. The causal chain was derived by assessing matches between
the precondition and outcome fields of the plan element's
representation, such that plan elements which provided as their
outcome a precondition for another plan element would receive a
link from that plan element. Also, a plan element which could
destroy as a result of its execution a precondition for another plan
element received an inhibitory link from that plan element. This
allowed for plan elements which provided essential preconditions to
receive activation from the plan element requiring that state of
affairs during the integration phase. Likewise, the inhibitory
connections between plan elements allowed for the flow of inhibition.
Figure 1 shows a small subset of plan elements and the manner in
which they would have become related via causal chaining as shown
by the matrix in the bottom panel. All of this information is related
to form the system's long-term memory. This memory is used as a
source of knowledge for all of the tasks NETWORK can perform.

An Example Solution for Conflicting Subgoals

In order to assess the functionality of this approach simulations of
several tasks were done. Although several of these tasks were taken
directly from the domain which we endeavored to simulate, routine
computing, others were modeled after those found in literature on
artificial intelligence. This section is included to contrast methods
used by the traditional AI programs and those used by NETWORK to

Three plans in their generic (unbound) form.

NAME (FIND FILE)
PRECONDITION(s) (AT-LEVEL
SYSTEM)
(EXIST FILE)
OUTCOME(s) (KNOW FILE LOCATION)
NAME (DELETE FILE)
PRECONDITION(s) (AT-LEVEL SYSTEM)
(EXIST FILE)
(KNOW FILE LOCATION)
OUTCOME(s) NOT (EXIST FILE)
NAME (ENTER SYSTEM)
PRECONDITION(s) (AT-LEVEL
OUTCOME(s) ML VEL
SYSTEM)
TO THE PLAN-ELEMENT PROVIDING
THAT SPECIFIC OUTCOME
FIND DEL ENT
FIND T+
FROM THE
PLAN-ELEMENT
REQUIRING A
SPECIFIC DELETE
S CONME + 4+
ENTER SYS

19

Figure 1. A sample of three plan elements are shown in the top panel

and the resulting causal chain in matrix form in the bottom panel.

20

accomplish one type of task. The task chosen is one which has
proven to be difficult for AI systems and has been coined the
"conflicting subgoals” task. This is best exemplified by the example
of a painter who has been asked to paint both a ceiling and a ladder.
In this scenario, the painter must have the foresight to paint the
ceiling first, for painting the ladder first would preclude its use as a
tool for subsequently painting the ceiling. This task is script-like in
nature because it requires the production of a sequence of events
which MUST be produced in a particular order. Traditionally, this is
a difficult task because problem-solving systems have begun it by
performing explicit subgoal decomposition. This neglects the fact
that the subgoals in this case interact and has led to the development
of a series of specialized critics to search the proposed problem
solution for these types of interactions and other problems (e.g.,
Sacerdoti, 1977; Sussman, 1975). The following describes how the
NETWORK system deals with this class of problem and why its hybrid
composition allows it to solve the task effortlessly and correctly.

Our initial concern in this endeavor was to model behavior in the
computing domain and our system, therefore, contains plan elements
specific to that domain. The amount of effort required to compose a
similar set of plan elements for the painting domain would have
made this exercise prohibitive, so a routine computing analogue to
the paint the ceiling and ladder problem was devised. This allowed
us to produce simulation results using the plan elements which had
already been created while allowing us to evaluate NETWORK's
performance with respect to attempts of other systems. The
analogue chosen asked NETWORK to print and delete a file. Here, the
system must recognize, without explicit instruction, that deleting the
file will make it unavailable for printing and, thus, the (PRINT FILE)
command must be executed first. To begin, NETWORK is given the
task description in propositional form. This description activates
related information in NETWORK's long-term memory, including all of
the plan elements it knows about. These plan elements include
things such as (DELETE FILE), (PRINT FILE), and (READ MAIL). Then
NETWORK uses its production rules to compute all of the types of
relationships between propositions (e.g., argument overlap)
previously mentioned. This results in a network where all the
information to be used for the PRINT/DELETE task is incorporated.
This network, written as a matrix, represents the system's
understanding of the task to be done, and provides the input for the
second phase of the problem solution, integration.

21

Integration is accomplished through standard vector-matrix
multiplication methods. An initial activation vector is created such
that there exists an element for each of the nodes in the network.
This vector has the characteristic that all nodes representing the
initial task description (i.e. delete the file and print the file) are
activated and all others are set to zero. This vector is post multiplied
with the matrix representing the network until there is minimal
change in vector activation values from one multiplication to the next
and the system is considered settled. When the system has settled,
activation has propagated from the original task description
throughout the network to the plan elements and the most highly
activated one which has its preconditions met in the world is allowed
to fire. Having its preconditions met requires that all of the
propositions of a plan element's second field are present in the world
proposition list.

The firing of a plan element has the consequence of adding its
outcome(s) to the state of the world and an updated network is
constructed adding this new information to old. The integration
phase is then restarted. This series of steps continues until a state of
the world is achieved in which the original task goal has been
satisfied.

The following is the proposition list given to NETWORK at the
beginning of the PRINT/DELETE task.

(EXIST FILEAEGGPLANT)

(REQUEST PRINT FILEAEGGPLANT)

(REQUEST DELETE FILEAEGGPLANT)
(OUTCOME-OF-REQUEST-PRINT EXIST HARDCOPY
FILEAEGGPLANT)

(OUTCOME-OF-REQUEST-DELETE NOTEXIST FILEAEGGPLANT)
(AT-LEVEL SYSTEM)

This description activates associated information and all plan
elements from NETWORK's long-term memory. A network is
constructed using all of these propositions; task description, related
knowledge and plan elements, and then integration is performed.
For the first step of the PRINT/DELETE task, (FIND FILE) is the most
highly activated plan element with its preconditions met after
activation ceases to spread further. It fires, producing the location of
the file to be printed and deleted. Note from the plan elements
shown in Figure 2 that this provides a precondition for both the

22

(PRINT FILE)
(KNOW FILE LOCATION)(EXIST FILE)
(EXISTS HARDCOPY FILE)

(DELETE FILE)
(KNOW FILE LOCATION)
+ (~EXIST FILE)

(FIND FILE)

(EXIST FILE)
(KNOW FILE LOCATION)

Figure 2. This figure shows how PRINT and DELETE both send
positive activation to FIND and how PRINT and FIND both inhibit
DELETE as a result of causal chaining.

explicit goals, hence the plan element which produces this outcome
receives activation from allplan elements which require it as a
precondition during integration.

At this time, one more method of determining connectivity between
the network nodes during construction must be explained.
Propositions representing the outcomes of plan elements inhibit the
plan elements which produce them. This means that if the outcome
of a plan element has already been established, either because it was
a part of the original task description or, as in this case, it has
become true as the result of a plan element having fired, it inhibits
that plan element from firing again. Here, once the location of the

PRINT
ENTER ML I PR/DELSTEP1

ENTER SYS

DUPLICATE

READ

DELETE

FIND

EXIT

QUIT

TYPE

PASTE BUFFER

PASTE FILE

CorY

cur

EDIT

PLAN-ELEMENT

PRINT

ENTERML
ENTERSYS B PR/DELSTEP2

DUPLICATE

READ

DELETE

FIND

EXIT

QuUIT

TYPE

PASTE BUFFER

PASTE FiLE

CoPY

cur

EDIT

PLAN-ELEMENT

] 1
0.0 0.1 0.2 0.3

PRINT
ENTER ML B PR/DEL STEP3

ENTERSYS
DUPLICATE
READ

DELETE
FIND

EXIT

QuIT

TYPE

PASTE BUFFER
PASTE FILE
COPY

cut

EDIT

T T T ¥ T T
0.0 0.1 0.2 0.3

ACTIVATION VALUE
Figure 3. Activation values for some plan elements for the three
steps of the PRINT/DELETE task.

PLAN-ELEMENT

24

file is known, as produced by the (FIND FILE) plan element, (FIND
FILE) is inhibited by the proposition reflecting the file's location.
With this newly added method of connectivity in force, the
PRINT/DELETE network is updated and integration is done once again
for the second step of the problem.

In this step, the plan element to (PRINT FILE) is highly active and, as
can be seen in Figure 3, the plan element to (DELETE FILE) has no
activation at all. (PRINT FILE) fires, and its outcome, that there
(EXISTS HARDCOPY FILE), is added to the network. Thus, the system
has accomplished one of its two goals and is progressing in the
proper order. As in the previous step, the proposition representing
the plan element outcome has the ability to inhibit the plan element
which produces it. In this case, the plan element to (PRINT FILE) is
inhibited by the fact that a hardcopy already exists. This plays an
important role as can be seen in the results of the next construction-
integration cycle.

The third integration step produces a vector of activation values in
which the plan element to (DELETE FILE) is most active (see Figure
3). This state of affairs can come about because of the plan-world
inhibition mentioned earlier. In step 2 the plan element to (PRINT
FILE) was very active and as a result had a strong inhibitory effect
on the (DELETE FILE) plan element via the plan element causal
chaining. After its firing, the plan element to (PRINT FILE) becomes
inhibited itself and, therefore, no inhibition propagates from its node
to the (DELETE FILE) node. This allows (DELETE FILE) to receive the
activation the direct request provides and makes it the most active
plan element. (DELETE FILE) fires and NETWORK has correctly
completed the conflicting subgoals task.

It is not immediately obvious from this example how NETWORK
meets the four criteria previously mentioned. It clearly produces the
set of script events in the proper order (the temporal criterion)
without suggesting other irrelevant plan elements (the script
criterion). A second, unreported, simulation of NETWORK solving the
PRINT/DELETE task after the file had already been found was
successful, as have simulations of other more lengthy tasks started at
various stages of completion (the partial criterion). This is a result of
the fact that NETWORK takes into account the current state of the
world at each step of a task, and changes its connections in response
to the ever-changing state of the world. In this case, the temporal

25

violation criterion is unimportant, but would not be a problem
anyway because, in NETWORK, stable scripts don't exist!

The fact that scripts don't exist in NETWORK allows for additional
interesting contextually driven phenomena. One example of this can
be seen in comparing how NETWORK approaches similar tasks
differently depending upon the information is has been given. One
task, REVISE, tells NETWORK that it is to revise a manuscript and
send it to a colleague. The other task, SEND, tells NETWORK it has
received a mail message from a friend of theirs asking for a copy of a
revised manuscript. For REVISE, there is no mail message to which
NETWORK can reply (perhaps the colleague had called on the phone
with her request) so it chooses to send the revised manuscript as a
file from the system level (as some operating systems allow). In the
SEND task, there is a mail message to respond to so NETWORK chooses
to enter mail and reply to the existing message with the file. Thus, a
seemingly irrelevant piece of information, that the request was
received via computer mail as opposed to through a phone
conversation, encourages NETWORK to produce different solutions.
This is a result of the additional weighting that the plan element for
sending through mail (SEND FILE MAIL) gets from argument overlap
(one method of determining network connectivity) with the task
description which mentions the mail message. Another example of
NETWORK's context sensitivity, and dynamic plan creation will be
given in the next, UNIX, section.

A Real Task: The UNIX Domain

Although NETWORK shows proficient performance in solving the
PRINT/DELETE task, it is what may be regarded as a "toy" problem.
That is, it is a task in which humans show little or no effortful
problem solving. It was our desire to simulate more effortful
problem solving and to this end we chose a different data set of some
complexity to attack. These data (from Doane, Pellegrino, & Klatzky,
in press) concern users attempting to perform several tasks of
varying complexity in the UNIX operating system. The following is a
brief description of those data and an overview of our attempts at
modeling them. A brief description of the empirical results is
followed by a description of simulating UNIX command production.

Doane et al. examined the development of expertise within the UNIX
operating system by measuring users’ performance in tasks
requiring them to produce UNIX commands. In the production task,

26

subjects were asked to produce the most efficient (that with the least
number of keystrokes) legal UNIX command that they could to
accomplish a specified goal. Goals ranged in difficulty from
individual, frequently used UNIX commands to composite commands
that accomplished several actions, and had to be sequenced
appropriately using pipes or other input/output redirection symbols.
Correct production of the composite goals required knowledge of
individual commands and knowledge of the processes involved in
sequencing those commands properly. Tasks involving more
elementary commands were designed to include elements that had to
be put together to generate a successful composite command. Thus,
these are the commands of interest.

An example composite task would be "display the first ten
alphabetically arranged lines of file x". A component single would be
"display the first ten lines of file y". A multiple would be "display
the first ten lines of file y, and arrange the contents of file x
alphabetically on the screen”. Thus, "single" commands caused just
one action, multiple commands caused two or more independent
actions and composite commands caused several actions that had to
be sequenced appropriately using pipes and/or redirection symbols.
These were equal in length to the multiple commands; thus the
essential difference between the two was that composites had
dependencies among their components whereas multiples did not.

The goals given to the Doane et al. subjects can be seen as requiring

the use of scripts. To accomplish composite goals, subjects had to put
familiar elements together in a novel fashion. We are not assuming

that subjects were recalling fixed scripts from memory. Rather, they
were producing script-like action plans on-line. Thus, we are trying

to simulate the solution of tasks requiring script-like knowledge.

We modeled a portion of the expert production performance
measured in the Doane et al. (in press) research using an extended
version of NETWORK. One of our goals was to understand in detail
the kinds of knowledge that are sufficient to produce composite
commands. In the following sections, we will discuss only a fragment
of the UNIX simulation work (for details, see Doane, Kintsch, &
Polson, 1989), with the goal of explicating how the symbolic and
connectionist portions of NETWORK interact to accomplish the
composite command goals.

27

As in the PRINT/DELETE task described above, NETWORK is initially
given three types of information in propositional form; long-term
memory knowledge relevant to the domain (e.g., knowledge of UNIX),
knowledge of the task description (e.g., "list the first ten lines of file
x"), and knowledge of plan elements. The following describes each of
these pieces of knowledge as they were given to NETWORK to
simulate the production of UNIX composite commands.

To simulate expert performance on composites, the model requires
more long-term memory knowledge about UNIX than is necessary to
perform singles and multiples. In addition to knowledge of the basic
types of commands and their syntax (the only knowledge required to
execute singles and multiples), the model had to possess knowledge
of the ordering of commands in a sequence. For example, to execute
the task "display the first ten alphabetically sorted lines of file x", the
model must know that the command that sorts files alphabetically
(SORT) should be executed on file x prior to executing the command
that will display the first ten lines of the file (HEAD). The model
must also know about the specific redirection properties of each
command. In the example task above, the model must know that the
output of SORT can be redirected to another command (in this case
HEAD), and that the input to HEAD can be redirected from another
command (in this case SORT). Finally, the system must know the
syntax required to produce a command sequence (e.g., know that LPR
prints a file, and that the pipe symbol redirects input and output
between commands).

As in the PRINT/DELETE task, NETWORK is initially given the task
description in propositional form. This description activates related
information about UNIX in NETWORK's long-term memory, including
all of the plan elements it knows about. In Doane et al. (1989), some
of the plan elements corresponded to single building-block
commands (e.g., SORT, HEAD), and of these, some corresponded to
building-block commands which were irrelevant to the simulated
tasks. Other plan elements allowed creation of new plans. These
latter plan elements are called building plan elements, because they
allow NETWORK to build a composite command from the single
building-block commands.

Two of the single plan elements, and one of the build plan elements
are shown, with their text in abbreviated form in Table 1.

28

Table 1. A sample of the UNIX domain plan elements.

Plan Name Preconditions QOutcomes

(SORT FL) (@SYS) (EXIST FL) (KNOW SORT) (SORTFL)
(DISP 1ST TEN LINES FL) (@SYS) (EXIST FL) (KNOW HEAD) (DISP 1ST TEN FL)

(BUILD PIPE) (KNOW SORT 1ST) (SORT FL)
(KNOW HEAD 2ND) (DISP 1ST TEN FL)
(KNOW REDIRECT HEAD OUTPUT)
(KNOW REDIRECT SORT INPUT)
(KNOW REDIRECT SORT OUTPUT)
(KNOW REDIRECT HEAD INPUT) (USE PIPE PLAN)

As previously described, NETWORK includes three components in
each plan, a plan name, preconditions, and outcomes. The
preconditions are propositions which represent states of the world
which must exist for the plan to be executed. The outcomes are
propositions which become states of the world if the plan is executed.
Once the propositions corresponding to long-term memory, task
description, and plan element knowledge are given to NETWORK, it
uses its production rules to compute the relationships between the
propositions, and sets the weights in the network which includes all
of the information to be used to solve the production task. This
weight matrix is NETWORK's representation of the current task, and
it provides the input for the integration phase.

Integration is accomplished in the same manner as it was in the
PRINT/DELETE task. The initial activation vector is post-multiplied
with the memory matrix until the change in activation between
activations is small and the system is considered settled. When the
system has settled, the most activated plan element whose
preconditions are met is allowed to fire. This process is reiterated
until the plan element whose outcome accomplishes the specified
goal fires.

29

1 HEAD

2 SORT - (SORT FL)

3 B. PIPE (SORT 1ST)
/

1 HEAD p (DISP 1ST TEN)

2 B. PIPE (HEAD 2ND)

s
1 B. PIPE p (USE PIPE)

Figure 4. Results of simulating the composite command SORT FILE-
XIHEAD. The build pipe plan is abbreviated as B PIPE.

Figure 4 depicts the main results of simulating the component tasks
discussed above in the form of a composite. The figure shows only
those plan elements considered by NETWORK, along with their
relative activation values. The simulation of a single command to
sort the contents of file x alphabetically (SORT problem) is very
simple for NETWORK, as it was for the subjects in Doane et al. (in
press). The system finds all of the preconditions are met, and the
plan element is executed immediately. For the multiple problem
(SORT, HEAD), the executive first chooses the SORT goal, its
preconditions are met, its outcome (the proposition (SORT FILE-X)) is
added to NETWORK's knowledge. After a new integration phase, the
most activated plan element is HEAD. NETWORK chooses to fire the
HEAD plan element, its outcome (HEAD FILE-X) is added to the
knowledge base, and the task is complete.

The composite problem (to produce SORT FILE-XIHEAD) is far more
complex, since the task requires that the model go through both a
planning phase and a building phase. In the single and multiple

30

goals, there are no interrelationships between sequences of actions,
and the model immediately generates user actions upon
determination of the correct plan element. In the case of the
composites, we argue that the appropriate plan elements must be
determined, and then sequenced correctly using the
interrelationships among the preconditions for the various plan
elements. Following each integration phase, this planning process
adds representations of the individual commands and the order in
which they should be executed to the in the world knowledge. In
our example, the request which is acted on first is SORT; the system
would like to execute the HEAD plan element, but its preconditions
have not been met. The preconditions for HEAD in this task require
the existence of an alphabetically sorted listing of file x. That is, the
(EXIST FL) precondition has been bound to a specific file; the
required file contains the alphabetically sorted file x. The only plan
element with satisfied preconditions is SORT. It is fired, and the
outcome (SORT FILE-X) is added to the current knowledge base, along
with a representation of its order in the task sequence (that it is
first). On the final planning iteration, the HEAD plan element is again
the desired plan element, its preconditions are now met, the plan
element is fired, relevant in the world knowledge is added, and the
planning phase is complete.

Following the planning phase, these new representations are used by
the build pipe plan element to create the actual composite command.
The model executes the build pipe plan element when its
preconditions are met, but the preconditions for the build pipe plan
element are extensive. In order for the plan element to fire, the
system must have, for each command, knowledge of the command
syntax, knowledge of the command order in the sequence, and
knowledge of the command redirection properties. Since we are
discussing modeling the expert, the system has all of the prerequisite
knowledge, and the build pipe plan element fires. The outcome of
this plan element is the creation of a "use pipe" plan element, which
is bound to the syntactically correct sequence of commands. When
the use pipe plan element fires, the task is complete. Again,
NETWORK has produced a sequence of commands (the temporal
criterion) without intrusions (the script criterion), but this task has
not addressed the temporal violation criterion and the partial
criterion although we could have started the task at any point in the
solution process (thus satisfying the partial criterion).

31

As when NETWORK solved the REVISE and SEND tasks with different
plan elements depending upon subtle differences in the task
instructions, the system also differentially performs UNIX tasks
according to task instructions. In the SORT FILE-XIHEAD example,
NETWORK has the option of activating a (BUILD REDIRECTION) plan as
well as the (BUILD PIPE) plan, both of which would accomplish the
task. In the task instructions, the model is told that pipe use is
preferred, and the overlap of this instruction with the pipe plan-
element arguments leads to its higher activation relative to the
redirection plan.

In summary, NETWORK used a hybrid approach to accomplish a
sophisticated planning problem: It simulated producing composite
UNIX commands. The interrelationships between the plan elements
in NETWORK played a crucial role in producing the sequence-
dependent script-like behavior required for these tasks.

Why Hybrid?

Let's evaluate what was obtained from this hybrid methodology by
summarizing the characteristics of each component starting with the
rule-based, symbolic network creation.

Symbolic benefits. Because the plan elements of NETWORK are
interconnected via their causal chaining, the system will not be
tricked into performing the (DELETE FILE) plan element first in the
PRINT/DELETE task or into firing the HEAD plan element before SORT
has taken place. Unlike several traditional AI systems, NETWORK
does no explicit subgoaling. As a result of this it is unnecessary to
introduce new conflict resolution procedures. This also eliminates
the need for representing tasks to be done at various levels of
abstraction - an approach which has been taken by others (Sacerdoti,
1977; Stefik, 1981) to prevent problems of conflicting subgoals. That
is, NETWORK is a non-hierarchical system which is economical in
terms of both space and memory limitations. The causal chaining
allows for NETWORK to "see" the effects of its plan elements in a
manner similar to systems like NOAH. NOAH requires each of his
plans to maintain ADD and DELETE lists; list which specify concepts
which will either be added or deleted from the state of the world
upon execution of that plan. Unlike those lists however, the causal
chaining in NETWORK is created dynamically so that future actions
need not be anticipated. For systems, like NOAH, utilizing those
types of lists it is impossible to know the possible outcomes of an

32

action without knowing about the current state of the world. Thus,
the lists must be continuously updated.

Having our network contents as identifiable entities, rather than
truly distributed, also has benefits. We are able to evaluate the
relative activation for our plan elements quite easily and we have
maintained a method of representation, the proposition, which is
supported by data as psychologically real (Kintsch & Keenan, 1973).

Connectionist benefits. What we have done is different from
standard connectionist methods in that we create a network out of
long-term memory dynamically for each task rather than utilizing
one large network in which only a portion becomes active for any
given task. However, we still obtain many of the benefits from
connectionist methodologies. With regard to the benefits of
connectionist methods, it seems as if the rule-based creation of the
plan element causal chaining and other network relations ought to
constrain the possible plans of action for NETWORK to take. However,
if one looks at the activation values for all plan elements in the
PRINT/DELETE task before activation has been allowed to spread via
integration, the plan elements to (PRINT FILE) and (DELETE FILE) are
equally active, since they are both explicitly mentioned in the task
request. In this situation of plan elements with tied activation,
NETWORK chooses one at random to fire. This means that there is a
50% chance that the file will be deleted before it ever has a chance to
be printed. By allowing activation to propagate through the network,
the (PRINT FILE) plan element has the effect of inhibiting (DELETE
FILE) which would ruin one of its preconditions, that the file to be
printed exists, to the extent that (PRINT FILE) itself is active. The
result of the spread of activation is that the plan element to (PRINT
FILE) is the most active in the first step. After it fires, it becomes
inhibited by the state of the world. (PRINT FILE) has now lost its
inhibiting power through becoming inhibited itself and the plan
element to (DELETE FILE) takes on activity. It receives this
activation through the explicit request to delete the file, and can then
fire resulting in the completion of this multiple goal task. In the
UNIX example, the flow of activation from the plan element HEAD to
other plan elements which produce its preconditions, again allow for
these steps to be accomplished without the need for explicit
subgoaling.

There is another class of benefits we glean from utilizing
connectionist methods as opposed to those in traditional planners.

33

Not only does NETWORK save space and time in the absence of fully
established plans, but NETWORK is also able to settle on a best
solution to a problem rather than any solution. That activity is
allowed to flow throughout the network until it settles allows for
optimal solutions to be selected, as shown in the contrast between
how NETWORK differs in its solutions to the REVISE and SEND tasks
and its ability to solve the sort and head problem in at least two
ways.

Also, the fact that one plan element does not have to be fully
supported, but only activated to a larger extent than competing plan
elements, allows NETWORK to find a "best fit" solution even if a plan
element which exactly matches the goal is absent.

Conclusion

What we have done is interesting and important for two different
reasons. First, we have taken a model of text comprehension and
adapted it for simulating data in a very different domain, routine
computing. More importantly, we have combined traditional rule-
based symbolic contents with connectionist methods for producing
and interpreting activation values for those contents. Each of these
gives us something in return, and keeps us relatively faithful to the
psychological data we wish to model. That the elements of our
networks are symbolic and in fact quite large in their being
propositions, provides interpretable node contents while allowing for
the task descriptions and knowledge about the domain to be
represented in a distributed manner. There is much evidence to
suggest that propositions are psychologically real entities and
therefore are intuitively suitable as the basic units for a
psychological model. On the other hand, the use of connectionist
methods allows for behavior to arise which is not precompiled, but in
many cases appears so. Thus, we can produce seemingly high-level,
controlled, phenomena in a flexible, contextually dependent, bottom-
up manner.

In addition, the fact that a plan element needs merely to be
supported by the current context to a greater extent than others in
order to fire, is a very valuable characteristic of our formalism. In
many rule based systems, a single rule must be chosen for firing
depending upon the satisfaction of the rule's preconditions. Here,
plan elements will not fire if all of their preconditions are not met,
but often spurious activation flows to plan elements which one would

35

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal
reports as data. Cambridge, MA: MIT Press.

Geman, S. (1981). Notes on a self-organizing machine. In G. E. Hinton
and J. A. Anderson (Eds.), Parallel models of associative
memory. Hillsdale, NJ: Lawrence Erlbaum.

Golden, R. M. (1986). Representing causal schemata in connectionist
systems. Cognitive Science Society Proceedings. Hillsdale, NJ:
Lawrence Erlbaum.

Jordan, M. I. (1986). Serial order: A parallel distributed processing
approach. Technical Report number 8604 of the Institute for
Cognitive Science: University of California, San Diego.

Kintsch, W. (1988). The role of knowledge in discourse
comprehension: A construction-integration model.
Psychological Review, 95, 163-182.

Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text
comprehension and production. Psychological Review, 85, 363-
394,

Kintsch, W., & Keenan, J. M. (1973). Reading rate and retention as a
function of the number of propositions in the base structure of
sentences. Cognitive Psychology, 5, 257-274.

Kintsch, W., & Mannes, S. M. (1987). Generating scripts from
memory. In J. Hoffman & E. van der Meer (Eds.), Knowledge
aided information processing. North-Holland Publishers:
Amsterdam.

Kohonen, T., Oja, E., & Lehtio, P. (1981). Storage and processing of
information in distributed associative memory systems. In G.
E. Hinton and J. A. Anderson (Eds.), Parallel models of
associative memory. Hillsdale, NJ: Lawrence Erlbaum.

Kolodner, J. L., & Simpson, R. L. (1984). Experience and problem
solving: a framework. In Proceedings of the Sixth Annual
Conference of the Cognitive Science Society.

Mannes, S. M., & Kintsch, W. (in preparation). Planning routine
computing tasks: Understanding what to do.

36

Mannes, S. M., & Kintsch, W. (1988). Action planning: Routine
computing tasks. In A. A. Turner (Ed.), Mental models and user

centered design. Institute of Cognitive Science, University of
Colorado, Technical Report No. 88-9.

Minsky, M. (1975). Frame-system theory. In R. C. Schank and B. L.
Nash-Weber (Eds.), Theoretical issues in natural language
processing. MIT Conference proceedings.

Raaijmaker, J. G., & Shiffrin, R. M. (1981). Search of associative
memory. Psychological Review, 88, 93-134,

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E.
(1986). Schemata and sequential thought processes in PDP
models. In J. L. McClelland, D. E. Rumelhart, and the PDP
Research Group, Parallel distributed processing. Cambridge,
MA: MIT Press.

Sacerdoti, E. D. (1977). A _structure for plans and behavior. New
York: Elsevier North-Holland.

Schank, R. C., & Abelson, R. (1977). Scripts, plans, goals and
understanding. Hillsdale NJ: Lawrence Erlbaum.

Schvaneveldt, R. (1987). Schemata and proximities. Paper presented
at the Rocky Mountain Psychological Association, Albuquerque,
New Mexico.

Smolensky, P. (1986). Information processing in dynamical systems:
Foundations of harmony theory. In J. L. McClelland, D. E.
Rumelhart, and the PDP Research Group, Parallel distributed
processing. Cambridge, MA: MIT Press.

Stefik, M. (1981). Planning with constraints (MOLGEN: Part 1).
Artificial Intelligence, 16, 111-140.

Sussman, G. J. (1975). A computer model of skill acquisition. New
York: American Elsevier.

Turner, A. A., & Green, E. (1978). Construction _and use of a
propositional text base. JSAS Catalogue of selected documents
in psychology, MS-1713.

	TechReport89-08001.pdf
	89-08b001.pdf

