Failure to Recognize Previous Hypotheses During Concept Learning

Ronald T. Kellogg

University of Missouri-Rolla

Donald Robbins and Lyle E. Bourne, Jr.

University of Colorado

Running head: Hypothesis Forgetting




Page 2

Abstract

We examined what a person stores in short-term memory while solving a
concept identification problem, using recognition probes for hypothesis,
stimulus, classification-response, and feedback information from the immediately
preceding trial. In Experiment 1, the number of stimulus dimensions that were
irrelevant to the definition of the concept to be learned was varied (two versus
four). In Experiment 2, we manipulated (a) the percentage of trials on which
hypotheses were requested from the subject (75 versus 25) and (b) the percentage
of trials on which recognition probes were included (75 versus 25). In these
experiments, feedback and response recognition were nearly perfect, whereas
stimulus and hypothesis recognition were relatively poor. Surprisingly, from
the perspective of hypothesis theory, subjects often failed to recognize
previously-stated hypotheses even when they led to correct classifications. 1In
Experiment 3, subjects gave hypotheses and answered recognition probes on all
trials, with one condition receiving all four types of probes alternately and
another receiving only hypothesis probes. Subjects in these conditions showed
nearly perfect hypothesis recognition. We concluded that experimental
conditions varied in the degree of emphasis placed on hypothesis testing and, as

a consequence, short-term retention of hypotheses varied.
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Failure to Recognize Previous Hypotheses During Concept Learning

What events are attended to and stored in short-term memory during concept
learning is a matter of considerable interest. Hypothesis theory asserts that
little specific item information is carried forward as learning progresses. All
that must be retained in short-term memory is a winning hypothesis--the working
hypothesis that leads to a correct classification of a stimulus as an instance
or noninstance of the concept to be acquired (Restle, 1962). Certain versions
of hypothesis theory further postulate that some or all rejected, losing
hypotheses are retained as well as the winning hypothesis (Levine, 1969; 1975).
Data indicating strong hypothesis memory and weak memory for specific instances,
therefore, has been interpreted as support for hypothesis theory.

The data suggesting that hypotheses are remembered from trial to trial come
from concept identification studies in which subjects are told the rule
governing the concept (e.g., a conjunction of two defining features) and their
task is to discover the defining features. The several studies that examined
memory for stimuli, responses, and feedback at the end of the concept
jdentification task (Bourne & 0'Banion, 1969; Calfee, 1969; Trabasso & Bower,
1964) indicate poor memory for nonhypothesis events. Indirectly, this suggests
that hypothesis memory should be strong. Such evidence would lead one to expect
essentially perfect winning hypothesis recognition, especially after the trial
of last error in classifying the acquisition stimuli. Still, these
post-learning probe studies did not directly assess whether the subject
remembers hypotheses, either during or at the end of active problem solving.

Another study (Coltheart, 1971) employed the post-learning probe method to
test hypothesis memory, using blank trials to infer the subject's hypothesis
(Levine, 1975). Subjects' protocols on the question of how they did the task

often contained references to hypotheses revealed by the blank-trial

g



Page 4

classification responses; the first, the second, and the third hypotheses tested
were mentioned in .77, .70, and .87 of the cases, respectively. These levels of
hypothesis recall are not perfect, but, given the delayed nature of tests and
because recall rather than recognition was tested, they strongly indicate that
hypotheses are stored, possibly even in long-term memory. Nonetheless, it is
conceijvable that the subjects' verbal protocols in Colthearts' study represent a
reconstructive or generative process rather than recall. After the task was
completed, subjects may have generated, not recalled, the hypotheses that
governed previous classifications. Direct data on what the subject retained
during learning is missing in this, and all other, post-learning probe studies.

To our knowledge, only two studies have directly tested short-term
recognition or recall for trial events during problem solving in a concept
identification task (Kellogg et al., 1978; Kellogg, 1980). Kellogg et
al. (1978) gave subjects the primary task of discovering the correct way to
classify alphabetical stimuli. Concurrently, subjects were occasionally asked
(on a random 50% of the trials) to indicate what hypothesis (or hypotheses) they
had in mind. Further, they were occasionally asked (on a random 50% of the
trials) to respond to recognition memory probes for the immediately preceding
trial events. These probes tested short-term recognition of stimulus,
hypothesis, response, and feedback events, each type equally often. The
instructions trained subjects on all three response requirements. But the
primary task of performing correct classifications was the only task that was
present on every trial. (Note that hypothesis memory probes occurred on only
one out of eight trials, on the average.)

The task employed by Kellogg et al. was complicated from the subjects
perspective, but necessary to overcome an obvious methodological problem with
direct probes during problem solving. If the subject is probed on every trial

for one type of previous trial event, it is not surprising if he or she takes to
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storing that event. Subjects may store the information in short-term memory
regardless of whether they use it in solving the problem.

The results obtained using the multiple response probe technique were
unexpected. First, subjects showed almost perfect recognition memory for the
response made and the feedback received on the immediately preceding trial.
Second, the subjects' recognition memory for their hypothesis from the preceding
trial was no better than their memory for the stimulus, which was poor (about
70% correct, where 50% is chance). Most strikingly, there was no difference in
memory for winning and losing hypotheses. Overall, neither was remembered any
better than features of the stimulus.

In the task used, if the subject made a positive response, then one or more
features of the stimulus on that trial must be the same as a feature or features
designated by the subject in his/her hypothesis. For example, with alphabetic
stimuli, when the subject's hypothesis was the letter B, he or she made a
positive category response only if the stimulus contained B, regardiess of what
other letters appeared. Correspondingly, subjects made a negative response if
his or her hypothesis did not match any features of the stimulus. Recognition
of the hypothesis designated by the subject was best following positive response
trials, with recognition following negative response trials falling essentially
to chance. Kellogg et al. (1978) argued that such a result would be expected if
subjects confused hypothesis letters with stimulus letters, failing to keep
these conflicting letters separate in short-term memory.

These resuits are mystifying from the perspective of hypothesis theory.

How could subjects designate a winning hypothesis on Trial n and then fail to
recognize it on Trial n + 1, while at the same time correctly classifying
stimuli? Although hypothesis theory rejects such a result as pure nonsense, the
predictions of other theories of concept identification are not inconsistent

with such a finding. We defer discussion of alternative theoretical views until
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later. Our main purpose in this article is to assess the reliability and
boundary conditions of hypothesis forgetting. Before it is appropriate to
consider theoretical interpretations of this potentially important finding, it
is necessary to validate the finding itself.

In Experiment 1 we examined a basic question of generality. Do standard
manipulations of learning rate, such as varying the number of irrelevant
dimensions, behave as expected in the task used by Kellogg et al. (1978). The
task may for some reasons, yield unusual data on learning rates as well as
hypothesis memory. For example, directly probing memory during problem solving
might alter the processes that are typically used in tasks of this type. If so,
the phenomenon of hypothesis forgetting might be safely ignored.

In Experiment 2, we manipulated the degree to which designating hypotheses
and remembering trial events were important. Kellogg et al. (Experiment 2)
found no effect on memory performance of instructing subjects to divide
attention between the primary classification task and the memory task. Despite
this negative result, it seemed reasonable that varying the percentage of trials
requiring hypothesis selection and memory probes might affect the degree of
attention that subjects give to retaining hypotheses.

In another study using the direct memory probe technique, Kellogg (1980)
asked subjects to state their current hypothesis(es) on every trial. No
classification responses were required. Random recall probes revealed
essentially perfect retention of working hypotheses. Thus, when the primary
task deals with hypotheses, then even a recall measure reveals significant
hypothesis memory. In Experiment 3, we requested a hypothesis on every trial
and, in one condition, probed memory for that hypothesis on every trial. This
arrangement puts maximal emphasis on the formulation and use of hypothesis in

the Kellogg et al. procedure and should lead to excellent hypothesis memory.
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Experiment 1
Method

The subjects were 22 introductory psychology students who participated in
the experiment in partial fulfillment of a course requirement.

Procedure. The experiment was conducted on computer-controlled terminals.
Upon arriving for the experiment, subjects were given detailed instructions
regarding the use of the terminal and the concept identification task. To solve
a problem, the subject had to discover which one of several possible stimulus '
features was relevant to determining the assignment of stimuli to positive and
negative categories.

Figure 1 shows how the screen looked at the end of the most complex type of
trial. The quadrants on the left appeared on every trial. Those on the right,
dealing with hypothesis selection and memory probes, occurred probabilistically.
On each trial, the subject reviewed a stimulus, classified it as positive or
negative, received feedback as to whether his/her classification response was
correct or wrong, and was given a brief interval to use the information
presented. Thus, the quadrants on the left in Figure 1 occurred on every trial.
On a probabilistic basis, the right hand quadrants occurred during the trial. A
problem was considered solved after 6 correct responses in a row. Subjects were
so informed and a brief rest was interpolated between problems. Subjects solved
as many problems as possible within a 45 min limit. The problems were presented

successively with the solution feature randomly chosen for each problem.

- - - - - - - - - - -

Each stimulus consisted of either three or five letters, appearing in
either upper or lower case type. The following letters were used throughout the

experiment: N, n, J, j, R, r, B, b, F, f. The stimulus letters appeared on the
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face of a cathode-ray tube (CRT) in a random configuration, position of letters
being irrelevant to the problem (see upper left hand quadrant of Figure 1).

On 50% of trials, subjects were required to indicate their current
hypothesis regarding the features that defined the positive category. Subjects
were told to designate, when requested by a message in the upper right quadrant
of the screen, whether each of the complete series of all possible letters,
presented in upper and lower case, was currently under consideration. All
designated letters were displayed in the lower portion of this quadrant. In
Figure 1, the subject has designated r and N as potentially relevant and is
about to respond to b. When it occurred, the hypothesis selection phase usually
occurred immediately after the stimulus was presented; at this point, according
to hypothesis theory, the subject presumably consulted his or her hypothesis in
order to classify the stimulus.

In addition, on 50% of the trials a question was asked regarding events of
the previous trials. The probe appeared in the lower right quadrant of the
screen, either immediately or 6 sec after the current stimulus was presented.
When a probe and a hypothesis request occurred on the same trial, the probe was
presented first. The probe asked a simple binary question about the stimulus,
response, feedback or hypothesis on the immediately preceding trial (e.g., What
was your last hypothesis?). Each probe included the correct answer and a lure.
For stimulus and hypothesis probes, a randomly-chosen letter in both upper and
Tower case appeared. In the case of hypothesis probes, the letter chosen
obviously had to have been a part of the subjects' hypothesis selection on the
preceding trial. For feedback probes, the alternatives were correct and
wrong; for response probes, positive and negative. In all cases, a pair of
asterisks came on the screen to designate the alternative selected by the
subject. In Figure 1, the subject has indicated that he/she selected R as one

hypothesis on the previous trial. Depending on the designated hypothesis
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pool from the preceding trial, this may be a correct recognition or an example
of hypothesis recognition failure.

From the subject's point of view, inclusion of hypothesis selection or
memory probes was a random affair. Actually, the type of trial was determined
by position in a 32 trial fixed sequence designed to avoid biasing the subject
to remember events simply because the experimenter was going to test for them.
Presenting probes unpredictably and only on some portion of the trials was one
method of minimizing bias. Another method was instruction. To insure that
subjects devoted full attention to solving problems and not to memorizing
information for the probes, they were instructed to concentrate on classifying
the stimulus patterns. Memory probes were to be answered accurately, but as
quickly as possible. Subjects were encouraged to work on the problems as they
would if the computer never presented probes or asked for hypothesis selections.
It should be noted, however, that these instructions are not critical;
hypothesis and stimulus recognition are poor even when the probabilistically
presented memory probes are emphasized in the instructions (Kellogg, et al.,
1978).

The third goal of the instructions was to familiarize subjects with the CRT
and the keyboard used to type responses into the computer. Two keys were used
for all responses. Each key had two labels, either the number “1" or "2" placed
above the key and either "yes" or "no" written below the key. For
classification of the stimulus, subjects were informed by text written on the
screen to press "1" for positive or "2" for negative. When memory probes were
presented, the two possible choices for answers were randomly labeled by the
computer as "1" and "2" (see Figure 1).

On trials calling for hypothesis selection, each of the six or ten features
was displayed, one at a time, in random order, and subjects were instructed to

press "yes" or no" for each feature. Features selected were then displayed on
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the screen below the question (see Figure 1). It is important to note that
subjects could not remember their hypothesis selection by encoding a position on
the screen or the button they pushed. The usefulness of visual-motor memory was
eliminated by randomly changing the order of presentation of the possible
features and by requiring the use of the same response button regardless of
which feature was selected as a hypothesis. This procedure eliminates retrieval
cues that are unrelated to the process of sampling and testing hypotheses,
forcing subjects to rely only on their memory of the hypothesis per se. It is
important to do so to provide the most stringent test of hypothesis memory.

For the simplest trial, a stimulus appeared, the subject classified it, and
then feedback was immediately given. A1l of this information remained on the
screen for 5 sec prior to the onset of the next trial (see left-hand quadrants
of Figure‘l). The most complex type of trial proceeded as follows: After the
stimulus appeared, the subject was probed for information from the trial just
completed. After responding to the memory probe, the subject indicated his or
her current hypothesis. Upon completion of hypothesis selection, the subject
was asked to classify the current stimulus as positive or negative.
Classification feedback was provided to end the trial. As on simple trials, all
of the information that appeared during the course of a trial (see all of Figure
1) remained on the screen for 5 sec.

Note that subjects were allowed to take as much time as they wished on each
response. Once a stimulus appeared, initiating a new trial, the presentation
rate of the memory probe, hypothesis selection, and classification events
depended on how rapidly the subject answered each question.

Design. Stimulus complexity was varied between subjects. A1l problems
given to one group of subjects had one relevant and two irrelevant dimensions,

whereas those given to another group had one relevant and four irrelevant
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dimensions. An equal number of subjects were assigned randomly to each group.
The remaining variables, probe type (feedback, response, hypothesis, and
stimulus) and probe delay (0 and 6 sec), were manipulated in a 4 x 2
within-subject factorial design.

Because it was interesting to examine memory performance both before and
after the trial of last error, sufficient data could be collected only by having
subjects solve a large number of problems. We chose to put a limit on time
rather than requiring the same number of problems for each subject, mainly
because subjects differ widely in the number of trials required to solve each
problem. This design generated an unequal number of observations across
conditions and subjects, but it has been used effectively in previous
experiments (Kellogg, et al., 1978) and seemed preferable to keeping subjects
for differing lengths of time in the experimental session.

The 32 trial sequence of trial types was constructed to meet constraints on
the occurrence of (a) the different types of probes on memory selection trials,
(b) the delays, and (c) the contingency between hypothesis selection and
hypothesis probes. Details of this procedure can be found in the earlier report
(Kellogg, et al., 1978). These constraints were designed to yield roughly equal
amounts of data under all within-subject conditions and to assure that subjects
could not anticipate the probe on Trial n + 1 on the basis of what was required
on Trial n.

Results and Discussion

A1l statistical tests were evaluated at the .05 level of significance.

Data were collapsed over all problems solved by a single subject. An additional
within-subjects variable, Solution State, was created by partitioning data into
pre- and postsolution trials. (The trial of last error in classifying stimuli

was the last presolution trial.)
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The mean number of problems solved within 45 min was 14.5 for the subjects
given problems with two irrelevant dimensions and 8.1 for those given problems
with four irrelevant dimensions, t(20) = 3.58, Se = 1.79. The mean number of
trials to solution for the two dimension condition was 9.5 and was 15.4 for the
four dimension condition, t(20 = 3.66, Se = 1.61.

The mean proportions of correct responses on recognition probes are shown
in Table 1. An analysis of variance (ANOVA) on the data from Experiment 1
revealed three reliable effects. First, Probe Types, F(3,60) = 8.41, MSe = .94,
differed in a fashion similar to that observed by Kellogg et al. (1978). For
the purpose of comparison, we also show in Table 1 the data from Experiment 1 of
our earlier report, which are based on problems with three irrelevant
dimensions. Overall, in the present experiment, hypothesis and stimulus memory
were equally poor, probability of correct recognition equal to .73 for both.
Response memory (.81) was better and feedback memory (.94) was best (mean
probability of correct recognition in parentheses). Tukey's (a) test revealed
that the difference between memory for feedback and memory for hypothesis and

stimulus information was reliable.

Second, the effect of Stimulus Complexity on overall recognition was
marginally significant, F(1,20) = 3.79, MSe = .108, p < .07. Overall, subjects
remembered less when there were four irrelevant dimensions than when there were
two. The largest change was for stimulus features, a drop of 17% from two to
four irrelevant dimensions. The interaction of Probe Type and Stimulus
Complexity was nonsignificant, however.

Finally, the main effect of Delay was significant, F(1,20) = 5.30.

Surprisingly, overall recognition was slightly better after a 6 sec delay (.82)

S -
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than after no delay (.78). Because recognition was better after 6 sec delay and
because previous experiments failed to reveal a main effect of delay, the
reliability of this effect is doubtful.

A1l other sources of variance failed to approach significance. That
Solution State had no effect is worth emphasizing. Overall recognition on
postsolution trials (.79) was equivalent to that on presolution trials (.82).
0f special importance, hypotheses given on postsolution trials (.72) were
recognized no better than those given on presolution trials (.73). This result
also occurred in the experiments reported earlier (Kellogg, et al., 1978).

Because our chief interest was in hypothesis recognition failure, we
examined these errors in detail. It is possible that hypotheses leading to
correct feedback are retained while losing hypotheses are immediately forgotten,
giving an overall recognition score for hypotheses somewhere between chance and
perfect performance. To assess this possibility, we calculated the proportion
of correct recognitions (summed over all variables) on presolution trials for
hypothesis probes occurring after correct and wrong feedback and after positive
and negative responses. We present these proportions in Table 2, with the total
number of observations for each cell shown in parentheses. Replicating our
earlier findings, confirmed hypotheses were not always recognized. In fact,
recognition of hypotheses that led to correct negative classifications was about
equal to chance (.50). Disconfirmed hypotheses were recognized about equally
well, regardless of whether they dictated positive or negative responses,
although the number observations in the wrong-negative cell was probably too
small for the data to be stable. We also examined data on postsolution trials,
when subjects received only correct feedback. These data also showed that
hypotheses associated with positive responses were recognized better than chance

(.83) whereas those associated with negative responses (.53) were not.
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One straightforward explanation of the hypothesis recognition errors is
that our hypothesis selection procedure failed to identify the subjects true
hypothesis. To check the validity of our method, we measured the consistency
between classification responses and selected hypotheses. The proportion of
hypothesis-selection trials on which the subjects failed to state a hypotheses
consistent with their classification was only .02, about the same proportion of
"oops errors" observed in previous studies. Hence, it is unlikely that subjects
were really focusing on a hypothesis different from the one(s) they selected.

To summarize, as the number of irrelevant stimulus dimensions increased,
the mean number of trials to solution increased. This finding is identical to
that observed in tasks that do not include hypothesis selection and memory
probes (Bourne & Haygood, 1959). Thus, we have some reason to believe that the
procedures employed by Kellogg et al. are similar to previous concept
jdentification studies and offer no surprises with regard to a standard
manipulation of task difficulty. Recognition of stimulus and hypothesis events
tended to decrease as stimulus complexity increased, with stimulus events
showing the largest drop. This trend is hardly surprising since the sheer
number of features that must be remembered increases with each irrelevant
dimension added. Of chief importance, the poor level of hypothesis memory
varied little between conditions. This consistent finding documents the
reliability of hypothesis forgetting.

In Experiment 1, as in previous experiments (Kellogg et al., 1978),
hypothesis selection and memory probes occurred on an independently shown 50% of
the trials. In Experiment 2, we asked whether varying the frequency of these

events might influence memory and learning performance.
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Experiment 2

Method

The subjects were 40 students from introductory psychology, enlisted as
volunteers and divided equally among four experimental conditions. The groups
were defined by a 2 x 2 factorial design that varied the percent of triais on
which hypothesis selections were requested (25% or 75%) and the percent of
trials on which memory probes were delivered (25% or 75%). The details of the
method were the same as in Experiment 1, except that subjects solved problems
for 60 min and the stimuli were generated from four dimensions, one relevant and
three irrelevant.

Results and Discussion

Overall, the mean number of problems solved was 15.0 requiring 15.8 trials,
on the average, per problem. The four groups failed to differ significantly on
these measures. The proportion of hypothesis selection trials on which subjects
failed to state a hypothesis consistent with their classification was .04.

The primary data are presented in Table 3. the only significant main
effect in an ANOVA performed on these data was Probe Type, fﬂ3,108) = 17.70, MSe
= .108. Subjects recognized feedback probes best. There were no significant
differences among response, hypothesis, and stimulus probes, although of these
three, response probes exhibited the highest proportion of correct responses in
all conditions. Tukey's a test revealed that (a) the proportion correct on
feedback probes was significantly higher than the level of performance on
hypothesis and stimulus probes, and (b) hypothesis and stimulus probes did not
differ significantly. This pattern of results was obtained at both 0 and 6 sec
delays. Also, the Probe Type by Solution State interaction approached
significance, F(3,108) = 2.26 p < .09, but the trends indicate that subjects
were no better at recognizing hypothesis features on post- than on presolution

trials; the mean proportion of correct recognition was .70 for both types of

- -
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trials.

No other main effect or interactions were significant in this analysis.

The variables of primary interest, Percent Probes and Percent Hypotheses, were
totally without effect. The data in Table 3 are remarkably stable over the
conditions used. There is only slight evidence of any increase in recognition
performance as these percentages increase.

As before, we undertook an analysis of mean proportion of correct
hypothesis recognitions on presolution trials occurring after correct and wrong
feedback and after positive and negative responses. This analysis was performed
separately for the four main conditions of the experiment. Because there were
no major differences, the data were summed over conditions for presentation in
Table 4, along with the number of observations on which they are based. As in
previous studies, type of feedback had Tess of an effect on hypothesis memory
than did type of response. Subjects recognized hypotheses given on positive
response trials more often than hypotheses given on negative response trials.

We also examined the data from postsolution trials, which were similar to
presolution results for correct feedback. The proportions of correct responses
for positive and negative response trials were .84 (n = 206) and .52 (n = 143),
respectively. Subjects apparently confused hypothesis and stimulus features,
leading to chance performance following negative response trials when hypothesis

(e.g., B) and stimulus (e.g., b) features conflicted.?
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We anticipated that varying the percentage of trials on which subjects were
asked to state their hypothesis and the percentage of times on which memory
probes were administered would affect the use of hypotheses. The more we asked
for or about hypotheses, the greater the demand that subjects retain pertinent
information. But neither manipulation affected memory for hypotheses or for any
other events. Hypothesis forgetting emerged from our study remarkably
impervious to manipulations of the relative importance of retaining hypotheses.

The reason our manipulations may have failed is that subjects were not
required to provide hypotheses as a primary task. Even in the 75%-75%
condition, subjects were asked for a current hypotheses on only 75% of the
trials and were probed for hypothesis information on only 18.75% of the trials.
In Experiment 3, we checked whether requiring hypothesis selection and
hypothesis recognition on every trial would produce accurate hypothesis memory.

Experiment 3

Method

The subjects were 18 undergraduate introductory psychology students who
were enlisted as volunteers and were equally divided between two conditions. In
both conditions of this experiment, subjects were required to state their
hypothesis on all trials and were presented with a memory probe on all except
the first trials of each problem. In the complete probe condition the type of
probe was divided equally and randomly between stimulus, response, feedback, and
hypothesis questions, as in previous experiments. In hypothesis probe
conditions only hypothesis questions were given.

The details of the method were the same as in Experiment 2 except that
subjects solved as many probiems as possible within 50 min.

Results and Discussion

The mean number of problems solved was 9.4 and 9.3 for the complete and

hypothesis probe conditions, respectively. The difference between conditions
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was nonsignificant. The complete condition required an average of 11.23 and the
hypothesis condition an average of 13.32 trials per problem; the difference
again was nonsignificant. The proportion of hypothesis selection trials on
which the subject failed to state a hypothesis consistent with his
classification was .03.

Recognition data for the conditions in Experiment 3 are shown in Table 5.
A separate ANOVA was performed for each condition. For the complete condition
there was a significant effect of Probe Type, F(3,27) = 7.04, MSe = 7.04.
Tukey's (a) test revealed that stimulus memory was worse than the other three
types; hypothesis, response, and feedback memory were excellent and did not
significantly differ. Finally, subjects recognized hypotheses no better on
postsolution (.89) than on presolution trials (.88). A1l other sources of
variance were nonsignificant.

For the hypothesis probe condition, there was a significant effect of
Solution State, F(1,9) = 9.96, MSe = .009. On presolution trials, the mean
proportion of correct hypothesis recognition was .86, whereas on postsolution
trials it was .95. The main effect of Delay and Solution State x Delay

interaction were nonsignificant.

The detailed contingency analysis carried out on hypothesis probes is shown
for each condition in Table 6. The number of observations for each cell is
given in parentheses. For the complete probe condition, there was little
variation among the four cells. The proportion correct recognitions under
correct feedback on postsolution trials was .93 (n = 74) and .89 (n = 54),

following positive and negative response trials respectively.
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In the hypothesis probe condition, hypotheses Teading to correct feedback
tended to be better recognized than those leading to wrong feedback. On
postsolution trials, when only correct feedback was given, the proportion of
correct recognitions following positive responses was .96 (n = 244) and
following negative responses was .94 (n = 202). Thus, when subjects selected
hypotheses and were probed only for hypothesis information on every trial, they
correctly recognized nearly all confirmed hypotheses, but occasionally forgot
disconfirmed hypotheses.

In sum, the results of Experiment 3 are similar to those of Kellogg (1980).
When hypothesis selection is required on every response trial, hypotheses
retention attains the high level of performance predicted by hypothesis theory.
This is an important limitation of the phenomenon of hypothesis forgetting. By
structuring the task so that selecting and remembering hypotheses are just as
important as classifying stimuli, we essentially eliminated hypothesis
forgetting.

General Discussion

The results of these experiments suggest the following conclusions. When
the primary task is to classify stimulus patterns correctly, and hypothesis
selection and memory probes are secondary, subjects evidence hypothesis
recognition failure. Confirmed and disconfirmed hypotheses are misrecognized on
30% of subsequent trials (50% chance level). Only when hypothesis selection and
memory probes are emphasized by task demands are subjects 1ikely to approximate
the level of hypothesis memory implied by hypothesis theory.

Artifactual Interpretations

It may be that less complex concept identification tasks, which do not
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directly ask for current hypotheses or probe short-term memory, are
characterized by perfect hypothesis retention. Our multiple response paradigm
may have overloaded subjects to the point that they adopted a different approach
than one finds under less demanding conditions. There seems to be no
straightforward way to refute this possibility. We think it unlikely, however,
in view of the facts that these problems were solved, on the average, within the
trial and error parameters observed in other comparable studies (e.g., Bourne &
Haygood, 1959). Moreover, a major variable, number of stimulus dimensions,
affected overall performance in the way it has in many previous studies. Thus,
we argue that there is nothing novel about concept learning processes observed
under our procedure.

Another potential problem with our procedure is a coding artifact.

Subjects might give a different interpretation to the question, “What was your
last hypothesis?," than the one intended by the experimenter. Even if the
subject selected B as his/her hypothesis, the short-term memory code of this
selection can take any one of three forms. Instructions were designed to
encourage coding in the form "B is positive." A logically equivalent coding,
however, is "b is negative." Finally, both of these statements, or the more
general coding "B/b is the relevant dimension," might be stored in short-term
memory .

Chance recognition of hypotheses given on negative response trials would be
expected if the code "b is negative" is in short-term memory. Because the
subject just used the code "b is negative" to classify the stimulus, this code
should be highly salient when the subject searches short-term memory for a
response to an hypothesis probe. Thus, it is entirely possible that subjects
answer "b" to the probe even though they overtly selected "B" as their

hypothesis on the previous trial.3
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While possible, a close look at the details of our procedure and data
reveals serious shortcomings in this coding argument. To begin with, if the
code "b is negative" is particularly salient on trials where subjects believe
that the stimulus is a negative instance, then why do they rarely state "b" as
their hypothesis under these circumstances? Such hypotheses turn up as "oops
errors" because the negative classification would coincide with a stimulus that
contains the same feature as the stated hypothesis. But only about 2-4% of all
trials generate "oops errors."

It is possible, of course, that subjects fully understood how to select a
current hypothesis ("B is positive"), but on the hypothesis probes were confused
about whether to respond on the basis of the stated hypothesis or its complement
("b is negative"). The likelihood of any confusion of this sort is low, given
the extensive instructions and pretraining required of all subjects. Moreover,
if most of the subjects consistently answered "b" on a hypothesis probe (despite
the fact that they selected "B" on the previous trial), because they actually
used the hypothesis coded as "b is negative", then it follows that hypothesis
recognition following negative trials should be close to zero percent correct,
not close to chance. Such an argument predicts more hypothesis recognition
failures than the data revea].4

Still another artifact hinges on the possibility that subjects consistently
confused whether they were being probed for hypothesis or stimulus
information. But, if this argument is correct, then we would again expect close
to zero percent hypothesis recognition on negative trials, not 50%.

Theoretical Interpretations

Evidence that recognition of a hypothesis confirmed on the previous trial
is poor and no better than recognition of the previous stimulus runs counter to
hypothesis theory. Even the version of hypothesis theory that makes the weakest

assumptions about immediate memory predicts that a winning hypothesis is
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retained from one trial to the next (Restle, 1962). Other versions go further
by assuming that subjects remember hypotheses tested on all previous trials or
that they remember confirmed hypotheses plus stimulus, response, and feedback
information from the previous one or two trials (Levine, 1969). Contrary to
these expectations, our results indicate that under many experimental conditions
the error rate for stimulus recognition is typically as high as .3 and the rate
for hypothesis recognition is no better. These data reinforce our concern about
the adequacy of hypothesis theory as a complete account of concept learning.

Clearly, there are circumstances under which people solve concept problems
by testing hypotheses (e.g., Experiment 3; Levine, 1969). Thus, it would be
inappropriate to infer that concept learning is never mediated by hypotheses.
But, when hypothesis testing was not made a central part of the task in our
experiments, many subjects appeared to behave differently. If other theories of
concept learning are unable to account for hypothesis forgetting, then the
result would be an embarrassment to hypothesis theory but nothing more. The
fact is, however, that other current theories are able to account for hypothesis
forgetting, making our findings nontrivial.

According to a feature frequency or associative strength theory, subjects
need only extract the relevant features and correctly associate them with the
proper category (Bourne, Ekstrand, Lovallo, Kelloggs, Hiew, & Yaroush, 1976).
Thus, they need to attend to the stimulus, response, and feedback in order to
compile feature frequency distributions for the positive and possibly the
negative categories. When subjects are required to state a hypothesis, they
generally select the most frequently occurring features among positive instances
(Kellogg, 1980). However, on frequency theory the subject does not sample and
store hypotheses in order to solve the problem. Frequency information alone
provides the basis for classifying items, rating instance typicality, generating

hypotheses when asked, and any other usage of the concept (cf. Anderson, Kline,
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& Beasley, Note 1; Bourne, 1982; Fried & Holyoak, Note 2).

Frequency theory goes back several decades (Hull, 1920) and has
traditionally been viewed as the major opposing viewpoint to hypothesis theory
(Levine, 1975). Recently, a dual process theory has been proposed that combines
these two traditionally opposing views (Kellogg, in press; Kellogg & Dowdy, Note
3). This theory proposes that frequency processing occurs automatically and
unconsciously whenever subjects perceive concept instances along with
response-feedback information. Hypothesis testing, in contrast, occurs only
with mental effort, with an explicit allocation of attention to sampling and
testing hypotheses. When the task de-emphasizes hypotheses, as in Experiments 1
and 2, concept learning is based essentially on the automatic processing of
frequencies. Hypothesis statements, taken incidental to the main task, are
subject to rapid forgetting. When hypothesis testing is part of the primary
task, a sufficient degree of attention is allocated to hypothesis testing to
support hypothesis retention. In all cases, according to the dual process view,
frequency processing should occur automatically. The resulting frequency
distributions provide basic knowledge of the category that might be supplemented
by information gained through hypothesis testing.

As a final point, we note that specific instance theory can also account
for hypothesis forgetting (Brooks, 1978; Medin & Schaffer, 1978). On this
theory, classification and decisions are based on, first, retaining all {or even
a few) of the features of all (or even one) instance of the positive category
and, second, comparing the stimulus with specific instance information. if the
stimulus resembles closely enough a retrieved positive instance, then it, too,
is classified as a positive instance. There would be no need to retain
hypotheses if the classification decisions are based on analogies to specific
stimuli.

The present studies were not designed to discriminate among these
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alternative theories. We present them here briefly to indicate that theoretical
support for hypothesis forgetting is available from several sources. An
important goal for future research is to examine further how task demands,
stimulus types, and other variables affect concept Tearning processes, and,
hence memory for trial events. Whether frequency, dual process, or specific
instance theory best describes hypothesis forgetting remains to be determined.
What the present studies do clearly establish is the reliability of hypothesis

recognition failure and some of the factors underlying its appearance.
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Footnotes

This article reports research conducted at the Institute of Cognitive
Science at the University of Colorado and is publication No. 108 of the
Institute. The work was supported by Research Grant 76-81416 from the National
Science Foundation. We thank Jerry Workman and Michelle Collins for their help
in collecting and analyzing the data. Requests for reprints should be sent to
Ronald T. Kellogg, Department of Psychology, University of Missouri, Rolla,
Missouri, 65401.
lthere are other studies that are often cited as providing evidence of
hypothesis memory (e.g., Chumbley, 1969; Erickson, Zaikowski, & Ehmann,
1966; Merryman, Kaufmann, Brown, & Dames, 1968; Restle & Emmerich, 1966).
Careful examination of the procedures used, however, reveals that none included
direct memory probes of hypotheses or any other trial events. Rather,
hypothesis memory was inferred from learning rates, response times or by
estimates of a shrinking hypothesis pool.
2The assumption that stimulus and hypothesis features are confused in short-term
memory implies that the 2 x 2 contingency analysis for stimulus recognition
should mirror the one obtained for hypothesis recognition. The problem with
testing this prediction is a lack of data in the right circumstances. The
probability that a stimulus memory probe is given (.1875) and that it probes a
hypothesized dimension (.0625) and that hypothesis selection occurred on the
previous trial (.75) in the 75-75% condition, for example, is only .00875, less
than 1% of the trials. We did analyze the stimulus recognition data regardless
of what was probed in Experiments 1 and 2, however. The 2 x 2 contingency
analysis showed the following proportions for presolution trials for
positive-correct, positive-wrong, negative-correct, negative-wrong; .75, .75,
.69, and .64. Thus, the gross, but available, data are in the expected

direction.
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3Persona1 communication, Marvin Levin, August, 1980.

4 he averaged data might reflect a mixture of subjects trained sufficiently well
to remember their stated hypothesis, and others who consistently made errors
because they responded on the basis of its complement. We examined this
possibility by determining the mean hypothesis recognition score for each
subject based on all presolution (both correct and wrong) and postsolution
negative-trials. Collapsing across all conditions in Experiments 1 and 2, we
found that five subjects showed zero recognition and eight showed perfect
recognition. The remaining 41 subjects produced a mean 53% correct recognition,
falling in a reasonably normal distribution about that value. Thus, the
majority of subjects showed levels of recognition that cannot easily be
explained by a coding artifact.

5Persona] communication, Douglas Medin, August, 1980.



Table 1

Mean Proportion of Correct Recognition in Experiment 1

Probe Stimulus complexity
Type 2 38 4
Hypothesis .75 .72 .70
Stimulus .81 .69 .64
Response .81 .86 .81
Feedback .97 .98 .97

Note: Stimulus complexity refers to the number of irrelevant dimensions.

There was one relevant dimension in all conditions.

pata are from Experiment 1 of Kellogg et al. (1978).




Table 2
Proportion of Correct Hypothesis Recognition on Presolution Trials

in Experiment 1

Response
Positive Negative
Feedback
Correct .84 .53
(63) (30)
Wrong .69 .75
(74) (12)

Note: The total number of observations, summed over all subjects and

variables, is shown in parentheses.



Table 3

Mean Proportion of Correct Recognition in Experiment 2

% Memory Probes

Probe type 25 75

% Hypothesis Selection

25 75 25
Hypothesis .62 .76 .74
Stimulus .62 .68 .70
Response .69 .80 .79
Feedback .86 .92 .95



Table 4
Proportion of Correct Hypothesis Recognition on

Presolution Trials in Experiment 2

Response
Positive Negative
Feedback
Correct .84 .48
(80) (40)
Wrong .62 .57
(111) (30)

Note: The total number of observations, summed over all subjects and

variables is shown in parentheses.




Mean Proportion of Correct Recognition in Experiment 3

Probe Type

Hypothesis
Stimulus
Response

Feedback

Table 5

Probe Condition

Complete

.89
.70
.87
.97

Hypothesis

.91




Table 6
Proportion of Correct Hypothesis Recognition on Presolution

Trials in Experiment 3

Response

Feedback Positive Negative

Complete Probe Condition

Correct .91 .86
(134) (79)

Wrong .91 .86
(43) (21)

Hypothesis Probe Condition

Correct .96 .93
(385) (306)
Wrong .87 .85
(170) (66)

Note: The total of observations, summed over all subjects and variables, is

shown in parentheses.




Figure Captions

Figure 1. Schematic representation of CRT screen at the end of the most
complex trial. Screen contains the stimulus for that trial in upper
left quadrant, hypothesis selection information in upper right,
classification response and response feedback information in Tlower left
and memory probe (in this example, hypothesis probe) in lower right

quadrant.
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