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Abstract

How sentences from a discourse are recognized can be
explained by combining models of item recognition derived from list-
learning experiments with notions about the representation of text in
memory within the framework of the construction-integration model
of discourse comprehension. The implications of such a model of
sentence recognition are worked out for two experimental situations.
In the first experiment, subjects read brief scriptal texts and were
then tested for recognition with verbatim old sentences, paraphrases,
inferences, and two types of new distractor sentences after delays
from O to 4 days. Differential decay rates for the wording and
meaning of the text and for scriptal information were observed. The
model provides a good quantitative account of the data. In the
second experiment, the speed-accuracy trade-off in sentence
verification was studied for old verbatim sentences, and correct and
false inferences. Qualitative predictions derived from the model
based on the parameter estimates from the first study were in
agreement with the data. Readers without an adequate situation
model were found to make quick judgments based on surface and
textbase characteristics of the test sentences, while experts are
initially more cautious because they rely more on the situation

model.



A large number of experiments on recognition memory exist in
which the material used consists of lists of words or pictures. Several
models of recognition memory are available today which account
very well for most of the phenomena observed in these experiments.
Can these theories also account for experimental data when the
materials used are not lists of items, but coherent discourse? By
combining the essential features of current models of recognition
memory developed in the context of list learning studies with a
model of discourse comprehension and assumptions about the
representation of discourse in memory, a model of sentence
recognition can be obtained that accounts for the major features of
sentence recognition data. Thus, we do not propose developing a new
model for sentence recognition. Instead, we shall combine existing
models of list learning and text comprehension processes to derive a
theoretical analysis of sentence recognition.

We begin by comparing three current models of item
recognition (Gillund & Shiffrin, 1984; Hintzman, 1984; Murdock,
1982) to determine their common features, which we take over in
developing a model of sentence recognition. We then introduce some
notions about the representation of discourse in memory from van
Dijk & Kintsch (1983) and briefly sketch the construction-integration
model of discourse comprehension (Kintsch, 1988). Finally, we show
how these elements in combination provide an account of sentence
recognition data. We demonstrate that our model can be made to
match a set of sentence recognition data in which old verbatim
sentences, paraphrases, inferences and new sentences are used as
test items for retention intervals varying between an immediate test
and a four-day delay (Experiment I). The model is further evaluated
by testing some of its qualitative implications with respect to the
speed-accuracy trade-off in sentence recognition judgments
(Experiment 1II).




1. Models of Item Recognition

Three models of recognition memory will be considered here.
those of Hintzman (1984), Murdock (1982), and Gillund & Shiffrin
(1984). All three models are formulated rigorously so that
quantitative predictions are possible, and all appear to be empirically
adequate in the domains to which they have been applied.

At first glance, the three models appear to be about as
different as they could be in their basic make-up: Murdock's is a
distributed memory model; Hintzman postulates multiple episodic
traces; Gillund & Shiffrin conceive of memory as a network of
interassociated nodes, while the other two models employ feature
vectors. However, these models share some essential similarities
when they are expressed formally, and it is these that we shall use
as a basis for a model of sentence recognition.

Hintzman (1984): This model is a multi-trace model, in
which each experience leaves its own memory trace. Memory traces,
as well as test items, are represented as feature vectors, the values
of the features being 1, -1, or 0. The similarity of a memory trace to
some probe is the (weighted) dot product of their corresponding
feature vectors. The total activation of a probe, its Intensity I, is
given by the sum of the similarity values of the probe with all traces
in memory. E(I) = 0 if the probe does not resemble any traces and
increases as the quality of the match improves. Under reasonable
conditions Var(I) can be treated as constant. For recognition
judgments, the I distribution is fed into a TSD-like (signal detection)
decision mechanism.

Murdock (1982): Murdock also represents memory traces as
well as test items as feature vectors. However, a single vector now
represents the memory trace of a whole list of items with which the
feature vectors of the test items are compared on a recognition test.
Once again, a dot product is taken and the resulting values are
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summed to obtain a retrieval strength value, which is then used in a
TSD-like decision system. There are other versions of distributed
memory models for item recognition which differ from Murdock in
their mathematical formulation, but these differences are irrelevant
at this general level of analysis.

Gillund & Shiffrin (1984): Unlike the previous two models,
items in this model are represented as nodes related to each other by
associate links in a retrieval structure. Suppose that there is a set of
items [I], a test node T, and a context node C, with the similarity
between a test node and an item I being S(T,I), and the similarity
between the context node and item I being S(C,I). For recognition, the
memory probe is assumed to consist of T and C, and the activation
resulting from comparing the memory probe with item I is given by
the product S(T,I)*S(C,I). The total activation of T is just the sum of
the activations for each of the items in memory, and, as in the
previous models, serves as a test statistic for a TSD decision system.

Obviously, this brief description does not do justice to the three
models considered here. Nevertheless, it suffices to make a few
important points. The discrépancy in their verbal formulation
notwithstanding, they agree on some crucial mathematical
properties. First, in all models the target is compared to all memory
traces, and the sum of these comparisons provides the relevant test
statistic. This sets these models apart from the previous generation
of recognition models, where a recognition decision was thought to be
dependent only upon the similarity of the target item to its
corresponding memory trace. This is a crucial feature of item
recognition. However, it does not appear to matter much exactly how
this comparison between the set of memory traces and the target
item is performed: whether the traces are summed first, and then
the comparison is made (as in Murdock), or whether the comparisons
are made first and their outcomes are then summed (as in Hintzman
and Gillund & Shiffrin) makes no difference for present purposes.
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Similarity between trace and target in the Hintzman and
Murdock models is computed by the dot product of the
corresponding feature vectors. In Gillund & Shiffrin the links in the
associative network represent familiarity values directly. The
discourse comprehension theory as formulated in Kintsch (1988)
lends itself most naturally to the latter approach, though a more
molecular analysis would be possible in principle.

Finally, all three models use a TSD decision mechanism to turn
strength measures (Intensity, Familiarity) into yes-no decisions.

These three elements sufficiently specify the recognition
mechanism for the model to be proposed here. The ideosyncratic
features of the three models will be neglected in favor of these
formal communalities. The fact that all three models fit recognition
data about equally well implies that the features common to these
models are responsible for the fit to the data. The rest represents
either differences in theoretical metaphors and verbal
interpretations of the common formal substance of the model, or, if it
is to be taken more seriously, requires for resolution a broader
framework than just laboratory studies of item recognition.!

2. Levels of Representation

According to van Dijk & Kintsch (1983), three levels must be
distinguished in the memory representation of discourse. At one
level, a text is characterized by the exact words and phrases used.
This is the surface level of representation. Linguistic theory provides
the tools for the description and analysis of this level of
representation. At another level, not the exact wording but the
semantic content of the text must be represented. Both the local
(microstructure) and global (macrostructure) characteristics of the
text play a role here (Kintsch & van Dijk, 1978). Several
representational schemes have been developed within linguistics,
semantics, artificial intelligence, and psychology for this purpose. We
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shall use here the propositional representation first introduced in
Kintsch (1974). The situation model is the third level of
representation important for text comprehension (van Dijk & Kintsch,
1983). What is represented at this level is not the text itself, but the
situation described by the text, detached from the text structure
proper and embedded in pre-established fields of knowledge. The
principle of organization at this level may not be the text's
macrostructure, but the knowledge schema (e.g., an appropriate
script or frame) used to assimilate it.

In a number of experimental studies it has been shown that
these three levels of representation can be distinguished in sentence
recognition experiments (e.g., Schmalhofer & Glavanov, 1986;
Fletcher & Chrysler, in press). Old verbatim sentences are
represented at all three levels of representation: the surface
structure, the textbase, and the situation model. Paraphrases of old
sentences, on the other hand, differ in terms of the surface structure
from what is stored in memory, but not at the textbase and situation
model level. Inference statements that were not directly expressed
in the text differ from the memory representation both in terms of
their surface structure and propositional content, but they are part of
the same situation model. Finally, contextually related, but not
inferable test sentences differ from the memory representation at all
three levels. Thus, by looking at the differences among these types of
test sentences, estimates of the memory strength at each level of
representation may be obtained in sentence recognition experiments.

3. The Construction-Integration Model

The construction-integration model of Kintsch (1988) describes
how texts are represented in memory in the process of
understanding and how they are integrated into the comprehender's
knowledge base.

The crucial features of the model are as follows. Comprehension
is simulated as a production system, the rules of which operate at
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various levels: some build propositions from the linguistic
information provided by the text; some generate macropropositions;
some retrieve knowledge from the comprehender's long-term
memory that is related to the text, thus serving as mechanisms for
elaboration and inference. All these rules share one general
characteristic: they are weak, "dumb" rules that don't always achieve
the desired results. In addition to what should have been
constructed, these rules generate redundant, useless, and even
contradictory material. In contrast, most other models of
comprehension attempt to specify strong, "smart" rules, which,
guided by schemata, arrive at just the right interpretations, activate
just the right knowledge, and generate just the right inferences.

Smart rules necessarily must be quite complex, and it is very
hard to make smart rules work right in ever-changing contexts.
Weak rules, as they are used here, are obviously much more robust -
but, left to themselves, they do not generate acceptable
representations of the text. Irrelevant or contradictory items that
have been generated by weak rules, however, can be rejected, if we
consider not just the set of items generated by the rules, but also the
pattern of interrelationships among them. Items which are irrelevant
to the text as a whole which were produced by the indiscriminate
firing of some production rule will be related only to one or a few
other items, while contradictory items will be negatively connected
to some of the other items in the network of items produced by the
model. Relevant items, on the other hand, will tend to be strongly
interrelated - be it because they are derived from the same phrase
in the text, or because they are close together in the textbase, or
because they are related semantically -or experientially in the
comprehender's knowledge base. Thus, if activation is spread around
the network of items, an integrated representation can be obtained.
The construction-integration model achieves with weak rules
followed by an integration process what other models of text
comprehension try to achieve with smart rules.



Kintsch (1988) not only describes the relevant details of this
model, but also reports some results that (a) suggest that this kind of
a model -may capture some features of human comprehension
processes better than "smart" comprehension models, and (b)
demonstrates that the model is computationally adequate in some
reasonably complex domains.

The construction-integration model provides a natural account
of sentence recognition. First, comprehension of a paragraph is
simulated in the way just outlined, resulting in a memory
representation consisting of text propositions, plus whatever
knowledge elaborations and inferences were generated that survived
the integration process. These items have some sort of activation
value - central, important propositions being more highly activated
than peripheral ones - and they are related to each other in the ways
specified by the model. Formally, this means we have an activation
vector A, specifying for each element that was constructed its final
activation value, - and a coherence matrix C, specifying the relations
among these elements. The two characterize in the model the
memory representation achieved as a result of comprehending this
paragraph.

The model is then given the to-be-recognized test sentence to
comprehend, for which it will construct the same kind of
representation. In recognition, the representation of the test sentence
is compared with the representation of the whole paragraph. This is
done by joining the two coherence matrices and observing how much
activation flows from the original paragraph to the test sentence. If
the test sentence fits in well with the original text (e.g., it is actually
a part of it), it will become strongly activated. If it has no connections
at all to the original material, it will not be activated at all. The more
similar it is to the original, the more connections there will be, and
the more highly activated the test sentence will become. Thus, we
can use the amount of activation that flows from the original
paragraph to the test sentence as a measure of its familiarity or
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strength, and use a decision rule to derive a binary recognition
response.

The proposed model of sentence recognition is based on three
components: a recognition mechanism from the list-learning
literature, the notion that discourse is represented at different levels,
and the processing mechanisms of the construction-integration
model. The test item - the test sentence - is compared, at each level
of representation, against all items in memory - the whole text. The
comparison yields an index of the similarity between what is
remembered and the test item, as measured by the amount of
activation that flows from the memory representation into the test
item. This similarity index is then used in a decision mechanism.
Thus, the recognition principles derived from the list learning
literature have been embedded into the framework of the
construction-integration model.

In the next section, an experiment on sentence recognition

from discourse will be described. These data will provide the
framework for the detailed and formal development of our: model.
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4. Sentence Recognition

Experiment I. Zimny (1987) studied sentence recognition for
verbatim old sentences, paraphrases, inferences, and two types of
distractor sentences for retention intervals up to four days. She
constructed 18 texts of about 150-200 words each, based on the
scriptal norms of Galambos (1982). Each text described a sequence of
scriptal events (e.g. "Nick goes to the movies") by stringing together
high-frequency, familiar actions from the norms, interspersed with
some non-scriptal material (e.g. his girlfriend wore a dress with pink
polka dots). The reason for constructing these texts according to
script norms was so that we knew what sort of situation model was
likely to be constructed for each text, namely a script-based one.
Linguistic analyses specify the structure of the surface
representation for arbitrary texts, and propositional analyses are
similarly general, yielding textbase hierarchies for a wide variety of
texts. Unfortunately, this is not the case for the situation model: for
most texts we have no clear idea what sort of a situation model
would be generated. Consequently, we must work with special cases
where enough research has been done to establish this kind of
information. Research in this area has therefore focussed on a few
cases such as maps , as in Perrig & Kintsch (1985), mental models, as
in Johnson-Laird (1983), or scripts, as in Bower, Black, & Turner
(1979) as well as the present case.

For each text, Zimny constructed five test sentences which vary
in terms of their level of discourse representation. Old sentences
appeared at test as they had in the original text, and are represented
at the surface, textbase, and situation model levels. Paraphrases
involved minimal word order or single word changes; they are
identical with sentences from the text at the levels of their textbase
and surface representation, but differ in some ways in their surface
structure. Inferences were sentences that could be inferred by
readers from the surrounding context with high reliability; these
sentences fit into the same situation model as actual sentences from
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the text, but thy differed both in terms of their textbase and surface
representations. While an attempt was made to keep the test
sentences similar in terms of their length and complexity, they
obviously had to differ in numerous ways, with some being much
more salient and recognizable than others. Therefore, Zimny wrote
three different versions of her texts, so that each sentence could
serve either as an old, paraphrase, or inference sentence. In addition,
two entirely new test sentences were used with each text. One
sentence was contextually appropriate, while the other was
unrelated to the theme and context of the text and served as the
baseline for the recognition analysis.

One group of subjects was asked to recognize the test sentences
for each text right after reading the text. Subjects were instructed to
answer "yes" if they thought they had seen the sentence before, and
"no" otherwise. Three other groups of subjects received the test
sentences after delays of 40 minutes, 2 days, or 4 days.

The results most relevant for present purposes are shown in
Figures 1 and 2. Figure 1 shows the percent "yes" responses subjects
gave to old test sentences, paraphrases, inferences, as well as context
appropriate and context inappropriate distractor items. as a function
of delay. The main effects of sentence type and delay were both
significant statistically, but most importantly, there was a significant
interaction between dely and sentence type, F(6,280) = 38.7, p<.001.
Figure 2 provides estimates of the trace strengths at the three levels
of representation over the delay intervals. The percent "yes" data
were first turned into d' measures by using the context inappropriate
distractor items as a baseline. This transformation was necessary to
remove strong, delay-dependent bias effects from the analysis: on
the immediate test, subjects used a strict criterion for saying they
had seen a sentence before, but after four days they were willing to
assert this on the basis of much weaker evidence. Secondly,
difference measures between the d's were computed. The difference
between the memory strengths of old sentences and paraphrases
provides a measure of the strength of the surface representation
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(how something was said). The difference between the strengths of
the paraphrase sentences and inferences provides a measure of the
strength of the textbase representation (whether something was
actually said in the text or not). And finally, the difference between
the strength of the contextually appropriate distractor items and the
inference sentences provides a measure of the strength of the
situation model (whether something is true in the given situational
context or not). These difference values are plotted in Figure 2. A
statistical analysis of these data revealed that, in addition to
significant main effects, the interaction between delay and trace type
was also significant statistically, F(6,280) = 6.29, p<.001.

- Insert Figs. 1 & 2 about here-

Figure 2 shows some interesting trends. First of all, surface
memory was found only on the immediate test. Memory for the
textbase was quite strong initially, decreased with delay, but
remained above zero even after four days. Situational memory, on
the other hand, stayed at a high level, independent of delay.2 These
are the data that will be modelled here.

Sentence Recognition: Theoretical Derivations, To derive
theoretical predictions for the data from the Zimny experiment,
somewhat different aspects of the construction-integration model
will have to be emphasized than in Kintsch (1988), it still remains
the same model. In Kintsch (1988) the memory representation of a
text was developed only at the propositional level: surface traces, as
well as situational representations were neglected. Obviously, these
distinctions will have to made explicit in a treatment of sentence
recognition. On the other hand, the focus of Kintsch (1988) was on
the performance of the model as an inference engine - something
that we shall neglect in the present application of the model. The
reason for omitting this aspect of the model here is that it does little
actual work in the present application, and that its inclusion would
make an already complex story even more complicated. This
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simplification does introduce some distortions, however, which will
have to be considered after the simplified case has been presented.

The Zimny data are averaged over subjects and sentences.
Predictions will be derived for a single text which is much briefer
than the original texts used by Zimny, and for only a few specific test
sentences. While these materials are not atypical, it is certainly the
case that for another text example and other test sentences
somewhat different quantitative predictions and parameter values
may have been obtained. However, the overall pattern of results
would presumably remain the same. Thus, predictions for a "typical”
subject and material set are compared here with data averaged over
subjects and materials.

The following two-sentence text will be used as the input text:
Nick decided to go to the movies. He looked at the newspaper to see
what was playing. (This is the beginning of a text based on a Going-
to-the-Movies script used by Zimny (1987), which then continues
through the whole event). In Kintsch (1988), this text would have
been broken down into propositional units (such as NICK, (GO-
TO,NICK,MOVIES), etc.) which then would activate knowledge through
their associative links in the reader's long-term memory store
(perhaps Nick wanted to see a film). This propositional structure
would be consolidated through an integration process which
eliminates the context-irrelevant knowledge that had been activated.
For the sake of simplicity, we omit the knowledge activation process
in this application, and only look at the actual text contents, as
explained above. However, since we know that surface properties of
the text as well as the situation model also play a role in sentence
recognition, we make explicit in our analysis the linguistic relations
as well as the scriptal relations among the input units in the text.

A simulation of the model constructs a network of text
elements that specifies how strongly each element is related to each
other. We are concerned with three types of relationships,
corresponding to the three levels of representation of text in
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memory. Within each level, we specify relation strengths in terms of
distances among elements in a coherence network. The pattern of
interconnectedness among these items will determine the degree of
activation each element will receive.

- Insert Fig. 3 about here -

In Figure 3, 10 word groups (linguistic elements, L) have been
distinguished in the text. Most of these correspond to propositions (P)
as well as elements of the situation model (M), except P7 and M7 do
not have a corresponding linguistic element L7. The linguistic
elements form syntactic chunks (S), according to the phrase structure
of the sentences. E.g. L3 (to-go-to) and L4 (the-movies) combine to
form the chunk S3. Together, L and S constitute the elements of the
surface representation of the text. (They are distinguished here
merely for convenience, to allow a ready comparison between the
actual words and phrases used in the text and the propositions or
situation model elements corresponding to these words or phrases).
The graph shown in Figure 3 allows one to calculate a distance matrix
among the L- and S-elements: for instance, L1 is one step away from
S1, three steps away from L2, and not connected to L10.

The propositions P1 - P9 are connected to each other in a
somewhat different pattern. Following Kintsch (1974), one can
approximate the structure of a propositional textbase by noting the
pattern of argument overlap among the propositions. For example, P1
appears as an argument in P2, P3, P5, and P8, while P2 overlaps with
P1 and P3. The textbase structure obtained via argument overlap is
shown in Figure 4 . This network defines a distance matrix among
the propositional elements: P2 is a single step away from PI1, three
steps away from P7, and 4 steps away from P9.

- Insert Fig. 4 about here -

A similar distance matrix can be computed for the elements of
the situation model. Since the text was explicitly constructed from
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script norms, it can be safely assumed that the situation model in
this case is structured as a script, i.e. as a schema with slots for
Properties, Agents, Preparatory Steps, etc. (e.g., Schank & Abelson,
1977). The script header M10 must be added to the items directly
derived from the text - an exception to the policy of neglecting all
inferences in the present application of the model. The resulting
structure is also shown in Figure 4. This time, M2 is one step away
from M3, two steps from MI, one step from M7, and three from MO9.

It is not necessary to think of L1 (the exact word used in the
text), P1 (the corresponding proposition) and M1l (an element of the
situation model) as three distinct objects in the reader's memory
representation. It is the same "Nick” in all three cases, but viewed
once from a linguistic pcfspcctive where it enters into a certain set of
relations with other linguistic elements, once considered as a
proposition which plays a role in the textbase, and once considered in
terms of its role in the "Go-to-the-Movies" script. For analytic
purposes it is useful to distinguish L, P, and M units, but what
matters conceptually is that text elements enter into different
relationships with other elements, depending upon the level of
analysis: surface, propositional, or situational.3

These relationships define a network which is represented by
the coherence matrix. This matrix is needed as a basis for the
integration process. The rows and columns of this matrix are given
by the elements L1 - L11, S1 - S8, P1 - P9, and M1 - MIO. The
entries of the matrix designate the strength of the relationship
between row and column elements. Numerical parameters for the
strength of relations among elements a certain distance apart in the
graphs shown in Figures 3 and 4 must be estimated at this point. An
unsystematic trial-and-error procedure was employed to obtain
these estimates. Intuition suggests that local relations in the surface
structure and textbase are quite strong but weaken rapidly as the
distance between items increases. Hence, values of 5 and 3 were
used in the coherence matrix for items O and 1 steps apart in either
in the surface structure or in the or textbase. All other connections
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were set to 0. On the other hand, scripts are more stable long-term
memory structures, allowing for more long-distance relations, so that
strength values of 4, 3, 2 and 1 were assigned to items O, 1, 2 and 3
steps apart in the script structure, respectively. Finally, a value of 4
was used to tie together the same node at different levels of
representation, e.g., L1 to P1, and P1 to MI. In consequence, the
effective connections for the surface and textbase elements in the
coherence matrix correspond to the links shown in Figures 3 and 4,
but the connections among the model elements are much richer,
since not only neighboring nodes are directly connected, but also
nodes two and three steps apart in Figure 4.

In this way a 38 x 38 coherence matrix was obtained. Each of
the 38 items was assigned an initial weight of 1/38 in an activation
vector A1. This activation vector was successively multiplied with
the coherence matrix. After each multiplication, the resulting
activation vector was renormalized so that the sum of all activation
values was 1. After 7 such cycles the average change in activation
was less than .0001, and the process of spreading activation was
stopped at that point. Figure 5 shows the pattern of activation over
the 38 elements in the activation vector. L and S elements wind up
with relatively low activation values (because only a few linguistic
connections contribute to the spread of activation, given the matrix
structure and parameter values assumed above). P elements are
more strongly activated, partly because they are embedded in a
more strongly interconnected network than the linguistic elements,
and partly because they are directly connected to the dominant M
elements. The reason for the higher activation of the M elements is of
course their much greater interconnectedness. Note that the only
inference admitted here, the "Going-to-the-Movies" script header,
has become one of the most highly activated items.

- Insert Fig. 5 about here -

The memory trace, then, consists of three components: the 38
elements that were constructed from the text (in the general case,
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these would be augmented by a substantial amount of activated
knowledge - inferences and elaborations), their interconnections as
represented by the coherence matrix C, and their activation values,
given by the activation vector A.

We can now turn to the recognition test. First, consider an old

test sentence that is taken verbatim from the original text, e.g. He
looked at the newspaper. As in the memory models discussed above,

the familiarity value of this sentence is based on the dot product
T*A, where T is a vector with unit activation in all elements
associated with the test sentence and A is the activation vector. The
calculations are illustrated in Table 1.

Now consider a paraphrase, such as Nick studied the
newspaper. Most of the elements constructed from this sentence are
again duplicates of elements in the existing memory structure, but
there are some new ones: the word studied (but not the proposition
PS5, which remains unaffected by the substitution of a synonym), as
well as two new S elements (in place of S4 and SS). These three new
elements are added to the coherence matrix and connected with the
existing memory structure in the same way as the original elements
themselves were interconnected. Thus, an expanded coherence
matrix Cp is obtained. Activation is now spread through this new
structure until the activation vector Ap stabilizes, which occurs after
just 2 cycles. Table 1 shows the resulting pattern of activation for
this test sentence. Its familiarity is slightly below that of the old,
verbatim sentence, in qualitative agreement with Zimny's data.

- Insert Table 1 about here -

The computation of familiarity values are also shown for two
inference sentences in Table 1. The first test sentence "Nick wanted
to see a film" is composed almost entirely of new elements, requiring
the addition of 12 items to the original coherence matrix. It is a
plausible inference (though not a logically necessary one), and its
familiarity value comes out quite high, though well below that of the
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paraphrase sentence. The second inference sentence "Nick bought the
newspaper" shares more elements with the original memory
structure, but does not fit into the script structure as tightly as the
first (wanting to see a film is itself a preparatory step in the Movies
script, while buying the newspaper is just something appended to
the newspaper introduced earlier). As a result, the second inference
receives slightly less activation than the first. Finally, the familiarity
value of a distractor sentence "Nick went swimming" is computed in
Table 1; its only connection with the original paragraph is the name
"Nick", and it receives the lowest activation value, as it should.

The familiarity values computed so far look sensible, and are in
qualitative agreement with the data. With additional assumptions
about forgetting, further predictions can be derived. Suppose we
simulate memory for two delay intervals, a short delay,
corresponding to Zimny's 40 min. and 2 day intervals, which yielded
comparable results in Figure 1, and and a long delay, corresponding
to the 4 day delay. We want to derive predictions for the time of
recognition testing, i.e. after the paragraph has been read, and after
forgetting has taken place. We are assuming that the effect of
forgetting is a weakening of the connections between the items in
memory, with the connections among surfaces traces decaying most
rapidly, textbase connections less so, while the situation model
remains intact, as in the Zimny study (Figure 2). Numerically, this
means that we set surface and textbase connections to 4 and 2 for 0
and 1 step distances (instead 5 and 3) to simulate the short-delay
test. For the long-delay test, all surface connections are set to 0, and
textbase connections to 3 and 1, for 0- and 1-step distances,
respectively. (Note that we are in effect collapsing acquisition and
retention into a single matrix here). Then, the same calculations are
performed as in Table 1. However, the resulting activation values are
not directly comparable across the three delay intervals, because of
the way activation vectors have been renormalized after each
multiplication. By keeping the total activation always at 1, the
activation vectors indicate only relative values among the items in
each vector, but not absolute values across different matrices. In
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order to obtain absolute strengths values, each activation vector
must be weighted by the total sum of all entries in the corresponding
coherence matrix. If there are many and numerically stronger
connections in a matrix (immediately after reading), activation will
reach a higher level than if there are fewer and weaker connections
(after 4 days). These absolute strength values for the three delay
intervals are shown for old sentences, .paraphrases, inferences, and
new sentences in Figure 6.

- Insert Fig. 6 about here -

Obviously, Figure 6 gives a fair qualitative account of the data
in Figures 1 and 2. The differences in response strengths between old
items and paraphrases disappear as delay increases, and old items,
inferences and new items converge, but not completely. In order to
go from the strengths values shown in Figure 6 to Yes-No responses,
further assumptions need to be made about how strength values are
transformed into Yes-No decisions. Instead of developing here a
standard TSD model for that purpose, a simple response-strength
model was assumed employing a ratio rule. The probability of a "Yes"
response was computed by subtracting from each strength value a
delay-specific threshold value and dividing the result by the total
response strength, mapping the strength values into the [0,1]
interval. Thus, four parameters need to be estimated for this
purpose: a threshold for a Yes response for each of the delay
intervals (we know that there are pronounced changes in bias over a
four-day delay), and a value for the total response strength. These
four parameters were estimated by the method of least squares. The
resulting fit to the data from Figure 1 is shown in Figure 7.

- Insert Fig. 7 about here -

It would be hard to improve the fit of the predictions in Figure
7 through more sophisticated methods of parameter estimation for
the coherence matrices, or a more elaborate decision model. Clearly,
the present model does very well, in that it gives a good qualitative
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account of the data (Table 1 and Figure 6), as well as a good
quantitative fit (Figure 7).

In evaluating the fit of the model it must be remembered that
we have not constructed an ad hoc model for sentence recognition,
but have put together this model from various existing components:
a recognition mechanism from the list learning literature, ideas about
the memory representation, and a model of comprehension processes
from recent work on discourse processing. Neither is there anything
new about the way memory representations are constructed here:
phrase structure chunks, textbases, and scripts are all familiar and
widely used. Even the parameters in the model are constrained, both
a priori (connection strengths can decrease with delay, but not
increase), and empirically (surface traces must decay rapidly,
textbase traces more slowly and incompletely, and model traces not
at all). A theory of sentence recognition has been constructed largely
from old parts, and it appears to be empirically adequate.

Nevertheless, a more skeptical view is also possible. There are
a large number of parameters in the theory, and although it is not
known how many are really free to vary (nor how this relates to the
degrees of freedom in the data), their precise values are certainly
underconstrained. Furthermore, illustrative predictions for particular
test sentences are used as a basis for predicting data averaged over
many texts and sentences as well as subjects. In short, it is not
entirely obvious what is responsible for the good fit that was
obtained - the theoretical principles emphasized here, or the design
decisions ‘made in putting this theory together.

To some extent this dilemma reflects the fact that it is hardly
ever possible to evaluate a complex theory with respect to a single
set of data. Fortunately, the theory makes some additional
predictions that do not depend on any further parameter estimation.
If the model presented here is more or less correct, then other
predictions about sentence recognition follow which can be evaluated
at least qualitatively without further parameter estimation.
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6. Speed-Accuracy Trade-off Functions.

In deriving the predictions for the Zimny (1987) data shown in
Figures 6 and 7, two different inference statements were used as
examples. Both were pragmatic inferences that people were likely to
make in this context, but they differed in interesting ways. The first
inference, "Nick wanted to see a film" is strongly related to the text
at the level of the situation model: It is a common (though certainly
not a necessary) prerequisite for going to the movies. On the other
hand, at the textbase and surface levels, the connection is made only
by a single term, "Nick". In contrast, the second inference, "Nick
picked up the newspaper", shares both "Nick" and "newspaper” with
the original text at the surface and textbase levels, but is not directly
related to the going-to-the-movies script; it is merely an addendum
to "newspaper". This makes an interesting difference in the way the
present model handles these statements.

As was shown in Table 1, the wanting-to-see-a-film inference
accrues more activation (258 units) than the picking-up-the-
newspaper inference (212 units). However, there is a significant
difference in the speed with which this accrual occurs. In the first
case, the amount of activation attracted by the inference statement
in the first cycle is low (173 units, or 73% of the eventual total), and
rises rather slowly over 13 cycles to its asymptotic value. The second
inference, on the other hand, gets most of its activation right away
(198 units, or 93%, so it is initially the stronger one) and reaches
asymptote in 9 cycles. If one wanted to venture a generalization
from just these two examples, one could say that model-based
inferences are weak initially but increase in strength to a high value
with enough processing, while inferences that are based more on
surface similarity acquire activation quickly, but do not change much
with further processing. In the model, this is obviously a
consequence of the fact that surface and textbase relations are very
local, while the situation model network is more extended.
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The way to test this hypothesis would be to collect speed-
accuracy trade-off data for inference statements differing as outlined
above. Alternatively, one can try to apply the model to some existing
speed-accuracy data collected by Schmalhofer, Boschert, & Kiihn (in
preparation) that illustrate a closely related phenomenon.
Schmalhofer et al. collected data from novices and experts verifying
sentences from a highly technical text (an introduction to some
features of the programming language LISP). They found rather
striking differences in the speed-accuracy functions for these two
groups of subjects, and we shall try to account for these differences
by means of the hypothesis suggested above. In the Zimny data we
are dealing with different types of inferences (surface- vs.: model-
based similarity), while Schmalhofer et al. deal with different types
of subjects (experts with a good situation model and novices with an
incomplete or faulty situation model). For the reasons mentioned
above, the present model predicts quite different speed-accuracy
trade-off functions in both of these cases.

Experiment II. Schmalhofer et al. (in preparation) had 40
subjects study brief texts  introducing them to the programming
language LISP. Half of the subjects had no programming experience,
while the other half were proficient in the programming language
PASCAL (but had no experience with LISP). Therefore, the subjects
with programming experience presumably knew about functions in
general, and when studying the LISP text, could employ this
knowledge about function schemata to understand what they were
reading, i.e. construct an appropriate situation model. Novices, on the
other hand, were presumably unable to do so within the relatively
short time they were allowed to study these texts. On the other hand,
they certainly could understand the words and phrases they read
and form a coherent text base.

_ Insert Table 2 about here -

Subjects were tested on four texts. An example of a text used in
the experiment is shown in Table 2, together with three types of test
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sentences: an old verbatim sentence, and a correct and an incorrect
inference. Subjects were asked to verify whether or not the test
sentences were true, and to provide confidence judgments.# When a
test sentence was presented, a subject made 6 responses in a
sequence, at 1.5 sec intervals when a signal tone was presented. The
first response signal occurred 750 msec before the sentence
appeared on the screen. Obviously, subjects could only guess at that
time, but during the next 7.5 sec they had ample time to fully
process each test sentence. The last response signal differed from the
previous ones, and subjects could make their final response without
time pressure.

The percentage of "yes" responses on two consecutive
responses can be used to determine the subject's change in opinion
whether the sentence is true or false. Incremental d' values were
calculated to assess this change. The incremental d' value for the
processing time O is based on the difference between an unbiased
guess (50% true responses) and the subject's actual guessing. No
significant differences either between groups or sentence types were
observed on this initial guessing trial. The results of the analyses for
the next five responses for old sentences, correct inferences, and
incorrect inferences are shown in Figures 8, 9, and 10, respectively.
Separate analyses of variance were performed for each sentence
type. The factor response signal time was, of course, always highly
significant, while the difference between the high and low knowledge
groups never quite reached levels of statistical significance. More
important were the interactions between these factors: as Figure 8
suggests, novices and experts performed equally on old sentences,
but for inferences (Figures 9), a significant statistical interaction was
obtained, F(4,148) = 4.15, p<.01.

- Insert Figs. 8, 9 & 10 about here -
For true inferences, novices are relatively confident early in

processing that the sentence would be true and become more and
more uncertain during later processing. Experts, on the other hand,




do not jump to conclusions, but gradually accumulate evidence
throughout the processing period. Both experts and novices tend to
accept false inferences as true initially, but experts eventually reject
them confidently, while novices remain uncertain. These findings can
be readily interpreted within the construction-integration model as it
has been applied here to sentence recognition data.

On-line integration. In previous work with the construction-
integration model, the sentence was assumed to be the processing
unit, purely for reasons of convenience: as long as one is not much
concerned with what happens within a sentence, this is a useful
simplification. However, if one is interested in how activation
develops during the reading of a test sentence, the convenient fiction
of the sentence as a processing unit must be abandoned. Instead, it
will be assumed here that words are the processing units. As each
word is read, all elements that can be constructed at this point are
constructed and added to the existing net, which is then re-
integrated. Thus, each sentence contains as many processing units as
it has words (or, rather, word groups, the L-units in Figure 3).

In order to illustrate how this model works, we first simulate
the processing of the original text. Since we are not interested in the
on-line properties of this process, this is done in exactly the same
way as with the Zimny data: all the appropriate L, S, P and M units
are constructed and connected according to the same principles as in
Figure 3 and 4. A function schema, with slots for “Name", "Use",
“Input” and "Output”, provides the basis for the situation model. The
resulting network is then integrated, and a pattern of activation is
obtained which, together with the net of interrelationships itself,
characterizes the memory representation formed for the to be
remembered text.

An old, verbatim test sentence is recognized by computing the
amount of activation of its elements at each input stage. Thus, the
test sentence "The function FIRST is used to extract the first S-term",
is processed in seven input stages, as shown in Figure 11. First, "The
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function" is processed, yielding the elements L2, P2, and M2. The
second input unit comprises "FIRST", that is the elements L3, SI,P3,
and M3. The remaining input units are also shown in Figure 11.

- Insert Figs. 11 & 12 about here -

Figure 12 illustrates how the model works for the inference
statement "A single S-term is produced by the function FIRST". Only
one element is constructed in the first processing unit: the unit L20
"a-single" (the numbering takes account of what was already
constructed in the processing of the original text). More happens
next: "S-term" corresponds to L12, P9 and M9 of the original text.
Furthermore, at this point the new S-element S18 is constructed, as
well as the proposition P21 , (SINGLE, S-TERM). Note that no new
model element is constructed corresponding to P21, for there is no
way to know where in the function-schema such an element should
be placed. In the third input unit, not only the new surface element
L21 is generated, but also the sentence unit S22 and the
corresponding proposition P22 (PRODUCE, $, (SINGLE,S-TERM)). Both
of these are at this point incomplete: we don't know as yet what
produces (SINGLE, S-TERM) - the $-sign is used as a placeholder in
the proposition -, and we do not know all of the constituents of S20.
S- and P-units are constructed as soon as possible, before all of the
relevant information is available. This assumption in the present
model is supported by results in the psycholinguistic literature,
where it has been shown repeatedly that people assign words and
phrases to plausible syntactic structures on-line, and do not wait
until a complete analysis becomes possible (e.g. Frazier & Rayner,
1982).

The immediate processing strategy at the linguistic and
textbase levels contrasts with a wait-and-see strategy at the
situation model level. In the former case, there are powerful
heuristics available that make immediate processing feasible - e.g.
the Minimal Attachment strategy of Frazier & Rayner (1982), or the
Referential Coherence strategy for forming a coherent textbase
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(Kintsch & van Dijk, 1978). The results may not be optimal (e.g.,
causal links are more useful in stories than mere referential links), or
they may have to be revised eventually (as in garden path
sentences), but they yield useful approximations for on-line
processing that can later be modified if necessary. Immediate
processing is also used when situation model elements are
encountered in a test sentence that are already available in the
original memory representation of the text. In that case, it is

assumed that they retain their original position in the situation
model. (As all heuristics, this will sometimes be wrong, e.g. in the
case of false test sentences). Newly formed elements of the situation
model, on the other hand, cannot be assigned on-line to a slot in the
schema: where an element fits into a schema, or whether it doesn't
fit at all or contradicts it, usually can be determined only after the
whole sentence has been processed. Thus, the processing of new
situation model elements is delayed until the sentence wrap-up. In
Figure 12, the elements M21 and M22, (PRODUCE, M2, (SINGLE,M12)),
are therefore constructed in Input Stage 6 and assigned to the
"Output” slot of the Function schema.

Fit of the model to the data. How well can this model
account for the Schmalhofer et al. (in preparation) data? There are
three striking features of these data: the fact that for old verbatim
test sentences, the speed-accuracy trade-off functions are essentially
the same for naive and expert subjects; the fact that experts have
slowly rising, high-asymptote functions for correct inferences, while
novices are characterized by fast-rising, low-asymptote functions;
and the fact that experts eventually come to reject false inferences
more strongly than novices. The model implies all three of these
observations.

At this point, there are two ways to proceed. We could try to
explore appropriate link values for the coherence matrix, estimate
thresholds, and so on, as was done for the Zimny data, and attempt to
fit the speed-accuracy data quantitatively. On the other hand, if we
are satisfied with a qualitative fit only, computations could be based

27

" E EEEEEEEEEERERNENERUNE!




on the same parameters that were used in the Zimny data. This
approach has some advantages in that it avoids the possibility that
good fits are obtained merely because we happened to select just the
right parameter combinations. There are no reasons at all why the
same parameters should fit both sets of data, and good reasons why
they should not (different subject groups, vastly different texts,
different task demands - for superficial processing of many simple
texts in one case and careful processing of much less material in the
other). Nevertheless, if the model really has something to say about
sentence recognition independent of the numerical values of the
parameters in the Zimny simulation, one might expect that the
qualitative pattern of the predictions would correspond to the main
features of the new set of data. We have therefore chosen the second
way to proceed.

- Insert Figs. 13, 14, & 15 about here -

The difference between novice and expert subjects in the
present model is that the former have only a fragmentary, partly
correct situation model. Since we are only interested in qualitative
predictions, the more radical assumption was made that novices have
no situation model at all. Specifically the speed-accuracy functions
were simulated with the same parameter values that were used for
the Immediate Group above, except that all link strengths are O in
the situation model of the novices. The results are shown in Figures
13, 14, and 15 for old sentences, and correct and incorrect inferences.
These calculations are based on the old sentence analyzed in Figure
11 and the inference analyzed in Figure 12. For the false inference,
the following sentence was analyzed: "The argument of the function
must consist of five LISP atoms". The calculations were the same as
for a correct inference, except that in the last input cycle the
activation of all M-elements was subtracted rather than added to the

total sentence activation to reflect the fact that contradictory
sentences provide counter evidence at the model level, while
whatever surface and textbase similarities there are still continue to
support a positive response.




Schmalhofer's speed-accuracy functions (Figures 8-10) plot a d'
as a measure of response strength against time. The model
predictions are in terms of total activation against input stage.’
Figure 13 captures the relevant features of Figure 8: old, verbatim
test items increase rapidly in strength and to a high level , the same
for experts and novices. Inferences, on the other hand, rise faster for
novices, but to a lower level, while the inference function for the
experts rises more slowly initially but to a higher level (Figure 14).
This pattern of results thus looks a lot like what was suggested for
surface-based and model-based inferences in the Zimny data. Finally,
Figure 15 exhibits the stronger rejection of false inferences
(contradictions) by the experts than by the novices. Obviously, Figure
15 is only a caricature of the corresponding data in Figure 10: real
novices do not have zero situation model, as was assumed for the
model calculations, only a weak one.

7. Conclusion

A model of sentence recognition from discourse has been
developed and tested here which builds upon previous work on item
recognition and discourse comprehension. The recognition
mechanism used in this model has been derived from previous
models of recognition developed to account for list learning data. Two
elaborations from the domain of discourse comprehension were
needed to enable this recognition mechanism to deal with sentences
from a coherent discourse, rather than with list items. First,
sentences must be represented in memory at several levels of
representation, each of which can contribute to a recognition
judgment. Second, the very processes of comprehension as
formulated in the construction-integration model of Kintsch (1988)
were shown also to be involved in judging whether a sentence had
been experienced before as part of a discourse. Thus, familiar
theoretical notions could be combined to provide an explanation for
sentence recognition.
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This explanation fared quite well when tested against the
results of empirical investigations of sentence recognition. In
Experiment I, a good quantitative account of recognition for old
sentences, paraphrases, and inferences was obtained for delays
ranging from immediate tests to four days. However, due to the
complexity of the comprehension model, a large number of
parameters had to be estimated to match these data. Hence, we
changed our strategy in Experiment II from one of fitting empirical
results quantitatively to one of testing qualitative implications of the
model which did not involved further parameter estimation. The
data in question concerned the time course of sentence recognition. It
was shown that the model predicted major qualitative features of
speed-accuracy trade-off functions, without estimating new
parameters. Thus, the model has been tested successfully against two
large, complex sets of sentence recognition data.

"Old sentences" and similar terms are abstractions. It would be
quite possible for a particular, insignificant old statement to receive
less activation than a particular, highly salient inference (just as the
script-header inference in Figure 5 is more highly activated than
most actual text elements). To obtain useful data in recognition
experiments, items must be carefully controlled, e.g. words must be
comparable in terms of such factors as length, frequency, or imagery
value. The data are usually averages over many items in a class. The
model makes predictions for particular discourses, and particular test
items. We select typical items and work out the model predictions for
these, but then match these predictions against averaged data. In
other words, we are postulating an "ideal" text, just as theories
commonly postulate an "ideal" subject. In principle it would be
possible, though the amount of labor would be almost prohibitive, to
calculate predictions for each text and test sentence used in the
experiment, and then test averaged predictions against averaged
data. While this would lead to greater quantitative precision, it would
provide us with relatively little further insight.



The model of sentence recognition developed here is quite
general and can be applied to many different texts and test
sentences, with one serious restriction: in order to apply the model,
one needs to know what the situation model would look like for the
text and the subjects in question. Linguistic analyses as well as
propositional textbases (the latter if necessary based on the default
rule of argument overlap, as in the present case) can be constructed
for any kind of text, but situation models are much less well
understood. In particular, it is not clear how non-propositional
situation models (e.g. mental maps, as in Perrig & Kintsch, 1985)
could be integrated into the present framework. ’

Earlier models of sentence recognition share some
characteristics with the model proposed here, but differ in other
respects. Two such model are the schema-pointer-plus-tag model of
Graesser (1981) and the plausibility judgment model of Reder
(1982). Both models, in common with an earlier generation of
recognition models, cﬁonccptualize recognition as a match between the
memory representation of an item and the item presented at test,
thus violating a basic feature of current recognition models as
discussed in Section 1. Furthermore, they are much less specific than
the computational model presented here. In other respects, however,
there are some communalities between these models and the present
approach. Graesser distinguishes two stages of sentence recognition,
one corresponding to the question "Is the item in the memory
trace?”, and the other to "Must the item have been in the passage?”
(Graesser, 1981, p. 92). Reder similarly distinguishes between a
plausibility judgment and a direct retrieval (Reder, 1982). Clearly,
there are some parallels here between matches based on the surface
and textbase representation on the one hand and matches based on
the situation model on the other. One could, in fact, claim that what
has been done here is to provide an explanation and computational
mechanism for the phrase "plausibility judgment". Significant
differences should not be overlooked, however. Reder, for instance,
emphasizes the stage character of the process with plausibility
judgments normally coming first, preempting direct matches. In the
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present model, matches at all three levels of the representation occur
in parallel, with the contribution of the situational match necessarily
coming in rather late in the processing of a sentence, as the analyses
of the speed-accuracy trade-off data in Section 7 show quite clearly.

One does not need a separate model for sentence recognition. If
we put together what we know about the item recognition process
per se with the construction-integration model of discourse
comprehension, we have a ready-made explanation for many of the
phenomena of sentence recognition. Thus, the construction-
integration model comes one step closer toward becoming a general
theory of discourse comprehension and memory.
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Footnotes

This research was supported by a Grant No. 15872 from the National
Institute of Mental Health to Walter Kintsch.

1The authors of the models discussed here are concerned with general models
of human memory. The formal similarity noted above does not hold outside the
domain of item recognition.

2 The task dependent nature of these results should be emphasized: long-term
memory for surface features is frequently observed in other contexts, as is
forgetting of situational information. Forgetting rates are clearly material-
and task-dependent (for a review, see Kintsch & Ericsson, in press).

3 The reason we do not just have an element "1" instead of L1, P1, and MI,
adding the three types of relationships together, is that on recognition tests
we arc usually dealing with only one of these elements, but not the others.

4 Schmalhofer (1986) has found the same pattern of responses for verification
as for sentence recognition.

5Very similar predictions are obtained if the length of each input unit is made
proportional to the number of cycles needed for the integration process to
settle.
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Table 1: Test sentences and their familiarity values.
(The activation values displayed have been multiplied by 10,000)

OLD: . PARAPHRASE: _—
"He looked at the newspaper” "Nick studied the newspaper” ‘
L10 182 L1 186
L5 175 studied 3 .
L6 99 L6 102 -
S4 107 S 25
S5 241 S 38 -
P1 534 P1 530 4
P5 517 P5 514
P6 216 P6 216 -
M1 456 M1 454 _;
M5 583 M5 582 3
M6 365 M6 365 -
Total <3475> Total <3016>
INFERENCES: -
"Nick wanted to see a film" "Nick bought the newspaper"
L1 114 L1 172 .
wanted 1 bought 105
to-see 0 L6 5
a-film 0 S 27 N
S 1 S 37
S 3 P1 521 )
S 20 [BUY,P1,P6] 244 -
P1 394 P6 143
[WANT,P1,P] 79 M1 443 .
[SEE,P1,P] 81 [(BUY,M1,M6] 398
[FILM] 14 : M6 194
M1 565 Total <2122> -
[WANT,M1,M] 519
[SEEM1,M] 302
[FILM] 490 .
Total <2583>
NEW:
"Nick went swimming" .
L1 187
went 1 -
swimming 1
S 7 _
S 36 .
P1 578
[GO,P1,P] 130 =
[SWIM,P1] 130 -
M1 448
Total <1509> .




Table 2: A paragraph from the text
used in Experiment II and sample test sentences.

Original Text:

The function FIRST is used to extract the first S-term from a
combined S-term. The function FIRST has exactly one argument. The
argument of the function must be a combined S-term. The value of
the function is the first S-term of the argument.

Test Sentences:

Old:
The function FIRST is used to extract the first S-term.

Correct Inference:
S single S-term is produced by the function FIRST.

Incorrect Inference:
The argument of the function must consist of five Lisp atoms.
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Figure 12. A correct inference, processed in six input stages.
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Figure 13. Activation of an old test sentence as a function of
processing time for high- (filled squares) and low-knowledge
subjects (open squares).

Figure 14. Activation of a correct inference as a function of
processing time for high- (filled squares) and low-knowledge
subjects (open squares).

Figure 15. Activation of a false inference as a function of processing
time for high- (filled squares) and low-knowledge subjects
(open squares).,
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The-function FIRST is-used to extract the-first S-term.
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N /
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A-single S-term is-produced by the-function FIRST.
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