Overview

Machine learning is often used to make predictions in *high-risk settings*. When giver data point $x \in \mathcal{X}$ with label $y \in \mathcal{Y}$, we want to predict the most likely outcome. However, if Pr[Y = y | X = x] has high uncertainty, one n want their algorithm to defer to a human exp classification. We study the abstain proper which yields a prediction in high-confidence settings and deferral to human expert in lowconfidence settings.

Setting

$$\begin{array}{l} \mathcal{Y}\\ \mathcal{R} \coloneqq \mathcal{Y} \cup \{\bot\}\\ \ell \colon \mathcal{R} \to \mathbb{R}^{n}_{+}\\ L \colon \mathbb{R}^{d} \to \mathbb{R}^{n}_{+}\\ p \in \Delta_{\mathcal{Y}} \colon \langle p, L(u) \rangle\\ \psi \colon \mathbb{R}^{d} \to \mathcal{R} \end{array}$$

Finite outcon Report set: outcome or Discret Surrogat Expected Link fur

Properties and Calibration

Definition 1: The abstain property $\operatorname{argmax}_{y} p_{y} \max_{v} p_{y}$ $\gamma(p) =$

Definition 2: We say a loss *L* **elicits** the pro γ if, for all $p \in \Delta_{\mathcal{Y}}$, we have $\gamma(p) = \arg\min_{r \in \mathcal{R}} \langle p, L(r) \rangle.$

Definition 3: Let original loss ℓ eliciting Γ , proposed surrogate L, and link function ψ be We say (L, ψ) is **calibrated** with respect to ℓ all $p \in \Delta_{\mathcal{U}}$,

 $\inf_{u \in \mathbb{R}^d: \psi(u)} \notin \Gamma(p) \langle p, L(u) \rangle > \inf_{u \in \mathbb{R}^d} \langle p, L(u) \rangle.$

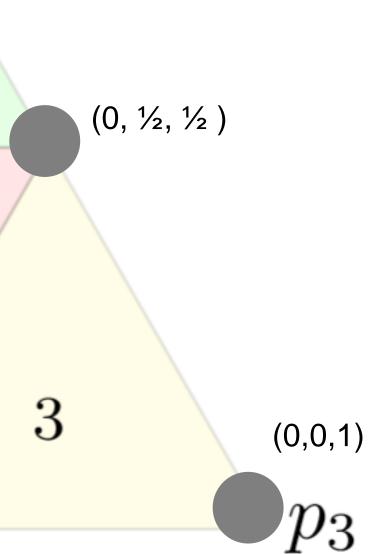
Calibrated Losses for the Abstain Property

Jessie Finocchiaro, Rafael Frongillo, Bo Waggoner

roperty

n efficient uarantees rrect

y: n = 3



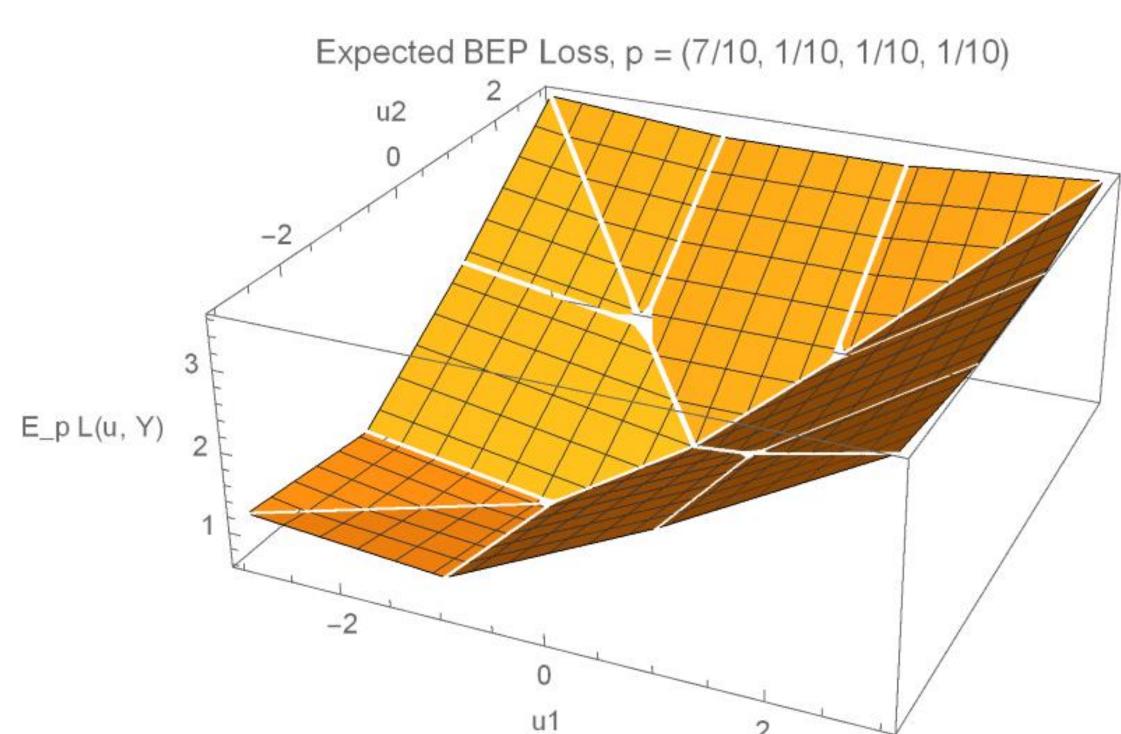
abstain), ink) pair

We want a surrogate $L: \mathbb{R}^d \to \mathbb{R}^n_+$ that is calibrated with respect to $\ell: \mathcal{R} \to \mathbb{R}^n_+$

Efficiency: *d* is small (relative to *n*)

Efficient surrogates reduce the dimension of the optimization problem.

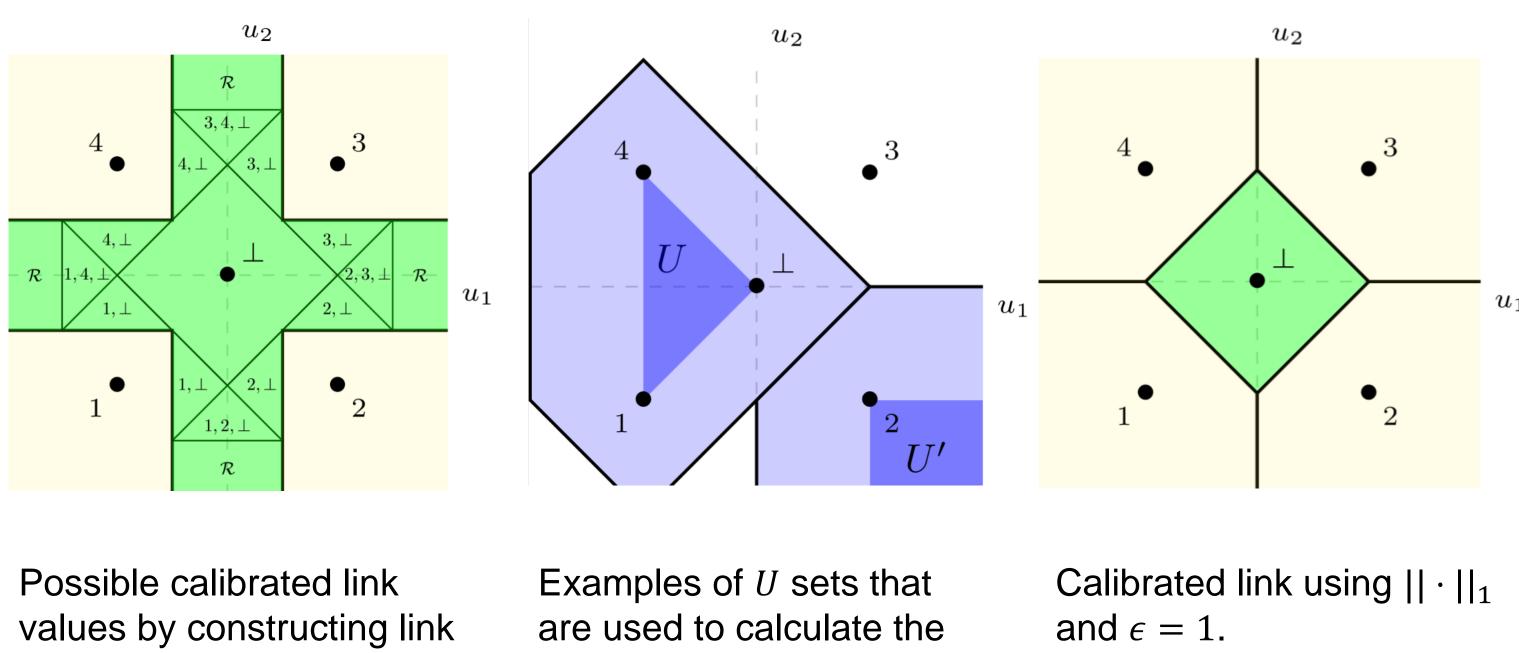
Surrogate loss for abstain property: n = 4



BEP Surrogate $L(u, y) = (\max_{i \in [d]} B_j(y)u_j + 1)_+$ is calibrated for abstain loss.

(Ramaswamy, Tewari, Agarwal. (2018.) Consistent algorithms for multiclass classification with an abstain option. In *Electronic Journal of Statistics*)

Links for abstain surrogate



calibrated link for the

BEP embedding.

with $|| \cdot ||_{\infty}$ and $\epsilon = 1/2$.

Efficiency

d = log(n)