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Modeling Expert Forecasting Knowledge for Incorporation into
Expert Systems.

Abstract.

The use of continuous multivariate models to represent experts' knowledge of relations among
a set of variables is reviewed. Such knowledge models can be incorporated in expert systems,
complementing contingent rules, especially when representing experts' knowledge of
functional relations among entities in uncertain domains. Past work has most commonly
involved linear averaging models in static domains, although nonlinear models and dynamic
domains are also possible. Detecting errors in continuous multivariate models requires a
different approach than detecting errors in collections of if-then rules. Methods for eliciting
expert knowledge include modeling judgments made in real or hypothetical situations, and use
of expert's self-insight to directly assist in construction of the model. Procedures for managing
each of these methods have been computerized and could be included as elicitation tools in
expert system building environments.
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Modeling Expert Forecasting Knowledge for Incorporation into
Expert Systems.

1 Introduction.

_ This paper will review the use of continuous multivariate models to represent experts'
knowledge of relations among a set of variables, because such models could usefully
complement the contingent rules commonly used to represent expert knowledge. Computer
systems that embody experts' knowledge have been produced for nearly two decades
(Buchanan and Shortliffe, 1984), although the reliable extraction of knowledge continues to be
a matter of concern (Bamber, 1990; Nazareth, 1989). Stewart and McMillan (1987) advocated
the use of linear averaging models to represent judgments in expert systems. However, expert
knowledge has generally been represented in these systems using contingent rules rather than
continuous multivariate functions.

Experts' knowledge can take a variety of forms. Knowledge of what is can be captured in
categories. Knowledge of the structural relations among categories can be expressed in spatial
models (clusters and dimensions). Knowledge of what to do in specific situations can be
captured using if-then rules. Finally, knowledge of causal connections, correlations, or
constituent relations can be expressed using mathematical functions.

Computer programs that relate multiple variables using continuous mathematical functions are
common, e.g., in simulations of power plant operations or in weather forecasting. The
relations are usually based on the best scientific understanding, or on large data sets whose
characteristics have been abstracted into models (Rouse, Hammer, and Lewis, 1989). But
expressions of such relations could be useful even in the absence of an accepted scientific
theory or a formal empirical analysis -- they can be based on experts' understanding
(Fischhoff, 1989; Keeney and von Winterfeldt, 1989). That is, although it has not commonly
been done, experts' knowledge can be represented in computer systems as continuous
multivariate functions.

Experts can produce such models of their knowledge. For example, highway engineers who
have worked with the capacity problem can describe the relation between lane width and
vehicle bearing capacity in terms of a mathematical function with numerical parameters
(Hammond, Hamm, Grassia, and Pearson, 1987). Such models of knowledge can be useful for
expert forecasting systems. In the case of highway capacity, the relation has been analyzed
empirically and is available in tables and formulas, so there is no need to extract such
knowledge from experts. But in any given domain there might be questions that have not had
the benefit of formal analysis, for which experts would be able to produce continuous
multivariate models that express their knowledge of the relations in the domain.

Approaches similar to the methods of psychological research have been used to aid in the
process of extracting expert knowledge. These include: open ended and directed interviews, to
learn about all aspects of the expert's knowledge; the analysis of the expert's thoughts
recorded during problem solving, to discover the expert's concepts and how they are used;
methods for discovering the elements in the domain the expert knows (Rep method; Boose,
1988), and the key dimensions by which these elements are organized; similarity based
judgment methods (multidimensional scaling, cluster analysis, pathfinding; Cooke and
McDonald, 1987), for eliciting and representing the core components of knowledge; and
various structured judgment or decision exercises, for detailed elucidation of particular
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distinctions. These techniques have been reviewed by Cleal and Heaton (1988, Chapter 7) and
Hoffman (1989). In addition, Hoffman (1987) and Burton, Shadbolt, Hedgecock, and Rugg
(1988) are examples of empirical comparisons among different approaches. Complementing
the above work, this paper will focus on approaches for representing experts' knowledge of
continuous relations among a set of variables.

The purpose of this paper is to review the variety of such models, the methods that have been
developed for using experts' knowledge to produce the structure and the parameters of such
models, and-the possibility of computer tools for managing the extraction of such knowledge
for the purpose of building expert systems. Section 2 illustrates issues that can arise when
continuous multivariate models are integrated within expert systems. Section 3 distinguishes
the types of multivariate model likely to be most useful. Section 4 compares accuracy and
error checking procedures in conditional rule models versus continuous multivariate models.
Section 5 discusses methods that can be used with an expert to produce such models of his or
her knowledge. Section 6 suggests incorporating existing computer tools for eliciting such
models from experts into expert system building environments.

2 Integration of multivariate knowledge models into expert
systems.

As an illustration, consider a formula for predicting whether a hurt ankle is actually broken
(Diehr, Highley, Dehkordi, Wood, Krueger, Teitz, and Hermanson, 1988). The formula was
derived by using linear discriminant analysis on 36 symptoms and signs for 587 ankle trauma
patients. It takes the form of an index: :

Index = -85 + 4.3*Age + 154*Abnormal_Color + 95*Tender Bone
+ 121*Achilles + 74*Low_Pulse - 49*Previous_Sprain

where Abnormal_Color means (is "1" if) the skin color is pale or cyanotic, etc. Most of these
predictors are yes/no but could as easily have several levels or be continuous. The model
produces a continuous output from these inputs: that is, it can produce any value (within the
possible range) on the outcome dimension. One would order an X-ray only if this index
exceeded a given threshold.

Diehr et al's (1988) formula could be integrated into an expert system. It could be turned into
a single purpose doctor's decision aid by programming a front end that asks for the required
inputs, or into a nurse's assistant by programming a series of questions that seek to identify
when its application is appropriate. In the first case, the doctor would know when it was
appropriate to use the aid, while in the latter case the doctor's knowledge concerning the
appropriateness of using the formula would also be incorporated in the program, as a set of
conditional rules. Alternatively this model could be just one of several embedded in a larger
expert system, such as one offering guidance on X-ray use when any limb in the body is
injured. In such a larger expert system, there might be several models similar to that of Diehr
et al (1988), each applying a formula with multiple inputs. The application of these formulas
would be governed by a rule-based control structure. The source of the models could be
scientific research, or expert judgment if the research were not available.

A continuous multivariate model of an expert's knowledge is defined only for a particular,
well specified domain. This can be considered its "scope": its input variables, its output, and
the range of the input variables (and other non-modeled conditions) for which it holds.
Common sense would prevent someone from applying the broken ankle model when a broken
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knee is suspected, or when ankles are swollen due to heart failure. When such a model is
included in a working expert system, care should be taken that it is applied only within its
intended scope. That is, common sense needs to be programmed explicitly.

Boundary cases also need attention. Treatment of boundary cases includes consideration of (a)
cutoffs: whether a model should be applied to cases that are at the edge of the zone for which
it is defined, (b) overlap: what to do when two different models could each be applied to a
case (analogous to rule conflict in rule-based systems), and (c) gaps: how to assure: that there
are no holes, i.e., cases for which no model has been provided. For example, in the integrated
broken bone decision aid described above, there might be ambiguous cases where either the
"ankle" or the "foot" model might apply. Ideally, the two models would make similar
recommendations about whether to X-ray when applied to a boundary case; if not, the expert
should know why the models make different recommendations, and give guidance governing
the boundary cases that can be incorporated into expert system's rules for controlling model
application. There is also the issue of what should be done when information is lacking
concerning one or a few of the input variables: should the model not be applied, or should
reasonable default assumptions be used?

3 Distinctions among types of continuous multivariate models of
expert knowledge.

3.1 Functional versus structural models.

Functional models describe observed relations between input variables and output variables.
Structural models are derived from theoretical knowledge or scientific understanding of the
domain. The formal procedures for predicting highway capacity or broken ankles, described
above, are examples of functional continuous multivariate models. A program for calculating
the energy flow of a house would be an example of a structural continuous multivariate model.
Although the transmission and conduction rates of individual materials would be empirically
determined, the overall relations (e.g., that the amount of heat lost through a particular surface
is a function of temperature differential, surface area, and heat conduction rate) would be
theoretically based.

In principle, an expert could supply subjectively judged continuous multivariate models that
are either functional or structural. Practically, if the model is structural the parameters are
probably available already and do not need to be judged by the expert. Therefore it is
functional models that experts would most often be asked to supply.

The functional/structural distinction is related to Steels' (1987) idea that expert systems are
now capable of both surface reasoning (in terms of the situation's categories and the available
actions) and deep reasoning (in terms of a model of the principles governing relations in the
problem domain). An advantage of the deep models is the possibility of deriving additional
rules or relations at the surface level. Continuous multivariate models could be used in either
type of reasoning. For example, given a deep or structural model y = a + byx, + bx, +
bsx3, if it were necessary to infer x, from y, x,, and x5, a deep reasoning expert system could
manipulate the first model to produce the needed model.
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3.2 Averaging versus non-averaging models.

In an averaging model the impacts of all the input dimensions are averaged to produce the
output measure. The inputs can be linear (e.g., y = @ + b,*x, + b *x,) or nonlinear (e.g., y
=a + b*x; + b *x, + b *x,2 + b,*x,%). Alternative ways of combining the input
dimensions include multiplication (e.g., ¥ = a*x,*x,) and other combinations of mathematical
operations (e.g., y = x,;**x,), as well as contingencies (e.g., if x; < 1,y = b *x; ifx; > 1,
y = b,*x;). Advantages of averaging models are: they are flexible, that is, able to describe
most relations; their behavior is robust to errors in the parameters; high values on one input
dimension can compensate for low values on another; and they are easy for an expert to
understand.

A separate question is what kinds of model best describe the human judgment process (N.H.
Anderson, 1981; N.H. Anderson and Zalinski, 1988; B.F. Anderson, Deane, Hammond,
McClelland, and Shanteau, 1981). It may be argued, for example, that those models most
closely related to the thought processes that happen to be used in a domain are also easiest for
people to use in expressing their knowledge of that domain (Hammond, 1982). If the thought
processes typically used in a domain were known, it would provide a basis for selecting the
form of model to be used in expressing an expert's knowledge.

3.3 Linear versus nonlinear averaging models.

There has been considerable discussion of which averaging models are best for expressing
experts' knowledge (especially for multiattribute evaluation), and of the attendant methods for
extracting the knowledge. Dawes (1979) advocates the linear averaging model: identify the
predictors, establish measurements for each, combine in a weighted average (or a multilinear
form; Keeney and Raiffa, 1976, pp. 288-297). This has several advantages. Linear models
often produce surprisingly accurate descriptions even when people expect that nonlinear
models will be required (Levi, 1989; Lusk, Stewart, Hammond, and Potts, 1990). They are
simple to program. Whether the models' parameters are fitted to empirical data or by
judgment, it is easy to explain them to the expert.

Models with nonlinear combinations of the input variables are also useful. There are a large
variety of nonlinear models, including nonlinear averaging models, as well as methods for
fitting them (Rouse, Hammer, and Lewis, 1989). These models require the same steps as
linear models: identify the elements, characterize the relations and select a model form capable
of handling these, then specify the particular numerical coefficients in the model. The
difference is that the mathematics are more complex: it is difficult for most people to think
about the specific nonlinear configurations of input variables that are to be averaged, and
hence it is challenging for the expert to judge the parameters and produce the models. A wrong
guess at a parameter might make the model behave very differently from what was intended.

There are different problems for which one or the other of these approaches is more
appropriate (Hammond, 1983), based on the characteristics of the relations among the
variables as well as the abilities of the experts. The boundaries between them are a matter of
argument. This paper will focus on linear averaging models. If a persuasive case can not be
made for their utility as a vehicle for expressing expert knowledge for expert systems, then
nonlinear averaging models and the general class of nonlinear models are not likely to be
found useful for that purpose. The paper will not consider the issue of recognizing what type

1. The distinction between averaging and multiplying models is not sharp: for example, there can be averages of products, etc.: y
=b*x) + b *xy + b *x *x,.
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of model is appropriate in what situation (Leddo, Cohen, O'Connor, Bresnick, and Marvin, in
preparation), which Bamber (1990) suggests is another problem for expert judgment.

3.4 Dynamic systems.

A more complicated use of multivariate continuous models in computer systems is dynamic
models, in which there are feedback connections from the output variables of one equation to
the input variables of another (Forrester, 1961). Sterman (1989) and Kleinmuntz (1990) have
shown that people's understanding of the behavior of these systems can be quite inaccurate.
Although the accuracy of experts' understanding of these systems has not been widely studied,
the extraction of experts' knowledge of parameters of the defining models for dynamic systems
does not seem promising at this time.

4 Comparison of if-then rules and continuous multivariate
functions as representations of knowledge.

The kind of relation easily expressed by continuous multivariate models, including the linear
averaging functional models focussed on here, is different from the kind of relation most easily
expressed by if-then rules, as in the rule based production system architectures commonly used
for programming expert systems. On the one hand, this is just a question of programming
language, and the current languages are flexible enough to express any desired sort of relation.
But the rule versus function distinction can be found (a) between types of relation in the
domain, (b) between the corresponding types of knowledge that an expert might have, and (c)
between the kinds of judgment needed to express the knowledge in a form usable by the
program, and so it is worth a little more exploration.

Consider the production-system type rule "if x + 2*y > 7, then z = 2". Although the
inequality on the left hand side includes a continuous expression, the rule has a categorical
output. In contrast, in the following rule the output is a continuous function of the input
variables: "If there exists information on x, and there exists information on y, then z = 5*x +
2*y." Here the output or the effect of executing the rule, z, is a continuous function of the
inputs, x and y.

In some domains (such as the highway capacity and house energy flow examples, above) the
relations among the concepts may be more appropriately expressed using continuous functions
rather than collections of categorical contingencies. An income tax preparation aid, where
steps are taken contingent on qualifying for particular exemption categories, is an example of a
domain appropriately addressed with rules.

Uncertain connections between the inputs and outputs in a relation present very different
problems for categorical rules and for continuous mathematical functions. Uncertainty makes
the application of a contingent rule "wrong" some proportion of the time; hence the path the
program takes following the use of that rule may also be wrong. One solution has been to
address the uncertainty explicitly using probabilities (Cheeseman, 1985; Pearl, 1986) or
degrees of confirmation (Chapters 10 and 11 of Buchanan and Shortliffe, 1984). Functional
relations can handle uncertainty by producing a best guess plus error. A slight error in inputs
produces a slight error in output. Experts asked to express their knowledge of uncertain
domains in terms of one of these formalisms may find it easier to make judgments in terms of
weighted averages rather than precise contingencies (Hammond, 1982).
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If continuous multivariate models are appropriate for the domain, programming them as a
mathematical expression is probably more efficient and more accurate than approximating the -
desired relations in steps using a coordinated set of categorical rules. Although rules with
categorical outcomes can model such domains to arbitrarily any degree of accuracy, the higher
the desired accuracy the more rules are required. Nonetheless, stepwise approximations have
been used with satisfactory results, including in the calculation of highway capacity.
Expressions of continuous relations are considered here primarily because they may provide
better vehicles for expressing experts' knowledge than collections of rules would, not because
of programming efficiency.

No matter what form of model is most appropriate for representing the domain, there is also
the question of how well the expert can express his or her knowledge using this type of model.
Expressing a relation in the form of a mathematical expression is a very different process than
expressing it in terms of a collection of rules with categorical outputs. While both forms
require the identification of the key dimensions, the mathematical functions require the
judgment of numerical parameters that express general relations between variables, while
contingent rules require the specification of particular combinations of levels of inputs, and the
corresponding outputs. Therefore when deciding whether to use continuous multivariate
representations of experts' knowledge of the functional relationships in a domain, one should
consider not only programming efficiency and the appropriateness of the model type to the
domain, but also the expert's ability to make the judgments that the model requires.

4.1 Accuracy of representations based on conditional rules versus continuous
multivariate models.

There have been a limited number of comparisons of the accuracy of conditional rule versus
weighted averaging representations of expert knowledge. Einhorn, Kleinmuntz, and
Kleinmuntz (1979) studied two tasks. For each they produced conditional rule models based on
analysis of verbal protocols, as well as linear models based on judgments of cases. The linear
model of a clinical psychologist's judgments of the mental health of a set of college students
described the psychologist's judgments better than the conditional rule model. In the second
comparison, there was little difference in accuracy between the methods. A third comparison
was provided by Larcker and Lessig (1983). For 25 of 31 subjects, the sets of rules derived
from a guided retrospective process tracing procedure predicted the subject's judgments
somewhat better than did a cross validated linear model. That rules were more accurate in one
domain, averages in another, is perhaps a reflection of the different task domains.

In the domain of weather forecasting, a number of comparisons have been made between the
performance of expert weather forecasters, linear models of the experts, and conditional rule
based expert systems (Stewart, Moninger, Grassia, Brady, and Merram, 1988; Moninger,
Flueck, Lusk, and Roberts, 1989). The expert systems and the linear models were not based
on the same experts. Generally, the linear models of the experts and the rule based expert
systems performed at about the same level, and were exceeded by only the best of the weather
forecasters.

4.2 Error checking in rule-based and continuous multivariate models of
knowledge.

Another contrast between representations of expert knowledge that use conditional rules versus
continuous multivariate functions lies in the processes required to check for errors in the
representation.
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4.2.1 Checking conditional rule representations of expert knowledge.

In rule-based systems the knowledge representation is typically checked along with the
programming, as a step in "a methodology of interviewing human experts and building
prototype systems, incrementally redesigning, refining, and extending the prototype until it
reaches the desired competence” (Gruber, 1989, p. 131). The expert helps correct the system
and direct its expansion, by looking at the system's behavior when faced with each logically
possible state of the world. Thus the expert is assumed capable of recognizing errors, and is
asked to exhaustively review the possible combinations of conditions. Another aspect of
checking, done by the programmer rather than the domain expert, is to determine whether
rules are consistent and not redundant (Nazareth, 1989).

4.2.2 Checking multivariate functional models of expert knowledge.

Checking a continuous multivariate model of an expert's judgments about an uncertain domain
requires a different approach. One can not simply select a new case, apply the model to it,
compare the model's predictions with the expert's judgment, and adjust the model to
accommodate for any observed mismatch. An individual case is not sufficient for evaluation of
the multivariate model as a whole, nor does it provide an immediately applicable prescription
for improving the model's accuracy. Unique features of the particular case, which influence
the expert's judgment of the case, may not be captured by the general model of the expert's
knowledge. Although the expert may disagree with the model's prediction in the one situation,
the model may still provide the best general characterization of the expert's knowledge about a
large set of situations. Adjustment of the model to increase its agreement with the expert's
judgments in a test case might make it agree less in many other cases.

Because of noise in the domain and uncertainty in the expert's knowledge of the domain,
predictions by a multivariate functional model of an expert's knowledge will have a component
of error. Checking of expert judgment models must take this into account.2 The expert could
evaluate the model using judgment at a general level, asking how well the model expresses the
relations he or she believes hold in the domain. Checking a model using general judgments
would be particularly appropriate if such judgments had not been used in the original
production of the model.

Another important process for checking the accuracy of continuous multivariate models of
experts’ knowledge is "checking the math". This involves assuring not only that there have
been no slips in writing the numbers, but also that all procedures use numbers correctly
according to the rules of measurement (see Krantz, Luce, Suppes, and Tversky, 1971; N.H.
Anderson, 1981; Stewart, 1988). Usually such checking is the responsibility of the
programmer rather than the expert. Methods that assure that the procedures adhere to these
principles will be discussed below.

S Methods for producing a model of an expert's judgment.

Over the years a number of methods have been developed for deriving continuous multivariate
models, particularly linear averages, that represent people's knowledge about a domain. Each
of these might be useful for a knowledge engineer modeling an expert's knowledge. The

2. Ravinder and Kleinmuntz (1991) and Fischer (1991) give general advice about improving the accuracy of additive
decompositions of multiattribute utility that is also applicable to linear averaging models of expert judgmeat: spend the most
effort improving the precision of parameters with the greatest impact.

= Tia
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methods to be discussed involve fitting models to experts' intuitive judgments of typicﬁl cases,
versus asking the experts to define the models directly.

5.1 Observation of expert's judgments.

Many expert practitioners are problem solvers who deal on a daily basis with concrete
situations (Schon, 1988), yet are uncomfortable with abstract academic characterizations of
their domain. Hence they may be able to predict outcomes for cases described in terms of their
essential features, but yet be unable to produce parameters to specify models of the relations
between those features and the outcomes. For example, an expert emergency room physician
may be quite comfortable judging whether a bone is broken, but may have no basis for
expressing his or her knowledge by producing a parameter in a linear discriminant model such
as the broken ankle index (see above).

A method for producing continuous multivariate models representing the knowledge of such an
expert is to "bootstrap” the expert, that is, to use best-fit algorithms on a fairly large number
of the expert's judgments to produce a model that predicts the judgments as a function of the
elements of the objects judged (Hammond, McClelland, and Mumpower, 1980; Rouse,
Hammer, and Lewis, 1989). These judgments may be produced in the daily practice of the
expert's trade, or produced especially for the knowledge engineer.

S.1.1 Unobtrusive observation: Judgments from the expert's daily practice.

If the expert’s judgments about a number of cases are available, these can be used to produce
the model. The judged cases should be drawn from the class to which the model is intended to
apply, and they should be present in the judged sample in representative proportions, else the
model would not be valid for the situations in which it is to be applied.

Anand (1990) proposes such an approach for a medical context. He envisions an expert system
that would have access to a large data base of patient histories. These histories contain both
facts about the patients (inputs to the judgment model) and the doctors' diagnoses (the output).
Anand's (1990) model could produce probability estimates for diagnoses in a new case, based
on the previous doctors' diagnoses of the old cases. This is notable because the basis for the
judgment model (the data base) is a part of the same computer system that includes the expert
system, and as knowledge or experience with a type of disease is accumulated the expert
system could update its judgment model automatically.

A system such as Anand's (1990) would treat a number of experts as if they have one
judgment policy. The resulting model can be said to describe the judgment practice of the
institution which the individuals represent if the individuals participate in the study
proportionately to their responsibility for the institution's decisions (Bursztajn, Gutheil,
Hamm, Brodsky, and Mills, 1988). However, if judged cases were contributed by members of
two camps with different judgment policies, the model would be some sort of average of the
two policies, possibly less valid than the policy of either camp. If there were an advance in
treatment or a shift in the characteristics of the disease it would be necessary to modify the
program else, being based on a large number of prior cases, its recommendations would be out
of date. Any expert system would need such revision; the problem here is that people might
rely on the automatic updating, and not recognize that it would not handle discontinuous
changes in knowledge.

The biggest drawback to using existing databases of experts' judgments to infer judgment
models is that in most domains it is not possible to find adequate records of a collection of
similar cases. Case information is usually not complete, and data bases do not include all the
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inputs a model may require.? Further, case information may not be objective, as in the
adversary legal system, or in social work where case histories are often "reconstructed" after a
resolution rather than being recorded as they happen (L. Dalgleish, personal communication).

An alternative to using existing databases of experts' case judgments is to make fresh
observations. However, this may take a long time and the observations may not cover the
whole range of situations needed for the model.

5.1.2 Systematic observation: Expert's judgments on special tasks.

Having volunteer experts judge a set of hypothetical cases can provide the needed judgments
relatively quickly.* Experts would be asked to respond to the hypothetical situations as if they
were encountered in their daily practice. The cases can be described with the inputs in "raw"
form (as they would be encountered in daily practice), or pre-measured.

Judging hypothetical cases in such controlled tasks allows for uniform conditions of judgment.
The characteristics of the set of cases judged can be systematically manipulated for various
purposes. A uniform or representative distribution of values over each dimension can be
provided. The dimensions can be made to vary independently to allow for precise specification
of the model. Alternatively, the dimensions can be made to have intercorrelations
characteristic of the domain so that the expert experiences the task as realistic (Hammond,
McClelland, and Mumpower, 1980). Judgment of cases allows fitting of individuals' judgment
policies; if different policies are found for different individuals, some basis must then be found
for selecting among them or combining them.

An advantage of having experts judge individual cases rather than provide parameters for a
model is that the variety of cases may serve as a fairly thorough set of cues for stimulating the
expert's memory of pertinent knowledge (see Bamber, 1990). In contrast, asking the expert to
give a model describing his or her knowledge (see below) induces an abstract consideration of
the problem which may access less of the expert's knowledge.

The paradox of using controlled procedures for observing experts' judgments is that, although
the procedures aim to eliminate extraneous sources of variation in the judgments, they can
introduce distortions. Even high status experts may judge differently when they know their
performance is being watched. And people develop efficiencies when judging repeated cases of
the same type: they do it faster, more consistently, and possibly more simply than when
judging real life cases (Slovic, Lichtenstein, and Edwards, 1975).

The choice whether to present case information to the expert in abstract or "raw" form depends
on several factors. Experts can often make quicker judgments of situations in which the inputs
have already been processed, without loss of accuracy. For example, in a study of highway
engineers' judgments of highway characteristics (safety, capacity, aesthetics), two methods
were used to develop "bootstrapped” models of each engineer's judgments. In one procedure,
the engineer looked at pictures of the highway (a moving film strip, consisting of photographs
taken every 50 feet) and perceived the pertinent features himself. In the other procedure, the
relevant features were measured numerically and presented graphically in the form of a profile
(8 to 10 features simultaneously displayed as bar graphs). Judgments were completed more
quickly with the abstract bar graph display (Hammond, et al, 1987). When the engineers'

3. An interesting exception is bank officers’ judgments of credit risk: a West German bank had computer records of hundreds of
thousands of cases, which permitted derivation of judgment models (Roland Sholz, personal communication, June, 1990).

4. The similar judgment tasks used with the Rep method (Boose, 1988) and psychological scaling (Cooke and McDonald, 1987)
serve a different purpose — to discover the structure of the elements in the domain, rather than to elicit the causal or contributory

relations among those elements.
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judgments were evaluated with respect to objective standards, the judgments of the bar graph
information were more accurate for two of the characteristics (aesthetics and capacity), but the
film strips produced more accurate safety judgments (Hamm, in press).

Recent work comparing raw versus premeasured information about cases has shown a
surprising level of disagreement at the perceptual measurement stage among atmospheric
scientists (Lusk and Hammond, 1991). In producing an expert system, one might wish to
decompose the judgment task (see Stewart, 1991) to extract judgment policies in areas of
agreement, and to isoldte areas of disagreement for further study.

5.2 Use of expert's self insight to guide construction of model.

Judging a large number of cases to provide data for an algorithmic model-fitting process is
laborious,* and an available expert may not be willing to do it. Another approach is to get the
expert's direct assistance in building a continuous multivariate model. Steps in this process
could include: determining the areas of knowledge for which such a model is appropriate
(Bamber, 1990), selecting the variables that should be included as input in the model,
determining the structure of the relations between input and output variables (e.g., linear
averages), and specifying numerical coefficients for the relations in the vocabulary of the
particular model (Rouse, Hammer, and Lewis, 1989). The expert could also help by evaluating
the model (Fischhoff, 1989).

The various possible approaches differ in who has control over the basic elements of the
process: selecting the variables, determining the basic mathematical structure of the model,
and producing the particular parameters for a given model form. The expert may be offered
full control over the form of the model, or at the other extreme may have responsibility only
for naming parameters in a model whose variables and organizing principles have been
selected by the knowledge engineer.

5.2.1 Basing model elements on the scientific literature.

Hammond, Anderson, Sutherland, and Marvin (1984) used experts to select the variables to be
included in a model for forecasting the health effects of a nuclear bomb manufacturing plant
on its neighbors. Five experts with different public stances on the issue of the safety of the
Rocky Flats plant participated in a several-stage process that was managed by researchers who
visited the experts individually (to avoid arguments) and carried each expert's
recommendations to the others. The experts defined the scope of the problem (the effects of
inhaled plutonium dust, as modified by the external factor of smoking), selected the relevant
variables, determined the form of the model, and agreed on the parameters for that form of
model. The rules imposed on the experts included that if there was disagreement about the
variables, model forms, or parameters, they would support their positions with arguments
based on research that was available in the literature. Differences supported by published
research were resolved by going back and forth until the parties agreed on a parameter.

Scientific backing was required by Hammond et al (1984) as a means to resolve disagreements
among experts. But there are domains in which scientific research has not been done or has not
produced an accepted or unified theory, and the best available knowledge is therefore expert
judgment. In such domains, the experts might need to construct models of their knowledge
from scratch, rather than modify accepted models.

5. The number of cases required may be as large as (N + 1) * (M + 1) - I, for N cases described on M attributes (N.H. Anderson
and Zalinsky, 1988).
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5.2.2 Expert's unaided construction of the model.

Experts often are well qualified to produce models that express the joint continuous influences
of multiple input variables upon an output variable. Their experience sensitizes them to the
important factors, the effects of each factor, and the interactions among the factors. Their
training and everyday practice may involve the use of mathematical expressions describing
these relations, so that they are competent to construct a model describing their knowledge.

Giving experts responsibility for producing the model of their knowledge respects their
expertise and hence may motivate careful work. However, there is the possibility of error. The
expert may misunderstand some aspect of the domain, and the knowledge engineer would be
unlikely to catch this error (unlike in the previous approach where reference to scientific
authority and mutual criticism among experts served to prevent errors). The expert might omit
a variable from the model that he or she would easily recall if the situation actually arose
(Fischhoff, Slovic, and Lichtenstein, 1978). There is a "data type" problem -- that a variable
may be defined differently in the formula the expert hands over to the knowledge engineer -
than it is in the rest of the expert system. And there is the possibility of misconstructing the
model from the point of view of measurement theory -- performing unjustified operations on
variables, such as adding a constant to a ratio scale variable or taking ratios of interval level
variables. Finally, experts can "slip", e.g., make a clerical error or forget a minus sign (cf
Norman, 1981). .

The importance of experts' error in expressing their knowledge is illustrated by the experience
of Hammond et al (1987). When highway engineers were asked to produce formulas
representing the influences of a number of highway features upon highway aesthetics, safety,
or capacity, over a third of the formulas contained errors that the researchers could discover
later, and correction of these errors increased the models' average accuracy by up to 15%
(Hamm, in press). To protect against such error, the expert should be involved in the process
long enough to catch mistakes, 1.e., slips between what he or she intended the model to do and
what it does, and the knowledge engineer should look for inconsistency between the model and
the expert's expressed intentions.

The highway engineer study also provided comparisons between the models that the expert
produced directly and those that were produced by modeling the expert's judgments of a
number of individual highways. The results were different for each task. After the engineers'
slips had been corrected, the models that they wrote for highway safety predicted true highway
accident rate less accurately than the models fit to their judgments of the safety of individual
highways. The two types of aesthetics model were equally accurate. For predicting highway
capacity, the models the engineers wrote were significantly more accurate than the models
based on the engineers' capacity judgments based on film strip displays. However, the models
bootstrapped from the engineers' capacity judgments from bar graph displays were more
accurate than the models the engineers wrote (Hamm, in press).

The efficacy of these alternative methods may depend upon the availability of the experts'

. knowledge of the domain. If they "know what they know", they may be able to write it
directly. On the other hand, if they are not conscious of all the information that they use when
thinking about the domain, it may be better to have them make judgments about a
systematically produced set of cases, and then to use statistical procedures to derive the
relations they use in their judgments.

Related to this is the question of diagnostic versus predictive relationships. In domains where
there are negative feedback relations, i.e., compensatory processes, the predictive relation that
a cue (input) has to an output may be the opposite from the diagnostic relation between the two
variables. For example, when considering the effects of variations in highway layout upon
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highway safety, wider lanes predict safer highways because wide lanes give more room to
maneuver. But highway departments have known this for years, and have spent their limited
budgets in making wide lanes in locations where they are most needed. Therefore, wide lanes
in currently existing highways diagnose that there was a need for wide lanes; hence the wider
the lane, the more dangerous the highway. In the highway engineer study, engineers used the
"lane width" cue diagnostically when judging individual highways from film strip displays, but
they used it predictively when writing formulas (Hamm, in press).

5.2.3 Knowledge engineer guides the expert's construction.

If the expert can not accurately use mathematical language to express his or her knowledge of
the relations among the elements in the domain, the knowledge engineer may need to provide
structured guidance to assure that the model has the intended meaning.

5.2.3.1. Provision of structure. In one form of guided expert model building, the knowledge
engineer determines the variables to include in the model and the structure of the relations
among them (usually a linear averaging model). The expert supplies only the parameters in the
model, specifying the tradeoffs among the input factors. This approach might be used when
the knowledge engineer has produced a model with one expert, and wants additional input
from another expert without having to start from scratch. The second expert is then asked only
to judge the parameters for the model. The "simple multi-attribute rating technique" (Edwards
and Newman, 1982) also takes this approach when eliciting value tradeoffs from citizens,
because information is needed from many citizens using the same model form. When expert
bank officers used similar techniques to produce models of their decisions to offer credit to
loan applicants, the models were more accurate than models based on the same individuals'
Judgments of hypothetical loan applicants (Stillwell, Barron, and Edwards, 1983).

A drawback of requiring the expert to produce only the numerical parameters for a predefined
model is that the expert may not make the numerical judgments carefully. Not "owning" the
model, the expert may not be motivated to ensure that the parameters accurately reflect the
tradeoffs he or she understands to be true. And not having been involved in selecting the basic
form for the model, even the well motivated expert may not understand the meaning of the
parameters enough to judge them accurately.

A number of studies have cast doubt upon the accuracy of people's direct judgments of
parameters for linear averaging models intended to express their judgments in continuous
multivariate domains. Work by Gabrielli and von Winterfeldt (1978; see von Winterfeldt and
Edwards, 1986, p. 368) and Stewart and Ely (1984) has shown that when people name weights
expressing the input dimensions' relative importance in influencing the output dimension, they
are not very responsive to the range over which the input dimensions vary, even though this is
crucial to the weights' interpretation. This can occur even when the relation of the range
information to the parameters has been explained carefully (see also Anderson and Zalinsky,
1988; Goldstein and Beattie, in press). People are inaccurate at summarizing their judgments
in terms of the relative weights they put on different factors (Roose and Doherty, 1976),
although they can recognize weight-profile descriptions of their own judgment policies (Reilly
and Doherty, 1989). Also, weights elicited for all input dimensions simultaneously are
“flatter” than weights elicited for the same dimensions organized as a hierarchical tree
(Stillwell, von Winterfeldt, and John, 1987), and a factor's prominance in a hierarchical tree
and the amount of detail used to describe it can increase the numerical weight that people
assign to it (Borcherding and von Winterfeldt, 1988; Weber, Eisenfuhr, and von Winterfeldt,

1988).

Experts' difficulty expressing their knowledge using numerical parameters may be due to the
fact that the language of multivariate models may not correspond to how they think about the
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domain (Fischhoff, 1989). If the terms of the model and the operations in the model building
process are unfamiliar, experts may treat the exercise of naming numbers as something they
must go along with but that has no important consequences. Allowing the experts to have more
of a role in defining what is modeled and how it is measured may produce models in which
their judgments are more accurate.

3.2.3.2. Guiding the model building process to assure adherence to principles of measurement.
The alternative to eliciting the expert's judgments of parameters within a prestructured model
is to involve the expert in the structuring of the model. The knowledge engineer can guide the
expert to assure that (a) the terms of the model are consistent with the rest of the expert
system, (b) numbers used in the model have the required scale properties, and (c) only legal
operations are applied to the numbers (Krantz, Luce, Suppes, and Tversky, 1971; Luce and (
Krumhansl, 1988). In effect, the knowledge engineer would be performing the same function
as a decision analyst (see Keeney, 1977) or judgment analyst (see Stewart, 1988), assuring that
the numerical model says what the expert means. The process would be similar to the
structuring of a value tree (von Winterfeldt and Edwards, 1986, Chapter 2), except it deals
with experts' general knowledge of the relations in a domain, rather than their knowledge of
the multiple aspects that contribute specifically to value in the situation.

I will now sketch an approach to working with the expert to structure a model of his or her
knowledge of the relations in a domain. This involves working from the top down and from
the bottom up in alternation. The approach was used with a subset of the engineers in the
Hammond et al (1987) study. The steps are summarized in Table 1, and presented in detail in
Hamm (1990). From the top or the general perspective, the scope of the model is defined and
the relevant variables are selected. From the bottom, the numerical scales for measuring each
variable are defined, assuring consistency with the rest of the system and establishing
constraints on the operations in which the variables are to be involved. The expert also decides
whether the effects of any input variables on the formula's output variable are influenced by
any of the other variables, i.e., whether the input variables interact in influencing the output
variable.

34¢ 34 3 3 A e 2k 2k 2k 2k k¢ k¢ 2k 3f 3¢ 3k 3k 3 3 k¢ 3 3k 2k ok 3 2K 3 3K 3¢ 3K ke 5 3k 3k 3k e Sk ok ok oK kK ok K K

Insert Table 1 about here.
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From the top again, the variables are grouped into subsets that logically go with one another.
Interacting variables are included within the same group so that the relations between groups
are as simple as possible. (McLeish and Cecile, 1990, have used a similar heuristic approach
for producing models with conditional independence.) Then the groups, as well as ungrouped
individual variables, are arranged into a hierarchical tree structure, in which the model's
output variable is the top node and the branches from each node [to lower variable-groups
(nodes) or to individual variables (terminal nodes)] represent the expert's way of thinking
about what influences or constitutes that node. The tree can be arbitrarily deep, depending on
the number of variables and on how the expert wants to structure it.

After the model tree is structured, the expert and the knowledge engineer work bottom up
again, to specify the mathematical form for combining the branches at each node of the tree.
The knowledge engineer assures that the operations used are appropriate for the scales of the
input variables (terminal nodes), and helps the expert define the scale type of the output of
each node, so that the next higher level can be built appropriately. Once the formulas
describing all the branch points in the tree have been specified, the total model can be written
simply by substituting the lower nodes' formulas into the formula for the top node.
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This guided model building approach, in which the knowledge engineer constructs the formula
with input from the expert at all key decision points, preserves several advantages of the
methods discussed above. As when the expert builds the model without guidance, the expert is
involved here at every step and so has deep understanding of the model, as well as the
motivation to think hard that comes from being involved. As when models are fit to experts'
case judgments, the parameters in the models will be relatively valid because the structure of
the procedure and the knowledge engineer's involvement make it easy to prevent slips and
errors.

Guided model building has several possible disadvantages. Writing a formula offers limited
memory cuing compared to judging hypothetical cases. Success depends on the expert being
able to express his or her domain knowledge when making judgments about the following
model options: the existence and form of interactions; the appropriateness of various model
forms (e.g., multiplicative or additive combination); the relative importance of different
factors involved in an averaging formula (weights) or a multiplying formula (powers); and the
functional form of the relation between two variables.

The above procedure was used with 3 engineers in the Hammond et al (1987) study to build
models, embodied in formulas, to express their knowledge of the effects of the offered input
variables (highway features) on the characteristics of highways (safety, capacity, or aesthetics).
The other 18 engineers built models unaided. All engineers were given the variables that were
available for use in the model, with a definition of the variable and a metric for measuring it.
The models resulting from the guided procedure were no more accurate (measuring accuracy
as the correlation between the model's prediction and an objective criterion measure) than the
models the engineers produced without guidance, after the unguided models were corrected for
obvious slips (Hamm, in press).

Although the number of subjects using the guided procedure was small, it is remarkable that
fixing dumb errors, rather than using the formal method to assure adequate measurement,
made the biggest difference in model accuracy. However, such a guided procedure may be
more useful in other situations. For example, engineers may have more mathematics skill than
other experts and hence benefit less from the procedure. The guidance may be less crucial in
situations where linear averaging models are appropriate, due to the robustness of these models
to parameter variation.

The guided procedure produced models that were better calibrated, which is not reflected in
the use of correlation as a measure of accuracy (Hamm, in press). Also, the guided formulas
were more complex. This suggests that the complexity of a model that an expert produces may
be influenced by motivation or the availability of model producing tools or assistance. Politzer
(1991) suggests that in complex situations complex models produce unexpected (but accurate)
predictions. If so, a structured guidance procedure would help produce complex models in
those situations where they are needed.

5.3 Impact judgments.

A hybrid method asks the expert to consider one or a few cases and report the impact of each
of the particular inputs on the output in each case (Hamm, Bursztajn, Mills, Appelbaum, and
Gutheil, 1981; similar ideas were explored by Zhu and Anderson, 1991). In combination with
separate information about the measures of each case on all input variables and about the level
of each input variable that would have a "neutral" impact, the expert's impact judgments can
be used to produce estimates of parameters in linear averaging models. This has three
advantages. The numerical "impact" judgments have very specific referents and hence are
unlikely to be governed by generic judgments of factor importance that ignore the range over
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which the factor varies (Stewart and Ely, 1984). The experts think about actual cases rather
than thinking at an abstract level. And the expert considers only a few cases, rather than a
large number. Although research has not been done to assess the quality of experts' impact
judgments in comparison with judgment and self-report methods, preliminary results® suggest
that in the absence of direct supervision of the expert, the parameter estimates derived with
this technique may be quite noisy.

6 The possibility of computer tools for expressing expert
knowledge as multivariate models.

Computer tools have been developed to assist knowledge engineers in extracting expert
knowledge -- interactive programs that actively elicit knowledge from experts and produce the
appropriate code (Gruber, 1989, pp 137-145). Different modes of representing knowledge
require different elicitation tools, so a repertoire of model-based elicitation tools is required
(Gruber, 1989; Cooke and McDonald, 1987). It would be useful for such a repertoire to
include tools for eliciting continuous multivariate models from experts. This section reviews
existing or potential computer procedures for managing the various extraction processes
reviewed in Section 5, that could easily be incorporated into the repertoire.

For discovering relevant entities and the similarity relations among them, the AQUINAS
computer tool uses the Rep procedure for eliciting personal constructs (Bradshaw and Boose,
1990). The structure of causal relations among relevant concepts could be elicited using a
computerized version of the procedure in Table 1, above, or of the procedures reviewed by
Keller and Ho (1988). If the causal relations are circular, they could be represented as a
dynamic system using I-THINK or STELLA (Richmond, Peterson, and Vescuso, 1987).

Once the structure of connections among the pertinent concepts has been identified, estimates
of the parameters are needed. If this is to be done by having the expert judge many concrete
situations and fitting models to those judgments, the POLICY program (Rohrbaugh and
Schuman, 1988), the CONJOINT procedure in SPSS (SPSS, Inc., 1990), or the AVERAGE
program (Zalinski and Anderson, 1986) could be used as a model for the needed procedures.

If the expert is to directly estimate the parameters in the model, Garthwaite and Dickey's
(1991) approach to eliciting experts' estimates of regression coefficients could be used if the
experts are competent to judge probabilistic bounds on the parameters. Heuristic procedures
requiring ratio judgments of factors' relative importance are offered by Forman, Saaty, Seeley,
and Whittaker's EXPERT CHOICE (but see Dyer, 1990). For multivariate models of value or
utility, there are many decision analysis programs that help experts structure the domain and
produce subjective tradeoff parameters, which could be adapted to the more general purpose
addressed here (e.g., McNamee and Celona, 1987). White (1990) reviews progress in
integrating these procedures with expert systems (e.g., AXOTL of Bradshaw and Boose,
1990).

Several computer programs build continuous multivariate models of the sort discussed here in
a very flexible manner, using linear programming to extrapolate from experts' imprecise
Judgments of parameters (Cohen, Laskey, and Tolcott, 1987; Moskowitz, Wong, and Chu,
1989; White, Sage, and Dozono, 1984). For example, the user could make vague judgments
of model parameters (e.g., saying that the parameter for input variable A is more than twice
the parameter for variable C), and the program would identify the range of possible parameters

6. Work in progress by Hamm, Gutheil, and Bursztajn.

=15 -



Hamm Modeling Expert Forecasting Knowledge

for the model, consistent with the judgments made so far. These programs are written to
produce multiattribute utility models: the output measure is an object's desirability. However,
the programs' internal rules, which enforce consistency with measurement theory principles,
could easily be adapted for a more general class of models. As such, they would offer a
flexible environment for rapidly building a calibrated model of the expert's knowledge, using
judgments as precise as the expert is willing to make.

Within such an environment, it would be easy to alternate between "top-down" and "bottom-
up" perspectives as recommended in Section 5.2.3.2, above. Narula and Weistroffer (1989)
describe a similar procedure that provides feedback following the expert's judgment of
parameters in dynamic system models, allowing subjective evaluation of the adequacy of the
set of parameters. STELLA could similarly manage the production and simulation of dynamic
system models in which nodes are governed by multivariate models with judged parameters.
Tatman and Shachter (1990) provide an environment for dynamically managing influence
diagrams that could serve the same function.

In sum, procedures for constructing continuous multivariate models when appropriate have
long been known and computer tools are now available for applying these procedures. Any of
these could be included in the repertoire of elicitation tools provided by an expert system
building shell.

7 Conclusions.

This paper has argued that continuous multivariate models, especially linear averages, are an
appropriate form of representation for experts’ knowledge of functional relations among
multiple elements in uncertain domains. Their differences from conditional rule representations
-- in the kinds of judgment required of the experts, in the way they handle uncertainty, and in
the processes required for checking for errors -- offer a basis for choosing between the two
forms of representation, even though no consistent performance advantage has been
demonstrated for either form.

Choice of method for extracting experts' knowledge into continuous multivariate models for
use in expert systems depends on a number of factors, including the availability of experts and
the types of judgment task that they are willing or able to engage in. When experts have
sophisticated insight into what they know, they can help model the knowledge directly,
although special procedures may be needed to assure the quality of the model. When experts
lack this insight or when expert judgments about many cases in the domain are available,
models can be produced from statistical analysis of the relation of the judgments to case
features. Procedures for managing each of these methods have been computerized and could be
included as elicitation tools in expert system building environments.
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Table 1.
Steps involved in guided model building procedure (from Hamm, 1990).

1. Define measurement scale of output dimension and input dimensions. Establish scale type
for each.

2. Graphically express relation between each input dimension and the output dimension.
3. Summarize information about all input dimension in one table.

4. Identify interactions between dimensions. Is each input dimension's impact on the output
dimension moderated or influenced by any other dimensions?

5. Group input dimensions, according to similarity or existence of interactions, and then
arrange groups in a hierarchical tree. Influence flows from twigs to trunk in this upside-down
tree. The output dimension is the top node in the tree.

6. Give each group of variables a name, define its measurement scale, graph its effect on the
output dimension, and consider whether it has interactions with other groups or individual
variables.

7. For each internal node in the tree, specify how the (local) input variables are to be
combined into the (local) output variable. This involves choosing whether the variables are to
be combined by averaging, by multiplying, or by defining a table that names the output for
every possible combination of values of the input variables.

8. When the mathematical form of every node in the tree has been specified, these
specifications jointly define the model.
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