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Abstract

Many important computer applications require that users be able to make
effective use of them with little or no formal training. Current examples
include bank teller machines and airport information kiosks. Today,
successful systems of this kind can only be developed by iteration using costly
empirical testing. This paper aims to provide a theoretical foundation for the
design of such systems, a model of learning by exploration called CE+. The
theory incorporates assumptions from 1) the GOMS model and Cognitive
Complexity Theory on the representation of procedural knowledge as
productions, 2) the EXPL model on learning from examples, and 3) research
on problem solving processes for simple puzzle-like problems. Design
guidelines for systems that can be learned by exploration, Design-For-
Successful-Guessing, are derived from the theory. These principles are
compared to those developed by Norman (1988).
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1. INTRODUCTION

This paper proposes a cognitive theory of initial learning in human-
computer interaction and an associated design framework to support
development of systems that require minimal learning on the part of users.
Recent advances in cognitive and machine theories of learning, combined
with ideas from earlier work on problem-solving, offer the hope that
principled design of such systems may be possible.

1.1. The Problem

Many important computer applications, actual and potential, depend upon
holding training requirements for users to a minimum. So-called walk-up-
and-use applications aim to permit users to do useful work on their first
encounter, without any organized preparation. Examples in use today include
bank teller machines and airport information kiosks, and it is easy to
envision a wide variety of future applications delivering information
services to occasional users who will make no investment in learning to
operate the systems concerned.

1.2. A Solution

Creating such systems today is an art, relying on intensive empirical testing
without a clear principled basis for design. This paper presents a theoretical
model of learning by exploration, the process users engage in in using an
unfamiliar system, that aims to provide such a basis.

The model, called CE+, builds on earlier theoretical work in human-
computer interaction that treats aspects of the problem of learning by
exploration. Specifically, it incorporates ideas from GOMS (Card, Moran, and
Newell, 1983) and Cognitive Complexity Theory (Kieras and Polson, 1985;
Polson, 1987) on the representation of procedural knowledge, and ideas from
EXPL (Lewis, Casner, Schoenberg, and Blake, 1987; Lewis, 1988) on how
procedures can be learned from examples. To these it adds ideas adapted from
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the literature on classical problem-solving about the control of exploration in
unfamiliar domains (Polson and Jeffries, 1982; Greeno and Simon, 1988). The
interaction between exploration, analysis, and learning in the resulting model
is similar to that seen in ACT* (Anderson 1983,1987) and SOAR (Laird,
Newell, and Rosenbloom, 1987).

The presentation begins with pertinent ideas borrowed from earlier work in
human-computer interaction, indicating what parts of the overall process of
learning by exploration are dealt with and not dealt with by this existing
work. The next section adapts ideas from problem-solving to fill some of the
gaps in existing models. Then the complete model is described, with an
illustration of its functioning in an actual task setting. The final section
develops the implications of the model for the design of systems which can be
effectively learned, and compares the resulting design principles, called
Design-for-Successful-Guessing, to those of Norman (1988).

2. REPRESENTING AND QUANTIFYING PROCEDURAL
KNOWLEDGE

2.1. The GOMS Model

In making a system easier to learn one could begin by trying to reduce the
amount of knowledge that is required. The GOMS model (Card, Moran, and
Newell, 1983) provides a starting point: it characterizes the knowledge
necessary to make effective, routine use of software tools like an information
service, a text editor, or a data-base manager. The GOMS acronym abbreviates
the four categories into which this knowledge can be placed: Goals;
Operations, which are the actions available in using the system; Methods,
which are useful combinations of operations; and Selection rules, which
specify how to choose an appropriate method for accomplishing a given goal.

A GOMS Example

A GOMS analysis involves writing a collection of methods that accomplish a
task. Each method accomplishes a goal. The top-level method for
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accomplishing the task decomposes it into a sequence of subgoals, and these
subgoals may be further decomposed. The decomposition terminates in a
sequence of operations that accomplish a goal or subgoal. The operations are
the primitive mental operations defined by the theory and user actions, e.g.,
using a mouse to move the cursor, that the analyst chooses not to decompose
into more primitive operations. Kieras (1988) has described a methodology
for doing GOMS analyses and proposés a specific notation.

Figure 1. A GOMS Analysis of the Task of Checking Spelling for
A Menu Based Word Processor

Method to accomplish goal of checking spelling

Step 1: Remember ID-LETTER is D; Remember Next Menu is SPELLING-TASK-MENU;
Accomplish Goal Go-To Next- Menu.

Step 2: Verify Transition to SPELLING-TASK-MENU.

Step 3: Remember ID-LETTER is A; Remember Choice is CHECK DOCUMENT;
Accomplish Goal Select Item-From- Menu.

Step 4: Accomplish Goal of Enter Document-Name.

Step 5: Accomplish Goal of Enter Diskette-Name.

Step 6: Verify Spelling-Check Complete.

Figure 1 is a GOMS analysis, in Kieras’s notation, of the method for checking
spelling on an IBM DisplayWriter for an early version of the software. The
system is a stand-alone, floppy-disk-based word processor with a user interface
employing full screen menus. The task requires the user to make two menu
choices and enter document and diskette names.

The example shown is abbreviated. This method is called by a higher-level
method, not shown, that reads task instructions and calls, using selection
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rules, the appropriate method to perform the task. The example also omits
lower-level methods, called by the check-spelling method, for making menu
transitions, selecting items from menus, and entering document and diskette
names.

A whole family of different GOMS model for this task could be built by
varying the grain size of the analysis, that is, the level at which operations are
not further subdivided in the analysis. The version shown in Figure 1 is at
the most detailed grain size explored by Card, Moran, and Newell (1983).

Performance Predictions

Card, Moran and Newell developed the GOMS model to make performance
predictions for expert users carrying out routine tasks. They assumed that
each operation has a fixed execution time and that execution time time can be
calculated by simply summing up the individual operation times for the
sequence.

While the GOMS notation was intended to describe the content and structure
of the knowledge necessary to perform a task, its creators did not claim that
the notation identified units of knowledge that could be quantified or
compared across tasks in a simple manner. Accordingly, they did not make
quantitative predictions about training time for tasks or about transfer of
training between tasks.

2.2, Cognitive Complexity Theory (CCT)

Kieras and Polson (1985) proposed that the knowledge represented in a GOMS
model be formalized as a production system. They had two objectives. The
first was to express the knowledge in GOMS models in a notation that would
enable them to make more direct links with research and theory on the
acquisition and performance of cognitive skills (e.g., Anderson, 1983). The
second goal was to be able quantify the knowledge in a model so as to training
and transfer of training. Their extension of GOMS is called Cognitive
Complexity Theory, or CCT.
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A CCT Example

A CCT model is derived by first performing a GOMS analysis and then
writing production rules that implement the methods and control structures
described in the GOMS model. Kieras (1988) designed his notation for GOMS
so that with a few exceptions each statement maps into a production rule. The
method shown in Figure 1 has been rewritten in production form in Figure 2.

Figure 2. Production System Model for The Method for Checking
Spelling

(StartChkSpllDoc
IF ((GOAL CHECK-SPELLING DOCUMENT)
(NOT (NOTE CHECKING-SPELLING DOCUMENT)))
THEN
((Add STEP GO-TO SPELLING-TASKS-MENU)
(Add NOTE CHECKING-SPELLING DOCUMENT)))

(ChkSpllDoc.P1

IF ((GOAL CHECK-SPELLING DOCUMENT)
(STEP GO-TO SPELLING-TASKS-MENU)
(SCREEN TASK-SELECTION-MENU))

THEN
((Delete STEP GO-TO SPELLING-TASKS-MENU)
(Add GOAL GO-TO NEXT-MENU)
(Add NOTE ITEM IS SPELLING-TASKS)
(Add NOTE ID-LETTER D)
(Add STEP VERIFY TRANSITION-TO-SPELLING-TASKS-MENU)) )

(ChkSpllDoc.P2

IF ((GOAL CHECK-SPELLING DOCUMENT)
(STEP VERIFY TRANSITION-TO-SPELLING-TASKS-MENU)
(NOTE TRANSITION DONE)
(SCREEN SPELLING-TASK-MENU))

THEN
((DW.VerifyOperator)
(Delete NOTE TRANSITION DONE)
(Delete STEP VERIFY TRANSITION-TO-SPELLING-TASKS-MENU)
(Add STEP SELECT CHECK-SPELLING)))
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Figure 2. Production System Model for The Method for Checking

Spelling (Continued)

(ChkSpliDoc.P3

IF ((GOAL CHECK-SPELLING DOCUMENT)
(STEP SELECT CHECK-SPELLING)
(SCREEN SPELLING-TASK-MENU))

THEN
((Delete STEP SELECT CHECK-SPELLING)
(Add GOAL SELECT ITEM-FROM-MENU)
(Add NOTE ITEM IS CHECK-SPELLING)
(Add NOTE ID-LETTER A)
(Add STEP ENTER DOCUMENT-NAME)))

(ChkSpllDoc.P4

IF ((GOAL CHECK-SPELLING DOCUMENT)
(STEP ENTER DOCUMENT-NAME)
(NOTE ITEM SELECTED)
(SCREEN PROMPT ENTER DOCUMENT-NAME))

THEN
((Delete NOTE ITEM SELECTED)
(Delete STEP ENTER DOCUMENT-NAME)
(Add GOAL ENTER DOCUMENT-NAME)
(Add NOTE DOCUMENT IS THE DOCUMENT)
(Add STEP ENTER DISKETTE-NAME)))

(ChkSpliDoc.P5
IF ((GOAL CHECK-SPELLING DOCUMENT)
(STEP ENTER DISKETTE-NAME)
(NOTE ENTER-DOCUMENT-NAME DONE)
(SCREEN PROMPT ENTER DISKETTE-NAME))
THEN
((Delete NOTE ENTER-DOCUMENT-NAME DONE)
(Delete STEP ENTER DISKETTE-NAME)
(Add GOAL ENTER DISKETTE-NAME)
(Add NOTE DISKETTE IS THE DISKETTE)
(Add STEP VERIFY SPELLING-CHECK-COMPLETE))

(ChkSpllDoc.P6
IF ((GOAL CHECK-SPELLING DOCUMENT)
(STEP VERIFY SPELLING-CHECK-COMPLETE)
(NOTE ENTER-DISKETTE-NAME DONE)
(SCREEN SPELLING CHECK COMPLETE. WORDS MARKED:0))
THEN
((DW.VerifyOperator)
(Delete STEP VERIFY SPELLING-CHECK-COMPLETE)
(Delete NOTE ENTER-DISKETTE-NAME DONE)
(Add STEP FINISH CHECK-SPELLING-DOCUMENT)))
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Each production begins with a label, which is not functional. The condition is
labeled with IF and is a list of clauses that must be contained in working
memory for the rule to execute (fire). The clauses specify a goal (GOAL. . .) or
subgoal to execute a given step in the method, (STEP . . .), information that
must be in working memory, (NOTE . . .), and screen contents like prompts,
(SCREEN . . .). The action, prefaced by THEN, adds and deletes clauses from
working memory and executes primitive operations, few of which appear in
this fragment. Control is passed to a method by putting its parameters in
working memory and then adding a goal to working memory to perform the
method. Detailed descriptions of the control structure, templates for
methods, and style rules for the models are in Bovair, Kieras, and Polson
(1988).

Learning, Transfer, and Performance Predictions

Following Anderson (1983), Kieras and Polson assumed that the rules are
cognitive units. Thus, they argued in a manner analogous to Kintsch (1974)
that these units should be equally difficult to learn. This permits the time to
learn a method to be predicted simply by counting the number of productions
in its definition and multiplying by the time needed to learn a production.
Kieras and Polson also developed a theory of transfer closely analogous to
Thorndike's common elements theory of transfer (Thorndike & Woodward,
1901). Kieras and Polson assumed that identical steps and methods common
to several tasks are represented by shared productions. When these common
productions are acquired earlier they are transferred without any cost into the
representation of a new task. Thus, a user only has to acquire the productions
that are unique to a new task. This transfer mechanism also provided them
with an analysis of what is meant by consistency (Polson, 1988).

CCT makes performance predictions that are identical to those of the GOMS
model. Like the GOMS model, it assumes that the execution time for a task is
calculated by summing up the times necessary to execute the sequence of
operations necessary to perform the task contained in the actions of the
various productions plus a constant activation time for each rule.
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Numerous studies have tested and confirmed these assumptions about
learning and transfer; see Polson (1987, 1988). The transfer assumptions
appear to hold quite generally. However, the assumption that productions
are learned at a stable rate appears to hold only for constrained learning
conditions, not typical of those which would hold for new users of an
application.

The training procedures used in studies which have confirmed CCT’s
learning predictions prevents learners from executing incorrect steps in a
procedure. Each step is checked by a tutoring system, and learners are asked to
try again if the correct step is not made. After a set number of failed attempts
the learner is told the correct step. This procedure limits the impact of
difficult steps not only by cutting off exploration of the incorrect alternatives
at any step but also by avoiding the often serious consequences of actually
executing an incorrect step.

Using this procedure Kieras, Polson, and their colleagues have found
training times per rule ranging from 20 to 40 seconds in various studies
involving a wide variety of tasks and systems. However, studies of more
natural learning conditions show that learning times are much more
variable: seemingly minor flaws in the details of a user interface can
completely derail the learning process, so that the time to discover and
encode a given step in an interaction method can range from a few seconds to
infinity. (Karat, Boyes, Weisgerber, and Schafer, 1986; Carroll and Rosson
,1987.)

These difficulties are not unexpected. The CCT predictions of learning times
are based only how much material must be learned, and do not take into
account how the material must be learned. The adequacy or inadequacy of
prompts and feedback provided by a system, which clearly influence learning
time under natural conditions, are not included in the CCT analysis.
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2.3. The Use of GOMS and CCT Models in Design

Consistent with the thrust of the GOMS and CCT models, all modern design
guidelines and principles that address cognitive issues implicitly (Smith and
Mosier, 1986; Rubenstein and Hersh, 1984) or explicitly (Norman, 1986,1988;
Hutchins, Hollan, and Norman, 1985; Card and Newell, 1985; Kieras and
Polson, 1985; Polson, 1987; Bennett, Lorch, Kieras, and Polson, 1987) assume
that the better design is the one that minimizes the amount and complexity
of the new knowledge necessary to effectively use an application.

Bennett, Lorch, Kieras, and Polson (1987), and Karat, Fowler, and Gravelle
(1987) draw similar conclusions about the utility and feasibility of the use of
GOMS- and CTT-style theoretical models in the design process. Models are
useful in gaining an understanding of any global training and performance
differences between two competing designs. A fine-grained analysis can be
used to drive an iterative design process focusing on the exact change needed
to reduced training time and improve productivity.

However, as just noted, the GOMS and CCT analysis addresses only one factor
influencing learning demand, namely the amount of knowledge required. It
is clear that such other factors as the clarity and adequacy of prompts and
feedback also influence learning demands, and we therefore need a
theoretical framework account that deals with these.

3. LEARNING PROCEDURES FROM EXAMPLES:
THE EXPL MODEL

Lewis and his colleagues (Lewis, Casner, Schoenberg, and Blake, 1987) have
developed a model that attempts to account for the role of feedback in
learning procedures. The model, called EXPL, uses a causal analysis of a
sequence of user actions and system responses to determine which actions
produce which responses, and hence to provide the basis for accomplishing
novel tasks.




Polson and Lewis 14

An analysis EXPL starts from an encoding by the theorist of the actions
performed by a user and the responses produced by the system. These
encodings break actions and responses down into smaller elements among
which causal connections may be found. A few very general heuristics are
then used to place causal links. For example, when an action and a later
response share elements the Identity heuristic places a causal link between
them: this heuristic deals with cases in which some user action that involves
an object, say a picture on the screen, triggers a system response that involves
the same object, say deleting the picture. Lewis (1986, 1988) describes the
model in more detail.

3.1. An EXPL Example

Figure 3 shows an EXPL analysis of the check spelling method used in the
GOMS (Figure 1) and CCT (Figure 2) examples presented earlier. Figure 4
shows the two menus used in the task. Let us look first at the analysis of the
first user action and its context. Some of the work of analysis is already done
in the encoding. Rather than working from a description of the user's
physical action, typing 'd’, the analysis starts from a description that indicates
what this action does in the context in which it occurs: "choose *spelling-
tasks". The asterisk in the encoding marks an item which must appear on the
screen before the user can act on it. In this example, the user cannot choose
spelling tasks unless the corresponding item actually appears on the screen.
The asterisk leads to the placement of a prerequisite link between "choose
*spelling-tasks" and the system action which placed *spelling-tasks on the
screen, s1. The prerequisite link indicates that one cannot perform the action
"choose *spelling-tasks" out of context; rather, preparatory actions may be
needed to make *spelling-tasks available.

When "choose *spelling-tasks" is followed by the display of a menu
containing the heading "spelling-tasks" and other items, the analysis seeks to
attribute the appearance of each item to some prior user action. Since
*spelling-tasks occurs both in the description of the user action "choose
*spelling-tasks" and in the description of the system response, the Identity
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Figure 3. EXPL Analysis of Spelling Check Interaction
Events EXPL encodings Remarks
and causal links
TASK SELECTION s1: show *task-selection
menu (see top of *typing-tasks ...
Figure 3) on screen. *gpelling-tasks
Prerequisite link
User types 'd’' : choose *spelling-tasks
serype ! petiing Link to *spelling-tasks

SPELLING TASKS menu
appears (bottom of Figure 3)

User types
lal

System replaces prompt with
"Type document name; press
ENTER:"

User types
"Security"

System replaces prompt with
"Type diskette name; press
ENTER:"

User types
"able"

Diskette drive grinds; system
displays "Spelling check
complete. Words marked: 0."
Prompt replaced by "Type ID
letter to choose ITEM,; press
ENTER:"

s2:
*Check-document ...
*fask-selection

u2: choose *check-document

s3: req *document-name

u3: type *document-name
security

s4: req *diskette-name

u4: type *diskette-name able

s5: spelling check complete

show *spelling-tasks

placed by Identity heuristic;
others by Previous Action
heuristic

Prerequisite link

Links placed by Previous
Action heuristic

Prerequisite link

Links placed by Previous
Action heuristic

Prerequisite link

Links placed by Previous
Action heuristic
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Figure 4. The Menus Used in the Check Spelling Task on the
IBM DisplayWriter. The Top Panel is the Task Selection Menu.
The Bottom Panel is the Spell Tasks Menu.

TASK SELECTION

\w]

ITEM
Typing Tasks:
Write, Revise, or Paginate Documents

®

o

Work Diskette Tasks:

Delete or Duplicate Documents,
Duplicate, Condense or

Erase/Initialize (Name) Diskette

Print Index of Diskette Contents, Change
Document or Diskette Name, Recover
Documents

c Program Diskette Tasks:
Default Formats, Duplicate Setups,
Printer and Work Station Description.
Duplicate and Erase Program Diskette
d Spelling Tasks

Type ID letter to choose ITEM; press ENTER:*

SPELLING TASKS
ITEM

Check Documents

Load Supplements

Clear Supplements

Store Supplement on Program Diskette

o0 Umla

Type ID letter to choose ITEM; press ENTER:*
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heuristic places a link to *spelling-tasks in the response from the action
"choose *spelling-tasks". This link not only indicates that the appearance of
this heading is attributed to this action, but that there is an identity relation
between them. In generalizing the analysis this identity relation would
permit the specific item *spelling-tasks to be replaced by any other. That is, the
link placed by the Identity heuristic represents the conjecture that "choose
*typing-tasks” (for example) would produce a response that included *typing-
tasks.

The other aspects of the system's response to "choose *spelling-tasks" do not
participate in identity relations, so other heuristics must be applied to find
attributions for them. In this case, since there are no earlier user actions to
which they can be attributed they are all attributed to "choose *spelling-tasks"
by the default Previous Action heuristic, which attributes all unattributed
consequences to the immediately previous user action. Since these links are
not placed by the Identity heuristic they cannot be generalized: the analysis
says nothing about what to choose if one wants something else to be shown
in place of *check-document, for example.

The complete analysis of the whole interaction is adequate to show how to
obtain the system response "Spelling check complete", provided the task
selection menu is on the screen initially. By tracing back the causal links,
including prerequisite links, it is possible to reconstruct an adequate sequence
of actions. But inspection of the latter parts of the interaction shows a serious
problem in generalizing the interaction to check the spelling of some
document other than the one in the example. Since the final system response,
"spelling check complete", does not mention the document name or the
diskette name, the EXPL analysis will not place identity links between the
actions that type in these names and the system response. Therefore these
actions cannot be generalized. If the feedback were changed to something like
"Spelling check complete on document 'security’ from diskette 'able' " then
the Identity heuristic would work out how the names the user types
influences what the system does.
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Once a causal analysis of an example interaction is in hand it can be used to
construct procedures to accomplish new but related goals. This generalization
can be accomplished in more than one way; the implemented EXPL model
can use either a planner-based method, in which new procedures are
assembled from fragments extracted from analyzed examples, or an analogical
generalizer based on Anderson and Thompson's PUPS system (1986). Lewis
(1988) discusses other methods and the relationships among them.The use of
causal analysis places EXPL in the category of analysis-based learning
mechanisms, which contrasts with more familiar inductive methods.
Inductive methods work by summarizing large numbers of examples in a
way that suggests regularities, while analysis-based methods rely on insight
into how one or a few examples work (see Lewis 1988, Lewis, Hair, and
Schoenberg. 1989 for further discussion.)

3.2. Use of EXPL in Design

The example shows that an EXPL analysis can point up issues in the design of
feedback in a system. The interaction in the example is difficult to analyze
because of the lack of repeated elements to connect the spell-check response to
the information that produced it. Thus EXPL analysis provides
complementary guidance to that available from GOMS or CCT analysis. It
provides insight into the difficulty of specific aspects of an interaction but not
into the overall effort required to learn to perform a task. However, there are
three limitations of EXPL that mean that simply combining CCT and EXPL
will not adequately support design for exploratory learning.

3.3. Limitations of EXPL

First, EXPL analysis makes no use of goals. An actual learner observing the
interaction in the example would probably connect the limited feedback about
the completion of spelling correction to the goal of checking the spelling of
some particular document, use this connection to produce a more
meaningful encoding of the feedback, and in turn tie the entry of document
and diskette names to this more complete representation of the feedback the
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system provides. Thus, the learner would not miss the relationship between
the document and diskette names and the actual outcome of the interaction.
Indeed, knowing the goal of the interaction, the learner could guess the role
of the document and diskette names at the time they were entered.

Second, EXPL analysis says virtually nothing about the adequacy of the
prompts involved in the interaction. Some minimal adequacy of the prompts
is implicitly assumed in the encoding of the menu choices and of the entry of
names, in that the encoding must be able to relate the specific action (for
example typing 'a’) to its intent (specifying "spelling tasks"), and this
relationship must be discovered by examining the prompts. However, EXPL
analysis does not evaluate whether the prompts are adequate to permit
someone to choose the appropriate action from among some available
alternatives. For example, the menu from which 'a’ for "spelling tasks" was
selected might have also contained the items "correction task" and "spelling
dictionaries". In this context the "spelling tasks" item description would
probably not be adequate for learners to make the correct choice reliably, but
EXPL, observing what choice was actually made in the example of the
interaction it is analyzing, makes no attempt to assess this.

The third limitation of EXPL generalizes this last point: the model
presupposes the availability of examples to learn from. However, in the case
of an actual user trying to learn a new application, no examples are likely to
be available, at least until the user gets far enough into the system to learn
from the consequences of his or her actions. While EXPL provides an account
of the process of making sense of the consequences of actions once they are
chosen, it fails to address the decision processes by which these choices are
made in an unfamiliar setting.

4. PROBLEM-SOLVING IN UNFAMILIAR DOMAINS

The missing piece in the model of learning by exploration is the process that
actually produces the exploratory behavior, making choices in unfamiliar
settings. The situation to be analyzed, in which the learner confronts a
system offering an array of actions and chooses one, hoping to progress
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toward some goal, is actually a familiar one in the psychological literature:
classical puzzle problems have just this character. We can therefore attempt
to bring over into the human-computer interaction domains models
developed in the puzzle-problem literature.

In particular, we will import the notion of problem space, representing the
structure of alternative actions available to the learner, and search methods,
the processes by which the learner explores this space (Newell and Simon
1972, Newell 1980). We conjecture that what has been learned about search in
puzzle tasks, in which solvers have little background knowledge to guide
them, can be adapted to describe what learners will do in choosing actions in
systems about which they have little knowledge.

4.1. Problem Spaces

Learners who know only the goal and the available actions in a situation are
operating in what Newell and Simon (1972) call the basic problem space.
They lack such additional useful knowledge as ways to decompose a goal into
subgoals, or how to effectively rank order available actions in terms of their
contribution to accomplishing a goal. Having this added knowledge, or such
other useful information as a partial description of the solution path or
information about analogous tasks places the learner in an augmented
problem space. A problem whose basic problem space is too large to search
may be quite easy to solve in an augmented problem space. In the limit, there
may be no search; a skilled user may simply know a method that specifies
each correct step. However, new users will not possess such complete
knowledge, and will have to engage in search.

4.2, Search Methods

There are strong constraints on the search methods that are available to new
users: there is good evidence that these methods are limited to variants of
means-ends analysis (Polson and Jeffries, 1982; Greeno and Simon, 1988).
Greeno and Simon (1988), in their review of the modern problem solving
literature, conclude that the use of more powerful search methods by humans
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depends on the use of augmented problem spaces, with knowledge of the
structure of the space Thus, the use of more powerful search methods
depends on increasing expertise. There are two variants of means-ends
analysis that are frequently observed in studies of novice problem solving:
hill-climbing and back-chaining.

Hill Climbing

Hill-climbing is a search strategy in which only currently legal actions are
considered, and that action is selected that appears to offer the greatest
progress towards the goal. In a typical puzzle problem it is possible to
determine exactly what state an action will produce, so one can choose
between actions by comparing the states they lead to to the goal. Solvers have
a strong tendency to select actions that lead to states that look like the goal
state, using perceptual similarity as a measure of distance. States that are on
the true solution path but seem dissimilar to the goal are serious sources of
difficulty. Solvers tend to reject actions that lead to such states and incur a big
penalty in solution time (e.g., Atwood and Polson, 1976, Experiment 1;
Jeffries, Polson, Razran, and Atwood, 1977).

Back Chaining

Search using means-ends analysis in more complex tasks will attempt to
select actions, not legal in the current state, that achieve the goal or appear to
make progress toward the goal. Then the problem solver creates a subgoal to
produce a state in which this action can be executed. Recursively attacking
this subgoal leads to back-chaining or reasoning backwards. The planned
solution sequence for the task develops backwards, beginning with the last
action, the one that achieves the goal.

Larkin, McDermott, Simon, and Simon (1980) showed that freshman physics
students used back-chaining to solve elementary mechanics problems. Since
then, other investigators have shown that this strategy is used in a surprising
number of different tasks by solvers with limited task domain knowledge.
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Though back-chaining is widely observed, it requires knowledge which is not
available to learners in the situations with which we must deal. The learner
may know the repertoire of current actions, but in general does not know
what actions may be available in the future, as required to do back-chaining.
Further, even if the learner knew of the existence of a future action he or she
would also need to know what the preconditions of that action are. For
example, the action that accomplishes a goal may be offered only on one
particular menu, and the novice does not know a priori what menu that is or
how to get it.

Since back-chaining requires knowledge unlikely to be available, we
conjecture that back-chaining plays a small role in the learner behavior we
seek to model, and that hill-climbing will be the dominant search strategy
learners will employ. However, the implementation of hill-climbing used
for puzzle-problems cannot be applied directly by the computer learner: he or
she cannot determine just what state will be produced by a particular action,
so actions cannot be compared on the basis of the states they produce. A
different approach must be used.

4.3. Label-Following

Recent studies in Polson's laboratory have shed light on how learners deal
with this problem. Engelbeck (1986) identified a special case of the general
hill-climbing strategy, which he called label-following. He observed that
novice users have a strong tendency to select menu choices whose associated
prompts share one or more terms with the description of their current task.
Essentially learners determine which action appears to lead most quickly to
the goal by comparing the descriptions of the available actions with a
description of the goal.

This strategy works even if the new user has no clear understanding of the
purpose of the task, e.g. 'condense diskette' on the IBM DisplayWriter. If a
term appearing in the task description also appears in explanations of a choice
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on several different menus, novice users tend to follow this path. Muncher
(1989) also observed this strategy in subjects learning to use Lotus 1-2-3.

Notice that the label-following heuristic is closely related to EXPL's identity
heuristic, despite the fact that EXPL is concerned only with the retrospective
interpretation of actions, not the selection of future actions. The identity
heuristic presumes that actions whose descriptions share terms with observed
outcomes are likely to be causally connected to them. Label-following
presumes that choices whose descriptions share terms with desired outcomes
are likely to be causally connected to them.

Two sets of data show in detail the impact of the label-following strategy. The
first is from Muncher (1989) where two groups of subjects had as their first
task centering text in all cells of a spreadsheet. The second is from groups in
studies by Polson, Muncher, and Engelbeck (1986) and Engelbeck (1986) who
were learning the task of checking spelling using the IBM DisplayWriter, the
task used in the GOMS, CCT, and EXPL examples above.

Muncher (1989) asked naive subjects to learn a series of eight tasks using
Lotus 1-2-3. Subjects were permitted to make erroneous menu choices, but
they were then stopped, and the experimenter undid the incorrect move and
told them to select another move. Muncher only explicitly tutored subjects
after several minutes of unsuccessful trial and error behavior. In most cases,
there were a limited number of choices and subjects were capable of
evaluating them exhaustively by trial and error.

Muncher constructed her task descriptions so that the simplest form of the
label-following heuristic would not work for most menus. Thus subjects
could not make menu choices based on a direct match between a component
of a task description and a menu item. For example, one task description
stated, "Center the text in all cells on the spreadsheet.” The correct menu
path required that subjects pick the selection WORKSHEET indicating that
they wanted to manipulate the spreadsheet in the first menu. The correct
choice at the second level was GLOBAL, indicating that they wanted to
manipulate a global worksheet parameter. The third correct choice was
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LABEL-PREFIX indicating that subjects wanted to manipulate the prefix
character in front of any cell label that controlled its formatting (left
justification, center, or right justification). The final menu had choices LEFT,
CENTER or RIGHT, of which CENTER is correct. As can be seen, only the last
of these choices can be made by label-following.

Two groups of subjects had this task as their first training task. Subjects had a
very high error rate on the first three choices, and had to try many of the
alternatives. In contrast, over 90% of the subjects made an initial correct
choice on the final menu.

In the Polson et al. (1986) and Engelbeck (1986) experiments, subjects learned a
series of tasks using a training procedure in which they were constrained to
follow the correct path and were tutored after two attempts to make the
correct response to a menu. Most tasks involved executing a series of menu
selections and responding to prompts for task parameters like document
name.

In both experiments, subjects were given the task of checking the spelling in a
particular document. (See Figures 1-4 for details of the task.) This task
occurred early in training sequences after subjects had learned how to make
menu choices and enter parameters, but before they had experience with the
spelling task or any related task on that path through the menu system. The
components of the task description matched the relevant menu items, so that
the first two menu choices can be made by label-following. Subjects made
both correct choices with a very high probability.

These results suggest that learners’ representations of a system are in large
part dictated by the appearance and content of successive displays. Their
interpretation of menu items and understanding of the consequences of
selecting an item are limited to the conventional meanings of the words
contained in each item. Novel uses of common words or technical terms in
menu define actions with unknown consequences.
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Background studies of puzzle solving, together with these observations,
provide the basis for our account of learner's choice behavior with unfamiliar
systems. We conjecture that this behavior can be modelled as heuristic search
in a basic problem space defined by the available actions, and that at least
when action descriptions are available, as on a menu, learners use the label-
following variant of hill-climbing as their search strategy.

The problem-solving literature shows a wide variety of search strategies in
use, varying with problem structure and solver knowledge. Our conjecture is
that the learners we are attempting to model possess so little knowledge of
the space they are searching, for the reasons given above, that this very
simple model will provide a useful account of their behavior.

5. RELATING PROBLEM-SOLVING AND LEARNING

On the surface, an account of learners' problem-solving processes contributes
little to a account of learning. But in fact modern cognitive theories of skill
acquisition (ACT*: Anderson, 1983; SOAR: Laird, Newell, and Rosenbloom,
1987) rely heavily on the interaction between general problem-solving and
learning mechanisms. Problem-solving mechanisms attempt to achieve the
learner's goal in a novel task environment. Learning mechanisms then
encode the results of successful problem solving episodes as production rules
that link the statement of a problem to its solution in a single processing step.
If the need to solve the same problem occurs the solution is provided by
applying the applicable production, rather than by repeating the earlier
problem-solving episode.

Anderson (1987) assumes that the process of encoding productions is rapid so
that discovery of correct actions by the general problem solver is the time- and
resource-consuming aspect of learning. Thus, the goal of developing easily
learned interfaces can only be achieved by designing interfaces so that they
facilitate the problem-solving mechanisms learners employ. In this
framework, this means facilitating the label-following strategy.



Polson and Lewis 26

We note one complication, which brings out the importance of the feedback a
system provides, as well as the prompts that support label-following. In
general the outcome of an action in a computer system cannot be directly
observed, in contrast with moves in puzzle problems. If feedback is poor, it
may be impossible for the learner to determine whether progress is being
made, or to determine just what the effect of the last action was. As a result,
the productions cached by the learning mechanism could be wrong. In our
proposed CE+ model we use the EXPL analysis methods to ascertain, after the
fact, what the consequences of an action appear to have been.

6. THE CE+ MODEL

We can now describe how the elements discussed above can be combined in
an integrated theory of exploratory learning of computer interfaces. We adopt
the production representation of procedural knowledge from CCT, the
analysis of the outcomes of actions from EXPL, the initial decision process
from the puzzle-problem literature, and the coordination of problem-solving
and learning from current cognitive architectures. We call the resulting
theory CE+, to indicate both its origin in our earlier work on CCT and EXPL
and the inclusion of significant additional ideas. In outline, CE+ consists of
(1) a problem solving component, responsible for choosing actions; (2) a
learning component, which analyzes the effects of choices and caches the
results as CCT rules; and (3) an execution component capable of executing the
resulting rules and coordinating execution of the rules with the problem-
solving component. We discuss each component in turn.

6. 1. The Problem-solving Component of CE+

The problem-solving component of CE+ uses the label-following variant of
hill-climbing that we described above. That is, faced with a choice among
alternative actions CE+ chooses that action whose description overlaps most
with its goal, provided that the action has not been tried before.
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The details of the process by which this choice is made are taken from the
Jeffries and Polson (1982) model of puzzle solving. The overall choice process
is broken down into stages corresponding to the application of a set of
heuristics which efficiently implement the overall decision. The first stage is
a serial self-terminating search for an action whose description overlaps the
goal more than a threshold amount. If a candidate action is found it is taken
with a high probability if it has not been tried before, and with a lower
probability if it has been tried before. If the first stage scans all actions without
taking one, the second stage chooses an untried action at random, if any exist.
If there are no untried actions the third stage applies one of two heuristics,
depending on the number of actions. If there are three or fewer alternatives
the degree of overlap between action and description and goal is determined
for all alternatives, and the action with the most overlap is chosen. If there
are more than three alternatives one is chosen at random.

As just mentioned, the details of this process are taken from a successful
model of puzzle solving. We have made one adjustment: the original Jeffries
and Polson model classifies actions as new or old on the basis of whether the
state they produce has been visited before. Here, since the learner cannot
determine what state an action will produce the choice process keeps track of
whether or not the action itself has been chosen before in this context.

It may be that empirical work will reveal the need for further changes in the
details of this model. For now we base our adoption of these particulars
directly on our conjecture that the basic problem-solving processes are the
same for learners confronting novel systems as for solvers confronting novel
puzzles.

6.2. The Learning Component of CE+

Once the problem-solving component has selected an action, and it is carried
out, the consequences of the action must be assessed and appropriate
information stored as a guide to future action. To model users with very
limited understanding of a system and task CE+ uses the same method used
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in label-following to assess progress towards the goal: if the observed system
response (assuming there is one) shares terms with the goal representation,
the action is deemed to have been successful. If the action just taken is
deemed unsuccessful, a subgoal is posted to undo it.

Whether the last action is deemed successful or unsuccessful, the learning
component must store a representation of what happened, in a form that can
be used to avoid having to perform problem-solving over again if a similar
situation is encountered in future. This is done in two stages. First, a causal
analysis, as in EXPL, is made of the last few user actions and system responses.
This exposes the causal connections between actions and responses, and
prerequisite relations among actions. It is then straightforward to build CCT
productions that can repeat the appropriate actions when the observed
outcome is desired in future.

The value of these productions is clear in success cases, but why bother to
build them when the system response was not what was wanted? This can be
seen as a form of incidental learning: even if the expected, and desired, result
was not obtained it is still useful to know what happened and why. After all,
the unwanted outcome now may be the wanted outcome in future.

Testing of the model will be needed to determine if this account of learning is
adequate or needs modification. It is possible that people's evaluation of
progress toward the goal is even cruder than that we propose. Mack, Lewis,
and Carroll (1983) found subjects willing to accept almost any outcome of
their actions as correct. It may be that productions built from incorrect actions
should only rarely be stored. And it may be that information about the effects
of choices should be stored declaratively as well as in production form, so as
to be accessible to the selection process.

6.3. The Execution Component of CE+
Once CE+ has productions available from earlier problem-solving episodes it

needs a way to determine whether problem-solving must be invoked in a
particular situation or whether existing productions can be used. CE+ uses the
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simple criterion that if any production is applicable it should take precedence
over new problem-solving. At a high level this makes CE+ resemble SOAR
(Lair, et. al, 1986): problem-solving is a response to an impasse in the
application of other knowledge.

6.4. A Related Model

Muncher (1989) developed a model of learning menu-based systems by
exploration that is closely related to CE+. Her model is also derived from the
GOMS/CCT and from the Polson and Jeffries (1982) models of the solution of
puzzle-like problems. Muncher’s model focuses on the problem solving
component. She performed a transfer experiments that was originally
designed to test an extension of CCT to tasks involving spreadsheets. She
evaluated her model of the problem solving component by deriving
predictions for the relative difficulties of learning of menu transitions
required to perform series of tasks using Lotus 1-2-3. The results from the
first task in two of her experimental conditions were discussed in Section 4.3.

Muncher classified new menu transitions as difficult, moderate, or easy
depending upon whether they violated or were consistent with a hill-
climbing search method that was similar to the method described in Section
6.1. Her data strongly supported her difficultly predictions. For example,
menu transitions that required users to learn to make choices that were
dissimilar to their goals were significantly difficult to learn.

6.5. A Detailed Example

Figure 5 shows a trace of the operation of CE+ on the first part of the spell-
check interaction presented earlier. This is a hand simulation: while some
parts of the model have been implemented in other contexts, including the
decision process, the EXPL analysis, and the translation between the results of
EXPL analysis and CCT productions, these parts have not been integrated. The
task given to the learner is "Check the document named 'security' for
spelling errors.” We presume that the learner 's encoding of this task
identifies "check for spelling errors" as the operation to be performed and a
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Figure 5 . A Trace of the Operation of CE+ on the First Part of the
Spelling Check Task.

Events CE+ Activities

Instructions provided:

"Check the document named

'security' for spelling errors."
Extract "check for spelling errors" as operation,
and "'document named 'security’' " as thing to
operate on.

TASK SELECTION
menu (see top of
Figure 3) on screen.

Extract "Typing Tasks", Work Diskette Tasks",
Program Diskette Tasks" and "Spelling Tasks"
as descriptions of available actions.

Compare each of these to "check for spelling
errors".

"Spelling tasks" overlaps, so choose it.

Action is encoded as "choose *spelling-tasks"
(see EXPL example in Figure 4.)

User types 'd’

SPELLING TASKS menu
appears (bottom of Figure 3)

Note overlap between "Spelling tasks" heading

in system response and goal, "check for spelling
errors"; presume progress has been made.

EXPL prerequisite link is placed between action
and presence of "Spelling Tasks" item on
screen.

EXPL Identity heuristic links the heading to
previous action.

Build CCT production from EXPL analysis;
see Figure 6.
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document named "security" as the object of that operation. We further
presume that the learner viewing the initial Task Selection menu (shown in
Figure 4) can extract the descriptions of the alternatives it affords, "Typing
tasks", "Work diskette tasks", "Program diskette tasks", and "Spelling tasks",
and can identify these as referring to actions rather than to objects.

The decision process will now scan this set of alternative actions, comparing
each description to the action portion of the goal. The first three descriptions
share nothing with the "check for spelling errors", while the last, "Spelling
tasks", does overlap. With high probability this choice will be made.

The system response is to display a menu headed "Spelling tasks". Since this
overlaps with the goal, CE+ will accept this as progress, and not post an undo
goal.

CE+ now analyzes the relationship between the system's response and the
recent actions it has selected, using the EXPL analysis methods. In this case the
identity heuristic places a causal connection between the appearance of the
"Spelling tasks" menu and the previous action, since the action shares the
description "Spelling tasks". Since CE+ has performed only one action, any
other aspects of the system response would also be linked to this same action,
by the previous action heuristic. The EXPL analysis also notes a prerequisite
connection between the action described by "Spelling tasks" and the presence
of the Task Selection menu on the screen.

The results of this EXPL analysis can now be cached in the form of a CCT
production that will carry out the first step of a method for accomplishing the
"check for spelling errors" goal. The condition of this production checks for
the presence of this top goal, and for the presence of its own step identifier
(this is part of CCT's control structure; the production builder simply simply
assigns arbitrary identifiers to steps.) The condition also checks for the
prerequisite assigned by the EXPL analysis. The action of the production
deletes its step identifier (more of the CCT control scheme), carries out the
action of choosing "Spelling tasks", and sets the step identifier of the next
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step. The production builder has to recover that the selection of "Spelling
tasks" was actually done by typing "d".

The resulting production, shown in Figure 6, corresponds to the production
ChkSpllDoc.P1 in the CCT analysis in Figure 2, but there are some differences,
beyond the use of meaningless step identifiers in the CE+ production. The
EXPL analysis notes that the occurrence of the item “Spelling Tasks” is a
prerequisite to choosing it, but not that the Task Selection menu is a
prerequisite. The goal statements differ because the CE+ analysis cannot
determine from this much of the interaction that the specific document name
‘security’ could be replaced. Finally, the production in Figure 2 is written to
interface to a separately-defined method for making menu choices, with
which it communicates by posting NOTEs in working memory and which it
invokes by posting the goal "GO-TO-NEXT-MENU", while the CE+-produced
production simply invokes a primitive operator to type the letter "d".

Figure 6. An Example Production Generated by CE+
Corresponding to the Production ChkSpllDoc.P1 in the CCT
Analysis in Shown in Figure 2.
(SomeLabel
IF ((GOAL CHECK-FOR-SPELLING-ERRORS-DOCUMENT-SECURITY)
(STEP S333)
(SCREEN SPELLING-TASKS))
THEN
((Delete STEP S333)

(PressKey d)
(Add STEP S331)))

To use the resulting production a start-up production, corresponding to
StartChkSpllDoc in Figure 2, must be built to invoke it. The start-up
production contains only control information and can be built for any
method without reference to any information about how the method is
performed, other than the identifier used for the first step . Once these
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productions are built CE+ would not repeat its decision process in facing the
Task Selection menu with the goal of checking spelling. Rather, these
productions would apply and "d" would be typed immediately.

Recall that the EXPL analysis did not recover all of the structure of the spell-
check interaction in Figure 3. Specifically, since the system response that
signals the completion of the check does not mention the document name,
the analysis did not determine the effect of typing in the document name.
This problem can be avoided in the context of CE+, since the goal of the
interaction is available during analysis of the results of actions. Since the
name 'security’ that the user types in is identical occurs in the goal statement,
the production builder can determine that 'security’ is not a constant, like 'd’,
but should be replaced by a reference to the goal. At the same time this
identity relation permits CE+ to conjecture that the specific name ‘security’
could be replaced by some other in using the method in future.

7. DESIGN FOR SUCCESSFUL GUESSING

We have divided learning by exploration into a problem-solving phase, in
which correct actions are discovered, and a learning phase, in which
successful sequences of actions are cached as production rules. The problem-
solving phase is the critical one, since the learning phase operates only on its
output. The problem-solving mechanisms we have proposed are not robust,
and seemingly minor flaws in the design of a user interface can completely
derail them. Thus, we argue that the design of an interface that must be
learnable by exploration must focus on facilitating the problem solving
mechanisms.

Given the CE+ model, we can read off a set of design principles that will
facilitate learner's problem-solving. Because the knowledge-poor strategy
used in CE+ could fairly be described as a guessing process, we call the
collected suggestions Design-for-Successful-Guessing. The principles are listed
in Figure 7.
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Figure 7.  Design Principles for Successful Guessing
1. Make the repertoire of available actions salient.
2. Use identity cues between actions and user goals as much as possible.

3. Use identity cues between system responses and user goals as much
as possible.

4. Provide an obvious way to undo actions.
5. Make available actions easy to discriminate.
6. Offer few alternatives.

7. Tolerate at most one hard to understand action in a repertoire.

8. Require as few choices as possible.

Make the repertoire of available actions salient. The CE+ model assumes a
set of actions among which to choose. Traditional command languages
cripple CE+ at the start, because there is no explicitly presented repertoire of
actions. Menu systems which include some choices that are not visible on
the menus are also bad. For example the IBM DisplayWriter, a menu-based
system, used a keypress to summon a critical auxiliary menu, but this
keypress was never listed as an action on any menu. Engelbeck (1986) found
that operations involving this keypress were difficult to learn and recall.

Use identity cues between actions and user goals as much as possible. The
label-following heuristic needs shared terms to work. Thus menu prompts, or
command names, or other material that can be associated with actions,
should share terms with user goal representations. The IBM Interactive Chart
Utility required users to select colors by number, not name or by choosing
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among color patches, even when executed on a color terminal. Users had
trouble making appropriate choices even in simple situations.

Use identity cues between system responses and user goals as much as
possible. Similarly, users must be able to gauge whether an action moved
toward a goal or not. Identity cues support this. WYSIWIG editors provide
continuing feedback about the effect of user actions that can be directly related
to user goals. Of course systems which provide no system responses are
especially bad. Many UNIX commands provide no response, which may be
fine for the user who knows what they do but is hopeless for the learner.

Provide an obvious way to undo actions. If an action is seen to be a mistake
users will have the goal of retracting it.

Make available actions easy to discriminate. The hill-climbing decision
process in CE+ will work poorly if available actions seem to do similar things:
it will be difficult to determine which action best approaches the goal. A
choice among many ways to delete, say, which differ in the size of the unit
deleted and whether it is replaced by blanks or not, is hard to make early in
learning , as Mack, Lewis and Carroll (1983) report, because learners see these
operations as very similar.

Offer few alternatives. Other things being equal, the chance of guessing the
correct alternative goes down with the number of possibilities.

Tolerate at most one hard to understand action in a repertoire. The hill-
climbing decision procedure can eventually make the right choice when all
but one action can be seen to be inappropriate. But if there is more than one
choice whose consequences cannot be projected the probability of error is
high. Of course having no hard to understand choices is best, but designers of
complex systems may not be able to ensure this.

Require as few choices as possible. Other things being equal, a longer series of
choices has less chance of being completed successfully.
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8. NORMAN'S ACTION MODEL AND DESIGN
GUIDELINES.

Norman (1986, 1988; see also Hutchins, Hollan, and Norman 1986) applies a
general theory of action to the problem of operating a computer system. In
outline, the user's problem is seen as that of building two bridges, one across
the 'Gulf of Execution’, which separates the user's conception of a goal from
the actions needed to accomplish it, and a second across the 'Gulf of
Evaluation', which separates the results provided by the system from the
user's understanding of progress. CE+ can be seen as a simple special case of
this model, in which both gulfs are bridged (crudely) by determining the
overlap of terms between goal statements, menu prompts, and system
responses.

Figure 8. Norman's Design Principles.
1. Use both knowledge in the world and knowledge in the head..
2. Simplify the structure of the task.
3. Make things visible: bridge the Gulfs of Execution and Evaluation.

4. Get the mapping right. Make sure that the user can determine the
relationships between: 1) intentions and possible actions, 2) actions and
their effects on the system, 3) the actual system state and what is
perceivable by sight, sound, or feel, and 4) the perceived system state
and the goals and intentions of the user.

5. Exploit the power of constraints, both natural and artificial.
6. Design for error.

7. When all else fails, standardize.
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Norman (1988) derives design guidelines from this framework, summarized
in Figure 8. We see considerable agreement between these principles and
Design for Successful Guessing, but also some interesting points of difference.
First, Design for Successful Guessing makes more specific suggestions than
Norman's principles 3 and 4, while addressing the same issues. Principle 2,
"Simplify the structure of the task", is reflected in our advice to keep the
sequence of choices short, while Principle 5, on exploiting constraints, is a
more general version of our advice to limit the available alternatives.
Principle 6, "Design for error”, shows up in CE+ only in the specific
injunction to provide a means of backing up. In all these cases CE+ offers
specificity, in suggesting how to design for learners using very crude, lowest-
common-denominator problem-solving methods, but sacrifices generality.
Clearly overlap of terms does not exhaust the possible cues for assessing
progress towards a goal, for example, though it may be the most robust one.

Second, Norman's Principles 1 and 7 draw on facts about memory not
modelled in CE+. The CE+ model does not include any process that could use
declarative knowledge about one system to help in mastering a new one. Nor
does it have difficulty retrieving the productions it stores, which are its only
representation of earlier experience with a system. So the use of cues to assist
in recall, and the value of standardization in reducing the requirements for
new learning are lost in the CE+ framework, except when two situations can
be made so similar that the same productions are applicable in each. This
seems too restrictive, though the history of psychology is full of disappointed
expectations of transfer in problem-solving situations (Gick and Holyoak,
1983).

Finally, Design for Successful Guessing provides for learners reasoning by
elimination, if only as a last resort, while Norman's principles do not
explicitly recognize this possibility. Support for this could be seen as falling
within the general Principle 4, "Get the mapping right".

Overall, it appears that CE+ offers a conservative specialization of Norman's
framework. If suggests specific ways to support the most basic problem-
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solving methods, likely to be used by complete novices, while saying nothing
about how to cater for more sophisticated learners.

9. DISCUSSION

We have argued that CE+ gives an account of exploratory learning of
computer systems. We have derived specific design guidance from the
framework that CE+ provides.

A gap remaining in the theory is the role of prior knowledge in the guessing
process, as just noted in our discussion of Norman's design principles. CCT
provides an approach to assessing transfer from these other systems, in terms
of total learning required, but we have not worked out an account of the role
(if any) of transfer in guessing.

Another issue remaining to be addressed is the role of user goals in design.
Design decisions balance delicately on just what goals users will have, and
how they represent them, something our present framework takes as given.
We see two distinct problems here.

First, it is clear that users are capable of restating goals in ways that can
profoundly affect the ease with which a task can be accomplished. For
example, in a study of a messaging system learners typically transformed the
stated goal "play all your messages and then delete them" into "for each of
your messages, play it and delete it", which happened to be much easier to
accomplish in the system we were studying. We do not know how to predict
or control these goal transformations.

Second, while some user goals arise in the users' environment, and hence
precede design, many others are part of users' responses to the design, and
hence are influenced by the design itself. Our theoretical framework does not
help to lay out what these "derived" user goals will be.
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