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Abstract

Intelligent tutors for constructing proofs in geometry and solving
algebraic equations are possible because these are closed, formal
domains. Solving word problems is, in contrast, not closed since the
student must employ common sense reasoning and infer information
which is not stated in the problem in order to understand the
situation described in the problem statement. A model for algebra
word problem comprehension is presented. We distinguish several
aspects of the problem comprehension process: Construction of a
propositional textbase; qualitative representation of the problem
situation; organization of the textbase into a formal conceptual model
organized by problem schemata; and finally calculation of the solution
from the problem model. A tutoring environment is described which
embodies these principles. With it students can construct a graphical
problem model which drives a computer animation of the situation.
Students can compare the resulting animation to their internal

situation model in order to evaluate and alter the problem model.
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Tutoring systems need to be based both on an understanding of

the psychological processes that students employ to work effectively

in a domain, and on a didactic theory that specifies how these should

be taught. In the present paper we present a theory of algebra word

problem comprehension and solving -- the encoding strategies

involved, the nature of the mental representations, and the calculation

operations -- which provides a theoretical foundation for the
development of a tutorial system.

A first sketch of this model has been presented in Weaver &
Kintsch (submitted). It is an extension of the model for arithmetic
word problem solving proposed by Kintsch & Greeno (1985). The
latter model has been formalized and tested empirically, so that we
have some assurance that it captures correctly important features of
how first-grade students solve simple arithmetic word problems. It
does not at present seem possible to formalize and test empirically the
model of Weaver and Kintsch in the same way. In principle, the model
for algebra can be specified as precisely as the model for arithmetic.
However, in order to construct a simulation of that algebra model one
would need a knowledge base that included an enormous amount of
general world knowledge, in addition to knowledge about algebra. It is
not known at present how to construct such a knowledge base, nor
how to operate with it if we had one. Hence a simulation model is
impractical at this time and we have, therefore, no ready means to
derive and test empirical predictions from the model.

Instead, we shall test the model by building a tutor that assumes

the empirical adequacy of the model. We follow Anderson, Boyle, &
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Yost (1985) in this respect. Obviously this is a risky strategy. If our
tutor fails to improve student problem solving performance and
comprehension, we don't know whether the underlying theory was
wrong, or whether we made poor design decisions unrelated to the
theory. Similarly, if it works, we have only a very indirect test of the
theory. As far as testing the model is concerned, however, that seems
to be the best we can do at the moment. The tutor, however, is not
just a test of the model, but, if successful, would be of interest in
itself.

To build a tutor, we need to address both the question of what
to tutor and of how. The answer to the first question is obtained by
taking our model seriously. Although Weaver & Kintsch (submitted)
merely sketch a model, this model can be worked out in the same
detail as the model for arithmetic word problems, making explicit all
the steps involved. Many of these steps, of course, people do not need
help with -- our students can read, for instance. What we need to do
is find those components of word problem solving that students find
difficult. We shall take our cue from the work of Cummins, Kintsch,
Reusser, & Weimer (1988) which suggests that, at least in the case of
word arithmetic problems, the crucial and difficult step is the
translation from the text into a formal, conceptual structure. Our goal
will be to help students with that translation process.! In the next
section we present a brief overview of the theory upon which we base
our proposed tutor.

The answer to our second question -- how to tutor -- cannot be

based solely on the process model of how students solve word
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problems. A host of questions arise concerning various aspects of
tutoring and user interface principles that are outside the domain of
our process model . Some of these issues will be discussed in Section

2. Finally, we shall present our design for an algebra tutor in Section 3.

A Model of Algebra Word Problem Solving. The model of

arithmetic word problem solving proposed by Kintsch & Greeno
(1985), which is an instantiation of the general theory of discourse
processing of van Dijk & Kintsch (1983), distinguishes several aspects
of word problem solving: The construction of a propositional textbase,
representing the meaning of the problem statement; the organization
of this textbase in terms of the situation described in the problem and
the mapping of this situation model, driven by the arithmetic
schemata, into a conceptual problem model; and finally the
calculation of the solution from the problem model.

Processing algebra word problems can be viewed similarly. First,
a propositional textbase is formed, just as with any other text. This
textbase is organized into a (qualitative) situation model and mapped
into an algebraic (quantitative) problem model. A set of algebraic
schemata will be described in the following section which allows one
to construct problem models from episodes which are commonly
found in algebra word problems. We show how equations can be
derived from the problem model via constraint propagation. We shall
first illustrate this process with a single, worked-out example, and

then present a general discussion of algebraic schemata.
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Example: A Distance-Rate-Time Problem. Consider the

following word problem:

A plane leaves Denver and travels east at 200 miles
per hour. Three hours later a second plane leaves on a
parallel course and travels east at 250 miles per hour. How

long will it take the second plane to overtake the first plane?

6

The following proposition list can be derived from this text (as in van

Dijk & Kintsch, 1983):

P1
P2
P3
P4
P5
P6
P7
P8
P9

LEAVE[PLANE1, DENVER]
RATE([P1,200mph]
DIRECTION[P1,EAST]
LATER[P1,P5,3HOURS]
LEAVE[PLANE2]
DIRECTION([P5,EAST]
LOCATION(P5,P8]
[PARALLEL[COURSE]
RATE[P5,250mph]

P10 HOWLONG(P11]

P11 OVERTAKE[PLANE2,PLANE1]

The top-level macroproposition for this text would be "PLANE2

overtakes PLANE1", with the information about how fast they are

going, when they are starting, etc., subordinate to it.
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corresponding situation model might involve a description of the two
speeding planes along a parallel course, ending when the second
plane just passes the first. All of this would be just as in
understanding a story. We assume that students have tremendous
experience with this task.

Generating a Problem Model. In an algebra word problem,

however, this situation model must be mapped into a formal algebraic
problem model. That is, the relevant algebraic schema must be
determined, and the situational information must be used to arrive at
a solvable problem model. In constructing the problem model we
note first that P2 specifies a relation between a distance and a time,
thus eliciting a DRT schema labelled PLANE1. This schema has slots
for D, R, and T, as well as a slot called "Specifications": P2 is assigned
to Slot R, while P1 and P3 go into the Specification slot. P9 initiates
the construction of a second DRT schema for PLANEZ2, fills its R slot,
and assigns P5-P8 to the role of Specifications. P4, because it ties
together the specifications of the two schemata, is tagged as a
Supporting Relation. P10 is assigned to the T slot in PLANE2, and
P11 serves as another Supporting Relation. Thus, propositions in the
textbase serve as cues for the construction of a problem model, which
organizes these propositions in terms of an algebraic schema.

The distinction between understanding the situation in
everyday terms, and understanding the problem structure in terms of
an algebraic schema is derived from Reusser (1988). As will be seen
below, this is central to our approach to tutoring: The construction of

the algebraic problem model requires the most support, while the
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students' familiarity with the everyday situations in which these
problems are embedded serve as a source of the support. We do not
propose a stage theory, however, in which situational understanding
must precede the formation of the problem model. The kind of
situational understanding that is required for word problems must
from the very beginning be driven by the salient features of the
problem. The algebraic schema provides a perspective that is useful
for the formation of a situation model. Thus the nascent formalism
actually helps the student to understand the situation and better
comprehend the problem statement.

We have chosen a simple graphical form to represent the
problem model. Each DRT schema will be shown as three ovals,
corresponding to D, R, and T, respectively, in a vertical arrangement,
connected by line segments labelled "=" and "*". For clarity in
analyzing this example, the text propositions organized by these
schemata are written next to the ovals and/or lines to which they have
been assigned. Inside the ovals quantitative information derived from
the text propositions is shown. Line segments are labelled in such a
way that the lines and ovals can be read as equations, either

horizontally or vertically. Figure 1 shows the resulting graph.
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The Situation Model-Problem Model Link. Note that in the

construction of this problem model an important inference was made:
P11 says only that one train overtakes the other. In our situation
model we have one slower plane leaving initially and, after some delay,
a faster plane approaching the first plane from behind. One can infer
from the situation that the distances travelled by the two planes must
be equal at the point of "overtake". It is crucial for understanding the
problem that this inference be made and ultimately incorporated into
the problem model. We will show later that failure to include such
situation-directed inferences leads the tutoring system which
embodies this model to construct an inappropriate animation. Seeing
animation which does not correspond to the subject's expectations
will hopefully lead the subject to alter the problem model
appropriately. In this example, seeing the fast plane overtake the
slower one and continue across the screen indefinitely may suggest to
the student that the incorporation of an additional inter-schema
relation in the problem model will bring about the expected animation
on the screen. The top horizontal arc of Figure 1 which equates the
distances of the two planes represents such a relation.

Equation Generation. The empty ovals in Figure 1 can be filled in

by a process of constraint propagation. For instance, we can use the
equation constructed on the basis of the supporting relation that the
second plane started 3 hours later to obtain "h+t" as the time for the
first plane. The two vertical DRT schemata can supply (ie. propagate)

entries for their respective Distance ovals. Applying the inferred
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equality relation for the two distances yields the equation 200*(t+3) =
250*t.

Problem models, and equations, can be constructed in much the
same way as in Figure 1 for most algebra word problems found in
college or high-school textbooks. We need merely a list of the required

algebraic schemata.

Algebraic_Schemata. Mayer (1981) has compiled a list of 1097

story problems from standard textbooks, which he classified into eight
families. The first four families, comprising the majority of these
problems, are various kinds of Rate problems, while the others are
Number problems (such as Age problems), Geometry (e.g. Area
problems), Physics (e.g. Ohm's Law), and Statistics (e.g. Probability).

The general rate schema is of the form

UNIT1 :: RATE-UNIT1-PER-UNIT2 :: UNIT 2

The differences among the four rate families are differences in the

nature of the units:

UNIT1 UNIT2
FAMILY 1 amount time
FAMILY 2 cost unit
FAMILY 3 portion total cost
FAMILY 4 amount amount

Number problems, on the other hand, generally do not have a schema:

All relations are specified in the text. For Physics problems, each
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physical law or formula corresponds to a schema in our analysis.
Similarly for Geometry problems, we need a schema for each formula
and theorem. Mayer's 8th class, Statistics problems, could be treated
in the same way, but we shall disregard it here.

We are essentially dealing with one rate schema and its variants
for the bulk of the algebra problems, plus an open set of schemata
corresponding to the geometry and physics formulas used, and some
problems where a schema provides little in the way of constraints on
selection of a problem solving strategy.

In Appendix A, two representative problem types are shown for
each family. The many subtypes within each category listed by Mayer
(1981) differ from the examples analyzed here in the nature of the
supporting relations given and/or the unknown value asked for. These
variations are represented similarly.

Note that important inferences are required to set up the
problem models for Current and Work problems. In both cases the
values for the rates involved are not directly given in the problem, but
must be inferred: The speed of the boat upstream is boatspeed-plus-
current; Mary's work rate is 1/5, because she needs 5 hours to
complete (100% of) the job on her own, and so on. It is quite possible
that these inferences might require the construction of an explicit
model. In the case of the Work problem, e.g., one might want to set
up two more work-schemata, one for the case where Mary works alone
and one for the case where Jane works alone, making the
computations of the work rates explicit. Figure 2 shows such a two-

stage problem model.




Tutoring Algebra

12

The point made by Figure 2 is important. Problem models can be
represented more or less completely. For some purposes a step can be
left to be inferred (which is what we have done generally in the
examples analyzed in the Appendix, for the sake of simplicity), while
for other purposes, e.g. for tutoring, a more explicit analysis might be
required. These inferences are not simple to make for most novices
and can be a major source of error. Knowing the rate at which a
person works is vital when relating the duration of labor to the
amount of work done. This is likewise true for rate of travel in
distance and current problems. The schematic formalism that we have
developed makes students look carefully at the structural similarities
across problem types. Students must still make the hard inferences. It
will be more apparent, however, that this information is absent from
the problem model and necessary for a coherent situation to be acted
out on the computer screen.

Turning to Family 2, Cost-per-Unit-Rate, we have chosen a Fixed
Cost and Dry Mixture as two examples in the Appendix. In each case,
supporting relations specified in the problems must be used to
construct the problem model. Family 3, Portion-to-Total-Cost-Rate,
introduces a new element: Iterative constructions. Thus, the interest

from the first year becomes part of the base amount for the second
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year, and so on. Family 4 problems, Amount-to-Amount-Rate, require
fairly subtle inferences, such as that the amount remains the same as
pressure and volume vary, or that the amount of acid, too, can sum
when forming a wet mixture.

Families 5-7 make use of a somewhat different graphical
representation. Superficially, a formula like Distance = Rate X Time
looks the same as Age-of-Ann = 2 X Age-of-Son, or Area = Length X
Width. However, Rate (say, km/h) is a relational term,?2 explicitly
linking Distance (km) and Time (h); hence we have written it in
between D and T. Relational terms play a special role in word
problems (Mayer, 1982, Weaver & Kintsch, submitted). "Length",
however, is not a relational term, and it makes no difference whether
in the formula for the area of a rectangle Length or Width comes first,
while the ordering of Rate and Time is significant conceptually
(though of course not mathematically). This equality between the two
factors in non-rate problems is indicated in the graphic
representation of Families 5-7 by writing both at the same level.

Number problems (Family 5) lack a schema; instead they are
constructed entirely from the relations stated in the text. Geometry
problems (Family 6), in contrast, involve many different schemata --
area and circumference of a rectangle, in our examples. Both physics
examples given here (Family 7) involve the fulcrum-schema. Of course,
many other geometrical and physical formulas are used in word
algebra problems.

The rate schema in its various versions, plus a few common

physics and geometry formulas are, therefore, all we need for the
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construction of problem models for word algebra problems. Instead of
1,000 problem types, we need to be concerned with only a limited set
of algebraic schemata. Our goal will be to teach students these
schemata, help them to use these schemata in the construction of
explicit graphical problem models, and show them how to derive
equations from these graphs. Before we discuss our suggestions for
tutoring, some general issues about tutoring need to be considered.
The theory of word problem solving is concerned merely with the
psychological processes involved, but in order to construct a tutor
many other decisions will have to be made which are outside the
scope of the theory.

Design of an Unintelligent Tutoring System. With the growing

accessibility of powerful personal computers, graphics capabilities, and
expanded memory, many researchers are looking to Intelligent
Tutoring Systems (ITSs) as a panacea for remedial problems in
education. A number of very impressive tutoring systems have indeed
been developed (Polson & Richardson, 1988). The merits of this
approach are basically three-fold. First is the belief that computer
systems can be developed which embody lesson plans and present
them to the student in an ecological manner with unfailing patience.
Second is the individualized attention and feedback that a tutorial
program can provide a student. Lastly, is the willingness with which
students perform otherwise dull or tedious tasks on the computer.
While we do not feel that we can currently develop an intelligent
tutoring system for word algebra problems, one which actually

understands such problems, we do not feel this is a severe drawback.
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We take a very conservative view as to the advantages of intelligent
tutoring. There are good reasons why more modest tutoring strategies
need to be considered as alternatives to intelligent tutoring. While it is
true that computers can present materials in a variety of forms, there
are many unanswered questions regarding information presentation
and aesthetics. Most successful systems are developed through the
skill and insight of an experienced designer, through trial and error,
with a weak underlying design philosophy, if any.

The lack of a principled way to design interfaces is in itself no
reason to abandon the ITS approach. We are far more concerned with
the difficulty of achieving the levels of intelligence and flexibility that
are required for successful, intelligent tutoring. The ability of current
systems to tailor their behavior to the responses of the student is
extremely limited. An intelligent tutor must understand why a student
makes an error, and react accordingly. This requires a reasonably
complete task analysis for the subject matter at hand. At present, such
task analyses are done by hand, ruling out all but the most constrained
of topics.

Secondly, for the program to adaptively customize its behavior,
the tutoring system must understand what the student is doing. We
need a psychological process model of the behavior in question. This is
often not available, or too sketchy to be of much use. Intelligent
tutoring without the necessary intelligence is a risky business. If the
system misclassifies a student's response or behaves inconsistently, it
can easily confuse or discourage the student (Holland, Holyoak,

Nisbett, & Thagard, 1986). For most tasks, including mathematics,
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there is no single, unique way for solving a problem. It is insufficient to
evaluate a student's answer. It is the method of achieving this answer
that intelligent tutoring systems need to evaluate. A program that
misclassifies minor errors (or typos!) as major conceptual errors, or,
worse, lets an erroneous method go uncorrected because it led to a
correct answer, may do more harm than good. In the absence of a
principled method for task analyses, of psychological processing
models for the behavior to be tutored, or of tool kits for developing
tutoring programs, intelligent tutoring for many domains doesn't look
very promising.

On the third point, we largely agree. Teachers report high
motivation on the part of students when computers are used in school
work. Yet the potential for frustration is a concern that every tutoring
system designer must address. The program must be robust. It must
not blow up because of some unexpected input. It must terminate
gracefully. Reasonable means of communication must be devised:
Programs have an inherently limited vocabulary, so that the student
cannot always obtain needed assistance during a session. Designers of
tutoring systems and educational software cannot wait for the solution
to the natural language processing problem.

Robust, flexible tutoring systems which are expected to exhibit
intelligence may best be regarded as a long term goal. Our goal is the
more immediate development of a computer system which aids
students in problem understanding and learning. We propose an
approach which assigns to the computer program tasks that it is good

at doing today. Among these are simple, time-varying graphics,
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bookkeeping, and processing formally described relations (e.g.
equations). Tasks which lie outside of today's technology -- natural
language processing, creative thinking, induction -- are left for the
student. There are other systems, such as EUCLID (Smolensky & Fox,
1987). a computer system for specifying argumentation, which share
this design philosophy. In our system the computer program serves as
a fancy chalkboard for mathematics and animation. The student reads
a problem, derives a formal problem model, and obtains feedback from
the animation as to its correctness. The intelligence is all the
student's. The system is there merely to help organize problem
information around selected schemata and allow the student see the
situational correlate for the specified formal relations.

Animating Word Algebra Problems. ANIMATE is AN Interactive

system for Mapping Animation to TExt. It is a computer system which
facilitates comprehension of a text or story problem by helping the
student to construct both an animated situation model and an
accompanying problem model. The situation model (Van Dijk &
Kintsch, 1983) is intended to capture graphically the overall gist of
the passage. It is the basis for understanding the actions contained in
the text. The problem model (Reusser, 1988) is an instance of an
algebraic schema and serves as a guide for the parsing of a word
problem into a set of equations which can then be solved using formal
methods.

The set of equations ultimately produced when working in this
environment is similar to those equations obtained using conventional

methods. The path to it, however, is different. ANIMATE guides the
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student to the ultimate set of equations using the schematic
representations discussed above. We expect that this intermediate
step will facilitate the formalization of the passage. Furthermore,
feedback is provided by way of the animation so that the student may
decide upon the correctness of the problem model. Finally, the
system supports the transition from the schematic problem model to
conventional equations.

Background. TRIP (Gould & Finzer, 1981) is the most notable
system which provides students with a similar capacity to construct
computer animated descriptions of word problems. This system was
designed to help students formulate the appropriate Rate equation
(Family 1) from a problem statement. As with our system, TRIP
focuses on the translation process, decomposing it into three steps:
Mapping the language into a meaningful graphical representation;
identifying the "key relationships" within this representation; and
transferring these relationships into an equation for algebraic
processing. The first phase is performed closely with the teacher who
provides the criteria for correctness of the constructed (ie. selected)
picture. System-embedded knowledge is used to perform the second
phase. The program has explicit knowledge of each problem assigned
-- the distances, rates, travel times. The third phase makes use of a
"Guess Table" which presents a series of the student's over- and
under-estimations made for the value of the unknown variable in the
problem. The Guess Table serves as data for the student to derive the
analytical expressions which describes the problem formally. The

resulting equation is then solved without the aid of the program.
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As will be seen, while our system may be regarded as an
offspring of TRIP, there are several important differences. Most
significantly is the strong underlying theoretical framework of text
comprehension and situation model formulation which drives our
work. No such foundation is given for the TRIP system. The theory
suggests two important deviations in the tutor design. First, we allow
the student to supply the correctness criteria for the animation. We
next provide the student with greater flexibility in the construction of
situation and problem models. Students may play with the animation
before the description is complete. Further, there is no notion of a
correct problem description, only an internally consistent one. The
student can arbitrarily vary a problem so that it has different values,
constraints and unknowns. TRIP will permit the student to include
only values which are correct for that problem and the animation can
be run only when the problem description is correct and complete.
Varying a problem, facilitated by stored problem templates and the use
of Smalltalk-76, must be performed by the teacher.

While statistically reliable results are not available on TRIP,
some valuable qualitative findings have been reported. Even fearful
math students enjoyed using the computer. The system would likely
be even more valuable if students were given as much control as
possible over the dynamic actions of the animation. Thus greater
flexibility needs to be provided. The transfer of "non-mechanical
actions" (e.g. labelling the Guess Table) transferred poorly to paper
and pencil performance since the program did these actions for the

students. The performance of fairly complex tasks was performed
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adequately by novices when they themselves constructed the scenario
and had use of a cooperative user interface.

ANIMATE. According to the account of word algebra problem
solving given above, the conceptual problem model plays a central
role. Normally, however, it is merely an implicit, intermediate
mental structure in a long line of such structures that are being
generated from the initial perceptual stages of processing to the
eventual overt response. What we present here, for the purpose of
tutoring, is to make this structure explicit by representing it
graphically, so that the student gains a clearer understanding of the
conceptual relations in a word problem. We have good reasons to
believe -- by extrapolation from the work on word arithmetic problems
-- that much of the difficulty in solving word problems is tied to
comprehending and setting up correct internal models of the problem
text.

ANIMATE does not know the correct problem model for a word
problem. It knows only that which is contained in the formal structure
built by the student. Forcing students to be explicit and providing
them with a framework for representing their notions of a problem
will, we expect, be helpful. Thus, an explicit decision must be made
by the student to employ and construct a DRT schema, for example,
and construct the necessary relations. If an unconnected graph is
constructed, the representation is surely incorrect. If some numerical
information in the problem text is not included in the graph,

something important may have been omitted. The formal constraints
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of the graphical representation by themselves help the student arrive
at the right conceptualization of a word problem.

ANIMATE provides the student with the ability to check the
correctness of the problem model that has been constructed. This is
done by running the animation -- time varying computer graphics --
which represent the conceptual model depicted in the network. The
student compares this formally specified cartoon against his/her
internal situation model of the problem statement. If they are
consistent, the student is likely to have successfully translated the
problem into a set of formal (and solvable) relations. If the animation
misbehaves, something is wrong in the specification. It is then the
task of the student to reevaluate the model, decide what aspect of the
structure is inadequate (e.g.. an incorrect relation) and alter it to
produce the expected animation. ANIMATE is incapable of helping
the student to assess how well the animation matches the student's
own internal situation model. ANIMATE knows nothing of situation
models or the specific problem being addressed. It only does tasks
that are easy for the computer: Given a formal specification of a
problem -- a graph as in the Appendix -- it solves the underlying
equations and then acts out based on stored internal scripts for
various problem types, what it understands the situation to be. The
system is capable only of making salient to the student the situation
which has been formally specified by the network structure.To the
student, however, evaluating the match is straight forward since it

involves knowledge with which the student is quite familiar: When a
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plane will leave and which will leave first; the resulting grey level of a
mixture of light and dark shades; and so on.

When the student has constructed a schematic representation of
the conceptual problem model, and checked its correctness against
the animation, the final task is to derive an equation from the network
which will lead to a solution of the unknown quantity. ANIMATE
supports this process by maintaining the constraints inherent in the
graphic representation. This part of the tutor is modelled after
Greeno, Brown, Foss, Shalin, Bee, Lewis, & Vitolo (1986). It uses the
links and values provided as constraints on the permissible values
(numbers or expressions) which may fill empty nodes in the problem
representation. ANIMATE works like a spreadsheet, although it does
not immediately display its results. The empty nodes must be filled in
by the student, but ANIMATE knows the correct answer and does not
accept anything else. Indeed, after two failures, the student can ask
the system to display the correct result.

Once all nodes and arcs in the graph are filled in with globally
consistent numerical values, operators or formulas, the student can
select any of the equations in the graph (by following any of the
vertical or horizontal lines) and proceed to solve it. Although teaching
how to solve these equations is not our concern, the tutor must be able
to help students in this final phase of the solution process, too. We do
this by prohibiting wrong moves by the student.

The goals of the tutoring system can be clarified by considering
them in terms of the theoretical model presented earlier. We let the

student read the problem text, form a text base and a situation model
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without help. The student then uses ANIMATE to develop an algebraic
problem model (Reusser, 1988) by constructing and filling in an
algebraic schema. Icon selection and graph labelling help the student
to cement the important features of the problem episode. The
animation presents qualitatively the relations and values expressed
formally in the schema and serves as a means of checking that
problem model against the student’s understanding of the situation. It
is not necessary that this sequence be strictly observed: An incomplete
problem model may be used to drive the animation of an isolated
portion of the situation model. The resulting animation serves as
feedback for elaborating or modifying the problem model. This
process can be performed until both the problem and situation models
conform to the student's expectation.

An Example: The DRT Problem Revisited. Consider the problem

analyzed in Figure 1. On the basis of the problem text, the student
must first decide which algebraic schema to use. A schema menu is
entered which lists the names of common algebraic schemata,
organized in families, as in the Appendix. Since the present problem
involves Time, the student is cued that Family 1 is probably relevant,
and within this family, the Distance-Rate-Time schema must then be
recognized as the correct one. 3

Suppose the DRT schema is selected. Three vertical ovals
connected by lines appear on the screen, labelled D, R, T, =, and *,
respectively. The student is then asked to name this schema, e.g. First
Plane. A second DRT schema is then selected, and labelled Second

Plane. Values for the rates are filled in for both planes. D is specified
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as "miles” and T as "hours". A variable "t" is created for the time
travelled by the second plane, because that is what the question asks
for.4 At this point the student may decide to try out the animation and
let each plane fly.

Next, the student must recognize from the problem text that
there are two supporting relations specified: The distances will be
equal, and there is an equation relating the two time values.
Horizontal lines and another oval are obtained from a menu and added
to the graph. The lines are labelled, and the extra oval is is filled with
the value specified in the text. Finding these supporting relations is
crucial for successful problem solving. Both the graph structure and
the animation provide support in this respect. If the D (or T) cells in
the graph are not connected, the student learns to look for a possible
relation in the problem text. If both planes in the animation leave at
the same time, the student is cued that something is missing in the
graph. The equality of the distances travelled when one plane
overtakes the other is perceptually given in the animation. Thus,
while the tutor doesn't know what the student is to do, it provides the
student with many more cues for the solution of the problem than the
text alone.

Running the animation is a menu-based operation. ANIMATE
solves the equations specified in the graph, and constructs an
animation on the basis of its Travel:Equal-Distance script. In order to
select the right script, it asks the student certain questions: how
many objects travel? are they travelling parallel to one another, in

opposite directions, or back and forth? Two icons on a parallel course
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and a clock (a gauge for the unknown variable) then appear on the
screen The first starts moving, and after the specified number of time
units, the second moves, with a greater speed. When the second
object overtakes the first, the animation stops since all of the
constraints given in the network are now met. Figure 3 shows what

the screen looks like at the beginning and end of the animation run.

If the student has not constructed a correct problem model

there are a number of cases that can be distinguished.

1. The conceptual model is insufficient. The animation, when
started, shows no apparent motion since the icons are not tied

to a time varying value.

2. The student tries to enter contradictory information into the
graph. ANIMATE checks for constraint satisfaction every time an
additional piece of evidence is added to the graph. As soon as it
detects a contradiction, it alerts the student (who then must

determine the source of the problem).
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3. The animation works, but does not do what it is supposed to do
(e.g.. the faster plane takes off first, followed by the slow plane).

The situation model and animation are semantically mismatched.

ANIMATE can only alert the student to certain types of errors, those
which are syntactically verifiable given the current structure of the
network. In these instances ANIMATE merely lets the student know
that an error has been made. It does not know the true source of the
error. However, given the structure provided by the graph and the
animation, it is our belief that the student can figure out where the
error occurred. If not, this is the time to consult a teacher! (A
tutoring system where the teacher would have to intervene on some
limited percentage of the problems is still an effective teaching
deviée).

Suppose the student has gotten the animation to work correctly.
There is still an equation to be derived, and solved. This is done by
filling in the empty cells in the graph by means of the vertical or
horizontal equations. ANIMATE will only accept correct values, and
display the correct value if a student makes more than two mistakes
on the same cell. Once all cells are filled in, the student can pick a
suitable equation from the graph, in this case the one on the top for
the equal distances. ANIMATE now enters into its equation-mode,
accepting only correct manipulations of the equations.d If the student
cannot solve the equation, ANIMATE supplies the answer or shows

how the equation could be solved.
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Animation Scripts. Similar animations can be constructed for

other rate problems (Families 1-4 in the Appendix). Work problems
show a container of unit size being filled at a certain rate: in 5 time
units when Mary works alone, 4 if Jane works alone; If they work
together, the rectangle is divided vertically into two parts, Mary's
portion of the job being proportionally smaller than Jane's, and the
rectangle fills faster than when either works alone.

Family II problems, e.g. coin problems, show sets of objects,
their size indicating unit value, with associated bar graphs indicating
total cost. Pie graphs most easily represent the structure for Family III
problems. Note that we are constructing animations, not just another
form of more or less schematic representation: capital and first-year
interest are seen to combine to form a slightly larger circle for next
year's capital; the discount is actually taken away from the old price,
etc. Family IV problems can be animated using similar principles. We
have no immediate plans for animating the problems in Families V-VII.
Exactly how many scripts, and versions thereof, will be needed to
handle all rate problems, or precisely what questions the student must
be asked for our system to construct the right animation, is unknown
at present. The answer depends crucially on the characteristics of the
the computer system used to implement the animations.

Implementation. The ANIMATE system currently described is a

prototype system built in Pascal on an Apple Macintosh Plusé personal
computer. The system is built on top of NoPumpG, a constraint based

programming environment which facilitates the construction of
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computer graphics and animation through the use of spreadsheet
machinery (Lewis, 1987).

System Evaluation. ANIMATE is in its prototype stage and will

soon be used by college students to test empirically the theoretical
ideas expressed in this paper. The empirical assessment is however a
long-term and intensive task. Before the system is tested
experimentally one can evaluate it on the basis of current user-
interface and tutoring system principles. Fischer & Rathke (1988)
have outlined a number of features of user-centered computer systems
against which the proposed system can be measured.

Provided students have learned the conceptual problem model
(which has been shown by Weaver & Kintsch (submitted) to be quite
natural), ANIMATE, we expect, will be easy to learn and will require
little background computer training. Thus, the overhead for learning
the system should be small relative to the profit derived from it. Since
it is largely non-modal, it provides a great deal of flexibility. Students
can find their own solution path and graph structures. Objects and
relations are defined by the user, not the system.

Objects and concepts are directly manipulable. Computation is
performed graphically on icons intended to convey the semantics of
each processing step (Hutchins, Hollan, & Norman, 1986). Syntax and
commands are absent; instead there are physical actions and menu
selections. Complex calculations are reduced through the spreadsheet
mechanism to value and constraint propagation, eliminating the need
for the user to pay attention to low level calculations and

dependencies.




Tutoring Algebra

29

Conclusions

As yet an empirical evaluation of the model of algebra word
problem comprehension described here and the effectiveness of a
tutor built on these principles is not available. For such an evaluation,
the actual computer system must be extended beyond the prototype
that exists now so that students can work with it safely. One can
nevertheless ask a number of questions about the system under
development at this point, as well as our proposal for unintelligent
tutoring. Our approach deviates in certain ways from the design
principles espoused by Anderson et. al. (1985)7. Why do we think our
system will be effective nevertheless? If it is not, are there reasonable
modifications that could bring the system more in line with
Anderson's design principles?

For our concerns, the most relevant work on tutoring by
Anderson and his colleagues is that on teaching proofs in geometry
(Anderson, Boyle, Corbett, & Lewis, 1986) and solving algebraic
equations (Anderson et. al.,, 1985). We do not want to describe or
discuss this work here, but merely point to the ways in which
Anderson's tutoring strategy differs most crucially from ours.
Anderson's tutor understands what the student does. When the
student deviates from the correct solution path, the system puts the
student right back on track. Anderson shows that once students are
lost, it is very hard to set them straight. His tutoring strategy is
successful because it gives immediate feedback when errors are still

easily recognized and corrected.
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Geometric proofs and algebraic equations are closed, formal
systems, and Anderson has shown that it is possible to construct a
computer system that understands what is going on when students
work such problems. Given this system, his tutoring strategy of
immediate feedback becomes possible. Word problems , in contrast,
are open systems, as are many other domains in which tutoring is of
interest. We have repeatedly argued that it is not feasible today to
build systems which are sufficiently intelligent for tutoring in these
domains. In consequence, we cannot provide immediate feedback to
the student solving a word algebra problem, nor correct him or her at
every wrong step.

According to Anderson, our students will get hopelessly lost very
quickly, thrashing about in a solution space which they do not
understand. But there is a difference in this respect between doing
geometry proofs and solving equations on the one hand and
processing word problems: The former are formal, self-contained
tasks, devoid of every-day meaning and complexity, while word
problems are presented in informal language and often deal with
familiar, well-understood contexts. It may be that the chunk-size of
problems in meaningful contexts is much greater. Will our students, if
they have constructed an incorrect problem model and an finally
realize that the animation is not doing what it is suppose to do, be able
to locate and correct their error? It is possible. If the faster train
starts before the slower one, the student is not left with a puzzle, but
knows what needs to be repaired; if the interest added to a capital

investment makes the total amount shrink, the credit assignment
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problem may not be too difficult (as is often not the case with
geometric proofs). Word problems are hard because fuzzy, natural
language text needs to be put into a precise, canonical form, for which
vast amounts of ill-specified knowledge is required. At the same time,
word problems have an advantage, because they involve concrete,
familiar, easily understood situations. Thus, immediate feedback, and
small steps may not play as much a role here as in Anderson's work.

Of course, it would not be too surprising if we would find out
that some of the situations involved are not as well understood as one
might suppose. What happens when a train overtakes another is surely
quite clear to our students. But consider the discount problem
presented in the Appendix. Students go shopping, too, and know
about discounts -- that they are good things, and you should buy if the
discount is large. Just how clear they are about the relation between
the original price, sale price, and discount may be another matter. We
may find that students have trouble with discount problems, unless we
explicate for them that relationship as part of the problem statement.
In that case we would know what to teach: What a discount really is!
This would resemble what we learned about first-graders doing word
arithmetic problems: What they need most is to be taught the meaning
of words and phrases such as "have-altogether”, or "have-more than".

Finally, suppose our tutor doesn't work. Students do get
hopelessly tangled up in the construction of the problem model and
animation. One possibility is that the tutor failed for the reasons
suggested by Anderson: The lack of immediate feedback, and the

consequent difficulty students have with credit assignment. There are
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ways in which our tutor could be made more like an Anderson tutor,
without adding artificial intelligence. A set of word algebra problems
could be prepared for which the correct problem representation is
stored in the system, so that the system would know what to expect,
and could more actively help the student.

Of course, if the tutor fails, this may simply mean that our
notions about how word algebra problems are processed are wrong.
Our tutor is an exploration of the efficacy of a conceptual graphic
representation intermediate to the text and the underlying equation.
We propose this intermediate level because our theory assigns it an
essential role in the process of word problem solving. Students may
find working with this intermediate representation more of a bother
than help. Studies of how experts solve physics problems (Larkin ref.)
suggest otherwise. Even for the simplest problems, experts start with
a schematic, graphic representation, while novices jump right into the
equations. Even in physics, schematic problem representations are
neither systematic nor explicitly taught. It is something that experts
pick up in the course of becoming an expert. Larkin et al. teach
graphic representation schemes to physics students. We expect a
similar strategy to work well in teaching students word algebra
problems.

The position that we have taken throughout this paper has been
that students need to understand the situation in order to solve word
problems. There is however, a syntactic alternative opposed to this
semantic view: Students need to use the symbol crunching aspects of

algebra, without regard to their ability to understand the situation.
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What counts is that they solve the problem. After all, many real
problems are too complex for situational understanding! Situational
understanding is an undesirable crutch in this view. Kintsch (1988)
has discussed cases where situationally rich arithmetic word problems
are solved simply by exploiting the familiar situational constraints in
these problems, with questionable profit for arithmetic training.
Similar examples can undoubtedly be found in the word algebra
domain. However, even if semantic strategies may not be the final goal
for engineers and mathematicians, they may be a very good thing for
the average student, and permit more of them to achieve higher levels

of performance.

General Footnote:

This research was supported by NSF-Grant BNS-8608741 to Walter
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Appendix

Problem Models for Two Examples from each of
Seven Problem Families, after Mayer (1981)

FAMILY I: AMOUNT-PER-TIME RATE

Current

The current in a stream moves at a speed of 4 km/h. A boat travels 4 km upstream
and 12 km downstream in a total time of 2 hours. What is the speed of the boat in
still water?

4/(s-4)+12/(s+4) = 2

Down

Work

Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they work
together, how long will they take to do the job if Jane starts 1 hour after Mary?

1 = 1/5*t+1/4*(t-1)




FAMILY [l: COST-PER-UNIT RATE

Fixed Cost

Sixteen balls of yarn can be bought from a mail order housefor 29c each plus
$2.72 for postage. What does the total order cost?

C:$
R: $/piece .29%16+2.72 = C
U: piece
Cost Postage Total
Dry Mixture

A grocer mixes peanuts worth $1.65 a pound and almonds worth $2.10 a
pound. She wants 30 pounds of the mixture worth $1.83 a pound. How many
pounds of each should the grocer include in the mixture?

Cost: $

Price: $/Ib

Amount: Ibs

30-p

Peanuts Almond Mixture

1.65p + 2.10(30-p) = 1.83*30




FAMILY 11l: PORTION-TO-TOTAL-COST RATE

Suppose $750 is invested at 5% annually. What amount will be in the account
at the end of 2 years?

R:%

Year 1 Year 2

An appliance store drops the price of a certain TV 18% to a sale price of $410.
What was the former price?

Part: $
R: %
Total: $

discount sale price old price



FAMILY IV: AMOUNT-TO-AMOUNT RATE

Inverse Variation

The voluime of gas varies inversely with the pressure on it. The volume of gas
is 200 cc under a pressure of 32 kg/sqgcm. What will be its volume under a
pressure of 40 kg/sqem ?

Constant

32*200 = 40v

Pressure @9 GD
Volume 200 @

Wet Mixture :

A chemist has 3 liters of a 5% acid solution. How many liters of a 20% acid
solution must be added to make a mixture which is 10% acid?

Amount: Liters

R:%

U. Liters

05*3 + .20*a = .10*(3+a)




Family V: Numlber

Ann is twice as old as her son. Ten years ago, she was three times as old.
How old is she now?

Ann's age now @ - @ - @

Ann 10 yrs ago a—% _ @ - 610

Ann Son

An 8 m rope is cut into two pieces. One piece is 3 m longer than the other.
How long are the pieces?

Piece 1 Piece 2 Total



Family Vi: Geometry

A rectangular playground is 60 m longer than it is wide. It can be enclosed by a
920 m fence. How long is it it?

S + S + (s-60) + (s-60) = 920

A framed mirror is 40 cm x 55 cm. 1924 sqcm show. Find the width of the frame.

(40-2w)*(55-2w) 1924

1]




Family VIl: Physics

Laurie weighs 60 kg and is sitting 165 cm from the fulcrum of a seesaw.
Bill weighs 55 kg. How far from the fulcrum must Bill sit to balance the
seesaw?

60*165 = 55d

Tina and Wilt are sitting 4 m apart on a seesaw. Tina weighs 65 kg, and Wilt
weighs 80 kg. How far from the fulcrum must Tina be sitting if the seesaw
is in balance?

65*d = 80*(4-d)
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Figure Captions

Figure 1. Graphical representation of the problem model for a typical
DRT schema.

Figure 2. A two-stage problem model for a typical Work problem which

makes certain relations and computations explicit.

Figure 3. (a) - (d) Successive screens for representing a typical
Overtake problem using the prototype of the ANIMATE tutoring
system. Insufficient specification of the problem model leads to an
Inappropriate situation model. (¢) When a conceptual error is made,
such as an incorrect sign for the delay, animation which does not

match the subject's situation model is created.
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Endnotes

1 Students also need help in solving the algebraic equations. We shall be concerned with the
construction of conceptually correct equations. Other tutors (e.g. Anderson, 1986) exist for solving
the equations.

2 "Relational terms" are quantities or variables which relate the behavior or value of two
other variables. A "relational proposition" is a proposition (van Dijk & Kintsch, 1983) which
contains a relational term as an argument.

3 If the student is uncertain, more information about each schema can be requested, such as
common measures (km/hr) or prototypical problems.

4 Once the student has decided on t as a variable, the system will not allow a second variable:
all other cells must be numbers or formulas involving t.

5 This is not meant to teach students how to solve equations. For that purpose, a program such as
Anderson et al (1986) is needed.

6The terms "Apple", "Macintosh" and Macintosh Plus" are trademarks of Apple Computer, Inc.
7 We are using Anderson's work here as a concrete example of a successful intelligent tutoring

system. There are, of course, other comparisons that could have been made.




