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Abstract

The literature pertaining to models of pattern recognition was reviewed
with an emphasis on assessing the adequacy of the major approachs in account-
ing for real world scene analysis. It was argued that (a) a relational
model is required to account for the problems engendered by context in com-
plex scenes, (b) a feature frequency principle accounts for differences in
typicality among exemplars of a category, (c) data taken to support a family
resemblance principle of categorization are better interpreted in terms of

a structural-frequency theory.



The Formation of Natural Concepts

Not all instances of real world concepts are equally good examples of
the core meaning of the concept. Thus, reaction time to verify that X
is a Y is an inverse function of the degree to which X is conzidered typical
of the concept Y (e.g., Rosch, 1973). As Rosch (1973) points out, traditional
definitions of concepts in terms of absolute criterional features and
relations (Bourne, 1970) are unable to account for gradients of membership
found within ecological concepts.

One goal of the present paper is to review theories that do encompass
both a person't ability to classify correctly and to organize real world
concepts according to typicality. The relevant alternatives can be described
with respect to two central questions about the content of mental representa-
tions: Does hte mental representation of a concept include independent
or structuraliy related features? and Is degree of criteriality of a feature
represented in terms of distance or frequency information?

A second goal of this paper is to argue th=t a structural-frequency
point of view is the most promising alternative as a description of human
categorization. A review of the Titerature will reveal the appropriateness
of feature frequency as an explanation of category membership gradients.

In our theory, every feature which appears among instances of a concept is
considered part of the definition of concept. Features are not labeled as
relevant or irrelevant, however. Rather, feature criteriality is viewed as
a continuum. One or more features may be sufficient for describing the

boundary of a category organization. We assume that criteriality is a
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direct function of the frequency distribution of features on each con-
stituent attribute or dimension.

Another task undertaken here is to extend the structural-frequency
theory to some recently reported data that have been taken as evidence

for a family resemblance principle in human categorization (Rosch & Mervis,

1975; Rosch, Simpson, & Miller, 1976). The family resemblance principle,
as we shall see, is closely related to feature frequency; consequently,
empirical demonstrations said to support one theory can often be inter-
preted in light of the other theory. Both theories operate in the con-
text of a f-aturc format and, although quite different in theoretical ways,
the predictive model used by Rosch in the laboratory is identical to a
feature frequency model (Neumann, Note 1).

In Al work, tractable feature space provides the grist for the
classification algorithm. The chief obstacle facing any feature theory of
concept representation is the problem of specifying the appropriate features.
The problem is particularly severe in the analysis of complex, three-dimen-
sional scenes, such as real world events which an adequate theory of human
categorization must address eventually.

Prototype and Feature Representations

Rosch (1973; 1975a) is the strongest proponent of the prototype
format point of view. She argues that both the structure (format) and
content of mental representations can be conceived of in terms of prototypes
or clearest cases. Other instances of a concept "surround" the best ex-
ample according to the degree to which they are similar to the prototype.

Rosch (1973) presented evidence that both perceptual (color categories)



and semantic concepts are best described in terms of a prototype repre-
sentation. The organization of color categories appears to be physiologi-
cally determined and universal across cultures. Rosch (1973a) found that
a tribe of stone age people, the Dani, demonstrated a preference for
members of the color space that are considered prototypical by people of
Western cultures. Rosch's result is interesting since the subjects in
her learning experiments did not Tinguistically divide the color space
as English speakers do. The Dani possess only two color terms which
linguistically divided the space on the basis of brightness rather than
hue. That semantic representations also are based on prototypes was
supported by a semantic verification experiment (Rosch, 1973). In that
study, reaction time to verify that X is a member of concept Y was inversly
related to the degree to which X is considered a good member of concept
Y.

We agree that the content of mental representations must reflect the
fact that perceptual and semantic categories are internally organized.
It is important to draw a distinction, however, between perceptual and
semantic categories with respect to the format of the representation (see
Kieras, 1976). Rosch's more recent work seems to reflect the same
sentiment. For instance, Rosch, Simpson, and Miller (1976) propose a
distance model of categorization based on a quantitative, Euclidean feature
space and a family resemblance principle based on qualitative features
of a concept. That is, although gradients of membership were claimed
to be part of the content of semantic category representations, a feature

format was assumed.



Color categories may not be amenable to the feature approach; cer-
tainly there is evidence that semantic and color categories are different
in character. Consider the fact that responses in a same-different task
(category same instructions) were faster when the category name was used
as a prime than when no prime was goven (Priming effect) to the extent
that the items judged same were good examples of the category (Goodness
of example effect). For color categories, the Priming X Goodness of
Example interaction persisted despite massive rehearsal distributed
over a period of three weeks (Rosch, 1973), while the effect disappeared
for semantic categories (Rosch, 1975). It is probably best to treat the
question of how color concepts are represented separately from the
analogous issue with respect to semantic concepts.

Rosch's work was summarized to represent the prototype point of
view since it is clear in her writing that both the format and content of
the representation is characterized in terms of prototypes, at least in
the case of color categories. In contrast, it is not clear that the
format of a prototype-transformation viewpoint must be non-featural in
nature. Franks and Bransford (1971) claim that the best example of the
concept (analog or proposition) is represented in memory along with the
transformation rules which generate other instances of the concept by
operating on the prototype. To the extent that the transformation rules
are a grammar which specifies how features and relations can be combined
to form new features, rclations and objects, an analog format is less

feasible than a feature format.



We would Tike to suggest that both the analog and the featural view-
points make the claim that knowledge about the typicality of exemplars

is represented. However, with respect to the format issue, the analog-
prototype view is quite different from feature theories. The former con-
siders the format of the representation to be like a concrete image

(cf. Rosch, 1975) or reinstatement of sensory events while the latter

is based on an abstract, propositional format (c.f. Winston, 1970).

Independent or Structurally Related Features

The computer metaphor provides a rich vocabulary for discussing
human pattern recognition and concept formation. The surge of interest
in machine learning during the late fiftics and early sixties, as well
as more recent attempts at computer scene analysis offer several explicit
models of human categorization. Both Hunt (1975) and Duda and Hart (1973)
provide excellent reviews of this Titerature.

A statement of the artificial intelligence approach may clarify the
connection between machine models and a feature theory of human concept
representation. The physical world is conceived as being of infinite di-
mensionality, which through some process of transduction is reduced to

a pattern space of finite dimensionality, R. ’'ith the "human machine",

the pattern space might be thought of as retinal stimulation, a Tow level,
on-off code of cell firings. The pattern space is then generally reduced
to some tractable number of features, N. The resulting reduction of
dimensionality, N/R, is an important determinant of the complexity of

the next step -- the decision algorithm which divides the feature space
into K classes. If the set of features neatly divides the categories,

then the resulting decision rule is trivial. If the feature space has
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a large number of dimen%fons or if the features yield a messy, difficult to
separate space, then the decision rule must be more complex if it is to be
useful. The psychological problem of visual concept formation is faced with
both a large number of dimensions and a feature space in which certain features
appear in more than one class.

The above conceptualization. presented in more detail by Andrews (1972),
offers a clear view of one major differentiation among types of models--
statistical classification models concentrate on the categorization rule,
while descriptive models focus on a grammar of the feature space. Consider
each in turn.

An assumption of statistical models is that each stimulus object or
point in the pattern space can be represented either by a set of measurements
defining the axes of some Euclidean feature space or by an ordered list of
discrete features on qualitative dimensions of variance. In the case of
quantitative, Euclidean features, one can speak of the distance from one
pattern to another, while qualitative feature values are not amenable to
a distance interpretation since the dimension values do not necessarily
form an interval scale (Hunt, 1975). In both cases, however, classification
proceeds in essentially the same manner. The principle can be understood
by considering a parallel machine (Hunt, 1975) or a simple perceptron
(Minsky & Papert, 1969).

Perceptrons.

To start the classification process a percentron determines or is supplied
with the value of each stimulus dimension of the test pattern. This set of
n measurements may represent a point in Euclidean space or a feature vector.
Each feature detector is called a partial predicate. Ueights are assigned

to each measurement and a weighted sum is taken. A learning algorithm adjusts



these weights so that the value of the weighted sum correctly assigns all
test patterns to the correct category. Notice that this procedure defines

a linear boundary between the categories by combining the evidence from

each partial predicate computed in parallel. The weight assigned to each
partial predicate is a coefficient of a linear discriminant function (Nilsson,
1965). That the pattern space can be defined in terms of a set of n measures
is assumed by all models. If in addition one can specify the nature of the
distribution of values on each dimension of measurement, then a parametric
model, such as Bayes Theorem, may be used to separate the pattern space
appropriately. If assumptions regarding the distributions cannot be made,
then non-parametric techniques are appropriate. Included in this category
are the nearest neighbor or proximity algorithm, prototype-distance, and

cue validity models reviewed by Reed (1973).

Reed (1972) compared these non-parametric models in a series of three
experiments to see which best predicted how subjects classified Brunswik faces.
The subject first studied two categories of five faces each. The faces
varied on four dimensions--length of nose, distance between eyes, height of
forehead, and distance between mouth and tip of chin. The data strongly
suggested that subjects calculated, in some unspecified manner, a proto-
type exemplar, which exhibited the mean values on each dimension of variance.
Subjects presumably used the p%dtbtype of each category to classify test
patterns by further calculating the distance between the pattern and the
two prototypes. The classification algorithm assigned the pattern to the
"closest" category. kNote that prototype-diStance models define linear

boundaries between categories by summing together independently calculated




weighted measurements. A1l minimum distance classifiers are parallel machines
(Nilsson, 1965).

A cue validity model (Reed, 1972; ‘Beach, 196%4) is another example of a
parallel machine that predicts human classifications in at least some tasks.
A weighted value is calculated independently for each dimension and then
summed to determine the category assignment of the test pattern. In this
case, the weights represent the uniqueness or distinctiveness of a feature
as well as its frequency of occurrence within a particular category.

During the early 1960's blueprints for parallel learning machines
flourished. The hope was that by adding feature detectors, more and
more complex pattern spaces might be handled. Furthermore, by adding layers
to the basic weighted sum device, the output of a whole set of subclassi-
fications could be sent up as features to a higher order classification
device (Nilsson, 1965). However, the early enthusiasm for perceptron models
has in Hunt's (1975) words, "dampened’, to say the least," since publication
of the analytic treatise, Perceptrons, by Minsky and Papert in 1969. The
mathematical analysis presented in that volumc applied only to the simple
and most basic perceptron discussed above. They reasoned that a firm
mathematical understanding of the basic machine should proceed speculations
regarding what more powerful versions can do. The Timitations of the
simple perceptron have subsequently lead Minsky and Papert (1972) to con-
jecture that even more complex perceptrons may lack the power necessary
to handle the problems faced in human pattern recognition.

The problem of context. The crux of the argument against parallel com-

putation machines as a model of human abilities is that they fail to deal



effectively with context. They were designed to detect two dimensional
figures in a context free environment quite unlike the rich, three dimen-
sional world in which we operate. Minsky and Papert (1969) proved that
while a simple perceptron can be taught to identify some object X, it

will not correctly classify object X if it is placed in the context of some
other object. For instance, if object X were the shape of a nose, a percep-
tron tuned to the shape of the nose would fail to identify it in the context
of a face. Furthermore, the meaning or interpretation of some feature may
depend on the context in which it is found. Since the partial predicates

of a perceptron are calculated independently, context dependent meanings
pose a serious problem (Hunt, 1975). An extreme example of context depen-
dent meaning occurs in ambiguous figures, such as the Mother-in-Law-Wife
illusion. The interpretation of a set of lower order features depends on
the interpretation given to a number of surrounding contextual features.
More commonly, the context of a scene guides the interpretation of incoming
data. Reed (1975) recently reported evidence that a given set of features
can be related in different manners as a function of other contextual features
and relationships. It should be clear that a model, such as perceptron,
that fails to deal with the hierarchical nature of real world scenes is
incomplete.

Structura1‘mode15 are specifically designed to describe and not simply
to classify thekfeéture space. Structural approaches pick up where statis-
tical models fail by describing a scene in terms of hierarchically related
components. Each object in a scene corresponds to a well-formed expression

in a "picture grammar". The grammar specifies all of the (allowable) features




and relations betw=en features which make up an object. Notice that in
this framework, an object at one level of context can be a component of
some higher order cbject. Beginning with a sct of elementary primitive
features and relations, one can construct a complex scene by embedding one
well-formed expression with another. What is a feature and what is an
object depends entirely on the level of context under consideration. At
the top of the hierarchy is, of course, the entire wholistic scene--
one that may be completely constructed as well as classified, by virtue
of the descriptive grammar.

Palmer (Note 2) nicely described the hierarchical nature of real
world concepts in the following manner (p. 5):

As an example, consider the perceptual structure of

a standing person. As a whole, the person is a rather
elongated, ellipse-shaped object of some length-to-
width (ratio) that is oriented vertically and has

some scale or size. This might be the most global
level of representation for the person, one that might
be constructed from just low ::atial frequency infor-
mation. At a finer level of resolution the parts of
the body are delineated. There is a head, torso, two
arms, and two legs. Each of these parts--when consid-
ered as a whole--has global representation too. The
head is a less elongated ellipsoid (of some specific
length-to-width ratio) that is oriented vertically
with a scaler size dependent on the size of the body.
But the analysis need not stop at this level either.
The head contains further parts; it has eyes, ears, a
mouth, and a nose. Clearly, these parts can be repre-
sented both globally and as a further set of parts.
What emerges is a multi-Teveled perceptual represen-
tation of parts and wholes with obvious hierarchical
structure.

A feature-relation or descriptive model of human catggorization meets
the problem of context-dependent meaning and the need to find an object

embedded within a higher order context. Moreover, a descriptive memory
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system is appealing from the standpoint of theoretical economy. Many
cognitive processes use or manipulate symbolic descriptions which

signify our knowledge of concepts, events, objects and so on. The

reader may wish to refer to Minsky and Papert (1972) for an in depth
treatment of the ways in which a descriptive memory might be used in tasks
other than classification. For the moment, however, a pair of examples
should suffice.

Consider Winston's (1970) concept learning program. The program
begins to analyze visual scenes (toy blocks world) by engaging in feature
detection processes implemented by Guzman's SEE program (Minsky & Papert,
1969). The scene is divided into objects which then modify existing con-
cept descriptions. Minsky and Papert (1969) have described the behavior
of Winston's program as a sequential process whigh uses description
matching methods and previous experience to comprehend a block world scene.
Relations between features are detected and used in matching data to
concept descriptions. The program learns to recognize visual concepts,
such as an arch, by building a structural description which automatically
classifies input as an arch if incoming data match the description.
Recognizing or encoding a scene, by this approach, involves activating
a set of production rules whose conditions of activation are matched by
incoming data. From this, one develops a picture grammar that describes
objects encountered in one's world and the description begins as a crude
hypothesis and is refined as information regarding criteriality of
features and relations is picked up. The rewrite rules of this grammar

are presumably stored in memory to be accessed during the process of
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recognizing, classifying, imaging, or thinking about some visual concept
or exemplar.

Another example of how descriptive methods are used in cogniti-=
comes from Evan's analogical reasoning program (see Minsky, 1968). Few
would deny that the ability to apprehend and create analogies is a hallmark
of human thought. The analogy problem requires that one select some scene
X which best fits into the following frame: A is to B as C is to X. The
relationship between A and B must be adequately described by comparing
the two scenes. Next C is compared to five alternative X's (the possible
answers provided in a standard visual analogies test). The different
descriptions produced in the second step are compared individually with
the description produced by the initial A-B comparison. The alternatives
yielding the closest match in terms of common features and relations is
chosen as the correct X. Again, descriptive methods lie at the heart of
the progrem.

The emphasis on relationships among features is not new in the psycho-
logical literature (see Sutherland, 1968). For example, the basis of a
feature-relation theory of concept learning can be found in a paper by
Bourne (1970), who defined a concept (C) in terms of its relevant features

(X,Y) and some logical relationship (R):

C = R(X,Y) (1)
The present position is more general in that logical rules are not the only
acceptable relations. Relationships in space and over time are two types
that most certainly must be considered if the theory is to be applicable

to real world concept formation. However, as we shall see in the next
section, a theory based solely on criterial features and relations is also

incomplete.



Category Organization

Most laboratory work in concept learning has used one variant or another
of the rule-governed attribute identification task (Bourne, 1966). Often
an affirmation rule describes the concept problem, although more complex
bidimensional rules have also been studied. Assuming that one knows the
rule governing the solution, the problem is one of abstracting the correct
relevant feature(s). Rosch (1973) has argued that tasks of this sort are
contrived in the sense that no particular memher of the positive category
may be considered a better example of the positive category than any other.
If the conjunctive combination red-square defines the positive class, it is
Togically meaningless to ask which particular red-square stimulus is the
best example. Irrelevant dimensions are presumed to be ignored since the
rule governing the solution makes no use of them.

Natural categories, such as those denoted by nouns in language, have a
different character. A1l members of the category are not equally good examples
of the concept; instead there is a gradient of membership.

Any particular instance of a real world concept can be assigned a positicn
along this hypothetical gradient. The peak of the gradient represents the
prototype of the category. The evidence stems from six sources. The most
direct approach involves a rating task. When asked to rate examples on a
7-point scale of typicality, subjects are in agreement as to how well a given
instance represents the meaning of a concept. Typicality ratings have been
collected for a variety of visual concepts including color, furniture, fruit,
vehicle, weapon, vegetable, carpenter's too, bird, toy, and clothing cate-
gories (Rosch, 1973, 1975).

Another line. of support is the finding that stimuli rating as good
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examples are learned faster than less prototypical items. This was found
for color categories (Rosch, 1973) and artificial letter strings, dot pat-
terns, and stick figure concepts (Rosch, Simpson, & Miller, 1976).

Third, production norms for superordinate visual concepts (Battig &
Montague, 1969) tend to correlate highly with typicality ratings. Proto-
typical members are more likely to be given by subjects than poorer examples
of the superordinate category. Mervis, Catlin, and Rosch (in press) have
found that prototype norms differ from production norms in that the former
are not correlated with written word frequency while the latter are. This
result incidentally is consistent with an assumption underlying the present
research. Namely, typicality ratings reflect our perceptual experience
with real world exemplars rather than our linguistic experience with words
symbolizing those exemplars. Word frequency should not be expected to bear
a relation to typicality norms of visual concepts.

A fourth argument is based on a linguistic analysis of hedges. We
often express degree of category membership by qualifying statements of
group membership of the type an "S is a P". To illustrate, one might say,
"Technically speaking, a penguin is a bird". If all members of P were equally
good examples, then it would not sound peculiar to say "Technically speaking,
a robin is a bird." George Lakoff initially made these observations and
Rosch (1975a) incorporated his intuitions into an experimental task.

A fifth source of evidence can be found in the effects of priming on
reaction time. Rosch showed that both the names of superordinate concrete
categories (1975b) and basic level categories (Rosch, Mervis, Gray, Johnson
& Boyes-Brian, 1976) generate expectations which facilitate encoding of

good examples, but inhibit encoding of poor examples. For instance, a
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subject can identify as same (physical match instructions) a pair of chairs
faster if the category name, furniture, precedes presentation of the pair
than if no prime is provided. In contrast, a pair of poor category members,
such as rugs, are actually responded to more quickly without the prime. This
effect was obtained for both picture and word stimuli. Clearly, gradients
of membership influence subjects performance in a task well suited to an
examination of encoding processes.

The final line of evidence is related to the voluminous and complicated
literature dealing with semantic categorization. The reaction time task
requires subjects to verify statements of the form, "an S is a P," as quickly
as possible. Smith, Shoben, and Rips (1974) argue that the notion of cate-
gory organization is essential to an understanding of these data. Reaction
times seem to depend on how good a member of categpry P stimulus S is
(Rosch, 1973). The better the example, the faster one is at correctly
verifying the statement.

A descriptive approach to concept learning cannot accommodate gradients
of membership without distinguishing between features and relations of
prototypical members and those of poor category members. This means that
an adequate theory must be a blend of statistical and structural methods (see

Reed, 1973). The mixture can be one of two types; either distance or fre-

quency may be incorporated into the feature-relation framework. Such
a combination is not uncommon. Kanal and Chandrasekaran (1972) note that
the most difficult pattern recognition problems require the double-barrel
approach.  Although, as we have seen, descriptive methods are needed to
contend witﬁ the context related problems of human classification, the

phenomenon of category organization demands some distance or probability
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notion that allows for some features and relations to be more typical of
a concept than others.

Distance versus Frequency

Either of two general statistical techniques could be injected into the
pure featurec-relation model. Common to both is the idea that some features
are more critical to the definition of a concept than others. The first views
each dimension as a continuous interval scale based on Minkowskian r metrics
(Hunt, 1975). Statistical (Reed, 1972) or structural (Reed, 1973) models
of human categorization based on city block (r =1) or Euclidean (r = 2)
metrics assume that people can encode and represent a particular point on
a continuous scale. In contrast, one can think of each dimension not as
a continuum of points, but as a fragmented, imprecise set of intervals

(Neumann, in press). Instead of storing precise values, an interval storage
hypothesis claims that when a feature occurs, it is, in a sense, categorized
or assigned to an interval on a dimension. The frequency distribution for
each dimension is represented in memory either by means of some type of
multiplexing scheme (such as a counter, a list, or an episode marker) or by
a strength parameter. The point is that the complex assumptions required by
metric models can be replaced by less demanding assumptions of an interval
storage hypothesis.

Consider the problem in the following form. A featurc-relation theory
of concept acquisition and use must incorporate some statistical elements
in order to account for gradients of membership. According to thé proto-
type-distance veiw, membership is inversely related to the distance of an
exemplar from the central tendancy or mean point of the multidimensional

feature space. The approach assumes that absolute feature measurements
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made by a subject can be thought of as points on a continuum. The second
approacn is useful in cases where distance metrics prove unfeasible and
the values of the dimensions are not points along an interval scale. The
interval storage idea claims that any dimension can be chopped up into a
"few" discrete values to be stored in memory. This assumption is halfway
between the standard psycholinguistic assumption of binary dimensions
(present-absent) and the continuum nostulated by distance models. While
continuous quantitative attributes allow calculation of a mean value,
fragmented ordinal (or nominal) scales allow only a frequency analysis.
The prototype example is made up of all the high frequency or modal
dimension values.

For quatitative stimulus dimenstons a non-quantitative interval analysis
seems compulsory. For instance, Rosch et al reported prototype learning
with stimuli made up of only 5-letters in which order of appearance of the
elements was randomly determined (also sce Reitman & Bauer, 1973; Hayes-
Roth & Hayes-Roth Note). This situation involves binary dimensions--each
dimension consists of but one feature which may be present or absent. As
expected, the prototype consisted of the 5 letters which appeared most often
in the acquisition set. With these qualitative stimulus dimensions it is
difficult to imagine what a mean value on a dimension would be. Moreover, it
may be unnecessary to presume that subjects ever deal with infinite va1ues‘or
continuous dimensions in forming concept descriptions. Our propensity to
encode "chunks" of information has been well established in memory studies.
If a "few" values can adequately encode the variation found even on a quanti-
tative dimension, then there is no need to postulate a continuous representa-

tion.
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Minsky (1974) has conjectured that a few qualitative intervals are
sufficient to account for human visual abilities. He states the argument
as follows:

In a computer-based robot, one certainly could use
metric parameters to make exact perspective calcula-
tions. But in a theory of human vision, I think we
should try to find out how well our image abilities
can be simulated by "qualitative" symbolic methods.
Pecople are very poor at handling magnitudes or inten-
sities on any absolute scale; they cannot reliably
classify size, loudness, pitch, weight, into even so
many as ten reliably distinct categories. In compara-
tive Judgments, too, many conclusions that might seem
to require numerical information are already implied
by simple order, or gross order of magnitude...One thus
hardly ever needs quantitative precision...

A study by Eriksen and Hake (1955) iiiustrates the point made by Minsky.
These investigators looked at a subject's ability to distinguish between
different sized squares by assigning a unique response category to each
unique stimulus. The number of stimuli (5,11,21), number of responses

(5,1 21); and the range of stimo1os\siées (2-42 or 2-82 mm. per side) were
varied between subJects A main effect nas obtained for the rangeZVariable
on amount of information transnitted (I ) in bits. Discrimination was
slightly better ( 2 bits) for the 2 82 m, m. than for the 2 42 ‘m.m. condition.
More important1y, an interaction was. found between the number of unique
stimuli and the number of responses, Discrimination@was impaired when there
were fewer response pategories than there were stimuli, but was,equai]y good

]

as long as there were:ahuleast as m'ny Qng

'ponses as st ,uli That is,

RN : L}f{\

discrimination was equa]]y_ ood fo suba;ets”given 5 stimuli”and 5 responses

or 11 stimuli and 11 responses ﬁor 21 stimuli and 21 responses The values
of I for these three groups (averaged across stimulus range) were 2. 08

2 07 and 2 08 1nd1cating that on1y between four and f1ve categories cou]d
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be discriminated without error.

Absolute judgment data clearly do not support the notion that we
accurately store dimension values. On the contrary, people seem to chop
up size dimensions and possibly all dimensions, both quantitative as well
as qualitative, into only a few values (four or five in the Eriksen and Hake
study), a finding consonant with the interval storage hypothesis.

Nevertheless, the ubiquitous presence of Aristotle's Golden Mean lends
considerable philosophical weight to the notion of a central tendency
prototype. Moreover, there are data to suggest that subjects regard the
means of quantitative dimensions to be the prototype features (Reed, 1972;
Rosch, et al. 1976). How can this support for prototype-distance models be
reconciled with the argument for interval-storage models?

The two types of models are difficult to disentangle experimentally,
particularly with natural populations for which the dimensional probability
functions are unknown. Notice that if the feature values on an attribute
are normally distributed, then the mean value coincides with the model value.
This may not be an uncommon situation with natural category dimensions.

At least, it is difficult to say with certainty that the mode value is
different from the mean value with real world concepts. To the extent that
they are the same, the mean versus mode issue is moot.

Another problem poses a major obstacle to designing a decisive experi-
ment. Without a series of extensive scaling studies it is difficult to
specify the bandwidth of values or intervals on quantitative dimensions.
Neumann.(in press) encountered this problem in exploring one promising line

of attack, here referred to as the "hole in the middle" design. He created
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acquisition sets in whcih the central tendency value on each of four dimen-
sions (materials were Identikit faces and abstract geometric stimuli) was
not represented; the two endpoints of the distribution occurred most often.
Subjects were given a recognition test after viewing the acquisition set once,
Jjudging whether they had seen a face before and expressing their confidence
in that judgment. If confidence ratings regress on frequency sums, the
interval storage hypothesis model is supported. On the other hand, if the
“hole in the middle" or mean feature was recognized with highest confidence,
then a central tendency model is vindicated. Neumann's results were complex.
Under certain conditions subjects best recognized the mean prototype, while
under others, the model prototypes. For example, when subjects were not
informed regardihg the dimensions of variance prior to seeing the Identikit
faces the former result obtained. The latter was found when subjects were
so informed. Another potent factor appears to be the discriminability of
the dimensional values. Using abstract geometric stimuli, Neumann gave
values separated by a large interval to some subject and values which
differed by half that interval to others. The high discrimination group
strongly preferred the high frequency values. In contrast, the low dis-
crimination subjects recognized all values with equal confidence. However,
the "hole in the middle" predicted by frequency theory was clearly absent.

Can a reasonable explanation be given to these results? From the stand-
point of a model that assumes the ability to store dimension values accurately
and to calculate a mean of those values, the answer is not clear. None of
the proponents of distance models have addressed these issues, although
Reed (1972) does hint that with values, which are difficult to discriminate,

information processing may break down, making calculation of a mean
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prototype unlikely. On the other hand, an interval storage hypothesis can
account for the instructional effect in one of two ways. The first assumes
that the features of real human faces are normally distributed. Thus, the
prototype will represent the central tendency of the distribution even
though it is determined by choosing the modal value. Possibly subjects not
informed of the dimensions or those given poorly discriminable features imposed
their real world prototype into the task environment, while informed subjects
were not so biased. The latter group alone paid attention to the task specific
dimensional variations by this account. A second possibility claims that sub-
jects did not use real world prototypes, but simply formed more accurate fre-
quency distributions when informed of dimensional variation or when given highly
discriminable features. The gist of this hypothesis is that if the intervals
of storage are not clearly defined, then a mean prototype can emerge even when
that value never occurs during acquisition. Presumably values were not easily
discriminable in Neumann's faces, yet when cued to each dimension prior to
acquisition subjects were able to define the dimension values.

Heumann (in press) suggested that the width of the interval occupied by
a value may overlap with the interval of an adjacent dimension value. Depend-
ing on the difficulty of discrimination, or degree of overlap among features,
central values on the dimension may be incremented more often than it would
be if discriminations among features were perfect. To illustrate the principle,
consider the dimension of length. If the values are difficult to discriminate,
the occurrence of an extremely short value may sometimes increment intervals

located at the center of the dimension, but probably would never increment
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intervals at the other extreme end of the scale. Likewise, center values may
be incremented when long values occur. Since only the center values get it frci
both ends, it i5 possible for a central tendency prototype to emerge even when
the distal stimulus set never represents the mean value. Either the distance
or the interval overlap hypothesis could account for the effect of informing
subjects as to the dimensions of variation. Data that support a distance
odel, however, are less than conclusive. For instance, explanations based on
the imposition of real world prototypes or the failure to discriminate dimension
values during acquisition are not ruled out by either Reed's (1972) schematic
face data or Rosch, et al's (1976b) schematic man (stick figures) data. In
fact, a recently completed study by Chumbley, Sala & Bourne (Nete-3) shifts
the weight of the evidence in favor of a general frequency interpretation
of human categorization. Subjects learned to structure the concept by viewing
100 sample stimuli, interspersed with blocks of typica]iiy ratings. After each
practice trial the subject was informed of the correct typicality scale value.
These values were constant for both frequency and distance models for a propor-
tion of the 81 stimuli used in the experiment (4 dimensions, 3 values). That is,
credictions of the models were correlated with respect to the typicality of
items given feedback during acquisition. The second stage of the task had
subjects rate all 81 stimuli, without feedback. The critical data are the
ratings applied to items which differentiate between models. The results
strongly supported the frequency model relative to distance model. However,
analyses of each subject's ratings revealed substantial individual differences.
An inspection of the data coupled with post-experimental reports of the subjects

lead to the conclusion that subjects are sensitive to frequency yet that sen-
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sitivity may be transiated into behavior in a variety of ways. For example,
dimensions were sometimes ignored or given less weight; values on dimensions
that differed in frequency were sometimes treated identically. VYet, averaged
over subjects and stimuli, the frequency model predominated.

Frequency or probaiblity models complement the feature-relation theory
better than distance models. Ue may not be capable of the precision measure-
ments required by a central tendency theory. Despite the fact that such
models enjoy considerable success in artificial intelligence applications
(1earning machines), our knowledge of the human visual system must guide
theorizing. The Chumbley, Sala & Bourne experiment taken together with
Neumann's data suggest that frequency models are viable despite the fact that
determination of the "bandwidth" of intervals to which frequencies apply
poses a serious methodological problem. It may never be possible to specify
a priori_ the dimensions and features that will be encoded during concept
acquisition. These may vary in some unlawful fashion across stimulus materials,
tasks, and subjects. However, the status of present research suggests that
structural-frequency models are worthy of further development. The foundation
of the feature-relation approach may be modified by considering the frequency
or probability distribution, p(x), of values along each dimension of variance
combined by the appropriate relational rules. Formally this may be expressed
as follows:

€ - R Lp(x), ply)s.. (2)
This formulation provides the necessary tools for dealing with human cate-
gorization of real world objects possessing some dimensional structure.

Assuming that the dimensions and features can be specified, the structural
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frequency approach should prove useful in predicting how people will classify
an item and how they organize each class internally.

Family Reserblances:

Rosch et al. ( 1976a) also found subjects organized letter string cate-
gories, but denies that feature frequency models can adequately account for
her results. She speaks instead of a family resemblance principle in which
each member of the category shares one or more features in common with one or
more other exemplars, but no single feature need be common to all examples.
The dimensions manipulated in her experiment, which is th~ limiting case of a
dimension, were merely binary; A feature was either present or it was absent.
Each stimulus consisted of five dimensions per stimulus (five letter strings)
and each of two categories contained six stimuli. In Experiment 1 subjects
learned to classify the 12 stimuli to a criterion of two errorless runs. lhen
a subject reached criterion, he continued to classify the items in a reaction
time situation for 15 additional runs. HNo new items were tested--only the 12
learning exemplars. HNext a prototype rating and exemplar reconstruction task
were administered. As expected, the rated typicality of a letter string depended
on the extent tec which constituent letters were common among the other five
stimuli in the category. Rosch calls the operative principle family resemblancn.
but it appears to be isomorphic to a feature frequency model. First, consider
her description of how a family resemblance score was assigned to each stimuluec-
"...each letter received a weight (1-5) representing the number of strings in
the category in which it occurred; the weights of each letter in a string were
then summed to generate the family resemblance score of that string." Replace

the word “weight" with frequency score and reread. Heumann (Note 1). has recently
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noted the connection between Rosch's family resemblance model and feature
frequency.

Ye doubt that Rosch would agree with the above analysis since she pointediy
rejects a feature frequency interpretation of these data. Here is the rationale.
“...an attribute frequency model (Reitman
& Bower, 1973; Neumann, 1974) will not
account for all of our results even for
the family resemblance stimuli. In Experi-
ment 2, typicality remainded a function of

category structure even when frequencies
inverse to structural typicality eliminated
attribute frequency from the learning set."

The manipulation referred to in the last sentence should be evaluated care-
fully. In one experiment, Rosch et al. found that strings with high frequency
scores were learned in fewer errors than poor category members. To equate
degree of learning on each item in a second experiment, the number of times
an item was presented for study was made proportional to the mean number of triaic
taken to learn it in the first study. This manipulation drastically alters the
absolute  frequency of the various features; however, it is not clear that
the relative frequencies of values would change as Rosch et al. claim. That is,
the most frequent Tetters may have been the same in both experiments. Although
it is not possihle to ascertain from their report precisely how often each
string was presented, an analysis of the stimulus sets make it difficult to
see how the order of feature frequencies could have changed. Each additional
occurrence of a poor exemplar increases the frequency of idiosyncratic
features. However, since all items possess at least one prototype feature,
the features of the prototype are incremented when poor members are presented.

lhen one adds in the frequencies contributed by presentations of the remaining

category members, which share still more features in common, it would seem
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that the prototype is no different than it is under cpnditions of equal pre-
sentation of all exemplars. In fact, given that Rosch's explanation appears
to be a special case of a structural-frequency model, it would be paradoxical
if the above line of reasoning did not apply to the Rosch et al. manipulation.

Despite tho apparent similarity between the empirical models of family
resemblance and summed feature frequency, one finds a divergence at a deeper
level. The thrust of family resemblance is the denial of defining properties
of a concept that are common to all instances. ‘hereas feature frequency
models imply the existence of at least one high frequency characteristic
shared by most members of a class, family resemblance makes the claim that the
members are related in a much more indirect manner. For example, the items
AB, BC, and CD share a family resemblance despi{e the fact that no single element
is common to all three.

Rosch et al. (1976 b) contend that superordinate categories are excellent
examples of the family resemblance principle. As before, however, the data
are open to a structural-frequency interpretation. Experiment 1 in the Rosch
et al. (1976 b) paper involved the collectian of attribute listings for the
hypothesized subordinate (kitchen chair), basic (chair), and superordinate
(furniture) levels. Each subject listed attributes of nine items: each item
belonged to a unique category, yet all items vere either subordinate, basic,
or superordinate concepts. For instance, subjects .2ssigned to the superordinate
condition listed attributes which they felt applied to members of each of the
following nine categories: musical instrument, fruit, tool, clothing, furniture,
vehicle, trees, fish, and bird. The listed attributes were classified by the
experimenter as noun attributes, such as "legs”; adjective attributes, such

as "four-legs"; and general characteristics, such as "you sit on it".
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The results for the non-biological categories will be described here
siﬁcé the assumed superofdinéie 1eveis of fisﬁ, trées, and bird showéd a
large number of attributes in common, unlike the other six superordinates.
Superordinates showed few dimensions common to all members and 70% of those
listed were functional attributes of a general nature (you eat it, you sit
on it). The basic level showed signifitant]y more attributes in .common.

The subordinate level apparently is even more specific than the basic level;
not only does it have more dimensions in common, but also the particular
features present on each dimension tend to be more homogeneous. Note that
although a small difference existed between the common attribute means of
basic and subordinate levels, nearly all of the additional listings were
adjectives. For instance, in addition to the noun attributes listed for the
basic level chair (legs, back, seat), a living room chair drew more specific
feature-1istings: it was large, soft, and cushioned.

A central relation among features is the/logica1 rule governing their
combination (Bourne, 1970). The common structurally-related dimensions of
basic and subordinate concepts are conjunctively ;elated. Thus, it is not
surprising that many common attributes were listed for these levels. The
major difference between the two levels appears to be that the latter type
share more specific features in common than the former. The conjunctive re-
lation can be illustrated with our concent of a face; an object is not a face
unless a nose AND a mouth AND a pair of eyes are present. Of course,
particular spatial relations must also be met, but the logical relation
alone allows one to differentiate between Tow levels and the superordinate
level of categrization. The elements of a superordinate can be thought

of as a variety of basic level objects that are related disjunctively to
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one another. The appearance of cither one OR another OR several of the
basic features is sufficient to allow classification at the top level. The
disjunctive rule explains why superordinates share few physical dimensions.
While one may label this situation as an instance of family resemblance
principles, it clearly falls in the domain of the structural-frequency theory.
The physical attributes are conjunctively related at the basic level, then
each basic object (e.g., cars, trucks. bicycles) serves as a higher order
feature of the disjunctively related superordinate (vehicles). The common
feature at the superordinate level is some general or functional characteris-
tic ag Rosch's results indicate. (A vehicle is a means of transporting some-
thing.) Somewhat at variance with this assertion are results reported by
Rosch and Mervis (1975) showing that the least typical members of the fruit,
weapor, vegetable, and clothing categories were not viewed by subjects as
sharing any attributes in common. It is not clear why subjects failed to
mention the defining, albeit general, characteristic of these categories,
although olives, like other fruits, can be eaten, a screwdriver can be used
to fight with, rice can be eaten, and a necklace can be worn.
The results are possibly due to a procedural problem. Subjects were
not informed what category they should consider the test item a member of in
Tisting its properties. This would pose no problem for good instances of
the concept, but it is doubtful that the defining property of all weapons
would come to mind when one is asked to describe a screwdriver. At any rate,
it is inappropriate to conclude that defining features do not exist on the
basis of a test which may not adequately tap the subject's knowledge. This
is especially true in the case of functional features. Although a person may

never state that a screwdriver can be used to fight with, he may make use of
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that property in an appropriate context.

Feature Extraction

In terms of physical, observable characteristics superordinate concepts
lack a sinale defining property, although common characteristics can be named
in a functional domain. Unfortunately, it is never clear what the appropriate
feature description should be. We have assumed in our work using facial stimuli
that the "obvious" features we manipulated were the ones encoded by the subject.
Perhaps the subjects parsed the face quite differently, keeping tracx of such
abstract properties as the "happiness of the facial expression." Certainly
some of the individual differences and failures to fit the summed frequency
model can be traced to our inability to specify which features the subject
counted. Indeed the main weakness of the structural-frequency nosition, or
any feature theory for that matter, is ambicuity surrounding the issue of
feature extraction (Hunt, 1975).

The appropriate description or representation of the feature-relation
space for real world concepts is an important area of research. Palmer's
(1975) implementation of the Gestlt principles of grouping is one example
of the type of research that needs to be performed. It may be the case that
the obvious, intuitive features used to communicate the structural-frequency
point of view have nothing to do with the features actually involved. Further-
more, the best representation of the features may be something quite unlike
anything we might intuit. For instance, the visual system may perform a Fourier
transformation on the proximal stimulus and then carry out feature matching
procedures in the Fourier domain (Duda & Hart, 1972). The proper level of

description may be far more abstract than the "obvious" features we consciously
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perceive. The claim is that at some level of feature description the struc-
tural-frequency theory outlined here is of use in describing human categoriza-
tion.

Summary

In the present paper we reviewed theories of pattern recognition which
can account for a person's ability to classify and organize real world con-
cepts according to a dimension of typicality. Only theories based on a feature
format of mental representations were considered. One difference between models
is whether relations between features are critical or not. Although models of
semantic memory emphasize the importance of relations between objects (e.g.,
Anderson & Bower, 1973; Kintsch, 1975, Rosch & Mervis, 1975), pattern recog-
nition models, including family resemblance (Rosch & Mervis, 1975) commonly
operate on a list of independent features. It was argued that a relational or
structural approach is necessary to handle the contextual problems encountered
in human pattern recognition.

Nevertheless a purely structural approach is also insufficient. A vario’
of lines of evidence indicate that natural categories are internally organized
according to typicality. Thus, either a structural-distance model or a struc-
tural-frequency model is called for, with the statistical component accounting
for gradients of membership (see Reed., 1973). Although the emnirical support
for one approach over the other is scanty, it was argued that the frequency
approach is preferable.

People do not seem to be capable of the precise level of feature measure-
ment displayed by successful computer models of pattern recognition. It is

more plausible that one encodes dimensions in a rough, qualitative fashion
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rather than as points on a continuous scaie of measurement. It is already
well known that summed frequency is useful in predicting typicality ratings

in the case of qualitative dimensions not amenable to the distance approach.
Rosch et al. (1976) suggest that a person uses both frequency and distance
pattern recognition methods depending on whether the dimensions of variance
are better characterized in quantitative or qualitative terms. Because there
is no strong evidence to the contrary, however, we attempt to account for both
situations with the same theory.

It would appear that some form of structural-frequency theory is powerful
enough to cope with the problems in human pattern recognition. The family
resemblance principle offered by Rosch and Mervis (1975) was shown to be a
special case of such a theory. Family resemblance describes the nature of
the physical properties shared by instances of superordinate categories.

For superordinates, relations betveen features may be unimportant, but as a
general theory, family reserblance would fail without the inclusion of rela-
tion information. The claim that superordinates share no defining featur.

was questioned. At the level of general, functional characteristics super-
ordinates can be described in terms of dimensional frequency information just
as well as basic and subordinate categories. The family resemblance issue
should serve to sensitize us to the pervasive problem of specifying the propev
feature space. It remains to be seen whether the appropriate features for

human categorization can be decided upon.
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