Can Fitts' Law Be Improved?: Predicting Movement Time

Based on More Than One Dimension

Stephen A. Wallace
Brian Hawkins
Institute of Cognitive Science
Department of Physical Education
and
Dale P. Mood
Department of Pnysical Education

University of Colorado

Technical Report No. 126
Institute of Cognitive Science
University of Colorado
Boulder, Colorado 80309

December, 1983



Page 2
Fitts' Law
Abstract

In this paper, we critically review the variables assumed to affect the movement
time (MT) of simple aiming responses. After discussing some limitations of
Fitts' Law, in which important variables for the prediction of MT are the
movement amplitude and actual target width, we propose an alternative equation
which takes into account the constant and variable errors of the subjects'
endpoints in two dimensions as well as the vertical component of the movement
trajectory. Using data of a previous experiment (Wallace, 1983), the elliptical
area of the subjects' endpoints was substituted for the actual target width in
Fitts' (1954) Index of Difficulty (ID). Using this revision, a correlation
between MT and ID of r = .99 with a y-intercept of approximately zero (19 msec)
was achieved. We also demonstrate in two further experiments that (1) endpoint
variability perpendicular to the movement, and (2) the vertical component of the
movement trajectory affects MT and should be accounted for. It would appear
that Fitts' Law can be improved, particularly in cases where accuracy in more

than one dimension is involved.
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Can Fitts' Law Be Improved?: Predicting Movement Time
Based on More Than One Dimension
Introduction

Recently, there has been increased interest in the speed versus accuracy
issue concerned with the control of aimed 1imb movements (e.g., Carlton, 1981;
Howarth & Beggs, 1981; Meyer, Smith & Wright, 1982; Newell, 1980; Schmidt,
Zelaznik, Hawkins, Frank & Quinn, 1979; Wallace & Newell, 1983; Wing, 1983;
Wright & Meyer, 1983; Zelaznik, Shapiro & McColsky, 1981). That spatial
accuracy decreases as movement speed increases is well known and was empirically
documented many years ago by Woodworth (1899). However, much of the current
work involves the quantification of this relationship and an attempt to theorize
as to the underlying perceptual and motor processes responsible for it (Meyer et
al., 1982; Schmidt et al., 1979).

The first attempts in this regard were conducted by Fitts in two now
classic papers (Fitts, 1954; Fitts & Peterson, 1964). Based on information
theory, which was popular at the time, Fitts wished to predict the total
movement time (MT) of aiming movements given knowledge about the movement's
amplitude (A) and the width of the target involved (W). Fitts showed that the
following relationship held for both discrete and reciprocal aiming movements:

MT = a + b log, (2A/W), (1)
where a (y-intercept) and b (slope) are empirically determined constants and
log, (2A/W) is referred to as the index of difficulty (ID). In the Fitts'
procedure subjects are required to make aimed movements at the target as rapidly
as possible but to hit the target on 90-95% of their attempts. Using this
procedure, Equation 1 has been shown to hold reasonably well across several
movement conditions (see Meyer et al., 1982, for a brief review) and has become

known as Fitts' Law. Considering that the correlations between ID and MT in
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most studies are typically greater than .90, it would appear there is little
room for improving this equation in the very simple movements that have been
studied to date. However, as we will show in this paper, by considering certain
variables it is possible to improve not only the correlation between ID and MT,
but also the value of the y-intercept in adaptations of the Fitts' Equation. A
case is also made in this paper that the variables we introduce to improve the
equation may have more dramatic effects on MT prediction when the movements
produced are more complex, for example, when accuracy is considered in two or
three dimensions.

In an earlier critical analysis of the Fitts' formulation, Welford (1968)
indicated several Tlimitations and offered suggestions for improving the
quantification of the relationship between MT and the difficulty of the
movement., First, he pointed out that in Fitts' (1954) data, the y-intercept was
negative, cutting the zero information 1ine below the origin. O0f course, this
fact has conceptual problems since a negative MT is impossible. Second, the
data points at the lower ID values tend to have a shallower slope than the data
points at higher ID values, a finding shown subsequently by others (e.g., Klapp,
1975; Wallace & Newell, 1983). Crossman (1957) had earlier suggested that
there may be some 1imiting factor in the Fitts' procedure setting a minimum time
per movement regardless of the condition. In observations of his own research,
Welford suggested that this 1limiting factor affects the amount of the target
used. In cases where the movement amplitudes are short and the target widths
are large, the subject uses much less than the actual target width. To test
this notion, it is necessary to record the actual endpoints of subjects'
movements. Until fairly recently, the analysis techniques for recording the
actual endpoints have been relatively gross, (e.g., using a ruler, Crossman &

Goodeve, 1983; or using a bulls-eye scoring scheme, Connolly, Brown & Bassett,
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1968). In a recent study of Fitts' Law, Wallace (1983) digitized subjects'
endpoints using an x-y digitizer (resolution = .01 cm) and confirmed that when
large targets were used, subjects tended to use a smaller portion of the actual
target width than when small targets were used. The implication of these
findings from an information theory viewpoint as Welford noted, is that the
subject transmitted more information in these target situations than Equation 1
suggests because the effective target width chosen by the subject was narrower
than the actual target width. This finding, then, may account for the slight
flattening of the MT/ID relationship at the low ID values.

In the next section, we discuss alternative formulations of Fitts' Equation
by Welford (1968), Crossman (1957), and the present authors. These formulations
are designed to improve the prediction of MT on the basis of knowledge about the
movement's amplitude and effective target size.

Alternative Formulations

Most studies of Fitts' Law have used tasks for which it is not possible to
record subjects' actual endpoints (e.g., Fitts, 1954; Klapp, 1975; Wallace,
Newell & Wade, 1978). In these and other studies, the target and surrounding
area are often made of metal making it impossible to record exactly where the
subject hit the apparatus surface. Several years ago, however, in an obscure
paper, Crossman (1957) developed a method which estimated the effective target
width based on knowledge of the subject's error rate for a given
amplitude-target width condition. The method starts with the assumption that
the subject's (or the group's) dispersion of endpoints around the target are
normally distributed with a constant error of zero. If these assumptions are
met, then the following argument is justified. The information in a normal
distribution is log, o/ (27€), where ¢ is the standard deviation of the

distribution. The term / (2re) equals 4.133 Z units (+ 2.0625) and includes
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96% of a normal distribution when an error rate of 4% is assumed. This being
the case, 1092 W, where W is the actual target width, accurately represents the
information in the distribution of the subjects' endpoints. Thus, in an
experiment where the subjects' error rate is 4%, the effective target width
would equal the actual target width. The general equation for calculating the

effective target width (We) is as follows:

We = Wa x Za/le (2)
where Wa = Actual target width
Za = 4,133 (Z units corresponding to 96% of the
distribution or 4% error rate)
Ze = 7 units corresponding to percent of the

distribution after subtracting the obtained
error rate from 100%.
Thus, when Ze is larger than Za, We is smaller than Wa. Using Welford's (1968)
example, if Wa = 2 in. and the error rate is 1%, then We equals 2 x 4.133/5.152
or 1.604 in. It is also possible to obtain an estimate of the standard
deviation (SD) using the logic of Equation 2. Using Equation 2, an estimate of
the standard deviation is as follows:
SD = Wa/Ze (3)
One can easily see that the estimated SD is necessarily correlated with We since
Za is a constant (see Wallace & Newell, 1983).
Welford also argued that Fitts' Law could be improved by the following
equation:
MT = K ]og2 (A + Wa/2 )/Wa (4)
Since A is the distance from the starting point to the center of the actual
target, the term Wa/2 is added to account for possible movements to the far edge

of the target. Notice also that Equation 4 predicts a proportional relationship
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between MT and 1092 (A + Wa/2)/Wa with the y-intercept passing through the

origin. Welford (1968) re-analyzed the original Fitts (1954) data which showed

a negative y-intercept and a flattening of MT at the low ID values when Equation

1 was used. Using error rate information from the Fitts (1954) experiment,

Welford calculated We and substituted it for Wa in Equation 4. A near perfect

straight line through the origin was achieved when these data were plotted
(Welford, 1968, pg. 148).

Limitations of Welford's Formula and Possible Improvements

In spite of its apparent improvements over the Fitts formulation, we feel
Welford's formulation also has some limitations. First, the estimate of We is
derived from knowledge of percent miss (Crossman, 1957) and we feel this
procedure is not now Jjustified unless it is impossible to record subjects'
actual endpoints. If the subjects' actual endpoints can be recorded, it is
possible to calculate the constant error and standard deviations of the
endpoints in two dimensions; (a) for the x-dimension (parallel to the goal
movement, and (b) for the y-dimension (perpendicular to x in the horizontal
plane) (see Schmidt, et al., 1979). What we have done to calculate We is to
multiply the obtained (rather than the estimated) standard deviation by 4.133 (+
2.06) z-units which includes approximately 96% of the distribution of the
endpoints. Thus, it 1is possible to estimate We based on knowledge of the
obtained standard deviation of a particular target-amplitude condition rather
than to estimate it from the obtained percent miss data. We feel our estimate
of We is more appropriate because it takes into account the magnitude of error
of both the hit and miss endpoints. To illustrate, suppose for a particular
target-amplitude condition of 40 trials, the miss rate is 10% (or 4 trials). In
the Crossman-Welford estimation of We, the magnitude of error associated with

those 4 trials is not accounted for. Thus, depending on the magnitude of error
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of the 4 miss trials, it 1is 1likely that We will be either under- or

overestimated. On a set of data from Wallace (1983) we found that estimates of

the SD wusing Equation 3 consistently overestimated the obtained SDs in each of
nine separate target-amplitude conditions.

The second limitation of the Crossman-Welford estimate of We is that it
cannot be used when a noticeable constant error is associated with the endpoint
distribution. Recall that an assumption in this model is that constant error is
0. When the distribution is normal and the constant error is 0, Crossman and
Welford argued that the percent misses are equal on both ends of the
distribution. Under these conditions, it is possible to use the logic of
Equation 2 to obtain an estimate of We. But if there is a sizeable CE this
would mean a disproportionate number of errors are on one side of the
distribution. If this is true, the logic used to estimate We in Equation 2
could no 1longer be used. A sizeable CE would pose no major problem for our
estimate of We since in our formula We is calculated around the mean of the
distribution regardiess of where the mean falls in relation to the center of the
actual target.

A major assumption of the Crossman-Welford formulation is that the endpoint
distributions are normally distributed. Of course, this assumption is made in
our formulation with the view that + 1 SD will contain approximately 68% of the
endpoint dispersions in a given target-amplitude condition. There are two major
threats to normality--skewness and kurtosis (Ferguson, 1981). Skewness refers
to the asymmetry of a distribution. Larger frequencies at the low end or high
end of the distribution would be evidence for positive and negative skewness,
respectively. Even with a CE = 0, skewness negates the relationship of + 1 SD
containing 68% of the distribution. Kurtosis refers to the flatness or

peakedness of a distribution in relation to a normal distribution. If a
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distribution is more peaked than a normal distribution, it is considered to be
leptokurtic whereas if it is flatter than a normal distribution it is considered
to be platykurtic. As with skewness, large kurtosis would result in +1 SD
containing more or Tless than 68% of the distribution. Either one of these
departures from normality would prevent an accurate estimation of We wusing the
Crossman-Welford or our formulation. Although there are methods available for
adjusting the values for area under the curve when varying degrees of skewness
and/or kurtosis are present, as far as we know, there is no general method of
calculating some standard measure of variation, comparable to the SD, in
non-normal distributions. However, it is possible to determine whether and to
what extent skewness or kurtosis exists in a distribution (Ferguson, 1981,
'pgs. 72-74), Thus, once this is known, one could determine whether the obtained
SD is an over- or underestimate of the actual percentage contained in it. Any
calculation of We would likewise be affected.

Thus far, we have argued that when it 1is impossible to record actual
endpoints in the Fitts type task, estimates of We can be calculated using
Equation 2. But if the underlying endpoint dispersions contain significant CE
effects or if the endpoint dispersions are not normally distributed, then
Equation 2 will not accurately depict We. The result of this may be a poorer
prediction of MT wusing the dnaccurate We value in Equation 4. When it is
possible to record actual endpoints, we feel our estimate of We 1is Justified
because it takes into account the magnitude of errors of both hit and miss
endpoints. Significant CE effects will not negatively influence our estimates
of We. Significant deviations from normality of the endpoint dispersions would
distort an accurate estimate of We and, while this is a problem, statistical
procedures exist to determine if, and to what extent, deviations from normality

are present. It would at least be possible to better evaluate any predictions




Page 10
Fitts' Law

of MT in light of the severity of non-normality.
Another Timitation of both Equation 4 and the original Fitts' Equation 1,
is that it accounts for variability in only the x- dimension. In Equation 4,
both A and Wa are defined in terms of x. Crossman (1957) found some evidence
using two subjects on a Fitts' task, that the horizontal x-dimension of the
target and the target dimension perpendicular to x on the surface of the
apparatus (y) both contributed to the prediction of MT. This led Crossman to
suggest that the prediction of MT is dependent on the area of the target as well
as A, which is equivalent to saying that the amplitude and directional
information of the target are additive. Crossman suggested that MT could be

predicted on the basis of these parameters in the following expression:

MT = b]og2 (A/Wa) + b]og2 (A/Da) (5)
where A = amplitude of movement
Wa = actual target width
Da = actual target depth (perpendicular to x-dimension)
b = slope

When plotted, the data from two subjects fitted reasonably well to Equation 5
even though many of the points deviated considerably from the line of best fit
and the y-intercept was well below zero. Despite this drawback, we feel
Crossman's ideas were important because he appears to be the only person to have
considered two target dimensions in the prediction of MT. We should emphasize
that although Crossman was cognizant of the fact that the subject could produce
an effective target different from the actual target, for some reason he did not
include this fact in Equation 5. Thus, Crossman's equation suggests a trade-off
between A and the actual target area (TAa), the geometric shape of the latter
being rectangular. We feel that two limitations of Crossman's thinking here are

that, (1) an effective target area (TAe) probably better represents subjects'
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endpoint dispersions than TAa and (2) from data collected by Welford (1968) and

others, these dispersions resemble an ellipse rather than a rectangle. We will

show shortly that a more accurate prediction of MT might be made when these two
points are taken into account.

In a similar vein, we feel that up until now, A has been considered in only
one dimension. That is, according to Fitts and the Crossman-Welford
formulation, A is defined as the one-dimensional distance from the starting
point to the center of the target. This actual amplitude (Aa) does not
necessarily describe the effective amplitude (Ae) which, of course, is performed
in three dimensions by the subject in the typical Fitts' tapping task. While it
is likely that movement in the x-dimension contributes the most to the MT, there
is reason to believe that movement in the vertical dimension also contributes to
the MT. Connolly, Brown and Bassett (1968) observed that children (ages 6, 8
and 10) who had the slowest MT also ". . . 1lifted the pencil in a high arc as
it passed between the two circles . . ." (p. 310) in a reciprocal tapping
task. Evidence for a large vertical component of the movement trajectory comes
from other informal observations with mentally-handicapped subjects (Wade,
Newell & Wallace, 1978) and pre-school populations (Wallace, Newell & Wade,
1978). Perhaps one of the reasons why the vertical component of the trajectory
has not been taken into account in the prediction of MT is that it is difficult
to record. However, with high-speed cinemaphotography (Carlton, 1981) and other
on-line two dimensional techniques (e.g., Hawkins, 1983) it is possible to
record this dimension. With this capability, it should be possible to measure
or closely estimate the distance of the curved path of the trajectory which
will, of course, be longer than Aa.

An Alternative Formula

In this section we present an alternative formula for the prediction of MT
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in an attempt to overcome some of the limitations of Equations 1 and 4. The

formula for the prediction of MT is as follows:

_ effective amplitude _ Ae
MT = b1092(effective target area) or MT = b]092(1r-)/¢e/2-De/2) (6)
where Ae = effective amplitude
We = effective target width
De = effective target depth

b = empirically defined constant for the slope
Equation 6 predicts a logarithmic trade-off between the effective amplitude
(numerator) chosen by subjects and the effective target area (denominator) of
the endpoint dispersions. The MT is directly related to 1092 (Ae) and inversely

related to log,(n-We/2-De/2).

o

First, let us discuss the rationale for using Ae instead of A (as in
Equations 1 and 4). In Equation 6 we have Ae accounting for the amplitude of
movement in two dimensions, horizontally in the x-dimension and vertically in
the z-dimension. If it is possible to record the movement trajectory in these
two dimensions, then it should be possible to pair each (x, z) point, and sum up
all the distances to determine the total Ae. If the sampling rate is reasonably
high, then one can assume a straight line between each (x, z) pair (Hay, 1983).
Again, the rationale for wusing Ae is that it is more reflective of the
trajectory of the movement and thus, hopefully more highly related to MT than is
Aa. In cases where only the endpoints of the movement can be recorded, then Ae
will be equal to Aa plus or minus any significant constant error (CE) in the
x-dimension, as suggested originally by Welford (1968, pgs. 148-149).

The quantity (g-We/2-De/2) is the effective target area, which, on the
bases of previous observations, resembles an ellipse. The area of an ellipse is

(n-a-b) where a and b are one-half the distances of the major and minor axes of

the ellipse, respectively. To estimate a and b we divide We and De each by 2.
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What we are suggesting in Equation 6, is that information about the variability

of the endpoints in both dimensions is important for the accurate prediction of
MT.

Some Expected Qutcomes

The prediction of movement time. In this section we discuss some of the

expected outcomes of predicting MT using the concepts advocated in Equation 6.
The first and most important outcome is that Equation 6 should predict MT better
than either Equation 1 (Fitts, 1954), Equation 4 (Welford, 1968), or Equation 5
(Crossman, 1957). Not only should there be a higher correlation between MT and
the 1092 (effective amplitude/effective target area) with Equation 6, but we
also expect the y-intercept to be closer to zero than with the other two
formulae. At this time, we would like to present evidence for these expected
outcomes with the understanding that the ultimate support or rejection of
Equation 6 should be based on more than one jnvestigation. For this purpose, we
have used some data reported by Wallace (1983). In this study, nine subjects
were asked to perform a discrete tapping task (e.g., Fitts & Peterson, 1964).
The reader may refer to the published study by Wallace and Newell (1983) to
obtain a more detailed explanation of the methodology used. Subjects in the
Wallace (1983) study performed discrete (uni-directional) movements of various
amplitudes to circular targets having different diameters. The amplitudes were
3, 6, and 12 in. (7.62, 15.24 and 30.48 cm) and the target diameters were .25,
.50, and 1 in. (.64, 1.27 and 2.54 cm), and these resulted in Fitts ID values
ranging from 2.58 to 6.58. Subjects performed under visual and non-visual
conditions. On the non-visual trials, the desk light illuminating the apparatus
extinguished on stylus lift-off from the start position and remained off until
contact was made on the target (or surrounding area). Visual and non-visual

trials were randomly dispersed over a block of 20 trials for each
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target-distance condition (10 visual and 10 non-visual). It was possiblie to
record subjects' endpoints because the tip of the stylus penetrated the paper
target sheet, leaving a small hole. Subjects' endpoints were digitized by an
x-y digitizer and standard deviations and constant errors in both x- and y-
dimensions were calculated using computer programs. For the purposes of this
paper, we will discuss the results of only the visual data. Future work will
address the issue of visual versus non-visual performance in the Fitts-type task
(see Wallace & Newell, 1983 for a recent analysis). Figure 1 displays a graphic
representation of the group mean constant errors and standard deviations in both
x- and y-dimensions and effective target areas for each of the nine
target-amplitude conditions. Two major findings emerged. One, the pattern of
dispersions as hypothesized were elliptical in nature in every condition--the
standard deviation and effective target widths in the x-dimension were
approximately 25% larger than those in the y-dimension. Two, also as predicted,
the subjects' effective target areas were smaller than the actual target area.
The correlation between the standard deviations of errors in the x- and
y-dimensions was .85 (r2 = ,72). This finding indicates considerable shared
variance in the x- and y-dimension and suggests perhaps a common process or
mechanism which controls variability in the two dimensions. However, we shall
see in the next experiment, that variability in one dimension can be controlled

somewhat independently of the other dimension.

The next analysis of primary concern was the comparison of correlations
between MT and the 1og2 (expression) of Equation 1 (Fitts), Equation 4

(Welford), Equation 5 (Crossman), and Equation 6 (ours). In Figure 2, this
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comparison is shown. In this figure we have plotted the group mean MT against
the 1092 (expressions) of the four formulae. Thus, each point represents a
total of 90 trials (ten trials/subject). It can be observed that the
correlations of the four plots are all over .90. However, our formula shows a
near perfect correlation of .99. welford's formula has a y-intercept closest to
zero (a = 3.63 msec), however, his correlation is the lowest (r = .93). Our

formula has the next lowest y-intercept (a = 19.55 msec) .

- - - - - — - _ - -

We also calculated the presence of skewness and kurtosis in the Wallace
(1983) experiment using the formulae presented by Ferguson (1981). Using the
values of the first four moments around the arithmetic mean, it is possible to
calculate relative values of skewness and kurtosis. For skewness, a value of 0
means normality, but large positive or negative values indicate the presence of
positive and negative skewness, respectively. For kurtosis, a value of 0 means
normality but large positive or negative values suggest that the data are
leptokurtic or platykurtic, respectively. Table 1 presents the results of this
analysis. For all nine target-distance combinations, it appeared that the data
were not severely skewed. The skewness values were close to 0. However, the
data appeared to be somewhat platykurtic, and more soO in the y-dimension, for
all conditions. This suggests that the endpoint distributions were more evenly
distributed over the target area than normally distributed. Thus, = 1 SD is not
likely to encompass 68% of the endpoints and our effective target area probably

accounts for less than 96% of the endpoints.
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However, even with this constraint, our formula still shows a correlation
of .99, accounting for over 98% of the variance and shows a near proportional
relationship between MT and our 1092 (expression). We feel these results are
primarily due to the accounting for the variability of endpoints in both x- and
y-dimensions and because our formula recognizes the elliptical pattern of the
endpoint distribution around the target area in spite of the presence of some
platykurtosis.

The contribution of the y-dimension. One expectation from Equation 6 is

that some portion of MT is dependent on the variability of the endpoints in the
y-dimension (perpendicular to the direction of the movement in the horizontal
plane). Crossman (1957) should be credited, however, for first suggesting the
importance of this dimension in predicting MT. The major difference between his
formula and ours is that our formula suggests that MT is better related to the
endpoint dispersions in the y-dimension than to the length of the actual target
in that dimension. This would be the case particularly if subjects' effective
target depth in the y-dimension is considerably shorter than the actual target
depth in the y-dimension. Using two adult subjects, Crossman (1957) showed that
restricting the target depth affected MT in the same way as restricting the
target width, albeit to a lesser degree,. In the experiment, Crossman
manipulated both the width and depth of the target (2, 1, 1/2, 1/4, 1/8 in.) to
yield 25 rectangular target sizes with a fixed amplitude of 8 in. from the
starting point to the center of the target. Although an actual correlation
between MT and his log, (expression) was not reported, plots presented by

Crossman for both subjects revealed a fair amount of deviation around the 1line
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of best fit. Also, the y-intercept was approximately -100 msec for one subject

and -200 msec for the other. Because subjects' endpoints were not recorded it

is likely that their effective target areas were less than the actual target

area, resulting in a less than desirable prediction for both subjects. However,

Crossman was able to show that the target dimensions in the y-dimension was
responsible for some changes in MT.

We set out to replicate Crossman's findings that the y-dimension is
important in contributing to the MT. However, we recorded subjects' endpoints
and calculated constant error and standard deviations 1in both x- and
y-dimensions as well as the effective target area for the following conditions.
Six subjects performed under three experimental conditions. In all three
conditions, A was equal to 12 in. (30.48 cm) and the actual target width in the
x-dimension was 1 in., (2.54 cm). 1In the Circle condition, the actual target
depth was also 1 in. In the Large E1lipse condition, the actual target depth
was .5 in. (1,27 cm). In the Small Ellipse condition, the actual target depth
was .25 in. (.64 cm). As in the Wallace (1983) experiment, subjects were
instructed to move as rapidly as possible but to keep misses under 10%.
Subjects were told that any endpoint within the target would be considered a
hit,

We performed analyses of variance on MT, the standard deviations, and the
effective target areas among the three conditions. The means and standard
deviations for these dependent variables in the three conditions are shown in

Table 2.

As we anticipated, MT increased as the y-dimension of the target decreased and




Page 18
Fitts' Law
this effect was significant, F(2,10) = 23.26, p = .0003. Using Tukey's post hoc
procedures, it was determined that MT for the Small Ellipse condition was
significantly slower than MT for the Circle condition. The constant errors in
both dimensions were very close to zero for all three conditions and were not
significantly different from one another, F < 1. While there was a trend for
standard deviations of the x-dimension to reduce as a function of the
y-dimension of the target, this effect was not significant, F < 1. The standard
deviations in y-dimension, however, significantly reduced as the y-dimension of
target decreased, F(2,10) = 13.42, p = .001. The effective target area
significantly reduced as the y-dimension of the target decreased, F(2,10) =
13.12, p = .001. Tukey's post hoc tests performed on the above confirmed that
.

the Circle and Small Ellipse conditions were significantly different.

We also performed a correlation between the standard deviations 1in the
x-dimension and those 1in the y-dimension. The resulting correlation was .533
with an ré of .284. This indicates very little shared variance between the
processes which control variability in the two dimensions. Of course, it is
possible that this correlation may be due to a small number of observations or a
limited range of possible endpoints. Clearly, more work is needed in the future
to investigate this issue. However, the results suggest that when only the
y-dimension of the target is constrained, the subject can somewhat independently
control the errors in that dimension.

As in the Wallace (1983) experiment, we calculated the skewness and
kurtosis values in this experiment. The most prominent feature of the data in
this respect was that endpoint distributions appeared to be rather platykurtic,

particularly in the y-dimension. The data did not appear to be severely skewed

and these results are consistent with those in the Wallace (1983) experiment.
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In summary, this experiment provided evidence that the y-dimension of the
target contributes to MT. Also, the data indicate that when only the depth of
the actual target 1is manipulated, subjects tend to restrict variability
primarily in only that dimension. This finding, plus the fact that there
appears to be a low correlation between variability in the two dimensions,
suggests that the processes which control variability in those dimensions are,
to some degree, independent.

The effective amplitude. At the present time, we do not have the

capability to measure the actual trajectory of aimed movements in three
dimensions. However, we performed the following experiment to examine the
importance of the vertical (z) dimension in affecting MT. We had six subjects
perform the Fitts task under two conditions. In both conditions, after several
practice trials, subjects performed 40 experimental trials attempting to hit a 1
in (2.54 cm) diameter circular target at a distance of 12 in (30.48 cm). In the
No Hurdle condition, subjects were instructed to maintain a low trajectory
throughout the movement. In the Hurdle condition we placed a 10 cm-high
cardboard barrier halfway between the starting point and the middle of the
target. Subjects were told to move the stylus over the barrier without touching
it and, as in the No Hurdle condition, to move as rapidly as possible and hit
any portion of the target. Subjects were allowed four misses per condition in
order to maintain a 90% hit rate (Fitts and Peterson, 1964). The results of
this experiment are shown in Table 4. The results indicated that the hurdle
manipulation only significantly affected MT, t(5) = 10.86 p < .02. MT of the

Hurdle condition was significantly longer than 1in the No Hurdle condition.
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Constant errors were essentially zero 1in the x- and y-dimensions for both
conditions. As in the previous two experiments, standard deviations in
x-dimension were 1larger than in the y-dimension. Comparisons of the standard
deviations and the effective target areas between the Hurdle and No Hurdle

conditions produced no significantly different results.

- e e . -

As in the first two experiments, we found no evidence for skewness in the
data 1in either dimension with values close to zero. Also in agreement with the
earlier experiments, the data from this experiment were platykurtic particularly

in the y-dimension.

The results of this experiment showed that the distribution of endpoints
was equivalent in the Hurdle and No Hurdle conditions. However, in an effort to
keep their errors at this level, subjects performing 1in the Hurdle condition
increased their MT because of a larger vertical component of their trajectory.
Thus, these results suggest that the vertical component of the movement
trajectory may also need to be considered in future attempts at predicting MT.

General Discussion

The general purpose of this paper was to evaluate the original Fitts (1954)
equation, focussing primarily on the variables considered to be important in the
prediction of MT. In the original Fitts equation, only the diameter of the
actual target and the movement amplitude in the x-dimension were considered as

potent variables. Extending the logic of Welford (1968) and Crossman (1957), we
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developed a formula which takes into account more than one dimension of the
movement and more than one dimension of movement endpoints. Our formula
predicts that the MT is dependent on the 1092 of the ratio between the effective
amplitude divided by the effective target area. The effective amplitude is the
distance of the curved path of the movement trajectory and takes into account
the x (horizontal) and z (vertical) dimensions. The effective target area takes
into account both the x- and y-dimensions of the subjects' endpoints and, if
these are normally distributed, will reflect 96% of the endpoint variability.
However, the data from all three experiments reported here are platykurtic,
particularly in the y-dimension. This means that the effective target areas we
have calculated probably underestimate 96% of the endpoint variability because
the data are more evenly distributed than normally distributed.

The level of platykurtosis could not have been too severe since the
prediction of MT with our equation was excellent. Using data from Wallace
(1983), we found the correlation to be .99 between MT and our log, (expression),
and the y-intercept to be close to zero (a = 19.55 msec). Our formula predicts
a zero y-intercept so the 19.55 value raises some concern. As discussed
recently by Wright and Meyer (1983), positive intercepts not predicted by
equations make it more difficult to develop a complete understanding of the
processes involved in the speed-accuracy tradeoff. Wright and Meyer (1983)
speculated that the positive intercept in their data as well as others (Howarth,
Beggs, & Bowden, 1971; Schmidt et al., 1979; Zelaznik et al., 1981) might be
due to tremor or, a misperception of the target which might randomly vary across
trials. In addition, Schmidt et al. (1979) speculated that the positive
intercept might be due to measurement error. While these authors were trying to
predict accuracy as a function of movement speed, these arguments could also be

used to explain the positive intercept obtained in our data where the goal was
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to predict MT. At the present time, we have no concrete explanation for the

presence of the slight positive intercept. Clearly, more work needs to be done

to determine whether this 1is a consistent finding. But the point we wish to

make is that extremely large positive y-intercept values such as those found by

Hay (1981) or Tlarge negative y-intercepts (Crossman, 1957) should not be
overlooked when one is trying to account for prediction of MT.

In the second experiment reported, we found some evidence that variability
in the y-dimension of the target contributes to the total MT. It was also shown
that the correlation between variability in the x- and y-dimension was 1low.
These findings suggest that the control of movement in the two dimensions may be
somewhat independent. Although providing no real rationale, Howarth and Beggs
(1981) have stated the error measured in the direction of movement "...is
related to the accuracy with which a movement can be stopped. Error at right
angles to the movement 1is the error of aiming..." (pg. 91). It is not clear
from their description whether the processes which control accuracy and aiming
are the same or different. OQur data suggest that the processes are somewhat
independent and they may be affected differently by different variables. For
example, Zelaznik, Hawkins and Kisselburgh (1983) have recently shown that the
use of visual feedback in the control of movement is not exactly the same in
both x- and y-dimensions. Control of movement in the x-dimension seemed to be
more affected by the removal of feedback and more sensitive to changes in the
subjects' knowledge of whether visual feedback would be present or not on a
given trial. This kind of effect may indicate that the underlying processes
which control the two dimensions are somewhat independent.

We provided tentative evidence in the Hurdle experiment that the vertical
component of the movement trajectory is important to consider in the prediction

of MT. The experiment showed that subjects maintained accuracy at the expense
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of slowing MT over a higher trajectory. Ideally, it is important to quantify

the distance of the curved path of the movement trajectory and we are currently

working on this problem. Also, the fact that large vertical components of the

trajectory have been noticed previously (Connolly, et al., 1968; Wade, et al.,

1978) makes the analysis of this component seem necessary in the study of
special populations such as young children and the mentally handicapped.

One possible direction this research could take is the prediction of MT in
three-dimensional space. It might be possible that the MT necessary to grasp an
object in three-dimensional space is dependent upon its three-dimensional size.
This 1is a difficult probiem because other factors such as the number of fingers
used, surface area of the fingers, and their orientation in space might need to
be taken into account. Related work on this problem has been done by Jeannerod
(1981) in grasping three-dimensional objects. Jeannerod found that the size of
an object affects the grasping (fingers) component but not the trajectory or
transport component of the movement toward the object. However, these
experiments were done without explicit accuracy requirements. Perhaps if one
defines the accuracy requirements in this type of task (e.g., grasping the
object with precise control), it may be possible to predict MT based on
knowledge of movement amplitude, three-dimensional target size and perhaps other
variables such as object orientation. Extending the ideas in this paper into
three dimensions does seem to be a logical step, particularly since there 1is a
keen interest in robotics and in the basic processes involved in grasping (e.g.,
Wing and Fraser, 1983).

The ideas in this paper impact upon some of the theoretical wmodels which
have been used to explain Fitts Law (e.g., Crossman & Goodeve, 1983; Keele,
1968; Meyer et al., 1982). These various models are essentially

one-dimensional. For example, in the Keele (1968) discrete correction model,
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each visual correction which is made during the movement reduces the distance to

the target by approximately 93%. Keele's model is one-dimensional and a strict

interpretation of it might predict that error in the x-dimension (direction of

movement) is the only dimensional error reduced as a result of visual

corrections. When a two-dimensional target is considered, however, it would

seem necessary to consider the likelihood that error corrections are made in

both dimensions. How and when corrections are made in both dimensions would be
an important line of future research,

Another issue of theoretical importance 1is why MT 1is related to a
logarithmic tradeoff rather than to a linear tradeoff. This question has been
recently addressed by Meyer et al. (1982) and Wright and Meyer (1983). One
possibility is that in tasks such as Fitts' which minimize spatial but not
temporal variability, the movement is controlled by a pre-programmed series of
overlapping force pulses and should lead to a logarithmic but not a linear
tradeoff. Our data (Wallace, 1983) yielded a Togarithmic tradeoff between the
effective amplitude and the effective target area, and as such would tend to
support the Meyer et al. (1982) model. In addition, the Meyer et al. (1982)
model does not attribute this logarithmic tradeoff to the processing of visual
feedback. Their model predicts a Tlogarithmic tradeoff even under degraded
visual conditions. Support for this prediction can be found in a study by
Wallace and Newell (1983) which found a logarithmic tradeoff in non-visual
discrete movements. The Meyer et al. (1982) model appears to be gaining
empirical support and is a clear alternative to the discrete corrections model
developed by Keele (1968). Future work is needed to further test this model,
perhaps by extending its concepts to more than one dimension.

In summary, we set out to re-examine Fitts Law and the variables assumed to

affect the prediction of MT. We have provided some evidence that to accurately
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predict MT, one must take into account more than one dimension of the target
aimed at and the variability of the errors produced as well as more than one
dimension of the movement trajectory to the target. While these ideas and
findings are preliminary, we feel they serve as a basis for developing a more

comprehensive relationship between MT and variables which affect it.
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Table 1
Skewness and Kurtosis Values* in x- and y-Dimensions

of Wallace (1983) Experiment**

Target-Distance Skewness Kurtosis
Condition X y X Y
1" - 3" .08 .40 -.80 -1.80
S - 3" .08 -.16 -1.74 -2.90
1" - 6" .13 .40 -1.80 -2.71
25" - 3" .42 .83 -.50 -1.96
5" - 6" .00 -.27 -2.07 -2.70
1" - 12" .36 .76 -1.88 -2.49
25" - 6" .08 -.37 -.15 -2.79
S - 12" -.38 -.33 -1.90 -2.72
.25 - 12" A1 -.25 -1.18 -2.71

*For skewness, 0 = normal distribution, large positive value =
positively skewed and large negative = negatively skewed. For kurtosis,
0 = no kurtosis, large positive = leptokurtic and large negative =
platykurtic.

**Values collapsed over nine subjects.
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Table 2
Means and Standard Deviations (in parentheses) of MT, CE (cm),
Standard Deviations in x- and y-Dimensions (cm), and Effective Target
Areas for the Three Target Conditions.*
Dependent Measures Circle Large Ellipse Small Ellipse
MT 268 323 334
(63.5) (56.2) (72.2)
CEx -.010 .070 -.030
(.19) (.16) (.17)
SDx 476 .445 .418
(.09) (.07) (.10)
CEy -.100 -.010 -.020
(.09) (.08) (.06)
SDy .336 .259 .206
(.09) (.03) (.03)
Eff Target Area 2.210 1.540 1.180
(cm?) (.96) (.37) (.46)

*See text for exact target-dimensions.
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Table 3
Skewness and Kurtosis Values* in the x- and y-Dimensions**
Skewness Kurtosis
Dimension Circle L. Ellipse S. Ellipse Circle L. Ellipse S. Ellipse
X -.87 .33 .11 .33 -.69 -.86
y .09 .80 .16 -2.88 -2.51 -2.88
*For skewness, 0 = normal distribution, large positive value = positively

skewed and large negative = negatively skewed.
large positive =

**Values collapsed over six subjects.

For kurtosis, 0 = no kurtosis,

leptokurtic, and Targe negative = platykurtic.
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Means and Standard Deviations (in parentheses) of MT, CE (cm),

Standard Deviations in x- and y-Dimensions (cm), and Effective Target Areas

for the Hurdle and No Hurdle Conditions

Dependent Measures

MT

CEx

SDx

CEty

SDy

Eff Target Area

(cm?)

Hurdle

264

(20.07)

-0.50
(.09)
.625

(.04)
-.029

No Hurdle
231
(31.05)
.070
(.14)
.639
(.05)
-.003
(.10)
490
(.09)
4.165

(.53)
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Table 5
Skewness and Kurtosis Values* in the
x- and y-Dimensions of Hurdle Experiment**
Skewness Kurtosis
Dimension Hurdle No Hurdle Hurdle No Hurdie
X .53 .38 .09 -1.35
y .02 .05 -2.61 -2.86

*For skewness, 0 = normal distribution, large positive value = positively
skewed and large negative = negatively skewed. For kurtosis, 0 = no kurtosis,
large positive = leptokurtosis and large negative = platykurtic.

**Values collapsed over six subjects.
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Figure Captions

Figure 1. A graphic representation of the effective target areas (dotted
ellipses) and standard deviations (shaded ellipses) in the x- and y-dimensions
for all nine amplitude-target size conditions. The constant errors in both x-
and y-dimensions were essentially zero. Thus, the centers of the ellipses
coincide with the centers of the actual circular targets. In every case,
standard deviations were greater in the x-dimension. Also, particularly in the
larger target conditions, the subjects' effective target areas were smaller than
the actual target areas.

Figure 2. A comparison of the four equations used to predict MT. In A is
Fitts' equation. In B is Welford's equation. In C is Crossman's equation. In

D is our equation.
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