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ABSTRACT

A review of the 1literature reveals that the relationship
between theories of attention is unclear. The present study
uses a measurement theory approach in an attempt to clarify
the relationship between the several different theories.
Three probabilistic theories, T1, T2, and T3, each of which
describes task performance as a monotone (T1), linear (T2),
or logistic (T3) function of task demands and of allocated
resources are proposed. Both task demands and attention are
interpreted as integrals of functions in time, termed the
task requirement function and the resource allocation
function. A combination ~of the speed-accuracy trade off
(SATO) and the dual task paradigm is proposed to test the
theories. Unlike T2 and T3, T1 can be viewed as a
formalization of Norman and Bobrow's concepts of data- and
resource~limited processes. A duration discrimination
experiment showed that T1 provides the best fit to the data.

‘ Author's address: Franz Schmalhofer, Department of
o “Psychology, University of Colorado, Boulder, Colo 80309.
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Abstract

A review of the 1literature reveals that the relationship
between theories of attention is unclear. The present study
uses a measurement theory approach in an attempt to clarify
the relationship between the several different theories.
Three probabilistic theories, T1, T2, and T3, each of which
describes task performance as a monotone (T1), linear (T2);
or logistic (T3) function of task demands and of <llocated
resources are proposed. Both task demands and attention are
interpreted as integrals of functions in time, termed the
task requirement function and the resource allocation
function. A combination of the speed-accuracy trade off
(SATO) and the dual task paradigm is proposed to test the
theories. Unlike T2 and T3, T1 can be viewed as a
formalization of Norman and Bobrow's concepts of data- and
resource~limited processes. A duration discrimination

experiment showed that T provides the best fit to the data.
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1) Introduction

Frequently, classes of theories about the same subject
area have been developed and tested in cognitive psychology.
After a controversy of which type of theory is the correct
one, these <classes of theories have been proven not to be
distinguishable from one another on the basis of the
empirical data under consideration. Incremental (Estes, 1950)
vs. all-or-none learning (Bower, 1961), two stage
(Bower,1961) vs. three stage Markovian models (Restle,1962),
network (Collins and Quillian,1969) vs. set-theoretic models
(Meyer, 1970; Rips, Shoben and Smith 1973), serial
(Sternberg, 1966) vs. parallel processing (Atkinson, Holmgren
and Juola,1969; Shiffrin and Schneider,1977), and imagery
(Kosslyn and Pomerantz, 1977) vs. propositional memory
representations (Pylyshyn,1973) were perceived as competing
for the explanation of the same set of experimental data.
Though these classes of theories have diametrically
different features, it has been proven that they cannot be
distinguished by the experimental data to which they were
applied (Estes, 1960; Greeno and Steiner,1964; Hollan, 1975;
Townsend, 1974; Anderson, 1979).

Similarly, there are several concepts in attention
research some of which may be equivalent with respect to the
experimental data. Other concepts, however, may not be

comparable as they refer to different sets of experimental

LIIIIIIIIIIIIIIIIIIIIIII-IIII --; - mamss =



-3- /Theory Development/

data. Limited central ecapacity, structural interference
(Kahneman, 1973), data~- and resource-~limited processes,
automatization by practice (Norman and Bobrow, 1975),
automatic parallel and controlled serial processes (Shiffrin
and Schneider,1977) and modality specific interference
(Proctor, 1978) are some examples cf widely used concepts in
attention research.

This paper attempts to clarify the relationship between
these concepts of attention. First, a way of theory
construction and evaluation is outlined. This method, well
known but not often applied in cognitive psychology,
guarantees that:

a) all predictions of a theory can be tested at once,

b) the equivalence of two theories is obvious, and

¢) the psychological knowledge about one subject area is
represented within one framework.

Second, a general class of probabilistic theories is stated

which allows a comparison of the concepts previously

developed in attention research. It 1is demonstrated that

several concépts in attention research are empirically

equivalent. Third, three specific theories are wused to

impliecitly define attention and task demands as

psychological terms. Parameter estimation and testing

procedures are discussed. Finally, the proposed theories are

tested by an experiment on the duration discrimination of
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two visual stimuli.

2) Theory Construction and Evaluation

In this section a procedure for constructing and
testing theories is outlined (Block and Marschak, 1960;
Hempel, 1952; Suppes and Zinnes, 1963). It will be wused to
compare several attention concepts and to develop three
probabilistic attention theories which will implicitly

define attention as a psychological concept.

Determination of an observation space: The first step

in theory development is to delineate that part of the
empirical world (observation space) to which the theory will
apply. Thus for any given experimental design it will be
possible to decide whether or not a particular theory
applies. Observation spaces are chosen which are
characterized by certain regularities. An observation space
is given by a system (E,Q) where E is a set of experimental
conditions and Q={q,q,, . . .} is some measure (i.e.
relative frequencies) defined on E. By the definition of the
observation space the semantic contents of a theory are

determined.

Axiomatic theories: The observation space is related to

' the technical terms to be introduced by one or more axioms.
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In psychology, technical terms are often related to reaction

probabilities P{R _am} and thereby to relative

atl,a2,a3s,

frequencies (Falmagne,1978). The introduction of an

axiomatic theory creates two problems (compare Suppes and

Zinnes, 1963):

a) It must be decided whether or not the axioms are valid
for given observations of the observation space
(representation problem).

b) The empirical meaning of the technical terms must be
determined (uniqueness, meaningfulness problem).

For referring to informal and 1less precisely developed

"theories" the term "theory-class" is introduced. A

theory-class 1is a set of possible theories which have some

principle in common.

Necessary and sufficient conditions for the wempirical
validity of a theory: The following‘definitions distinguish

clearly between identical and equivalent theories.

Definition 1: Two theories, TV and T2, are empirically
equivalent iff the sets of all possible observations

OT!'OTZ’ consistent with the theories T1, T2, are identical,

that is iff OTI = OTZ'

Definition 2: A theory T1 is more restrictive than a theory

T2 iff Op < Op, and Opq $ Ops.
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Definition 3: Two theories are jidentical iff their axioms
are identical; they are different iff at least one of their

axioms is different.

In order to test a theory T it is desirable to
determine the empirical contents of T. Therefore one
attempts to develop an axiomatic theory T' consisting only
of observational terms which, however, is empirically
equivalent to T. Craig (1953) has proven that such a
substitute T' always can be developed, if the language used
to talk about the empirical world is recursively enumerable.
A different proof of this relation between technical terms
and observables was presented by Ramsey (1931). In
measurement theory the proof of the empirical equivalence
between T! (represenﬁation conditions) and T is called
representation theorem. Since T' contains only observational
terms it can easily be tested. Furthermore, theories can be
ordered by the restrictiveness of their representation
conditions (Falmagne, Iverson and Marcovici, 1979).
Obviously, the empirical validity of a theory implies the
validity of a less restrictive theory. Concerning validity,
empirically equivalent theories form an equivalence class.
On empirical grounds, therefore, one cannot decide which
theory is better. This decision has to be made on the basis
of other considerations such as plausibility, convenience,

simplicity, etec.
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Uniqueness and meaningfullness: It must be decided to

what degree the meaning of the introduced technical terms is
determined by observational ‘terms and axioms (uniqueness
problem). Consider the two equations both known as the

Bradley-Terry-Luce (BTL) axiom:

- u(a) s
P(a:0) = —r@ya(ey ()
|
p(a,b) l+exp~-[v(a)-v(b)] (2)

The two equations are empirically equivalent because they
can be derived mathematically from one another by
substituting v:=log(u) in (1) or u:=zexp(v) in (2). However,
in (1) u is a rational Scale, whereas in (2) v is a
difference scale. Therefore, it makes sense to conceive the
two axioms as different theories. In definition 4 a model is
defined as the accumulated knowledge about an observation

space.

Definition 4: An O-model is a 4-tuple {O,R,A,T} where O :z a
set of observables (observation space), R := a set of
representation constraints, A := a set of axiomatic theories
containing elements of the observation sSpace, and T := a set
of theorems rank ordering the axiomatic theories according

to their empirical restrictions. An O-model Ml={0'Rl’Al’Tl}
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is said to be farther developed than an O-model

Mp={0,Ry,A5,Tp} iff Ry Ry; A €Ay T,ET,.

It should be noted that this kind of theory construction
does not restrict the types of theories which can be
developed. The condition that the language used to talk
about the empirical world must be recursively enumerable
only restriéts one to formal descriptions. Obviously,
without a formal representation no mathematical proof can be
conducted. A theory construction following these rules,
however, seems fo be particularly useful becausé
controversies about equivalent theorieé are avoided and
because the theories can be tested as a whole. For any set
of data it can be decided easily whether the theory is true.
After briefly reviewing research on attention the procedure
outlined above will be used to develop competing

theory-classes of attention into axiomatic theories.

t

3) Experiments and Theory-Classes of Attention

Dichotic listening (Cherry, 1953; Broadbent and
Gregory, 1964; Lewis, 1970), perception of temporal order
(Titchener 1908; Sternberg and Knoll 1973), letter matching
(Posner and Boies, 1971), dual task experiments (Keele, 1967;
Schulman and Greenberg 1971) and search and scanning

paradigms (Schneider and Shiffrin 1977) have been used for
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research on attention. There are several theory-classes to
explain one or more of those experiments: Broadbent's (1958)
filter model assumes strictly serial processing. Allowance
for parallel processing is given by Treisman's (1960)
attenuation model. Deutsch and Deutsch (1963) assume that
limitations by attention are given only for response
selection but not for the perceptual and discriminatory
mechanisms. Posner and Boies (1971) have postulated three
components of attention: alertness, selectivity and limited
capacity. In visual search Shiffrin and Schneider (1977)
distinguish between automatic detection and controlled
search. Automatic detection <can take place in parallel
whereas controlled search proceeds serially. Using the
notion of limited capacity, Kahneman (1973) postulates that
any two tasks whose joint demands exceed that limit must be
mutually interferring. Distinguishing between data- and
resource-limited processes Norman and Bobrow (1975)
contradict this assertion. The concept of structural
interference assumes that performance may deteriorate as a
result of the competition of two tasks for the same sensory
or motor system (i.e. Lansman, 1978).  Other authors
postulate modality specific resources (Proctor,1978; Proctor
and Fagnani, 1978). Since these theory-classes are in a
state of development rather than being precisely formulated

theories, they have to be specified more rigorously in order




~-10- /Theory Development/

to identify the characteristics of attention.

" On the other hand, there are mathematical theories of
attention which apply only to a /single paradigm (i.e.
Sternberg and Knoll, 1973). Several psychologists, however,
think that attention (limited capacity, consciousness, etc.)
must be a basic and central concept in a cognitive theory as
it plays an important role in almost all cognitive tasks
(i.e. Mandler, 1975; Miller, 1956). Attention appears to be
as central to cognitive activity as is the magical number
seven. Therefore, a theory of attention is needed which is
applicable to a wide variety of experimental tasks.

In order to compare previously developed concepts in
attention research a probabilistic theory-class of attention
is stated in the next section. Three specific theories of
this class will be used to define attention as a

psychological concept.

4) A General Class of Probabilistic Theorjes

The parameters of the probability distribution of all
possible task performances will be used to identify both the
task demands and the attention allocated to that task.
First, a class of probabilistic theories, general enough to
discuss the theory-classes described above within one

framework, will be defined. For three particular theories of
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this class representation theorems will be proven.

The assumption is made that the human information
processing system consists of a finite number of subsystems.
Performance in a task depends on the task demands upon every
subsystem and upon the attention allocated by every
subsystem to that task. Assume that every subsystem i is
characterized by its maximum amount of resources vé}i
available at any time instant t. This assumption is called
the limited capacity property. In one form or another this
assumption has been madé by all attention researcher§
(James,1890; Kahneman, 1973; Norman and Bobrow, 1975; Posner
and Boies, 1971; Navon and Gopher, %979). The generality of
this assumption is well supported by the resluts of many
different kinds of experiments (Shiffrin, 1976). Assume that
resource allocation as well as task requirements are a
function in time. Let 0(ij(t) be a function in time
describing the resources allocated by subsystem i to task j.
Similarly, ng(t) describes the task requirements of task

J from subsystem i. Let W, and Wy be the space of all

resource allocation functions and task requirement

'functions, respectively. For every subsystem i there exists

a function H; mapping W = Wy into IR, describing how well
the task requirements are fulfilled by the resource
allocation. A function F : IR® --> IR describes how well the

overall performance in a task depends upon the n subsystems.
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This relation between task requirements, resource allocation

and performance is expressed by

P(Xyzxy) = G*{F[H,(o&lj(t), G”,j(t))], o [H (k5 (8), 655(E)) 1T, (3)

*
where G is a distribution function and Xj is a random

variable describing all possible performances in a task J.

The limited capacity assumption is expressed by
o(%(t) = A, Vi,5,t; (4a)
Y o) = By, Vi (o)
0, \d i, j,t.

o
o
17

In Eq. (4b) the index j is used to designate tasks which are
performed simultaneously. Frequently, there are only two
possible outcomes in the experimental task. The subject's
response is either correct (X.z1) or false (xj=o), so that a

J
binomial distribution function is obtained. Then Eq. (3) can

be simplified by applying G". As a consequence the left
side of the equation will describe the parameter of the
binomial distribution function instead of the binomial

distribution fuﬁction.
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P(Xyz1) = FILH (A 5(8), 635600, . [H Cdp(0), 6756}

Thus far no restrictions have been imposed upon the
functions F and H, so that (5) is general enough to describe
a variety of different information processing theories:

a) Assume that the subsystems 1 to n are sequentially
ordered where subsystem | receives the physical input,
operates on this input and submits its result to
subsystem 2. In general, subsystem i operates on the
output of subsystem i-1. Obviously, if information was
lost in subsystem i this information 1loss cannot Dbe
recovered by additional processing of the next
subsystems. This system is called a sequential
information  processing system. We would call it a

hierarchical system if subsystems receive input from

several lower ranked processors. This system is described

by (3) where F is specified by:

F{H,,H,, . . .H } := min {H;:i=1,2, . . n}.
b) For a parallel information processing system it is
assumed that overall performance is determined by the n
subsystems in an independent way. The following
specification of F adequately describes an independent

parallel information processing system:

(5)
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F{H,,H,, . . Hy} := Z Hy .

¢) Assume that the output of subsystem | is a necessary
input to all other subsystems whereas parallel processing
occurs in subsystem 2 to n. This system is a combination

of a) and b). It is easily modelled by:

"

Z min (H1’Hi)'

L=\

F{H1,H2, . . Hyl

d) Automatic processes can be modelled by setting the task

requirements ng =0 \Ji with Hi assuming its optimum

value whenever Grijas C.

e) Automatization through learning as discussed by Norman
and Bobrow (I975) can be accounted for by a change in the
task requirement functions sz'

These are but a few examples which demonstrate the

generality of Eq.(3). The theory-class specified by (3) or

(5) is not a process theory describing complex human

information processing as for instance Shiffrin and

Schneider's (1977) theory. Rather, it specifies  how

performance depends upon the "amount of processing" (mental

resources) done by the human information processor. The main

purpose of the present theory is to measure attention.

Nevertheless, the examples given above demonstrate that
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theories can be developed within this theory-class which are
consistent with complex process theories.

The theory-class defined by (3) was introduced in order
to discuss and compare earlier theoretical developments
within one framework. Before this is done some more
restricted theory-classes are derived from Eq. (3). Instead
of depending wupon the functions C*ij’ G}j themselves
assume that performance depends only on some property of

these functions, such as upon their integral over time:

-
1(o(ij’T).;= fc‘ij(t)dt, | (6a)
' )
-‘-‘-
1( 65,1 := fG‘i'j(t)dt. (6b)
0

1( Okij,T) is called attention. 1( 67

lj,T) is called task

demand. Thus, attention is the integral of the resource
allocation functioﬁ.%and task demand is the integral of the
task requirement funcfion. Notice that this assumption
causes the two information processing modes of time shariné
(serial processing) and parallel processing to become
(empirically) indistinguishable. By (6) a subsystem which
operates on two tasks sequentially in a time sharing mode is
empirically equivalent to a parallel processing subsystem.

Much effort has been spent in cognitive psychology on the
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empirical distinction between parallel and serial processing
(compare Townsend, 1974).

Another restriction is introduced by the assumption
that there is .only one central processor. Substituting

G=FeoH, Eq. (5) is rewritten as:

P(ijl) = G[l(dJ,T),kl(G;,T)]. (7a)

The limited capacity assumption is expressed as:

_idy,m = KT, (7b)
&

with J as an indéx‘ for simultaneous tasks. T 1is not a
measure of physical time but a measure of "psychological"
time, which however, 1is monotonically increasing with
physical time. In the next section several attention
concepts which have been developed in cognitive psychology

are interpreted within the framework of Eq. (3).

Probabilistic theories applied to attention:
Broadbent's (1958) filter theory can be expressed by Eq.
(7a) where 1(A,T) can take on only one of two possible
values, say O and 1, describing whether or not attention is
paid to that task. The filter theory does not distinguish
tasks by their demands. Thus G becomes a function in one

argument. A difference to Eq. (7a), however, is that a
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deterministic measure for task performance is wused. The

major restriction of the filter theory is

:E: 1(dy,T) = 1.
d
Treisman's (1960) attenuation theory is very similar to the
filter theory, the difference being that l(di,T) varies
continually. As a consequence, a continuous instead of a
all-or-none measure of performance is wused. Kahneman's
(1973) effort theory introduced task demands as a
theoretical construct. Equations (7a) and (7b) together
adequately formalize the effgrt theory. Kahneman's assertion
that two tasks whose joint demands exceed the resource
1imits must be mutually interferring requirés the function G
to be strictly monotonically increasing. This assertion was
refuted by Norman and Bobrow (1975) who introduced the
concepts of data- and resource-limited processes. Using the
present terminology these concepts reduce to the assumption
that G is only monotonically nondecreasing instead of
strictly monotonically (i.e. linearly) increasing. Instead
of introducing a general attention-demand performance
function Norman and Bobrow prefer to wuse a separate
attention performance function Fj (which they call
performance-resource function) for every task j. Using Eq.

(7a) F3 is defined by:
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Fi(1(ey,T)) iz GLL(A 1), 10 T ORE

If Fj is strictly monotonically increasing within some range,

performance is called resource-limited; if Fj is a cgns;ant
function it is called data-limited. Thus an important
difference between Kahneman's and Norman and Bobrow's
assumptions is whether to view the attention performance
function as a strictly monotonically increasing or only as a
monotonically nondecreasing function. Another generalization
was introduced by Posner and Boies (1971) who 1investigated
resource allocation as a time dependent process. By varying
the time interval between primary and secondary task they
investigated the resource allocation funection ckj of a
letter comparison task J (compare Eq. Ta). Because there was
no interference between primary and secondary task within a
given time period, they concluded that no resources were
needed by the primary task at that time. Ih order to derive
this conclusion it again must be assumed that the
performance-resource function is strictly increasing. In
addition, strong assumptions about the processing mode (i.e.
strictly parallel processing for a given time period At)
are necessary to make these conclusions valid. From an
analysis of variance of & two factorial dual task paradigm
Proctor and Fagnani (1978) concluded that there exist two

subsystems, namely a visual and an auditory subsysten.
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Again, in terms of Eq. (75) this conclusion is only
reasonable if G is assumed to be strictly increasing.

It is seen, that from the same and similar experimental
findings, drastically different conclusions have been drawn.
In many cases the assumptions leading to those conclusions
are not explicitly mentioned, so that it is not clear why
different researchers disagree in their conclusions about
attention. Therefore, it. is important to investigate the

relation between different assumptions about attention.

Empirically equivalent assumptions about attention:’Thg

basic assumption is that task demands and attention must be
jdentified by a measure of performance on these tasks. A
great deal of attention research started out with the
assumption that there is only one central processor. Assumé
that for testing this assumption a dual task paradigm was
employed. Furthermore assume that the experimental results
§f some (n-m) tasks are adequately explained by the
assumption of just ‘one central processor, whereas the
inelusion of the other m tasks invalidates this assumption.
Then the following conclusions are empirically equivalent:
a) There is only one central processor. The
inconsistencies in the experimental data are due to
structural interference (compare Kahneman, 1973). Define the
two tasks which together exert the most resources (best

performances relative to task difficulty) as not being
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influenced by structural interferenée. Add all those tasks
whose performance measure can be explained without
structural interference. For ‘all other tasks define the
decrease in performance as structural interference with the
particular task with which they are combined. By increasing
the number of structures which can interfere, it 1is always
possible to explain the experimental data in this way.
Obviously, this explanation is most attractive if the number
of structural interferences is very small.

b) There are several subsystems. Thus the reason why
the m tasks cannot be explained by assuming only one central
processor is that they either require another processor
which, however, is occupied by the secondary task, or that
they require an additional processor which is not occupied
and thus performance is improved. Obviously, by increasing
the number of informatiop processors all experimental data
will be explained. This explanation is most attractive when
the dual task makes use of different stimulus modalities.

¢c) Assume that there is only one processor, but that
resource allocation is a function in time. Then the data can
be explained by defining time intervals of the resource
allocation function. Task interference occurs when two tasks
require resources af the same period in time. |

d) Norman and Bobrow (1975) found the following two

assumptions to be equivalent: Some tasks do not require any
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attention but the attention performance function is strictly
monotonically (i.e. linear) increasing. Every task does draw
from the pool of 1limited resources but the attention
performance function is only monotonically nondecreasing.
These equivalences offer a variety of routes to develop
theories of attention. Though it might be desirable to have
several formally developed theories available, there is also
a legitimate interest concerning which ways of developing
theories are more promising. Recently, Navon and Gopher
(1979) reviewed the literature on attention. They employed
normative theories from economics to describe a person
performing a single or dual task. Their evaluation is to a
large degree consistent with the conclusions derived here by
using probabilistic measurement theory. In particular, there
is the agreement that "many theoretical possibilities . . .
exist and that caution is needed in interpreting empirical
data of dual-task performance" (p. 251). Contrary to Navon
and Gopher, however, it is not the author's objective to
endorse the notion of multiple resources. Because of the
empirical equivalences mentioned above, the assumption of
single versus multiple resources is not testable unless
arbitrary assumptions are made. Navon and Gopher search for
a theory which accounts for all experimental data. Therefore
they need a structurally very complicated theory which,

however, is too complex to be totally tested within a
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reasonable time period. The opposite approach of developing
a simple but nevertheless reasonable theory whose validity
can be determined by one or a few experiments is taken here.
There is a fundamental difference between the  two
approaches. Instead of developing a theory which is
constistent with all experimental data it 1is proposed to
find the experimental data which are consistent with an
"attractive" theory. Navon and Gopher and many others regard
the experimental data as given and try to develop a theory
which explains all known experimental results. On the other
hand we consider the theory as given and search for the
observation space for which a particular theory is valid.
Once this theory is established for some domain, it can be
used to investigate more complex domains. This is to say
that we suggeét a constructive procedure.

Thus it is proposed to design theories and experimental
tasks which support the central capacity notion. Even if "in
heality" multiple resources exist, one can still establish a
single capacity theory ?y selecting experimental tasks which
demand only a single or an equally weighted combination of
several resources. Once a set of experimental tasks is found
which supports the central capacity notion, the
(established) central capacity theory can be used to
identify multiple resources, structural interference,

automatic processes, etec. As previously mentioned a




=23~ /Theory Development/

constructive approach 1is taken. Rather than partially
testing a cdmplex and insufficiently specified theory-class,
it is suggested to first establish a relatively simple
theory for some observation space. Then the established
theory can be used to investigate more complex observation
spaces. In the next section three relatively simple theories

of attention are developed.

5) Implicit Definition of Attention and Task Demands

by Probabilistic Theories

So far we discussed attention and task demands as a
function of other empirically unidentified terms, namely the
resource allocation function ol(t) and the task requirement
function G’(t). Specifically, we introduced attention
1(A(t),T) as the integral of the resource allocation
function A (t) and task demand 1( 6(t),T) as the integral of
the task requirement function ©6(t). Thus the resource
allocation function is distinguished from attention in the
same way that task requirements are differentiated from task
demands. In order to develop a meaningful theory of
attention, task demands and attention must be identified as
functions of experimental variables, or at least as
functions of observab1e§. Therefore attention and task

demands will now be defined as functions of observables
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~

(i.e. experimental variables). This is done by writing l*(a)

and l*(s) for attention and task demands with a and s being-
descriptions of the experimental variables. Attention and

task demands are defined in two different ways, soO that the

following identities hold:

1¥(a) = 1(aA,T),

1*(s) = 1(65,1).

Notice the difference between 1 and l*: 1 maps resource
allocation functions o\ or task requirement functions 6 into
attention or task demands, whereas l* maps experimental
variables into attention or task demands. Once the
distinction between 1 and l* is understood, for simplicity
we may use 1 for both functions. By relating observables to
attention and task demands these concepts will be implicitly

defined as psychological concepts (Hempel, 1952).

Definition of QObservation Spaces: Assume (4a,l4p) and

(6a,6b) as the fundamental characteristics of the human
information processor. In addition, assume that experiments
can be designed so that the subject allocates all resources
to the experimental tasks. Then attention can be varied
experimentally by imposing different deadlines (DL) upon the

subject's performance 1in a speed~-accuracy tradeoff (SATO)
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paradigm. Assume that As = {a,b,c,d, . . . .} is an ordered
set of DL conditions in an experiment. For example a, b, ¢,
d might correspond to DLs of 300, 350, 400, 450 msec,
respectively. Task demands can be varied by wusing tasks
varying in difficulty. Let Ss = {s, t, .. . .} be an
apriori ordered set of tasks. Then Asxss describes a set of
experimental conditions in a SATO- paradigm. In every trial
the subject either succeeds or fails. We say the resources
dominate the task demands or vice versa. Let QS := {q(a,s):
aeAs,seSS} and Pg = {p(a,s) : aeAs,sc-.SS} be the

relative frequencies and probabilities of success taken as

the dependent variables in this experiment. Then <As*ss,Qs>

and <A§‘Ss’Ps> are called a system of single task dominance
frequencies and a system of single task dominance
probabilities, respectively.

The dual task paradigm is another way of varying the

attention allocated to a task. Let Sd = { (s,8),

(s,t),(s,u). . .« « . (t,s),(t,t),(t,u) . . .} be a set of
dual tasks. The DL conditions are described by
Ay = {(ai,Ei),(aj,Ej), (bysB) + . . .}. Identical indices
i,j,.. dindicate simultaneousness. Thus (ai,ai) is an
experimental specification which causes the attention l(ai)
and 1(51) to be allocated to a dual task. An order is
defined on Ay by: (a;,3;)%(bj,6;) iff a€b. S4 is ordered by

(s,t)=(u,v) iff s<v and tev. Let
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Py = {[p(ay,s),p(d4,t)], . . .}, then <Ay S4,P4> is called a
system of dual task dominance probabilities. Define <AxS,P>

to be the combination of Dboth systems <Asxss,ps> and

CA*S4,Py> where AxS := AgfSg v AgeSyq. P is the probability

measure on AxS defined by the single and dual dominance

system. <AxS,P>is called a combined dominance system. Single
task, dual task, and combined dominance systems are denoted
by Dy, D4, and D,, respectively. By introducing  an
appropriate probability measure almost every experiment on
attention can be described by a single, dual, or combined

dominance system.

Testable conditions for dominance systems: In the

sequel, the discussion will be limited to single task and
combined dominance systems. Three directly testable
conditions of dominance sytems, which will be shown to be
empirically equivalent to three probabilistic theories of

attention, are introduced.

Definition 5: Dg is an independent limited attention system
iff the mapping p(a,s) from the partially ordered set AS"SS
to [0,1] satisfies: If a<b, s2t, then p(a,s)ép(b,t). Dc is
an independent limited ‘attention system iff the mapping p

from A%S --> [0,1] in addition satisfies: p(ai,s)sp(a,s); if
(ai,éi)i(bj,ﬁj), (s,u)®$(t,v), and p(ai,s)ép(bj,t) then

p(ii,u)ép(ﬁj,v). For brevity these order restrictions are
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I I
termed Rs and Rc'

Definition 6: D, is a strong limited attention system iff
Ya,beh  and s,teSg:

p(a,s) - p(b,s) = p(a,t) - p(b,t).

Dc is a strong limited attention system iff

p(ai,S)+P(51yt)-p(bj,S)-p(Ej,t) = p(a,u)=-p(b,u).

We will refer to these restrictions by RSO and RCSO.

Definition 7: Dy is a strict limited attention system iff
Y a,b€A  and s,t€Sg:

4

p(a,s) p(s,b) pla,t)  p(t,b)

p(s,a) p(b,s) p(t,a) p(b,t)

D is a strict limited attention system iff

¢

p(a;,s)  p(ag,t)  pls,by) | p(t,645) _ pla,u) p(u,b)
p(s,a;)  p(t,a;) plby,s)  p(by,t) p(u,a) p(b,u)
Again, the terms Rgl and Ril will be used for brevity.
Dominance systems D satisfying the restrictions RI, RSO, or

rSI DSO, or DI,

are termed DI,
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Probabilistic theories: It is the task of a theory of

attention to explain the dominance probabilities in terms of
attention and task demands., Three theories are introduced.
Similar to the notation used to describe observation spaces
subscripts s and ¢ are used to refer to subsets of axioms of
the theories T1, T2 and T3. |
Theory T1 assumes task performance to be a monotone

function of attention and task demand, For the single task

paradigm Dy theory T1 is given by Tig:
p(a,s) = F[l(a),l(s)], (8a)

with F: IR? -~> [0,1] monotonically nondecreasing in the
first and monotonically nonincreasing in the second
argument, Theory T1 1is expanded to the combined dominance

system D, by the additional axioms:

ut

p(a;,t) = FI1(3;),1(t)],
p(a;,s) = F[1(a;),1(s)], (8b)
l(dl)+l(al) = l(a)y

1(a),1(3;),1(a;) >0.

Thus theory T1,, the theory for the combined dominance
system D, constists of the axioms (8a) and (8b).

Theory T2 proposes that task performance is a linear
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function of the difference between attention and task

demand. For Ds T2 consists of the axiom T2g:

p(a,s) = F[1(a)-1(s)] = Al(a)-Al(s), (9a)

with F: IR --> [0,1] being a similarity transformation.

Theory T2 is applied to DC by adding the axioms

p(F;,t) = F[1(3;)-1(t)],
F[1(a;)-1(s)], .(9b)

p(ay,s)

1(ai)+1(§i) = 1(a).

For the single task paradigm theory I3 is given by

axi T3 :
xiom 3S

p(a,s) = l(igii(s) ' (10a)

This theory known as BTL-model can be expanded to the dual

task paradigm by the following three axioms:

1(&;)
p(a;,t) - ,
l(ai)
pla;,s) = —————1 (10b)
l(ai)+l(s)
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l(ai)-l(él) = l(a)'

A brief‘ description of these theories follows. T1 is
the weakest of the three theories proposed., It should be
noted that this theory is a formalization of the concepts
introduced by Norman and Bobrow (1975) (resource- and
data-limited processes). This is not true for the theories
T2 and T3. In'both theories the function F. 1is strictly
monotonically increasing where F is linear or logistic.
Therefore, T2 and T3 can be viewed as two different
formalizations of the ideas underlying Posner and Boies'
(1971) conclusiohs. Thus, an empiricdl comparison between
the two different assumptions seems to be possible.

Théory T2 is closely related to the theory of linear
regression., Indeed, this theory could be written by &

multiple regression equation in n = JA{+|S| variables:

E(Y(a,s)) = Baya"' (bbyb* Fcyc+ . e . +($sys+(3tyt+ e e e e

where Y(a,s) is the number of correct solutions and y, =1,
Ys=-1, xi=o for aji¢s.

Theory T3 is the well known BTL- or Rasch- equation
(Andersen,1973; Luce and Suppes,1965; Zermelo,1929). Having
introduced the the limited capacity restriction

l(ai)-l(éi)zl(a), this theory can be applied to the dual
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task paradigm. Note, that this multiplicative restriction
could be expressed in the form of Eq. (9b) if Eq. (2) rather
than Eq. (1) were used as the basic axiom of theory T3. As
mentioned earlier (2) and (1) are empirical equivalent.
Notice the following differences between T2 and T3. If
p(a,s)=0.5, T3 concludes that 1(a)=1(s), whereas T2
concludes that 1(a)=0.5-1(s) =--> 1(a)¥l(s). On the other
hand, from p(a,s) --> O theory T3 derives that 1(s) --> 00 ,
whereas T2 requires that 1(a)=z1(s). Therefore apriori T2
seems to fit better for the explanation of dominance systems
whereas T3 is suited for choice systems. In a choice
situation equal stimulus strength results in indifference,
that is p(a,s)=0.5 . However, if a subject is to master a
particular task, the subject's resources 1l(a) must be
greater than the task demands 1(s). Otherwise, no meaningful
solution is obtained by the subject. From these
considerations, it is concluded that T2 better describes the
limited attention system. On the other hand, T2 cannot be
applied to choice systems because for two complementary
probabilities p(a,b),p(b,a) T2 can not guarantee that

p(a,b):1-p(b,a).

Representation theorems: Thus far three theories and
three directly testable conditions have been introduced for

both the single task and the dual task SATO-paradigm. It
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will be proven that these theories are valid if and only if
the respective testable conditions are true. Theorems 1 to 4
prove the empirical equivalence between the theories and the

testable conditions.

-

Theorem 1: a) Iff the dominance system Ds is an
independent limited attention system, then a function 1:
A§<Ss -> IR can be introduced by T1g such that 1(a) is &
measure of attention and 1(s) is a measure of task dcmands.

b) The measure of attention 1(a) is wunique up to
monotonic transformations. Also, the measure of task demands

1(s) is unique up to monotonic transformations.,

I

Proof: If Ds satisfies T1,, then Dg=Dg. Conversely, if
Dg=Dl, then define 1(b) > 1(a) iff b > a and 1(s) > 1(t) iff
s > t. The function F is now defined by:

[1(a),1(s)] -> p(a,s). For Dg it is seen that F is
monotonically increasing in the first and monotonically
decreasing in the second argument,

QED

Theorem 2: a) For Dg a measure of undivided 1(a) and divided
attention l'(ai,ai):[l(ai),l(éi)] is introduced by T1,.
b) The measure of task demands is unique wup to

monotonic transformations., The measure of attention 1is
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unique up to transformations which preserve both, the order
of x,yelA, for which there exist s,teS such that sét and
p(x,s) < p(y,t) and the limited capacity equation

l(ai)+1(§i)=l(a).

Proof: If D, satisfies T1,, DC=D£. Conversely, if DC=D£,
define 1(a) and 1(s) as in theorem 1. The remaining 1(x),
1(y) are defined, such that if st and p(x,s) < p(y,t) then
1(x) > 1(y), where x and y may represent any a,b,bi, or B;.
From this definition it becomes clear that F is
monotonically increasing in the first and monotonically
decreasing in the second argument, Once this partial order
among the values 1(x), 1(y) is determined, they can be
monotonically transformed, such that l(ai)+1(§i)=l(a). The

uniqueness property follows from these considerations.

QED

Theorem 3: a) Iff D, is a strong limited attention systenm,
then a function 1: AxS -> IR can be introduced by TZS such
that 1(a) and 1(s) is a derived measure of attention and
task demand. Attention and task demands are measured on one
scale,

b) 1(x): xeAvwS is unique up to linear transformations,

that is <D ,T2,,1> is a derived interval scale.
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Proof: a) "-->": D, is a single task dominance system

satisfying TZS, then V a,bEAs s,teSs:

A l(a)-A1(s)-Al(b)+A1(s)
Al(a)=A1(b),

p(a,s)-p(b,s)

H

p(a,t)-p(b,t) = A 1(a)-A1(t)-A1(b)+A1l(t)
Al(a)-Al(b).

"<{--": Ds is a strong limited attention system. Then for two

arbitrary o€A , zeS_ define: 1(o)i=(w; 1(z):=A1(o)-p(o0,z)

0#X , w € IR. For all other a€A_, s€S  define:

. pla,z)+1(z)

1(a) N

1(s)

1(o0)- *%T p(o,s)

It is to show that these definitions are valid.

p(a,z)-p(o,z)+p(o,s),

p(a,s)
pla,s) = Xl(a)=Al(z)-Al(o)+Al(z)+Al(o)=AL(s),
pla,s) = Al(a)-Al(s).

b) It is claimed that for every two functions 1 and 1* which
are properly construéted there exist numbers lYio andvé‘:
V<X€ASVSS 1Y (x) = §1(x)+ d. Assume there are a,b€A ; se€Sg,
such that

1¥(a) = ¥ 1(a)+ d
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1*(s) = $1(s)+ &

1*(b) # §1(b)+ d
Then there is a wm20: 1*(b) = §-1(b)+d +m . By T2:
p(a,s) = All(a)-1(s)] At[1Y(a)-1%(s)1,
p(b,s) = A[1(b)-1(s)] 1% (p)-1%(s) ],
All(a)-1(s)] = L[ F1(a)+ - F1(v)-S1.

A
X

Hence = 1,

ALL(D)-1(s)] = ALFLD)+S +m-F1(s)-d ],

X 1(b)+ Mg -1(s)
] = 3 = - »y] = 0.
A% 1(b)-1(s)
. QED

Theorem M4: a) Iff D, is a strong limited attention system

2 where

then a function 1: A§’Ss -> IR and 1': AduSd -> IR
1'(x,y) :=(1(x),1(y)) can be introduced by T2c such that
1(a), 1(a;), 1(&a;), and 1(s) are derived measures of
attention and task demand.

b) 1(a) , 1(s) is unique up to linear transformations.

Proof: a) "-->": By insertion of T2 into the representation
condition it may be seen that any dominance system
satisfying T2 is a strong limited attention system.

"<--": If D, is a strong attention system,'\d(a,s)eAsxSS
define 1(a) and 1(s) as in theorem 2. For any (a;,d;)eA; it

is defined:
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- A -
l(ai)=?:— p(a;,z)+1(z),

l(ai)='%f pla;,s)+1(s).

These definitions have to satisfy T2. By definition 6,

V(ai,éi),(bj,ﬁj)eAd, aeA , se3S, and (s,t)€ed;:

P(ﬁi,t)=p(a,r)-p(b,r)-p(ai,s)+p(bj,s)+p(5j,t)
=A1(a)-A1l(a))-A1(t)-A1(b)+ ll(bj)+k1(bj)
= AL(E;)-A1(L).

b) analogous to theorem 3.

GED

Theorem 5: a) Iff Dy (D,) is a strict limited attention
system then a function 1: Asuss -> IR and a function 1':
Agvsy => IR2 , Where 1'(x,y) := (1(x),1(y)) can be
introduced by T3y, (T3,) such that 1(a), 1(a;), l(éi), and
1(s) are derived measures of atttention and task demand.

b) 1(a) and 1l(s) are wunique up to similarity
transformations. <D ,T2,,1> and <D,,T2,,1> are derived ratio

scales.
Proof: For slightly different conditions this theorem has

been proven by Luce and Suppes (1965) and Suppes and Zinnes

(1963). The proof proceeds in an analogous fashion to that
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of the proofs of theorems 3 and 4. The initial definitions

are replaced by:

1(o) := (a, with (4> 0
(z,0)
1(z) = 2212 - 1(0)
_ _pla,z)
1@ = ey )

1(s) := *%%%f%%‘ *1(o0)

For the dual task dominance system we define:

p(a;,z)
1(ai) z ———— 1(2)
p(z,a;)
_ p(a;,s)
l(ai) - _ ’l(S)
p(s,a;)

QED

Both Norman and Bobrow (1975) and Navon and Gopher
(1979) proposed to use different pay-off schemes to induce
changes in the subject's resource allocation. Apriori, it is

not clear whether humans have voluntary control over their
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resource allocation. 'Thé following corollary provides a

method for testing this assumption.

Corollary: Assume T3c is true. Then it can be tested whether
a subject is able to allocate a given fraction x of his
attention to the primary task and the remainder 1-x to the

secondary task.

Proof: l(ai) = x-1(a), 1(51) iz (1=-x)+1(a), with 0<x<lI.

Then

x-+1(a)

p(ag,s) = 4 T1(a)+1(s)
p(ag,s) p(t,a;) . x+1(a)-1(t)
p(s,a;)  p(d;,t) 1(s)- (1-x)- 1(a)

QED.

Having proven representation theorems for each of the
three theories it is now possible to order these theories

according to their empirical restrictions.

Theorem 6: For apriori unordered sets A, S the following
relations hold: a) T2 and T3 are empirically more

restrictive than T! . b) T2 and T3 are not ordered by
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empirical restrictions.

Proof: Consider the theories explaining single task

experiments first.

a) Obviously, Op Opog and Op ¥ Op3g+ It remains to

S0 SI
DS

be shown that for and DS

there exists an order on A and
S such that (a,s) --> p(a,s) is increasing in the first and
decreasing in the second argument. If TQS is valid, order
the a€A, according to the order of p(a,s). Since
p(a,s) = p(a,t)+p(b,s)-p(b,t), this order is independent of
s. The same argument holds for the ordering of Ss’ If T3S is
valid, order the elements of As and Sy by p(a,s)/p(s,a).
Since p(a,s) --> p(a,s)/p(s,a) 1is strictly monotone, the
mapping (a,s) ~--> p(a,s) is increasing 1in the first  and
decreasing in the second argument.

b) is shown by a numerical example. p(a,s)=0.6,
p(a,t)=0.7, p(b,s)=0.4, and p(b,t)=0.5 satisfy TZS, but not
T34. On the other.hand p(a,s)=0.9, p(a,t)=0.75, p(b,s)=0.5

and p(b,t)=0.25 satisfy T3_, but not T2 .

s!
By the same arguments, these relations hold up for combined
dominance systems.

QED.

Even for an independent, strong, or strict limited attention

system the relative frequencies collected in an experiment
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may not satisfy the restrictions RI, RSO, or RSI. A

statistical decision 1is therefore needed to determine
whether the collected data originate from dominance systems

satisfying these restrictions.

6) Estimation and Testing

Before parameter estimations and statistical tests are
described separately for every theor% the rationale of the
decision rules which are applied to all three ‘theories is
stated. Note, that the restrictions RI, RSO and RSI were
proven to be necéssary and sufficient conditions for the
correctness of the theories T1, T2 and T3 respectively. In
order to test whether the relative frequencies originate
from probabilities satisfying those restrictions an
unconstrained estimate and an estimate satisfying the
restrictions of@&the theory are calculated. That subset of
the parameterspace Q for which the restrictions of the
theory are satisfied is referred to by w . In the event that
the theory is correct, both estimates should Dbe
statistically identical. Thus in order to test the proposed
theories, a statistical test will be -employed which
determines whether the two estimates are identical in the
statistical sense. JSince the unconstrained estimate 1is

directly given by the relative solution frequencies, only
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the constrained estimate need to be described. For theories
T1 and T2 maximum likelihood (ML) and least square
estimations are proposed. A regular best asymtotic normal
(RBAN) estimation is used for T3. The RBAN estimation has a
smaller sampling variance and a smaller sampling error thaﬁ
the ML estimate (Berkson, 1953). Also, it has the same
asymtotic propertieé a; the ML estimate (Neyman, 1949). Most
important, however, for the RBAN estimation an algorithm is
known which calculates the estimation values. ‘ne RBAN
estimation can be expressed as a quadratic programming
problem. For the ML estimation of T3 a éomputer program
which searches for the best parameters has been used (i.e.
Scheiblechner, 1979). When run on a computer the estimations
usually stabilize after several iterations. The estimation
is not convergent in the mathematical sense, however. It

does not satisfy:

Ne 3N : |p-p,l £ ¢ \mdn

For these ML algorithms there 1is no guarantee that the
values maximizing the objective function are found by the
algorithm. The superiority of the RBAN over the ML
estimation is stressed because this estimation procedure has
been ignored in the psychological literature. A detailed

technical discussion can be found in Berkson (1944,1953) and
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Taylor (1953).

Algorithms and decision characteristics for the three
theories are discussed next. Estimation procedures for the
dual task paradigm will not be treated until all single task
estimations are established. Then it will be seen that the
proposed methods can be generalized to the dual ‘task

paradigm.

6.1) Theory Tl

First, a description of the minimum lower sets
algorithm which is used to estimate the probabilities p(a,s)
of an independent limited attention syspem Dg is given. Then
several characteristics of this estimation, leading to the
proof that this_algorithm furnishes « least square and ML
estimates constrained by the order restrictions Ri of the
system Ds is given. An extensive treatment of estimations
and tests of order restrictions has been presented by
Barlow, Bartholomew, Bremner and Brunk (1972). To facilitate
the description of the minimum lower sets algorithm a few

definitions are needed.

Definition §8: A subset Le€AxS is a lower set with respect to

the partial order defined by Rg iff:

N (a,s)eL, beh, bga --> (b,s)EL,
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V(aqs)GL, teS, tXxs --> (a,t)el.

idesignates the set of all 1lower sets of AxS. A subset
UeAxS is an upper set iff 3 LeAxS : U=AxSALC. WU
designates the set of all wupper sets of AxS. BeAxS is a

level set iff 3 L,U: BzLaU. B stands for the set of all

level sets.

Notice, that A*S and {} are lower as well as upper and
level sets. In addition, all upper and lower sets are level
sets. ‘é(,, WU and B are closed relative to union and
intersection. Now the minimum lower set algorithm can be
described easily. The minimum lower set algorithm obtains
estimates P(a,s) by selecting the 1level set B with the
minimum average solution frequency from a set (@' consisting

of appropriately chosen sets of level sets.

Minimﬁm Lower Sets Algorithm

1) Declare 3. as the active @‘.

2) For every set Béﬁ?calculate the relative solution
frequency g(B).

3) Select the set B such that a(ﬁ)zmin{a(B)}. In case of
indeterminancy take the union of all %: q(B)=min.

4) The set B determined in 3) is called the i-th level set

Bi’ where i is the number of 1loops of this algorithm

_
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previously executed. V (a,é)ei&G(B) is taken as estimate
of p(a,s). Thus P(a,s)=d(B) for (a,s)e%.

5) Declare (® = {(U Bi)an: B; previously selected,Led } as
the active set.

6) Loop through steps 2 to 5 until G? contains only the
empty set {}. Then an estimate 6(a,s) has been assigned

to every (a,s)eAxS.

Note that all estimates 3(a,s) are obtained by averaging
weighted relative frequencies. Thus Ofﬁ(a,s)fl . Also, by
step 3 and 5 it is guaranteed that the restrictions Rg are
satisfied. The estimates are unique. The estimation obtained
by the minimum lower sets algorithm is called the isotonig
regression of q with weight function n and order
restrictions Ré. In the sequel, functions satisfying Rg will
be called isotonic functions. The next step is to prove that

this isotonic regression supplies the least square estimate.

Lemma 1: a) A least square estimation subject to partial
order restrictions (for example Rg) exists. In particular,
it is unique. b) The least square estimates are obtained by
averaging over appropriately selected subsets of the
empirical data. In other words, if the order restricted
least square estimate is a constant for some set B, this

constant 1is the average over the relative solution
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frequencies of B.

Proof: a) To verify (a) represent every empirical datum by
one dimension in a n-dimensional space. Then the order
restictions Rg define a convex set V in this space and the
empirical data are represented by a single n-dimensional
vector v. Since there exists a minimum distance line from: v
to V, the least square estimation is unique.

b) To prove the second part, assume that ‘V (a,s)eBeAxS the

least square estimate B takes on the value d and

E g(a,s)n(a,s)

+ (a,s)eB
p(a,s) = ¥ d
ji:j n(a,s)
(a,s)eB

The objective function is given by

2_la(a,s)-B(a,s)1%n(a,s)? =

2 [3(a,9)-B(a,8)1%n(a,)% + 2 [4(a,s)-a1%n(a,s)2.
(a,s)¢B (a,s)éB

Since the 1last term as a funaetion of d is minimized by
d:B(a,s), an isotonic function coinciding with 3(a,s) for
(a,s)&B, and having a smaller objective value for (a,s)€B

can be found. This is a contradiction to the above
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assumption.

QED.

Theorem 7: The 1least square estimates of the dominance
probabilities p(a,s), constrained by the order restrictions

Rg, are supplied by»the minimum lower sets algorithm.

Proof: [B:p=x] and [B:ﬁéx] define subsets BeAxS for which
the constrained least square estimation assigns the value x
or a value smaller or equal to x, respectively. The
uniqueness of this definition is quaranteed by lemma la.
AV[B:ﬁ:x] describes the average solution frequency of the
set B. By lemma 1b: AV[B:%:X] = x. Let x, y be two values of
D such that P=x V(a,s)eB1, P=y V(a,s)eB2 and [B:p=z] = {}
\{x(z(y, then x and y are called adjecent values of the
function 3. It is

AV[B:B:y] AV([B:PeyIalB:D>x1)

AV(LA[B:p>x])

for all I satisfying La[B:p>x]#{}. This  follows
immediately from the definition of lower sets, and the
properties of the averaging operation?t
[B:p=yle(LalB:D>x) +{}. x<y are adjecent values. For the

same reason, AV[B:B=y1<AV(La[B:p>x1) for all Ley,
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satisfying L=[b:ﬁ£y] and L¥[B:§£y] Thus [B : ﬁ:y] is the
largest level set of the form La[B : B>x], Léi.which has the
minimum average of all 1level sets as described 1in th§
minimum lower sets algorithm. This establishes the induction
step. It 1is also clear, that the first set is correctly
selected by the minimum lower sets algorithm.

QED.

Theorem 7 has proven that the isctonic regression provides
least square estimates for an independent limited attention
system. The following three lemmas will be helpful in
proving that the ML estimate coincides with the least square

estimate.

Lemma 2: The following relations hold between the isotonic

regression ﬁ and any other isotonic function f.

(3-p) (P-f)né = 0 (1)
(3-$)p-n® =0 (12)
(3-3):fen? 40 (13)

Proof: f':=(1-&) p+Af is an isotonic function for O0€d£l,

because the class of isotonic functions forms a convex set.
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The sum of squared deviations of f' from J is
S {3-[(1-&) BrA£1}2n?

Consider this term as a function in & . It is minimized by
o{:O, because 3 is defined as the 1least square  solution.
Therefore the derivative of f' at o =0 must be nonnegative.
Equation (12) is seen to be true by the substitution f:c'ﬁ
with e>1 and ¢<l in (11). Finally (13) follows from (11) and
(12).

QED.
Lemma 3: For every real valued function Y
2 @HY@)n=o0
Proof: By lemma 1b. Ei_(q -p) = 0.
B=c GED.

Lemma 4: The discrepancy measure
z L [§(a,s),f(a, s)] 'n(a,s)

(a,s)€A»S

with
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A, = ¢ @-% () -G-0) ()

obtains its minimum value for the maximum likelihood
estimate fzg.'The set of admissable functions f forms a
closed set. ? is the derivative of ¢ , which is defined by

$(u)=ulog(u)+(I1-u)log(i-u).

Proof': ‘f(u)=log(u)-log(l-u). By insertion,

Ag,r) =‘?(6)-f-10g(f)-(l-f)'log(l-f)-(a—f)-[log(f)—log(l—f)]
= =Jelog (f)-(1-)elog(l=-f)+con.

Therefore, A(F,f) is minimized by the same function f which
maximizes Qq-log(f)+(1-3)elog(i-f).
QED.

Theoren 8: The .isotonic regression furnishes the
ML-estimatioh for dominance systems constrained by the

restrictions Rg of an independent limited attention system.

Proof: By the previous lemma it is sufficient to show that

Eq.(14) holds for all isotonic functions f with 0€f€1.

2. A@,0) = A@Ep+AK,D) (14)

By insertion it is obtained that
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A®G,f) = (3-D) [P (-1 (1. Observe, that \-f

is
nondecreasing. Therefore, ‘{’(f) is isotonic. It is
Z (5-3)"6“)'0 £ 0 by lemma 2a,
Z (ﬁ-%)"f (3)'n =0 by lemma 3.
ThusZA (@,f)>0 for every function f except for f‘:ﬁ.
QED.

The last theorem establishes the constrained ML-estimation
for theory T1. Hence, the likelihood ratio (LR) coefficient

can be calculated by:

Li{d(a,s)+n(a,s);d(b,s) n(a,s)...| B(a,s);p(b,s) . .}
i Li{3(a,s)+n(a,s);3(b,s) n(a,s)...| pla,s);p(b,s) . .}

with Sew being the parameter space constrained by Ri and
p"eg?. the total parameter space. Unless the empirical data Q@
satisfy the order restrictions Rg 8 will always lie on a
boundary of w . For this case Chernoff (1954) has shown that
the statistic -2 logh can be used to test whether the ‘true
p lies in w (T1 is tr‘ge), or peuo"(Tl is invalid). Under the
assumptions that p lies on a boundary surface Chernoff has

2
proven that -2 log A is X~ distibuted with | degree of
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freedom. Hereby T!1 can be tested in total. Statistical

procedures for T2 will be discussed next.

6.2) Theory T2

As mentioned earlier, the algorithm for estimating the
e>-weights in a linear regression equation could be used to
estimate the probabilities p(a,s) under the side constraints
of the theory T2. Indeed, it was proven by Bradley (1973)
that these estimates satisfy the ML criterium. In the
particular estimation problem at hand precautions would be
necessary, however. No predicted value must be greater than
1. The predicted value of the null vector has to be =zero.
Therefore, this estimation procedure will not be pursued any
further. Instead, a least square estimation is used. The

objective function

; [3(a,s)-p(a,s)1%n(a,s)?

(a,s)eAxS

is minimized under the side constraints 0¢p(a,s)€1 and Rgo.
This 1is a quadratic programming problem. From the theory of
quadratic programming it is known that except for degenerate
problems there always exists a wunique solution to this
problem. Also, algorithms and programs are available for its

solution (Land and Powell, 1973).
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For testing T2, a result due to Wilks (1938) can be
used. Wilks has shown that the test statistic -2 logl.is
:(}distributed with k-1 degrees of freedom, if the true
parameter lies in a 1 dimensional hyperplane w of the k
dimensional space Ql . A is the LR coefficient. Obviously,

k:mon:IAt-lS‘. 1 is equal to n+m-l because any n+m-l

SO a

s 11

parameters will satisfy the restrictions Rgo. By R
other probabilities are a function of the above parameters.
Thus the dimensionality of w 1is n+m-I1. Also, Pearson's;ts
test could be applied to test this theory. The degrees of
freedom for this latter test are (n-1)(m-1) since n+m-|
independent parameters have been estimated from n-m data.
Thus both test statistics are 3t}distributed and have the
same number of degrees qf freedom. As a matter of fact, the
two tests have been shown to be equivalent in the limit

(Neyman, 1949).

6.3 Theory T3

As mentionéd earlier we will use an RBAN estimation
which has been described by Berkson (1944,1949)., This

estimation requires the minimization of the term:

d(a,s) G(a,s)
jE: zz:n(a,S)i(a,S)[l—i(a,S)] log ————— - log —
1-3(a,s) 1-p(a,s)

aeR se$
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under the side constraints Rgl. The objective function as

well as the side constraints Rgl can be simplified by

transforming the probabilities into logits:
A B(a,s)
d(a,s) = log "
1-p(a,s)
The constraints of the optimization are now given by

(n-1)+(k-1) linear equations:
A A A A
Y a,b,s,t,e8,5 : d(a,s)-d(b,s)-d(a,t)+d(b,t)=0.

Since the objective function is quadratic in g(a,s) this
again can be expressed as a quadratic programming problem.
Exactly the same tests as for T2 can be employed. Since the
number of estimated parameters is the same, the number of
degrees of freedom is identical. Hereby the discussion of
statistical procedures for the single task paradigm is
complete.

We will now examine whether the proposed methods
generalize to the dual task paradigm . For T3 this is
obvious because the objective function is still a quadratic
term and the constraints are linear. Thus the estimation
procedure remains a quadratic programming problem. It is not
difficult to verify that the methods proposed for T2 can be

generalized to the dual task paradigm as well. The order
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restrictions Rg of the theory Tt for the dual task paradigm
can be expressed by a logical disjunction of several sets of
partial orderings. Therefore, the istotonic regression can
be applied to every factor of this logical disjunction. Thus
a "ML estimate" is obtained for every factor. The result
with the largest likelihood value is the ML estimate for the
combined limited attention system. These statisticai

procedures can now be applied to determine the wvalidity of

the proposed attention theories.




-55~ /Theory Development/

1) Experimental Studvz)

A SATO single task experiment was used as first test
for the proposed theories. A duration discrimination ‘task
was employed. The difficulty of this task can be varied by
changing the difference between the duration of 2 visual
stimuli which must be discriminated by the subject (Allan,
Kristofferson and Wiens, 1971). In the present experiment
this duration difference was determined by the stimulus

asynchrony offset (SAQ).

7.1) Method

Subjects: Four female and two male psychology students
from Regensburg University (age 19-24) served as subjects.

Apparatus: The subject sat at a desk facing a vertical
panel with six signal lights consisting of 1light emitting
diodes (LED). Two signals (4 and 6) served as stimuli. The
other signals were used to present feedback. Signal |
indicated the feedback interval. Signal 2 informed the
subject that his response time was 1longer than the lower
time bound (DLy), and signal 5 informed him that the
response time was below the upper time limit (DLu), The
correctness of the response was reported by signal 3. The
subject started a sequence of trials by pressing the start

button. By pressing one of the two response buttons the
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subject decided whether signal U4 or signal § was lit for a
longer time period. The experiment was controlled by an
electronic device which was assembled to run this
experiment.

Design: Five subjects were employed in a two factorial
design (DL®*SAQ). The relative frequency of correct responses
was recorded as the dependent measure. As a control, two
subjects were run for ten blocks of trials with constant DL
and SAO specifications.

Procedure: In order to avoid learning effects, every
subject was pretrained by a few thousand trials. The
pretraining was used to adjust individually the DL and SAO
specifications and to familiarize the subjects with the task
objectives. The subjects were instructed to wuse the time
they had available (determined by DLu) to make the best
decision and that it was most important that their response
time lie between DLl and DL,. In all cases DL, was 200 msec
less than DLu. The actual experiment was run on two
consecutive days.

Every trial starts with an intertrial interval (ITI) in
which no signal appears. A warning interval (WI) begins when
signals 4 and 6 are flashed. With equal probability the
random number generator first either turns off stimulus 4 or
stimulus 6. This determines the beginning of the SAO

interval, which is terminated when the second stimulus
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disappears. It is then the subject's task to decide which
stimulus lasted longer. Following the subject's response a
feedback interval (FI) begins which is followed by another
ITI. The subject always receives feedback regarding whether
the 1last response was wiph;n the time bounds and whether it

was correct. A sample trial sequence is shown in Figure 1.

insert Figure 1| about here

Between 50 and 100 trials were combined to a block. Each
block contained 20 warm-up trials which were excluded from
any analysis. Experimental specifications were not changed
within any given block. The representation sequence of
blocks was either random or ordered by the DL

specifications.

71.2) Results

The data were analyzed separately for each subject
because major individual differences have been found in the
training phase of the experiment. More than 90 percent of
all responses of a block wére within the specified DL
intervals. Since the remaining 10 percent were close to the

DL boundaries, a well shaped unimodal distribution of
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latencies was obtained. The data of the two control sujects
were used to test whether there were any sequential
dependencies among the trials of one block. The two control
subjects were presented with 10 identical blocks, each
consisting of 150 trials. A time series analysis (Drosler,
1978; Yaglom,1962) showed that there were neither periodic
changes  (i.e. attention fluctuation) nor trends (i.e.
learning or fatigue) within a sequence of 150 trials. It was
also tested whether the different solution frequencies of
ten identical blocks (control) can be explained by a single

solution probability.

insert Table 1| about here

For both control and experimental subjects the results of
the statistical test for a single solution probability are
shown in table 1. The test results of the three theories are
shown in Table 2. As mentioned above, the three theories
have been tested for the five -experimental subjects

individually. The significance level was chosen to be 0.10.
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insert Table 2 about here

7.3) Discussion

The solution frequencies obtained for the experimental
subjects cannot be explained by a single probability. From
Table 1 it can be concluded that the experimental variables
(DL and SAO specifications) systematically influence the
probability of a correct solution. Since no signifiqant
variation was found in\the data of the two control subjects
(la and 2), it 1is concluded that all the systematic
variability occurs in connection with the experimental
variables. Therefore it must be possible to express the
solution probability as a function of SAO and DL.

Three possible functional relations between SAO, DL and
the solution probability were introduced by the theories T,
T2, and T3. From the results in Table 2 it is seen that the
theory Ti1 is the most appropriate explanation. We accept TI
as an adequate explanation of the experimental results. Even
though the experimental data deviate significantly from T2
and T3, these theories still explain a high percentage of

the variation in the data. For instance, in the case of
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subject Ib, T2 and T3 explain 94.47 % and 92.62 %
(determination coefficien®) of the variance in the data.
Therefore these theories should not be completely ruled out.
Instead, some thought should be given to how error variables
can be eliminated in this experiment: For subjects 4 ahd 5
the difference between consecutive DL specifications was
only 50 msec. This had the undesired result that for DLu=350
and DLu=uoo the average latencies were identical. Thus, the
effect of the difference Dbetween the two experimental
specifications vanished. Because the presentation order of
experimental blocks was random for subjects 4 and 5, the
solution probabilities might have been influenced by the DL
specifications of the block most previously presented. Since
a very powerful stat@stiéal test was applied, these error
variables might have caused a type 2 error in our
statistical decision about T2 and T3.

Summarizing, it. is concluded that T1 adequately
explains the data. ~Since T1 can be thought of as a
formalization of "daté— and resource- limited processes",
these results stress the significance of Norman and Bobrow's
(1975) reasoning. Though the the LR coefficient decides
against T2 and T3, these theories should still be
entertained as possible attention theories because the
significant results could be due to error variation

introduced by ‘the random presentation order of experimental
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blocks, and by some experimental specifications being too

similar to oneanother.

8) Conclusions

Both the theoretical analysis and the experimental
study demonstrate the facp that experimental conclusions are
always dependent upon the underlying mathematical theory. In
attention research general conclusions have been drawn which
are not true if any other than the linear model (i.e. the
assumptions underlying the analysis of variance) is assumed.
By restricting oneself to the linear model, many hypotheses
have been rejected which may be correct when a different
mathematical theory is assumed. Thereby more and more
complex concepts of attention have been developed. The
corresponding fheory-clasées became so complex, that they
cannot be adequately tested within any reasonable period of
time. The present paper has shown that with a different
approach it is possible to develop and establish relatively

simple theories of attention.

B
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FIGURE CAPTIONS

the duration discrimination task as a

function in time. The numbers 1 through 6 refer to the
different signals used in this experiment.
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For all subjects: ITI=1000 msec, WI=500 msec. Except for subject 3
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TABLE 1
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Likelihood Ratio Tests for the Existence of a

Single Solution Probability

INDEPENDENT VARIABLES

- TEST STATISTIC

subject pretraining SAO DLL_DLU -2 log A DF
and blocksize
[# of trials] [msec] [msec]
1@ 5500 60 200-400 12.32 9
150
2 5000 45 200-400 7.93 9
150
3 300 20 100-300 126.87 19
50 40 200-400
60 300-500
80 400-600
100
y 3000 30 150-350 99.12 15
100 L5 200~-400
60 250-450
75 300-500
5 2800 15 100-300 by, 74 29
50 30 150-350
45 200-400
60 250-450
75 300-500
90
b *
1 3000 30 200-400 279.50 11
100 45 300-500
60 400-600
75
7 3800 10 100-~300 120.09 14
100 20 150-350
30 200-400
250-450
300-500

Subject 1 participated in the experiment as a control

(FI=800 msec), FI=500 msec.
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and as an experimental spbject.
* i
) The significance level is 0.10.
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TABLE 2
Likelihood Ratio Statistics
of the Five Experimental Subjects

for the Three Theories T1, T2, and T3

T1 T2 13

subject -2+ logh DF 2 -Togh DF ~2 TogLF
3 1.26, 1 23.33, 12 25.105 12
} 15.78, |1 30.70% 9 28.67, 9
5 5.62% 1 22.69, 20 71.56y 20
b 0.75 1 17.86, ' 6 57.94, 6
7 2.36 21.50" 8 21.64% 8

* . .
) Significant results are indicated by an asterisk.

The significance level was chosen to be 0.10.
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IDENTIFICATION

number one

case
case
case

sign

letter "1%

Greek letter "alpha"

Greek letter "sigma"

- the upper case

Greek letter "sigma"

integration symbol

cursive upper case letter "A"

case

case

case

case

case

case

Greek
Greek
Greek
Greek
Greek

Greek

operator

letter
letter
letter
letter
letter

letter

"existence" operator

"beta"
"gamma"
"1amda“
llmu"
"theta"

"delta"

cursive upper case letter "U"

cursive upper case letter "B"

cursive upper case letter "L"

lower case Greek letter "epsylon"

meaning "element of"

lower case Greek letter "phi"
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the
the lower
the lower
the lower
summation
the
the
the lower
the lower
the lower
the lower
the lower
the lower
the "all"
the
the
the
the
tﬁe
the
the

upper case Greek letter "Phi"
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the lower case Greek letter "omega"

the upper case Greek letter "Omega"
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the upper case Greek letter "Chi"
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