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Chapter 1. Introduction

The goal of the current paper is to summarize and discuss the status of
a common elements view of procedural transfer. Skill transfer or transfer of
any kind of knowledge is seen as the phenomenon by which the previous
acquisition of a piece of knowledge facilitates or hinders learning of another
piece of knowledge. A simple example would be the facilitation of learning
one programming language after having learned similar ones. Similarly one
could imagine a negative effect of learning one set of commands to use for a
computer application on the acquisition of second different but similar set of
commands.

1.1 Common elements vs. generalized transfer

Early in this century (Thorndike & Woodworth, 1901) a view of
transfer of knowledge was put forward that emphasized the importance of
common identical elements of knowledge for any kind of transfer. This
position was opposed to an older view of transfer that emphasized the role of
formal discipline (e.g. Angell, 1908). The proponents of this faculty theory of
transfer had a metaphorical view of the mind as a group of muscles that
could be strengthened with certain formal exercises. Transfer was explained
not in terms as transfer of particular knowledge of facts or procedures, but
simply as a result of the strengthened power of a certain muscle group (or
faculty) to perform its particular function. If a certain faculty (such as
reasoning) was trained well, these theorists expected broad general transfer to
any tasks that required the function of this faculty.

Thorndike and Woodworth, who came from a behaviorist background,
began putting the transfer phenomenon to experimental test. From their
observations they concluded that transfer could only happen as transfer of
one stimulus-response association to the execution of the same association at
a later point in time. In its strongest form this common elements view even
excluded similar S-R associations from transfer. Even though this extreme
position can be attacked on logical grounds, because no psychological
stimulus situation can be exactly the same as another (and therefore transfer
should never happen), the general idea of describing and investigating
transfer in terms of identical elements has been very influential for
subsequent work on transfer. In this process, the strict definition was lifted to
include similar but not identical S-R associations (e.g. Osgood, 1949), and in
more recent work, the nature of the common elements has been changed
from the behaviorist construct of S-R associations to the cognitivist construct
of production rules (e.g. Anderson, 1982). However, the important
inheritance included the conviction that transfer could be explained solely on
the background of the relevant shared elements, and not on any sort of
generalized component.
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In this paper we will review experimental results from two schools
within this general common elements approach. We will first review
relevant theories and experimental research in the information processing
paradigm. In this approach each task requires the learning of cognitive
procedures to manipulate symbols and structure the task. The general unit of
analysis in school of thinking are rules that embody these cognitive
procedures or operations. In a later chapter the transfer work of an earlier
group of researchers, the ‘verbal learners’ will be reviewed. This group of
researchers was concerned with negative transfer in form of interference
between two successively learned sets of stimulus-response associations. In
particular interference was studied using verbal material, such as lists of
words or nonsense syllables, therefore the term ‘verbal learners’. The unit of
analysis here is therefore the particular S-R associations made up by certain
characteristics of the word lists to be learned.

1.2 Decomposition of common elements

In both cases we will see that the experimental results show levels of
transfer that could not be explained by the proposed common elements alone.
In search of a neutral description of this effect, we will call this phenomenon
‘surplus transfer’. Instead of arguing for the existence of generalized transfer,
we will make the argument that in both approaches the analysis of what
transfers started at too a general level. In both approaches an element has
been defined as a learned association between two (otherwise independent)
events. In the information processing approach these two events are the
descriptions of a certain cognitive state that becomes associated with a specific
cognitive operation. In the case of the verbal learners these events are simply
the list of learned (verbal) stimuli and (verbal) responses. In both cases,
transfer has been conceptualized as the whole-cloth transfer of these
associations to a new task or situation. However, recent results in the
analysis of procedural transfer (e.g. Singley & Anderson, 1989; and
Pennington & Nicholich, in press), as well as the research of the verbal
learners (e.g. Martin, 1965) demonstrate that learning of such associations
may be a complex phenomenon. It can be decomposed into several stages and
into the learning of several components. For example, the events that make
up the new association may be new to the subject and have to be acquired as
concepts before they can be associated to each other. If this is the case, partial
learning (learning of the events rather the association) may lead to transfer.
From a high level analysis of the learning task such transfer may look
unexplainable and suspiciously general. A lower level of analysis however,
can discover common elements in these components of the associated pairs
of events, that may have the power to explain the surplus transfer that has
been observed.

Marita Franzke Components of Transfer 2



1.3 Owverview

In the second chapter of this paper the theoretical background for the
modern common elements view of transfer will be reviewed. As will be
shown in detail, the common denominator between three general theories of
learning and performance (Act*, CCT and Soar) is the conviction that
procedural skill is represented in a rule-based manner. On this background,
transfer is predicted on grounds of these common rules whole-cloth from one
task to another. The third chapter reviews the experimental literature that
has been accumulated to investigate transfer as an effect of these common
elements or rules. As the review will illustrate, common ‘rule’ theories
under predict transfer in certain experimental situations, so that the analysis
of those rules into its smaller components seems indicated. Chapter four
summarizes the research of the verbal learners. It will be pointed out that
research in this paradigm took a similar path. The components identified by
this research group will be discussed in some detail. In the general
conclusions we reflect on the possible similarity between the components
identified in both approaches and considers the relevance of the verbal
learning research for the current analysis of procedural transfer. We conclude
that in both cases, the paired elements that have to be associated (production
rules and stimulus -response connections, may have to be acquired as
independent events. This acquisition period is especially important in
situation where these events (verbal material in one case, and representations
of new cognitive operators, or new symbols that indicate a certain problem
state) are unfamiliar, initially meaningless and difficult to differentiate. We
conclude that initial components of learning (and possible candidates for
transfer) are therefore the acquisition of semantic meaning, and
differentiation between a set of new concepts.
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Chapter 2. Current Theories of Learning and Performance

Before reviewing the current experimental research on transfer we first
have to understand the theories that have driven this type of research. In
particular we have to familiarize ourselves with the particular level of
analysis of cognitive behavior that these theories have chosen. The level of
analysis defines the grain size of the common elements that have been
postulated to underlie transfer. Our concern here will therefore be to
determine which type of cognitive elements are proposed to transfer, and
how the theories explain learning and performance based on such elements.
Finally we will describe the particular transfer hypothesis of each such theory.

In the information processing approach mental activity is understood
as a series of actions or operations performed on some currently available
mentally represented state of affairs. What type of operation is performed on
what particular representation is stored in rules, that specify a certain
cognitive operation for a certain representation. It is assumed that an
individual has a virtually unlimited capacity to store more and more of such
rules. Transfer is therefore understood on the background of the learning
and transfer of such rules. These exactly are the common elements that
current theories of transfer base their prediction upon. In the following
sections we will review in some detail how these rules have been described,
how they are acquired by a learning individual, and what transfer predictions
have been derived on their background, for three different theories of
learning and performance. Our main conclusion is going to be that particular
transfer predictions are based on transfer of common processing rules for each
of the reviewed theories (Act*, CCT and Soar). There are some differences as
to how exactly these rules are represented, and how they are acquired (i.e.
Act* and Soar). The main differences between these two models seems to lie
in the learning paradigms that have been explored, which leads to differently
general rules that are acquired. Act*, which explicitly models plausible and
observed human learning events, assumes that learning happens in a fairly
controlled environment, where subjects are kept on a solution path that is
relatively narrow. If errors occur frequently, subjects are recovered and lead
back to the optimal solution path after a few trials. Soar is an attempt at
exploring problem solving and learning from a Artificial Intelligence
perspective. Here the emphasis is not necessarily at modeling a plausible
learning paradigm, as much as the exploration of a theoretically possible
series of events that may lead to learning of a set of rules representing a
particular problem type. Consequently, time and motivational constraints are
not given high priority and learning may happen in an unconstrained space,
that assumes exploration with minimal feedback from an instructional
environment. Thirdly, we will see that the two theories (Act* and Soar) that
explicitly model learning, can be extended to explain transfer on grounds of
common declarative (not rule-based) knowledge. CCT, which assumes
learning events as described by Act*, can therefore also principally be
extended to explain transfer on this basis.
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2.1 Act*

Act* is the one member in a family of ACT models that embody John
Anderson’s theory of cognition. It can be seen as the earliest and the most
prototypical attempt at a unified theory of cognition, and has been explicitly
applied to both, interference phenomena as discussed in the verbal learning
domain (e.g. Anderson, 1976 and Anderson 1983), as well as procedural
transfer (e.g. Singley & Anderson, 1989). The theory has been modified over
successive generations, to explain new data in a more efficient way (see
Anderson, 1992). This review will be based on Act* as described in Anderson
1983. With respect to transfer three important theoretical works have been
published (Anderson, 1982, 1987, and Singley & Anderson, 1989). Whereas
the first two papers describe the process of procedural learning and transfer in
detail. In this earlier work the identified procedural elements were proposed
as the one single mediator of skill transfer. The Singley and Anderson
volume starts considering the case of transfer of declarative elements. We
should keep in mind, however, that this is an extension to a theory that
started proposing common procedural elements as the sole explanation for
any transfer effect.

2.1.1 Basic structure In the ACT framework, memory is seen as
containing separate structures for declarative and procedural knowledge, as
well a Working Memory that consists of currently active declarative
representations.

Declarative knowledge, that is knowledge about facts, is represented in
an associative network, consisting of cognitive units and links between them.
These cognitive units may consist of temporal strings, spatial images, or
abstract propositions. An example would be a list of propositions such as

(1) exist (office D446A)

(2) location(office D446A, fourth floor Muenzinger)
(3) is-a(office, place to work)

(4) has(office, books)

(5) has(rec.-center, door)

(6) has(rec.-center, showers)

etc.

Each one of these propositions could be represented as a node, links between
these nodes would represent the fact that these units have been processed or
stored together. For example there could be links between the first two nodes,
as well as links between nodes 3-4, and between 5 and 6. However, if
propositions 5 and 6 if were never processed together with propositions 1-4,
there would be no links between those two groups of propositions.
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Working Memory (WM) is simply defined as the set of memory
elements that are active at any point in time. Such memory elements might
have entered WM by perception, or may be put into WM as the product of a
cognitive operation. Memory elements can also enter WM by retrieval from
declarative memory.

Each unit in declarative memory, as well as the links between units
have certain strengths. These strength values are an expression of the
frequency with which a unit or a pair of units has been processed, and
determine its retrieval probability. Retrieval is achieved by a process of
spreading activation through the net of nodes, along the links that connect
the nodes to each other. Activity is spread from knowledge elements that are
active in WM. These active elements are called retrieval cues. Retrieval cues
act as a source of activation and may lead to the retrieval of associated nodes.
For example, on perceiving office D446A, activation may spread to nodes
linked to proposition (1) in the example above and lead to the activation of
propositions (2-4). The strength of a link determines how much activation
goes down a certain path. Retrieval however depends on a units relative
strength, which is defined by the strength of the link between the retrieval
cue and the unit, proportional to the link strengths between other units and
the retrieval cue. The strengths of units in declarative LTM may decay with
time, and therefore depend on the recency of the last encoding and the
frequency with which an item has been processed. Activation levels are
temporary and subject to rapid decay over time.

Procedural knowledge is represented as a set of production rules. Each
cognitive operation is embodied in a condition-action pair. The condition
side of the rule (the left-hand side, or the if-statement) contains a specific
cognitive condition, under which the action side (the right-hand side, or the
then statement) should apply. A simple example would be a system with a
rule such as

IF

the goal is to go to office D446A

and the current position is the second Floor of Muenzinger
THEN

go to the next staircase

and walk up two levels

and modify the current position is the forth floor of Muenzinger

and set as a subgoal to determine the identity of the staircase.

The condition side may contain any type of description of a currently active
cognitive state, such as the goal to go to a certain office, and the knowledge
about a current position in the world. The action side then contains the
actions that will lead to satisfaction of the goal under the specified conditions.

Marita Franzke Components of Transfer 6



Retrieval of a production is achieved by a mechanism of matching
working memory elements to productions. If working memory contains
active memory elements (such as the goal and the current position above),
the production rule above would be matched. However there might be other
similar productions that are also partially or fully matched by that state of
WM. Act* embodies a conflict resolution mechanism that considers certain
heuristics to select one single production to be fired. As a result of firing a
production the prescribed actions are executed and old WM elements may be
modified or deleted, and new elements may be added to WM.

Important heuristics that are considered in conflict resolution are the
strength of the productions being matched (the frequency with which it has
been applied successfully before), their specificity, where more specific
productions are preferred, and goal dominance, where only productions that
test for an active goal can be selected. As an example for different levels of
production specificity consider the following alternative production:

IF
the goal is to go to office D446A
and the current position is ?some Floor of Muenzinger
THEN
retrieve the ?# Floor of office D446A
and subtract the ?# from ?some Floor and put the result in the
?difference
go to the next staircase
and walk up ?difference levels
and modify the current position is the forth floor of Muenzinger
and set as a subgoal to determine the identity of the staircase.

Even though the two productions would achieve the same result, the
second production is more general and could be matched if the system was on
any level in Muenzinger. However, this generality come at the cost of extra
cognitive operations (memory retrieval, the subtraction and the temporary
storage of the difference in WM). If one assumes cognitive efficiency for the
proposed system then it should choose the prior more specific production
over the general one, because the same effect is achieved in a much simpler
way.

d Goal dominance is the key to controlling action. For example we could
imagine a production of this type:

IF
the goal is to go to office D226F
and the current position is the second Floor of Muenzinger
and the current position is in front of office D226E
THEN
take two steps to the right
and knock on the door.

Marita Franzke Components of Transfer 7



Even though this production is more specific than the first of our
examples, it should not fire, because it does not serve the currently active goal
(which is to go to office D446A). In other words, goal dominance helps a
system not to get sidetracked by production rules that offer a good match to
the currently active representation of the state of the world, but would lead it
away from fulfilling the currently desired goal state.

Together, these selection principles determine that optimal (fast and
reliable) retrieval of productions is achieved, when specific, goal related
productions have been compiled. This leads us to the learning mechanisms
proposed in Act*.

2.1.2 Learning. As there are different retrieval mechanisms for
declarative and procedural knowledge, there are also corresponding storage
functions for each type of knowledge. In the associative network, learning is
accomplished by placing a new item into working memory. With a certain
probability this item will form a long-term-memory trace. Each time the
same item is placed into working memory again, the strength of the cognitive
units, or trace of the original encoding is increased by one.

The mechanism for procedural learning starts with general problem
solving behavior. It is assumed that any system has a set of general rules that
can lead to stepwise movement towards a goal in a new domain. Consider a
system that has not been in Muenzinger before, but has general rules to find
its way around in buildings. For example there may be general rules of the
following kind:

IF
the goal is to go to room ?#
and the ?level of room ?# is unknown
THEN
set as a subgoal to determine the ?level of room ?#

IF
the goal is to go to room ?#
and the ?level of room?# is known
and the current position is unknown
THEN
set as a subgoal to determine the current position

IF

the goal is to go to room ?#

and the ?level of room ?# is unknown

and the subgoal is to determine the ?level of room ?#
THEN

read the next character of ?#

and put it into ?char

Marita Franzke Components of Transfer 8



IF
the goal is to go to room ?#
and the level of room ?# is unknown
and the subgoal is to determine the level of room ?#
and the ?char is a numerical
and the ?char is not a letter

THEN
make the level of room ?# is known

and put the ?char into ?level
and delete the subgoal to determine the level of room ?#

etc.

Act* builds its learning mechanism on the execution of such general
problem solving rules. It assumes that a system have access to such general
rules (or even more general ones, as means end analysis or the use of
analogy; for a detailed example see Anderson, 1986), and slowly accomplished
the general goal under frequent use of declarative knowledge (for example
the representation of the office number) or cues given by the environment
(for example signs that contain level- or wing- names). This phase of
learning a new skill is called the declarative learning phase because of its
dependency to access to a declarative representation of the problem.

Learning in this phase is accomplished by the compilation of new
domain specific rules from successful execution of general rules. For
example, we could imagine a new domain specific rule for parsing the office
numbers of offices in Muenzinger.

IF
the goal is to go to room ?#
and room ?# is in Muenzinger
and the ?level of room ?# is unknown
and the subgoal is to determine the ?level of room ?#

THEN
make the ?level of room ?# is known
and put the second char of ?# into ?level
and delete the subgoal to determine the ?level of room ?#

This would save the system one additional processing cycle and make
the search somewhat more efficient. Act* assumes that new, more specific
rules like this are compiled at all parts of the problem solving process, during
the first trial of successful learning. The product of this learning phase then is
a set of domain specific rules, that let the system find the room much faster in

its second trial.

In Act* this ends the phase of declarative learning. Additional
learning trial on this same rule set lead to proceduralization and composition

of the new rules.
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Proceduralization is the learning event in which additional new rules
are compiled from the original set of rules that are even more specific than
the original set. For example we could imagine that a specific rule for
retrieving the level of office D446A is formed:

IF

the goal is to go to room D446A

and room D446A is in Muenzinger

and the ?level of room D446A is unknown

and the subgoal is to determine the ?level of room D446A
THEN

make the ?level of room D446Ais known

and put 4 into ?level

and delete the subgoal to determine the ?level of room D446A

Composition then composes two or more rules serving the same
general goal into one single rule that accomplishes the same result. For
example two rules for determining the level and the wing of room D446A
may be combined into one rule determining its position:

IF

the goal is to go to room D446A

and room D446A is in Muenzinger

and the ?level of room D446A is unknown

and the ?wing of room D446A is unknown

and the subgoal is to determine the position of room D446A
THEN

and put 4 into ?level

and put D into ?wing

make the ?level of room D446A is known

make the ?wing of room D446A is known

and delete the subgoal to determine the ?level of room D446A

Recently Anderson (1987) claimed that the process of compilation will
always produce a new general production, a production that is variabalized
and in which the specific elements to be used still have to be retrieved from
declarative memory. However, it is likely that the particular production
learned (general or specific) depends on the type of learning situation
involved. If learners are encouraged (as in Anderson’s experimental
situations where learners interact with a tutor, and worked examples), to
learn by example or by analogy, or by exploration, it is likely that people
indeed accrue general productions from the comparisons between various
instances of an application. If learners however are simply told, what is
appropriate in a certain situation, they might acquire very specific
productions. (In our example a learner that is taken by the hand and led to
room D446A from a specific starting position, might learn a set of simple and
specific productions that enable him to find his way back to the same room.
In this way he might not have learned anything about parsing the room
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number as a help for orientation). Whatever the specificity of the production
learned, there is a sharp and marked improvement in speed and accuracy
from solving one to another problem of the same kind. Where the problem
could only be solved interpretatively, that is under heavy use of declarative
knowledge and general problem solving procedures, the second trial profits
from the use of an already compiled domain specific production. The two
additional processes of further learning processes substitute variable names
with constants proceduralization (substitution of variable names with
constants) and composition (the combination of two sequential atomic
productions into one larger macro-production) lead to further fine-tuning of
the additional rule set. It is assume however, that more specific rules do not
replace the more general rules, but simply add to them. In other words, the
more general rules acquired during initial problem solving are still available
if a different problem in the same domain arises (for example of the general
parsing rules for indications of locations of other offices in the same
building). In other words, once a procedure exists, more specialized versions
of it can be learned easily and compact rules can be established that lead to the
rapid execution of many successive actions. Furthermore, the strength of an
existing production will be increased with each further successful application.
This also adds to the increased efficiency of an well learned rule set by
decreasing the time needed to fire the appropriate rules.

2.1.3 Performance. Skilled performance is conceptualized as the
straightforward application of a such a domain specific rule-set. Given that a
top-level goal statement has entered working memory and a set of
propositions describe the state of the world, the procedure that most closely
matches this combined set of productions, and that is most specific will be
fired. If the task has a complicated structure (for example text editing), there
will be control productions, that fire subgoals. These subgoals will enter
working memory and (together with the propositions encoding the state of
the world) trigger productions that work in fulfilling the particular subgoals.
This process will continue, until all subgoals and goals have been satisfied,
and the task is fulfilled. Speed of performance is therefore a function of the
number of productions that have to be matched as well the time required for
a particular selection. A specific and strong set of productions will lead to fast
and unambiguous selection in each cycle.

Anderson 1983 and 1987, as well as McKendree and Anderson (1987)
discuss empirical evidence for these type of learning mechanisms. Since this
paper is concerned with transfer we will limit the discussion of empirical
evidence to studies directly concerned with transfer.

2.1.4 Transfer Predictions. Procedural transfer. Procedural transfer in
the original proposal (Anderson, 1987) is essentially a modern version of a
common-elements theory of transfer (Thorndike & Woodworth, 1901).
Transfer to a new task is expected to the degree by which the new task can be
achieved under the use of already acquired domain specific productions.
Transfer is therefore dependent on the overlap between two needed rule sets,
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and on the generality of the rules that were acquired during first task
learning. In terms of our example, the student should show large transfer
from the first task to finding room D346A, given the same starting position,
but lower transfer to finding the same room when given a different starting
position that is not on the correct solution path. For example, if procedures
for directing locomotion in the building are represented in terms of visual
cues that can only be seen when starting in a certain position, and the student
is started in a different corner of the building, then the same specific rules
simply do not apply and can not help in finding a given office. In that case
only general rules for parsing the room number for directions may apply and
lead to moderate amounts of transfer from one task to the next. Making
predictions about transfer is therefore critically dependent on a accurate task
analysis that captures exactly how subjects encode and represent the newly
learned skill and the transfer task.

Negative transfer would be observed either when a series of
productions that was optimal for one task context will be used in the transfer
task and therefore prevent a better production chain from being learned
(transfer of non-optimal methods). Another form of negative transfer would
be the firing of a totally inappropriate production, because of a match to its
conditions (interference). This second type of negative transfer leads to errors
and subsequent corrections, and should therefore be of transitory nature and
only be observed in early transfer performance.

Another interesting prediction that can be derived from this definition
of procedural transfer is what Singley and Anderson (1989) call ‘use
specificity’. This specifies the situation by which different uses of the same
declarative knowledge do not transfer to each other. An example for this
counterintuitive prediction would be that declarative learning the layout of
Muenzinger in the context of one searching task does not transfer to finding a
different room, if there is not overlap in the productions that have been
compiled during its acquisition. Other examples that have been investigated
are the prediction that selecting logic or calculus operators does not transfer to
their application (i.e. Singley & Anderson, 1989, or Pennington & Nicholich,
in press. It is exactly these types of tasks that have produced transfer results
that are not compatible with a transfer theory that is based on common
production transfer itself. We will come back to this point when discussing
the relevant literature.

Declarative transfer. “Haunted by more transfer than (they) could
readily predict” (Singley & Anderson, 1989, p. 197), modify the early
assumptions that transfer could only be expected on grounds of shared
productions. Here they make the concession that “there should be an initial
period of positive transfer between tasks to the degree that the tasks share a
common declarative base” (Singley & Anderson, ipso). This is conceptualized
such that during the knowledge compilation phase, when general problem
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solving procedures are applied using a declarative representation of the
problem domain, access to a well practiced declarative representation should
lead to some transfer between tasks. Singley and Anderson are not specific
about what kind of improvement on would expect out of this type of transfer
(reductions in terms of speed of access, or reductions in errors), or what type
of declarative learning should lead to better transfer results.

There is also an argument to be made that declarative transfer can be
expected also after the compilation phase of learning, or when domain
specific but non proceduralized productions do the work.

Let's consider, how ACT* would explain negative transfer in terms of
the interference effects observed in the verbal learning literature (for details
see below). Anderson (1983) describes the effect of interference as
phenomenon of retrieval from declarative memory, as what he calls the ‘fan
effect’: Given a retrieval cue, it will take longer to retrieve an item from
declarative memory, when the memory unit representing the retrieval cue
has links to many other units that have been stored together with it, as if the
retrieval cue has only been linked up to one or few other concepts. In
Anderson’s 1983 theory, the retrieval is controlled by productions that probe
memory and recognize an item as retrieved, but the retrieval itself is handled
by spreading activation in declarative memory. If many links emanate from a
node representing a retrieval cue, proportionally less activation is spread
down every single link, and the retrieval of the relevant item will take
longer. Dedlarative interference during the execution of a procedural task
would be explained in a similar way. Recall, that in most cases people’s
representation of a skill will be compiled, but not necessary be in
proceduralized form. This means that the productions encoding a new skill
will have variables for particular actions. Retrieval of the values for these
variables (a particular keystroke, for example) may depend on declarative
memory and is therefore subject to possible interference effects, if the
retrieval cue used (the state of other conditional statements, or the state of the
world) do not serve to identify the value unambiguously. Consider the
following example.

IF
the goal is to call ?somebody
THEN
retrieve ?2somebody ?telephone-number
and set the subgoal to dial ?telephone-number.

Given, that ?somebody has already been instantiated as Otto, Otto
would serve as retrieval cue for his phone-number. Unfortunately, Otto has
moved 5 times in the last two years, so there are 5 links pointing from Otto to
5 different phone numbers, in declarative memory. The declarative retrieval
process might therefore come back with the wrong information, or may
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simply take a while, but the production would simply take that information
and execute it blindly . This example demonstrates that negative transfer in
the form of an action slip could have its roots in declarative interference. It
also demonstrates that additional declarative practice in memorizing Ottos
new phone number and distinguishing it from his old numbers might lead to
positive transfer, that is an addition to transfer that can be expected on
grounds of using the compiled rules for retrieving phone numbers and
dialing.

To summarize this discussion. Originally (Anderson, 1983, 1987)
predictions about transfer based on Act* were exclusively derived on the
background of a shared set of productions. The particular specificity of these
common elements determines how narrow or broad the predicted transfer
will be. Recently (Singley & Anderson, 1989), a well practiced base of
declarative knowledge is seen as a possible source of transfer during the
initial stages of learning. We illustrated the second prediction by showing
that declarative knowledge can act as a source of positive and negative
transfer. Declarative transfer of this type can be expected as long as the
productions used in the transfer task are general enough to make some sort of
access to declarative knowledge. We would not expect to see declarative
transfer in a task that profits from use of fully compiled, proceduralized and
composed production rules.

3.2 Cognitive Complexity Theory

We will now turn our attention to a model of procedural performance
and transfer, that is very similar in spirit to the original Act* account of
transfer. Cognitive Complexity Theory has been developed independently by
Kieras and Polson (1985), mainly to explain learning and transfer effects in the
area of human computer interaction. The theory was never intended as a
general theory of cognition, and therefore has a much smaller scope than
John Anderson’s Act*. However, transfer research based on this theory has
been quite successful (see review in the next chapter).

2.2.1 Basic structure. Cognitive Complexity Theory (CCT) is a purely
procedural theory that attempts to describe the interactions between a
(simulated) user with a (simulated) computer system. The theory does not
make any assumptions about the existence or form of a separate declarative
memory store. Therefore it's two components are a production system to
embody the user’s cognitive states during the interaction with a system, and a
Generalized Transition Network that implements the system behavior. This
GTN performs certain system actions given (simulated) user input and its
current state, and produces feedback to the user. Since our concern here is
with human learning and transfer, we will focus our review on the particular
structure of the production system architecture used. The general structure of
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CCT’s production system component is similar to the production system
notation used for Act*. However, there are some noteworthy differences:

First, CCT does not have a conflict resolution mechanism. Instead,
CCT relies on the specificity of its productions alone to select the appropriate
action for a given combination of working memory elements (Bovair, Kieras,
& Polson, 1990). Second, CCT is an explicit attempt at modeling a theory of
human-computer-interaction (GOMS, Card, Moran and Newell, 1983), that
places a high importance on the cognitive maintenance of hierarchical goal
structures to control action. Therefore, CCT makes condition elements
specifying goals and subgoals the main elements controlling the execution of
action. Note that this is a decision relying on task analysis and assumptions
about cognitive encoding and representation, rather an architectural decision.
The condition elements could be rewritten in a way to allow for greater
influence of encoded world-states. In the particular GRAPES implementation
of Act* that was used to model transfer in Singley & Anderson, 1989, the
same decision concerning the GOMS model was made. Third, CCT does not
rely on partial matching. Every conditional element of a production has to be
met for a rule to fire. Forth, CCT does not include different strength values
for each production. Fifth, retrieval from declarative LTM is not modeled.

2.2.2 Learning. CCT is based on a range of learning assumptions:
Initial learning of procedures is a product of general problem solving
processes, in the manner of Act * (Kieras & Polson, 1985). Learning of new
rules requires a constant amount of time, no matter which learning processes
would have to be postulated for learning (Bovair, Kieras, & Polson, 1990).
New rules contain constants: no variabalization of parameters in the
beginning learning stages. Novices check feedback explicitly: this leads to the
implementation of extra feedback checking production rules for each new
- acquired step.

In modeling the transition of a novice user to an expert user, CCT
assumes that practice makes the novice rule set more compact and more
general. (Act* makes the opposite prediction that practice makes the rules
more specific). In particular, an experts procedural skill is derived from a
novice rule set by: (1) collapsing rules (similar to composition in Act*) (2)
removing the feedback-checking rules.

2.2.3 Performance. Novice or expert performance on a task is a
straightforward execution of the simulation model described above.
Predictions about performance time are derived by the following function:

Execution Time+ # of cycles X time per cycle + time spent in operators

The Number of cycles can be derived simply by counting the numbers
of rules in the model. It is assumed that all recognize-act cycles take the same
amount of time to execute, but this is a free parameter that has to be estimated
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from the particular data of a certain task. From previous research it can be
expected that the approximate time for a cycle lies in the range of about one
tenth of a second per cycle (Bovair, Kieras, & Polson, 1990; Card, Moran &
Newell, 1983). Time spent in operators is another constant that has to be
estimated from the data, and is related to the physical aspects of performing
certain actions. The difference in performance time between novices and
experts would therefore simply be explained in the fewer number of
recognize-act cycles that need to be executed (no feedback, larger rules). Using
multiple stepwise regressions to model individual performance times for
editing tasks, most of these predictors have explained a significant amount of
variance in the data (Bovair, Kieras, & Polson, 1990): To summarize the
results, the analysis provides clear evidence for the effect of number of
verification steps on individual performance time. Furthermore there is a
significant interaction with level of expertise such that low levels of expertise
are associated with more time needed to verify the outcome of actions. Also,
the number of recognition-action cycles derived from a task decomposition
particular to the level of expertise explained are large part of the variance.
Unfortunately this predictor variable (number of cycles) was highly correlated
with the number of keystrokes, so that the relative effect of each variable
could not be determined.

2.2.4 Transfer predictions. The transfer predictions of CCT are
straightforward, and overlap partially with the procedural transfer predictions
discussed in the context of Act*. It is assumed, that old productions transfer
to a new task to the degree that they overlap with the new task. Learning
time on a novel task is seen as the function of the number of old productions
and some constant associated with the performance of all other involved
cognitive and motor operations. Note that this constant can theoretically be
further analyzed into the predictors that were found to be relevant in the
analysis of (non-learning) performance times, as discussed above (Bovair,
Kieras, & Polson, 1990).

A set of additional assumptions has to be made, however, because
CCT'’s learning assumptions produce quite specific (unvariabalized)
productions. First, if a new task uses exactly the same rule as a previously
learned one (i.e. ‘delete string’ - ‘delete string’) the appropriate rule will fire
and no additional learning time is needed for execution. Second, if a new
task affords the use of a rule on the same object, but necessitating a different
action (i.e. ‘delete string’ - ‘modify string’), the old rule will be generalized by
variabalizing all verb terms (in the conditional elements and the action
elements) in the rule (i.e. ‘delete string’ --> ‘X? string’; Bovair, Kieras, &
Polson, 1990). In some cases, generalization of the object instead of the verb
component is indicated. This would be the case, for example, when transfer is
observed between deleting different types of objects. If generalization is
necessary within a particular task, a small amount of extra learning time is
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expected. Finally, if a task affords the use of an already generalized
production, no additional learning time is expected for this production.

In comparison to Act*, which shows skill acquisition as the movement
from initially general productions to the addition of more and more specific
productions, CCT makes the opposite prediction: This theory assumes that
productions are first acquired in a very specialized way, and become
generalized with broader use.

This, however should probably not be decided in such a general way:
As mentioned above, there might be learning situations (learning by being
told, without use of analog examples that facilitate the generalization across
classes of objects or concepts), in which subjects indeed move from very
specialized representations to more generalized representation after exposure
to different cases. This would be the case when minimal declarative
knowledge is presented to subjects, who then follow procedural instructions
blindly. The more the learning procedure facilitates problem solving or
exploration, the use of example problems, toy problems, or analogies, the
more general should the initial representation of the procedural skill be. The
particular type of initial representation of a skill should therefore rather be
guided by careful tasks analysis from case to case then by rigid architectural
assumptions.

2.3 Soar.

Soar is a cognitive architecture developed by Laird, Rosenbloom and
Newell (1986) in an attempt to build a unitary theory of cognition, based on
the notion of problem spaces as the fundamental category of cognition (i.e.
Newell, 1980). Because Soar’s general Architecture is critically determined by
this general assumption, the problem space hypothesis will be summarized
first.

A problem space is a collection of states that can be traversed in order to
reach a goal state. It is defined by what goal state is selected, by the current
state of the problem solver, and by the operators that define the transition of
current states towards the goal state. For example, the goal is to find office D
446 A in the Muenzinger Psychology building. The respective problem space
could be defined as ‘finding your way around the Muenzinger Psychology
building’, defined by all possible states in the Building, and all the operator
that move a person around in these states. A current state could be ‘in front
of the main office’. A set of possible operators would be ‘turn right’, ‘turn
left’, ‘walk upstairs’, ‘walk downstairs’, ‘parse office number for directions’ etc.
An operator that is obviously not relevant for this problem space is ‘pour the
cereal into the bowl’. Applying any of the legal operators will transform the
current state in any of the possible states within the problem space. For
example ‘turn left’ will transform the state ‘in front of the general office’ into
‘at the intersection of the E and D wing on the second floor’. It is important to
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notice that this notion of the problem space is a logical notion, not an
assumption about an active cognitive representation. At any point in time, a
problem solver does not activate all the states and operators that are defined
by the problem space it is traversing, but it will activate a subset of operators
and states, depending on its current situation in the problem space. This
current situation is defined by the already traversed states and operators used,
her current state, and the goal state. It is assumed that knowledge of this form
is active in working memory. In an elaboration phase this set of knowledge
will retrieve all associated relevant information from Long Term Memory,
and in a decision process, the next step will be selected. At this point in the
discussion of problem spaces the particular structure of Soar becomes relevant

2.3.1 Basic Structure. Different from Act*, Soar is an attempt to model
all cognitive phenomena within one general memory structure. All different
types of memory units, procedural, declarative, episodic and semantic are
encoded as productions in a unitary memory. This production system is
thought of as a content-addressed memory. The conditions of productions
specify retrieval cues, which call the right-hand side into working memory
when they have been matched. This retrieval process acts in parallel, and
there is no conflict resolution in the traditional sense, so all productions that
are related to a set of WM elements will be activated and also called into WM.
This retrieval process continues until quiescence or until no further
associated productions are matched. Note that this process is not much
unlike the spreading activation mechanism discussed in the chapter on Act*.
Associations are not encoded via nodes and links, but via a production that
establishes the link between concepts in the left-hand side and concepts on
the right-hand side. There are important differences, however: (1) In this
notation, productions are all or none: Either all of their conditional elements
are matched and they will fire, or they will not fire. (2) Also, the retrieval
links are asymmetrical, the left-hand side can be matched to retrieve the right
hand side, but not vice versa. In ACT*s associative networks the links can be
traversed in both directions. (3) The productions serve to retrieve either
declarative or procedural information. In Act* the associative network serves
to retrieve declarative knowledge with spreading activation, whereas the
production system handles retrieval of procedural knowledge. (4) The
representation of units of memory in Soar is determined by the problem
space metaphor discussed above. The key elements (objects) that constitute
the right-and left-hand sides of productions are goals, problems spaces, states,
operators, and preferences. World objects are related to this representation as
specification of states and operators.

2.3.2 Performance. Since learning is a logical consequence of
performance in Soar, we will first summarize how a Soar system would
perform a given task. In Soar performance is problem solving. Problem
solving is defined as the transition of a problem space defined by a goal. In
theory, given a goal, a problem solver will select an appropriate problem
space, then an appropriate initial state, and then an appropriate operator to
transform the current state into one that is a shorter difference away from the
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goal state, than another operator etc., until the goal state is reached. Selection
of problem spaces, states and operators is in part achieved by the retrieval
(elaboration) mechanism described above. Retrieval, however, only leads to
the activation of many related productions in working memory, it does not
select the one production, that will move the problem solver ahead in its
traversal of the problem space. This selection will be achieved by an
additional process, the decision procedure which evaluates a set of memory
elements, the preferences, that have been added to working memory during
the elaboration phase. Preferences are propositions that suggest whether a
given object is an acceptable or a poor choice, given the current context, and
should lead in the best case to the unanimous selection of one object to fill
the current empty slot. This would be the case for rote performance of an
expert, who knows exactly what to do to achieve a certain goal, given a
starting state. However, there are may cases in which the decision procedure
cannot select an object for use. These situations are called impasses. There
are different reasons for such impasses: (1) There may be many preferences
for different objects, but after all of them have been evaluated, no object
stands out as the one to be preferred [tie impasse, and a more specific type of
this: conflict impasse]. (2) The problem solver has only negative evaluations
for the retrieved objects, or no preferences (experiences) at all: The result is
that not choices are available [no-change impasse]. (3) The only preference
retrieved advises to reject a prior decision. This situation is defined as
impasse, because has the potential to produce an endless loop [reject impasse].
Whenever an impasse is reached, a goal will be created to overcome the
impasse. As a response to this, a new problem space will be selected, with
new a current state and so on, so that search will now be redirected to a new
problem space that is an expansion of the original one, on a lower level. In
this problem space impasses can occur again, so that another problem space
will have to be traversed, and so on. Problem solving is therefore the
traversal of a hierarchy of nested problems spaces toward the original goal.
This leads the discussion to the question of learning.

2.3.3 Learning. The access to preferences, and the success of a set of
preferences to constrain a situation unambiguously depends on previous
experiences with certain choice objects in certain contexts defined by problem
solving histories. Soar embraces a continuous learning assumption. This
means that during the solving of any problem at any level in the problem
solving hierarchy, new productions and preferences can be accumulated, or
chunked. . Chunking occurs, whenever an impasse has been resolved, that is
whenever a subgoal has been satisfied. This happens, whenever a preference
is produced that resolves the decision process at the next higher level. All
elements that lead to a resolution of that conflict, will be backtracked along
the retrieval connections that prove which elements in Working Memory
before the impasse occurred led to the retrieval of the solution. Once these
elements have been identified, they will be chunked into a new proposition.
If exactly the same situation should be encountered again, this new
production will fire, and resolve the conflict in the same manner. It is
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obvious that this would lead to a great improvement in performance time.
All learning in Soar relies on this general chunking mechanism.

2.3.4 Transfer predictions. Procedural transfer has not been a
systematic research interest within the Soar community, but general
discussions of transfer mechanisms within the Soar framework can be found
throughout the literature (i.e. Laird, Newell, & Rosenbloom, 1986, ps. 260-261;
Laird, Rosenbloom, & Newell, 1987, p. 50-51; Steier et al. 1987; Newell, 1990, p.
318-319; and Rosenbloom, Laird, Newell, & McCarl, 1991, p. 311). All these
considerations generally agree on the notion that transfer within Soar is
basically a common elements theory of transfer (as Act* and CCT), and that
transfer can been observed within-trial, across-trial, and even across-task.
Important for all these incidences of transfer is the natural implicit
generalization mechanism that is inherent in Soar’s chunking mechanism.
Since Soar uses backtracking to determine which working memory elements
were causally connected to producing a certain outcome in a subgoal, only
problem relevant, not task specific elements will be encoded in the newly
built chunk. Therefore it can be expected that the same chunk will apply in a
similar situation (and replace the spawning of a subgoal), even if some of the
working memory elements are different in this new context.

Even though this common elements approach to transfer is one
repeatedly discussed in the literature, another member of the Soar
community, Richard Young, sees Soar’s contribution to the explanation of
transfer effects in a somewhat different perspective (Richard Young, personal
communication with Peter Polson, 1992):

“Soar would predict less [common elements] transfer than [Act* and
CCTI. The kind of chunks which would fire at top level, without any
impasses, are likely to be very specific chunks, and therefore they
probably wouldn’t apply to a situation outside of their own specialty.
Much more likely is that the knowledge base from which those top-
level chunks were derived may be as relevant to the transfer task as it
was to the original task, so the transfer will consist of rapid acquisition
of a new task to a level possibly comparable with the expertise on the
old task. Thus, [this is] a story based on shared knowledge but NOT on
common (top-level) elements”.

To make this comparison between Act*, CCT and Soar more explicit, I
would like to map ‘elements’ in Soar to the elements in the other two
theories. In effect, what is represented at the top level of a Soar hierarchy, is
the rote performance of a sequence of steps, given a top level goal and a
current situation. Soar assumes that this state of affairs is reached, either
when Soar is told the correct step at the spawning of a second order problem
space, or when the system has exhaustively explored and learned all the
correct choices to be made bottom up. In CCT or Act* this would correspond
to a fully compiled, proceduralized and composed skill, a skill that can be
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performed in a stable environment in exactly the same way over and over
again. This would be skilled rote performance at its extreme. All theories
under discussion would assume that transfer based on this type of a
specialized production would always be highly specific, and would more
likely lead to negative than to positive transfer. In all theories (if we assume
that the learner did not acquire the skill as a rote procedure, without serious
problem solving efforts), one would have to assume, that a long series of
more general productions, and productions representing piecemeals of the
action chain must have been acquired in the process to final mastery. It is
those smaller and more general pieces of procedural knowledge, that can be
expected to transfer broadly to similar tasks. How general the knowledge is
that has been acquired on this path to expert performance, depends on the
learning environment that was guiding the path of acquisition. If this
learning environment is highly reactive, and feedback and correction is
provided in close proximity to the desired overt actions (or the top level
problem space for Soar), then the learner will not learn general heuristics
related to the general problem type. If however the learning environment
stresses the acquisition of general problem solving heuristics for certain
classes of problems (which translates into the acquisition of low level
problem spaces), then broad transfer should be expected. If one wanted to
map the skills that have been modeled for transfer predictions in either Act*
or CCT into a Soar hierarchy, they would not simply show the transition of
one top-level goal space. Instead, they would show a path through the
hierarchy at some intermediate level. The goodness of the match would
depend on the particular learning regime used, and the degree to which
learning was carried in both types of simulations.

To summarize this argument: (1) We showed that what is acquired in
lower level problem spaces is not just simply ‘knowledge’, but knowledge
cast in general, learned productions (elements). To the degree that a new
problem can be solved under use of these lower level general elements,
transfer can be expected. (2) Neither CCT nor Act* are restricted to modeling
transfer as the transfer of a top-level specialized set of rote-performance
productions. However, the tutoring environment chosen for experimental
investigation does not lead subjects to explore the full hierarchy of logically
possible problem spaces, and therefore the learned (and modeled) production
systems (elements) are cast at a less molekular level.

2.4 Summary.

What are the important predictions about transfer that can be drawn
about transfer from these theories?

(1) All reviewed models predict transfer in form of shared productions.
The predictions that can be derived from the early Act* (Anderson, 1987)
model and from CCT are both based on the idea that transfer to a new task is a
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function of the number of known production rules and the number of new
rules that have to be learned. Productions at any level are expected to
transfer: Productions that control the high level goal structure of a task are
expected to transfer as much as low level productions that lead to simple
functions like memory retrieval or execution of motor operators.
Furthermore, productions at any level of generality can transfer from one to
another task. Soar’s transfer predictions are based on the number of shared
chunks and preferences between one and another task.

(2) Act* (Singley & Anderson, 1989) allows for the possibility of
declarative transfer: Act* describes different stages of skill acquisition in detail
from the beginning declarative phase, to the compilation and refinement of
procedures. At any stage in this process where access to declarative
knowledge is crudial, a well practiced and elaborated declarative base should
benefit transfer. After proceduralization there should be no effect of
declarative transfer over the transfer of specific productions. In Soar there is a
chance for transfer at each point where an impasse is reached. Here transfer
can be understood as better practiced productions for interpreting declarative
knowledge in Working Memory. For example, it might have been learned
that a certain concept held in a comprehension or situation model space is
associated with a certain primitive interpretative action. This type of learned
knowlege may be similar to a better elaborated representation of concepts and
may lead to a faster and more effective transition towards the top-level goal.

(3) The specificity/abstractness of procedural knowledge acquired
depends on the particular task, and the learning environment provided to
the learner. In principal, Act* and Soar (as well as CCT theoretically) all have
the capacity to learn a task in a shallow or in a exploratory, problem solving
manner. The kind of learning environment provided to a student and
modeled in a system should determine the breadth of transfer more than the
particular architecture used to simulate it. An appropriate task analysis
should therefore take the particular learning situation into account, and be
guided by the learning and performance behavior that is displayed by a
learner in a particular experimental situation. Soar’s emphasis on transfer
guided by learned productions in lower problem spaces also puts its finger on
a possible neglect by the Act*/CCT community: Even if learning is driven to
a point where transfer can be expected on the base of high level (specialized)
common elements, general low level productions acquired in the process of
learning do still exist. These productions however are frequently never
modeled or included in performance models, and can hence not be used to
explain additional transfer.
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Chapter 3. Transfer Researdhin the Procedural Learning Paradigm

In the summary of the previous chapter we concluded that all current
theories of learning and performance that we reviewed base their transfer
predictions on some form of a common elements theory of transfer.

3.1 Support for the common elements view of transfer.
3.1.1 The CCT research group.

In a series of experiments, researchers from the CCT research group
established wide support for a common elements theory of transfer based on
overlapping productions as common elements (Polson, Muncher &
Engelbeck, 1986; Ziegler, Hoppe, & Féahnrich, 1986; Polson, Bovair & Kieras,
1987; Polson, Muncher & Kieras, 1987; Foltz, Davies & Polson, 1988; Lee,
Polson & Bailey, 1989; and Engelbeck, 1989). These studies were concerned
with transfer effects in the domain of human computer interaction. Transfer
was observed for skilled use of a range of different software applications, such
as text editors, utility systems etc., and different interface styles (See Table 1 for
a summary). As the table also illustrates, these studies have demonstrated
transfer within and across task and domain, and even across applications.

3.1.1.1 Experimental Procedure. The research in the CCT group has
been driven by one standard experimental procedure, which we will review
briefly here. The main unit of measurement taken is task learning time to
criterion. Subjects first receive some general information about the task, and
the material involved in the experiment, such as the software application.
Then they are trained on the sequence of tasks in a standard manner: They
are presented with the task, and have to anticipate the correct actions toward
the goal. If they make an error they receive immediate feedback from either
the experimenter or a tutoring system. Upon a second error, they are again
provided with feedback and with instructions about the correct next step.
This gives the subject the chance to limited self directed learning, without the
risk of loosing them in an unconstrained problem space. Each task within
these designs has to be performed a pre-set number of times without error, in
which case it is counted as ‘learned to criterion’. Measurements are taken in
terms of time to reach this criterion for each task in the experiments.
Assuming that each production takes the same amount of learning, this
achieves a level of learning of new productions that is the same across tasks.

Recall that CCT’s main transfer prediction is based on the hypothesis
that learning time is a function of the number of new rules learned for a
given task, and some constant related to the execution each production in
each task. The goal of most of the studies from this group has been
consequently, to show that training time for a given task can be predicted by
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the number of proposed new rules. To show this, tasks are typically analyzed
in form of a GOMS analysis, and this analysis is formalized in production
system format. With the help of these models, the number of new rules for
each task can be calculated easily. Experimental results in form of mean
learning times to criterion are then predicted in simple linear regressions,
with ‘number of new rules’ as predictor variable. In some cases individual
training times are predicted, in which case a second predictor for individual
differences is included. If common productions indeed transfer from one task
to another, then the number of new rules (which have to be learned from
scratch) should predict learning time perfectly and explain most of the
variance in the data. In fact, this is exactly what the experiments show:

3.1.1.2 Results. Table 1 demonstrates the success of this model to
account for learning times: There are four studies that predicted learning
times using only one predictor variable, learning time per new rule (Polson et
al., 1986; Ziegler et al., 1986; Polson et al., 1987; and Engelbeck, 1989). These
studies explained between 77 and 90% of the Variance, and two studies that
introduced an additional predictor variable, execution time per rule,
explained 77 and 85% of the Variance. The learning times per rule that were
estimated in these studies vary between 9.3 to 39.6 seconds, and there is weak
evidence that the learning times are related to the interface styles subjects
were dealing with: The two studies that used display based interfaces (Ziegler,
et al. 1986, and Lee, et al. 1989), produced shorter learning times per rule (18.8
and 9.3 seconds) as the studies that used menu based or command based
interfaces. There is one exception to this observation, however: The Foltz et
al., study produced relatively short learning times (18 sec per rule) despite its
use of a menu based word processor.

Furthermore, these experiments demonstrate that the same simple
model can be applied to explain transfer in fairly different situations: In three
experiments subjects used the same system to learn a set of different tasks
(such as traversing between menus or loading a diskette) within the same
general task domain and the same application (Polson et al., 1986; Lee et al,,
1989; and Engelbeck, 1989). Another set of experiments addressed transfer of
the same task to a different application with different low level command
sequences (Polson et al., 1987a; Polson et al, 1987b; Foltz et al., 1988). Finally,
one experiment addressed transfer of skill in using similarly structured
command across task domains (copying, deleting, and changing the format of
objects in a drawing and a word processor, Ziegler et al., 1986).

Three additional conclusions can be drawn from some of these
experiments. (1) For the data from the Polson et al. (1986) experiment a
second analysis was published in Polson (1988). This analysis that explained
70% of the data of individual subjects included parameters for individual
differences, number of new rules, and number of newly generalized rules. It
was revealed that a significant effect of number of newly generalized rules on
learning time that was different from the learning time for new rules (3.5 vs.
28.7 seconds). This result is interesting in showing that the learning process
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for this type of ‘similar’ new rule is less involved than the learning of a
dissimilar new rule, but takes more time than simply executing an old rule.

(2) Two experiments investigated whether the maximal interference
design of the verbal learners (A-B, A-Br) would have a similar effect on the
execution of productions. In one study (Polson et al., 1987) no lack of transfer
was found between two text editors that required the use of a set of command
keys, that were bound to different functions for the second version of the
editor. A second experiment, however (Engelbeck, 1989, second experiment)
tested whether infrequent inconsistent methods (A-B, A-D) lead to retroactive
interference effects after some delay. Subjects who learned an inconsistent
method took made many errors in original learning of this method (and in
94% of the cases this was the false use of the typical method learned before).
During retraining, subjects that learned variant methods, took a longer time
to criterion and made more errors than subjects who learned prototypical
methods. Again an analysis of the errors showed interference of the more
frequently trained and applied typical method as the source of their
difficulties.

(3) An experiment that was designed to show lexical generalization
(Foltz et al., 1988) in effect demonstrated that transfer does not happen if a
command name has been replaced by a synonym. In this experiment, subjects
first learned to select a menu choice named ‘delete’ to erase a document. The
transfer analysis shows that the learning time for this task in a new system
where the menu choice was termed ‘discard’ could only be predicted if this
was treated as learning of a new rule.

3.1.1.3 Summary. Taken as a whole, these results suggest that transfer
in the investigated situations is well predicted by straightforward common
production models. In all described experiments, training time could be
sufficiently explained by the number of new rules that had to be acquired.
However, transfer of low level operators seems to be fairly sensitive to
similarity of source and transfer task environment. If the new task requires
the use of an old rule in exactly the same way, transfer is total. In two
experiments, where subjects perceived some type of difference between the
old and a new application of a rule, transfer performance suffers. This was
demonstrated in the two cases where newly generalized rules lead to longer
learning times, which may be as long as original learning times. Since the
additional learning time for one experiment was not as long as the learning
time for new rules, it is hard to decide on the current evidence, whether
generalization happens at all, and which the cases of generalization are.
There is a chance that generalization will only occur if subject have learned
the equivalence of two similar conditions declaratively. If this equivalence
has to be induced during procedural learning, learning time is just as long as
during new rule learning. Therefore it is possible that the level of transfer
performance varies at least for productions low in the goal hierarchy with the
level of perceived difference/similarity. What is perceived at similar or
different may be subject to declarative representation and learning.
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3.1.2 The Act* Research group.

As discussed above the transfer research of the Act* Research Group
(Singley & Anderson , 1985; Singley & Anderson, 1988; Singley & Anderson,
1989) has a similar theoretical foundation as the research spawned by CCT.
Again transfer predictions are made based on the number of new productions
that have to be learned for a given task (see chapter 2 above). However, the
methods of measuring and modeling transfer are different enough to make a
direct comparison between experimental results difficult.

3.1.2.1 Experimental Procedure. Table 2 provides an overview of the
experiments reported in Singley and Anderson 1989 and elsewhere.
Anderson and his colleagues have collected transfer data in a wide range of
domains, including complex problem solving tasks such as programming
Lisp and solving Calculus problems. All experiments were monitored and
controlled by computerized tutors using a training method similar to the one
used by the CCT group. Usually, general instructions are given in a first
lesson. Then the tasks are practiced by giving feedback after each error and
providing help after two consecutive errors. In these experiments usually
learn a wider range of sub tasks, and the learning is carried over longer
intervals, sometimes over long sessions on several consecutive days.
Furthermore, subjects do not learn to a given criterion defined by a series of
error free trials. Instead subjects simply work on a set of problems for a given
time, or subjects complete a set of problems where the goal is to finish the
task (not necessary the error free handling of the task). One problem of direct
comparison is therefore the argument, that different stages of original
learning might have been achieved across paradigms.

The main differences exist in the measurement of transfer: In the Act*
approach the units of measurement are usually some speed measurement for
a given task unit (i.e. time per correct operator, planning time per subgoal,
time to finish problem, etc.) and some type of accuracy measure (% of errors,
keystrokes per trial, error per operator). Task units are defined according to
varying levels of analysis. In a sense this might be a more noise free
measurement of improvement, because polluting performance components
(such as the keying rate) that do not improve across trials can be subtracted
from units (such as planning time) that do matter.

Measurements such as these are used to calculate transfer using
Gagne’s transfer formula.

train{day 1)—transf (dayn)
%T = — L1)
train(day1)—train(dayn)

Here, transfer is expressed as improvement due to transfer relative to
improvement due to original learning. For example if a subject
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finishes a task in 48 minutes during original training, in 38 minutes after
being trained on a similar task for 3 days, and in 35 minutes due to training
on this task for 4 days, transfer would be 48-38/48-35 = 77%. We will refer to
this measurement as the ‘percent saving’ score. This percent savings score is
then modeled or explained in various ways across experiments: In some
cases these scores are simply compared to gross qualitative hypotheses about
transfer based on Act* (Conrad & Anderson, 1988, and Kessler, 1988). In other
cases, converging evidence for explanations of the magnitudes of transfer is
collected from verbal protocols (see Kessler & Anderson 1988), or by
correlating other data (such as frequency of practice) with the transfer scores
(Kessler & Anderson, 1988 and Singley & Anderson, 1987). In one series of
experiments (Singley & Anderson 1987) percent saving scores are compared
directly to quantitative transfer predictions derived from a production system
analysis of the given tasks. These transfer predictions are derived by

frequency ( known— productions )
%1 = (2).
frequency ( total - needed — productions )

If for example a subject is believed to have learned 14 relevant
productions, but 36 additional productions are needed to execute the task, the
subject would be expected to show 28% transfer provided all productions are
only applied once for this particular task. To correct for the frequency of their
use, the number of known and needed productions is multiplied with their
application frequency. Here is another difference between the CCT and the
Act* modeling approaches: CCT bases its transfer predictions on the raw
number of new rules, whereas the Act* approach corrects for application
frequency. In some situations, this formula might under predict transfer by
overemphasizing the weight of new rules. New rules should only counted as
‘new’ for their very first times of application (see the results reviewed above).
If a new rule is used many times during a given task unit, then formula (2)
above can inflate the nominator unduly and subsequently under predict the
amount of transfer that can be expected.

3.1.2.2 Experimental Results. Taken as a whole, the data summarized
in Table 2 provide relatively good support for a common productions theory
of skill transfer. In the following section, we will take a somewhat superficial
look at three experiments (Conrad & Anderson, 1988, Singley & Anderson,
1985, and 1988; and Singley & Anderson, 1989, chpt. 5). On a general level of
analysis these experiments show perfect transfer from one application of a set
of productions rules to the next, satisfactory correlation between predicted and
observed transfer (in terms of formulas (1) and (2) above) between different
sets of operators, as well as evidence for the fact that in one domain the
transferred productions must be fairly general. These results generally
support the view of productions as the basis for transfer.
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In the next section, we will review some of the same experiments in
some more detail. At this level of analysis it becomes clear that even though
common productions may be a good approximation for predicting transfer,
there is evidence that transfer has been repeatedly under predicted, we call
this phenomenon ‘surplus transfer’. Let’s first begin with the general
analysis, however.

Self Transfer. Conrad and Anderson, 1988, using the domain of
programming found total transfer from practicing a set of nine new
productions of from one practicing trial to the next. One day delay between
practicing trials, slows the time per production somewhat (probably due to
forgetting), but this slowdown is overcome in a second trial after delay. The
data, which are collected over several applications of the same set of
productions within sessions and across sessions do not suggest that warm-up
plays a big role for production execution time. Time decreases somewhat
after the first trial of a given session, but the subsequent trials stay at about the
same level.

Transfer to a similar task. In the domain of text editing ( Singley &
Anderson, 1985, 1987, and 1989 chpt. 5), it was demonstrated that levels of
predicted transfer correlate fairly close with levels of observed transfer, for
measures of planning time and time per correct operation. In one study
(Singley & Anderson, 1987, exp.1), planning times associated with particular
subgoals of the task showed similar levels of transfer as calculated from
formula (1), when compared to predicted levels of transfer derived from
formula (3). Even though predicted and observed levels of transfer was well
correlated, observed transfer was generally somewhat under predicted (see
Table 2). We will discuss the second result in detail below. A second
experiment in this study (Singley & Anderson, 1987, exp. 2) also showed high
levels of transfer in the planning time component, that are nevertheless
slightly under predicted. For this experiments , transfer was present even for
planning time on low level commands that had been rearranged to fulfill the
maximal interference design in the sense of the verbal learners (A-B, A-Br),
even though a little less than predicted. This seems to be further evidence
(see Polson, et al., 1987 above) to suggest that re-pairing of known responses
does not lead to interference. However, a look at the number of keystrokes as
a measure of accuracy and optimal use of the commands, shows strong
negative transfer. Further analysis of the type of commands chosen in the
transfer task shows that this negative transfer can be explained by transfer of
non-optimal methods from the practice task, as well as a tendency to choosing
commands who have not been bound in the previous task (and that might
have been easier to learn therefore).

In a third experiment (Singley & Anderson, 1989, chpt.5) it was shown
that transfer within task components occurs even across task context for the
domain of calculus problems . The investigated components were (1) the
translation of word problems into equations, (2) selection of operators, given
a problem statement and a goal, and (3) the application of operators for
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calculus problems. If only selection was practiced, the subject would simply
choose one of seven operators (such as ‘differentiate’, or ‘restate’), and the
tutor would the apply the chosen operator to the given equation. In the
application training condition, the tutor chose the operator, and the subject
practiced applying it to the equation. Even though these subskills were
practiced in a task contexts different from the contexts of the transfer tasks,
(different story types for the translation component, and selection and
application of operators in either differentiation or integration problems), the
transfer scores were high and relatively stable.

3.1.2.3 Summary.

Overall, these experiments seem to demonstrate that (1) transfer across
and within tasks measured as percent savings is correlated to the proportion
of known productions; (2) negative transfer can only be observed at a very
low level of analysis and is mainly an effect of transfer of non-optimal
methods; and (3) that at least for the domain of calculus, productions in the
sub skills of translation, operator selection and application, must be
represented in a fairly abstract way, because they transfer across different task
contexts. This pattern of results seems to extend and confirm the results from
the CCT research group and could lead to a full support of a common
elements theory of transfer.

We will now take a second pass through these experiments, (Singley &
Anderson, 1985, 1988, and 1989, chpt.5), and show that even though the
general fit of the data to the models are satisfactory, unpredicted levels of
transfer are found in a range of measures. The analysis will also show that
most of the unpredicted transfer if found in experiments that were designed
to test the use specificity hypothesis. We will start with the description of
surplus transfer in the text editing experiment.

3.2 The phenomenon of surplus Transfer.

3.2.1 Surplus Transfer in Text Editing. As noted above, comparisons of
the general directions of predicted and observed transfer scores of three
experiments show a relatively stable amount of under prediction of transfer
(Singley & Anderson, 1987, Singley & Anderson, 1989, chpt.5, and Kessler,
1988). The combination of these two results, a relatively good fit of the
common elements model, but some under prediction of the amount of
transfer suggests, that the common element model only tells part of the story
about transfer. Some of the experiments seem to allow for transfer based on
knowledge that was not captured by analyses based on common productions.
To collect some hypotheses about the locus of this effect, we will now describe
the experiments that demonstrated it in detail.
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In the text editing experiments (Singley & Anderson, 1987), transfer
between a range of different text editors was investigated: subjects were
transferred from one line editor to another, from practice on line editors to a
screen editor, and a control group was transferred from typing to using the
screen editor. Subjects received marked-up copies of manuscripts, in which
they had to perform edits such as deleting and inserting words, characters, or
lines. All four tasks (editing in the two line-editors, the screen editor, and the
typing task) were analyzed according to a GOMS analysis. The top level goal
structure of this task decomposition was the same for the three different text
editors. It included subgoals such as ‘acquire the task unit’, that is the reading
of the manuscript and extracting the instruction for the next modification of
the text. The next subgoal is to ‘locate the line’ in the document that contains
the error (LL), and the final high-level subgoal is to modify the text (MT) after
it has been located.

The subjects' keystroke sequences and pauses in the two main sub
tasks, LL (which includes the acquisition of the edit) and MT were analyzed
with the help of a parser. Longer pauses between keystrokes were counted as
planning time, bursts of keystrokes were accumulated into executions time,
so that both components of time could be separated for LL and MT. The
values of the observed transfer scores for the planning component based on
these analyses and formula (1) are included in Table 2. The table also includes
predicted transfer scores based on the count of common productions and
formula (2). The comparison of these values demonstrates clearly that all the
observed transfer scores are above their predicted counter values.

Singley and Anderson have been trying to explain this surplus transfer
in two ways: (1) One attempt was to break the analysis of the MT transfer
scores down further into planning times associated with single edits (such as
'delete word', or 'insert character’). The analysis on this level showed that
planning times for delete operations was connected to the highest and lowest
(negative) transfer scores, for both subjects transferring from the typing
controls, as well as from the line editors. This result was further explained by
showing that all subjects (even the typing control group) had some practice in
using the delete key, and that this practice transferred positively where the
new editing method was similar, and negatively, where repeated use of the
delete key less effective than the use of the actual command sequence (for
strings and lines). Unfortunately, this story does not explain transfer for the
other commands. Transfer for insert and replace operations varies between
-39 to 74% for the typing control subjects, and between 33 to 77% for the line
editor subjects. No special function keys were assigned to these operations
that could have been practiced by the typing subjects before. The relatively
high transfer scores for these operators therefore remain mysterious.

(2) A second explanation involves practice and transfer based on the
‘acquire unit’ task. As mentioned above, this involves glancing at the
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manuscript and encoding the type of edit, as well as the particular changes to
the original text. An explanation of transfer based on this component
involves improved encoding skill, both for the type as well as for the content.
This would explain subjects performance in all transfer conditions, because
all subjects had equal amounts of practice in reading manuscripts and
interpreting them. Singley & Anderson report anecdotally, that subjects
glanced at the manuscript several times, even while performing the MT sub
task. The parser however could not distinguish these glances from planning
times associated with other cognitive operators in either subgoal of the task
(MT or LL). The improvement on this skill component could therefore
explain the additional transfer in the planning times, observed both for MT
and LL. Additional evidence for this interpretation can be taken from the
performance analyses of Bovair, et al. (1990) reported in the second chapter.
Here, a multiple regression to explain performance times on a similar text
editing task, showed that a predictor based on the number of editing feedback
checks explained a significant amount of variance. Moreover, there was a
significant interaction of this parameter with the level of expertise of the
subject. If subjects were fairly skilled in using the word processor, they used
significantly less time checking the results of their actions than if they were
novices. We can conclude then, that surplus levels of transfer in the current
experiment may be related to this dropout of additional glancing at the
manuscript, either for reasons of improved encoding skill, or because subjects
simply did not check the results of their actions as frequently.

The most interesting results concerning surplus levels of transfer were
accumulated in experiments that concerned the hypothesis of use specificity
of knowledge. What differentiates these experiments from the ones reported
so far is the minimal overlap of shared productions from one task to another.
However, in these experiments different sub skills in one domain are based
on a large common declarative knowledge base.

3.2.2 Use specificity? All other studies that have yielded unpredicted
levels of transfer were designed to show that transfer can be explained only by
use of the same productions, not by shared general knowledge. Anderson
calls this the use-specificity hypothesis. For example learning to read a
foreign language should not transfer to learning to speak the same language,
even though the same declarative knowledge (vocabulary, rules of grammar)
might be involved. Curiously all experiments designed to demonstrate this
effect have failed, by displaying much larger transfer effects than could be
explained on grounds of a common productions theory alone.

3.2.2.1 Transfer in Lisp Programming (1). Kessler (1988) performed an
experiment to show that different sub skills in the domain of Lisp
programming (coding, debugging, and evaluation) do not transfer to each
other. Subjects were trained in one of the sub skills and then transferred to
one of the other conditions. Percent savings scores based on times to finish a
problem and errors per problem show considerable levels of transfer (between
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12% and 92%, with only one negative value (-66%). The highest levels of
transfer were observed between the coding and debugging sub skills, which
lead Kessler to hypothesize that common productions between these two
skills might be responsible for this result. A more detailed analysis of the data
(based on a post hoc production analysis), comparing the time and error
measurements for the common and unique components separately, did not
support this hypothesis however. Even though the transfer scores were
higher for the common productions, the savings scores for the unique
components was still considerable (an average of 52 percent). In discussing
this result, Singley & Anderson list as one of the possible candidate transfer
component the improved encoding of the problem statement (Singley &
Anderson, 1989, p. 162).

3.2.2.2 Transfer in Calculus (1). In this study, Singley and Anderson
(1989, chpt. 5) tried to demonstrate the effect of use specificity in the domain
of calculus. With respect to the subskill factor, the experiment had three
conditions (translation of a word problem into an equation, selection of
operators to apply to that equation, and the application of these operators).
The transfer task for all subjects was solving differentiation problems under
the use of all components. For each subskill, transfer was measured in terms
of speed, such as time per operation, and measures of accuracy, such as %
incorrect. Subijects received different levels of training for the different sub-
components. On the first day of the experiment, all subjects were introduced
to the new operators and practiced application of the operators on
differentiation problems. On the second day of the experiment, the
participants were subjected to differential treatment: One group of subjects
practiced all subskills in the context of differentiation problems (the control
group). One other group practiced all sub skills in the context of integration
problems. The third group finally, practiced application of operators in the
domain of differentiation problems, they did not have to translate, or select
the appropriate operators, however.

Since this experiment does not separate the amounts of practice in the
three components neatly from each other, we have to be careful in
interpreting the results. Most of the calculated transfer scores (time and %
incorrect, respective extra moves per problem) for the translation and
selection sub-component are calculated related to performance in these
components on day 2. However, this does not take into account that the
application practice that subjects received on day one may have already
influenced their 'novice' scores on day two on those measures.

For example, the translation times and % incorrect measure for
subjects that did not practice translation on the second day are at the same
level as the translation times and % error for the subjects who first translated
problems on day 2. However, all of these subjects had already worked on
applying the operators to equations on the first day of instruction, and had
therefore some exposure to the type of equations that they were expected to
find. Therefore the only conclusion from this part of the data can be that a
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second day of practice applying operators does not improve the translation
speed and accuracy, but we simply do not know whether one day of practice
applying operators makes any difference opposed to no practice on these types
of calculus problems.

The same caution has to be taken with regard to the transfer measures
for the selection sub component. Again, the time and error measures of the
group that did not select operators on day two (but applied them) are very
similar to the selection measures of those groups that practiced all sub
components on day two of the experiment. However, all of the subjects
received some practice in applying operators on day one, and it is well
possible that this practice had some effect on selecting operators on the second
day. Again, the only conclusion to be drawn from the data is that a second
day of practice applying operators did not improve the selection scores over
and above their levels after one day of practice.

Singley and Anderson were successful in relating different levels of
savings for performance on selection and application of particular operators
to the frequency with which these functions had been practiced on day two of
the experiment. The correlation coefficient for frequency of selection and
percent saving on the selection sub component on day three is r=.87. Even
though this correlation suggests a relatively smooth relation between
frequency of practice and transfer for selection, one has to keep in mind that
the frequencies of selection and application of an operator are perfectly
confounded on day two. In other words, the same correlative relationship
would hold between frequency of operator application (on day two) and
transfer on selection on day three. It is therefore impossible to tell if it is
indeed practice on the same sub skill or the 'unrelated' sub skill that lead to
the difference in transfer scores.

The same criticism holds for the interpretation of the savings scores for
the application component. Again, frequency of practice of applying certain
operators on day two can be correlated with percent savings on application of
those operators on day three (r=.54). Again, the frequency of application for a
given operator on day two is confounded with the frequency of its selection.
Therefore the same correlative relationship also holds for practice on
selection and savings scores for application. Again we can only conclude that
operators that were practices more frequently on day two (in selection and
application) were applied faster and more error free on day three or the
experiment.

To summarize the results: First, a second day of practicing application
of operators does not improve selection or translation performance overall,
however the frequency of practice on selection and application predicts the
level of performance on either component on a subsequent day relatively
well. These results leave obscure whether a single day of practice on
application would have transferred to either sub skill, or whether practice on
selection or application predicted performance on either sub skill on day
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three. To answer these questions, Singley and Anderson (1989, chapter 7)
designed a second experiment. In this experiment transfer was measured for
one day of practice on the same of the other sub skill.

3.2.2.3 Transfer in Calculus (2) In a follow-up to the calculus
experiment reported above, Singley and Anderson (1989, chpt. 7), designed an
experiment to test specifically, whether practice on one component
(application or selection) of the skill would improve initial learning on the
second. This second experiment included two experimental and two control
groups. The two experimental groups practiced selections or they practiced
applying operators, after the tutor had selected them for them. A baseline
control group practiced typing selection and applications without actually
solving the problems, another group of subjects practiced solving both parts
of the problems.

Performance data on day two, where all groups select and apply
operators were analyzed. The selection and the application sub skills were
analyzed individually.

Both, practice on the selection component, as well as practice on the
application component, lead to significant increases in speed of selection,
whereas the selection speed of the typing control group did not differ from
the novice group performance on day 1. These differences do not replicate for
the 'extra moves per problem' measurement, which can be interpreted to
indicate that none of the groups really learned more efficient selection
heuristics.

For the application sub skill, speed of application on day two is
dependent on application practice. The effect of selection practice on speed of
application is not statistically significant, even though there is a numerical
difference between subjects who practiced selection and those who did not.
Again there is no improvement in the accuracy measurement (percentage of
incorrect applications) due to practice on any of the sub skills.

In summarizing the results from these two calculus experiments we
can now conclude, that first, one day of practice applying operators transfers to
selecting operators, even though a second day of operator practice does not
seem lead to further improvement. Second, improvement on the selection
component is mainly due to increased speed of selection, not to better
selection strategies. Here is our first hard evidence for transfer in spite of a
lack in overlap between productions in the sub skills. Interpreting the fact
that only the speed measure, but not the efficiency measure shows
improvement, we could suspect, that this improvement could be due to faster
access to the set of operators, whereas subject have not learned yet, which
operators will be optimal to choose for a given problem statement. Thirdly,
practicing selection of operators does not seem to have any beneficial effect on
application of operators, even though there is improvement due to practice
on application. This result has been explained by suggesting that practicing
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operator application improved the declarative representation of the
operators. The faster selection times for subjects on the second day were then
a consequence of access to this improved representation. However, the
processes involved in selecting operators did not elaborate declarative
knowledge in a manner that the more complicated processes involved in
applying operators could benefit from it.

In the following experiment where transfer between different sub skills
in the domain of Lisp programming were investigated, we will find more
evidence for the effect of transfer due to an improved declarative
representation of the domain.

3.2.2.4 Transfer in Lisp programming (2). Another recent experiment,
designed to test the use-specificity hypothesis, shows large transfer effects that
can not be accounted for by a common elements theory based on production
overlap (Pennington and Nicolich, in press). The experiment tested transfer
between generation and evaluation of lisp code, in extension of an earlier
study by KcKendree and Anderson (1988). Transfer was measured in both
directions, and the experiment included training control, as well as typing
control groups. Subjects in the experimental groups practiced one sub task for
three days (two hours per session), and were introduced to the transfer task
on day four. Subjects in the training control groups simply practiced one sub
skill for four days, and typing subjects practiced typing either evaluation or
generation problems before they were transferred to one of the problem
solving conditions.

The generate and evaluate sub tasks were analyzed and two production
system models to simulate task performance were constructed. Comparison
of the productions between these two models revealed that there was very
little production overlap between the two skills. This overlap consisted of six
productions concerned with parsing of lists. Predicted transfer (under
application of formula (2) from generate to evaluate and vice versa was 22%
and 12%, respectively. Learning and transfer was measured both for speed
(plan time and number of pauses) and accuracy (% correct, and error/stroke
ratio), as well as in a combined speed/accuracy score. From these raw

rformance measures percent savings scores were calculated under use of
formula (1). The results of this experiment are summarized in Table 3.

Comparison of these values with each other and the predicted values,
illustrates the following points: First, overall transfer is higher than predicted
(an observed average of 55.5% as opposed to a predicted average of only 17%).
Obviously, the common productions model under predicts transfer seriously
in this study. Second, transfer was predicted to be higher for generate to
evaluate, but the observed savings scores are opposite to that (with one
exception: plan time). This is the first time that transfer scores are not only
higher than predicted, but also poorly correlated with the direction of transfer.
Third, there is transfer for all measures, speed as well as accuracy indicators.
Subjects made faster decisions as to what to do next (as expressed in plan time
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and pauses), and they made more efficient decisions (perc. correct, and
error/strokes). In this case subjects did not only have faster access to operators
they were also able to make more accurate decisions from the very beginning
as an effect of transfer.

Measurement Transfer direction
generate-evaluate evaluate-generate
perc. correct 40.1% 61.0%
error/strokes 60.5% 88.2%
pauses 51.6% 47.9%
plan time 54.1% 61.0%
points 34.1% 48.3%
average 49.9% 60.7%
gross average
55.3%

Table 3. Summary of transfer results from Pennington and Nicolich (in
press).

Principally, there are three alternate conclusions that could be drawn
from this study. First, it could be argued that the production system analysis
of the data was flawed, and that a different set of productions could be written
that predicted the observed transfer better. A second alternative is that the
analyses provided were correct, but only d escribed performance on the sub
tasks when they were learned by pure novices. There is a possibility that
transfer subjects adopted altogether different problem solving strategies when
transferring to the other sub task, and this transfer performance would then
be ill described by the original performance model. Thirdly, one could decide
to take the results at face value and accept the fact, that in this transfer can not
simply be described by a common productions model. This hypothesis leaves
us with the interesting duty to further investigate what the basis for this type
of transfer might be. This was done in a follow-up experiment by
Pennington, Nicolich, and Rahm, (submitted). We will describe this study in
detail after summarizing the results that we have accumulated so far.

3.2.3 Summary. What are the commonalties and differences then
between these experiments additional to their common overall result of
surplus transfer?

As mentioned above, four out of four experiments designed to
demonstrate use specificity, but only one out of ten experiments to show
transfer between similar tasks within a common general domain resulted in
surplus levels of transfer. The main characteristic of the use specificity
experiments is that there is a clearly shared declarative base between the sub
tasks. This declarative knowledge includes the familiarity with a set of new
lisp terms, mathematical operators, the ability to parse lists into its elements,
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and to encode equations efficiently, etc.). However, there is no or very little
overlap in terms of the sets of productions that describe skilled cognitive
processes in either sub tasks. In case of the editing experiments, there is some
overlap in the declarative knowledge needed for the given tasks (basic facts
about the devices, and basic knowledge of the task, for example what it means
to perform an edit such as inserting or replacing etc.). However, the same
knowledge is also represented in production rules that are shared between the
separate tasks for the experiment. They can therefore transfer as productions
from one application to another. If new rules have to be learned for a given
transfer task in these experiments, there is no overlapping declarative
knowledge that could assist in there acquisition. For example, in the transfer
tasks, new command sequences are introduced, that simply have to be
learned from scratch. We also have evidence from the CCT experiments that
learning to generalize a rule to a new situation comes with a cost: Subjects
needed extra time to recognize that an old rule (for deleting a document for
example) applied whether the menu choice was called ‘delete’ or ‘discard’. In
this case it would be easy to imagine that previous declarative instruction
about the equivalence of delete and discard in the context would have lead to
transfer of these productions.

To summarize this point: There might be a learning strategy by which
a new problem is first attempted to be solved under the use of well-known
productions. If this strategy breaks down, subjects start searching for facts
about the domain that are well known, and general problem solving
mechanisms are applied to these facts. If these declarative facts are new and
poorly integrated into the subjects general knowledge (as a set of calculus
operators, or knowledge about lisp expressions and lists would probably be),
then elaboration during first task learning may have a beneficial effect on
learning a second task that is also based on the same declarative knowledge
base.

There are two further experiments that investigate this hypothesis in
more detail. One study manipulated declarative learning directly and
assessed its effect on subsequent procedural learning in using some of the
learned facts. This experiment will be described next. Finally, the follow-up
to the Pennington and Nicolich Lisp study will be reported, in which it was
ruled out, that a flawed task analysis was responsible for the unexplained
transfer effects.

3.3 The case of declarative transfer.

3.3.1 Declarative Transfer in operator selection. For the domain of
Logic theorem proving, Lewis and Anderson (Singley & Anderson, 1989,
chpt7.) conducted an experiment to investigate the effect of declarative
training on procedural transfer more directly. In this study, subjects either
practiced recognizing a set of logical rules from a set of foils for two days (the
declarative learning condition) or they received practice in selecting the rules
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to prove theorems for the same amount of time (the procedural learning
condition). On the third day, half of the subjects were either transferred to the
alternate task or received a third day of practice on the original task. With
this design, the effect of declarative practice on procedural learning and vice
versa could be investigated. The results were the following. First, time per
rule selection on day three was clearly reduced by prior practice on rule
recognition. In other words, the declarative practice had a beneficial effect on
the speed of executing the procedural task. On the other hand, practice on
rule selection did not transfer to rule recognition latencies. Practice on the
procedural task therefore did not improve performance on the declarative
task. It seems that whatever is practiced in rule selection does not improve
the declarative accessibility of the given rule set. Singley and Anderson
interpret this as evidence for the procedural manner of the practice, which in
turn leaves the declarative traces of the rules untouched. This argument
however stands in contradiction to their interpretation of the transfer
between application and selection components in the calculus experiments:
there we argued, that practicing application of the operators (a procedural
task) elaborated or practiced the declarative representation of those operators,
which lead to increased performance on selection. A more consistent
argument might be that performing the rule recognition task in the logic
experiment requires a detailed level of representation of the rules (specific
knowledge of surface elements) that is more than sufficient for the rule
selection task. Practicing selection did not lead to elaboration of the same
level of detail. Therefore performance on the recognition task did not
improve after practice on rule selection. We can therefore conclude that
deliberate declarative practice does produce transfer results for simple
procedural tasks, such as selection of logic rules and possibly selection of
calculus operators.

3.3.2 Declarative transfer in sub skills of Lisp programming. In a recent
follow-up experiment, Pennington, Nicolich and Rahm (submitted),
investigated the source of the large transfer effects they had established in the
earlier Lisp experiment further (Pennington & Nicolich, in press, see above).
In this experiment the identical training paradigm as in the earlier study is
used to train four subjects on either evaluation or generation of lisp code.
After three days of practice the subjects are transferred to the other sub task.
These subjects were videotaped and verbal protocols were collected in
addition to the performance data. The goal of this study was twofold: In a
first set of data analyses, the two hypotheses that suggest an error in the task
analysis (either in general, or more specifically for the transfer performance)
were investigated. The second part of the data analysis tracks the
development of the declarative knowledge base during initial procedural
learning of either sub task.

For the first set of analyses the subjects videotaped problem solving
behavior as well as the verbal protocols from two problem solving sessions
during the third day of practice and day four (the transfer task) were scored for
the use of a set of pre-defined mental operators (the observed data set). These
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mental operators were derived from the production system models that had
been used to predict transfer performance. These production systems were
run on the same tasks. From the model runs the number and sequence of
operator applications were abstracted (the predicted data set). Two types of
scores were calculated to evaluate whether the number and sequence of
operators executed by the model were well matched by the number and
sequence of operators chosen by the subjects: First, model and behavior fit
and a concordance score were derived. These scores express whether the
number and the type of operators produced by the model and the subjects
matched well. The scores indicate that the model does not only describe
practicing data (day 3 performance) but also transfer data (day 4 performance)
extremely well. All the derived values are over 90%, for both sub tasks.

Second, to further evaluate the model predictions in terms of the
correct sequencing of operators, a second set of analyses were performed. For
these a proportion of the number of sequences that overlap between two sets
of sequences were calculated, correcting for the number of possible sequences
of a certain size, as well for their overlap by chance (ARC scores). These scores
again show an excellent fit between the generation and evaluation model’s
predictions and the observed behavior, for both training as well as transfer
performance (with ARC scores higher than .67 for sequence sizes of three and
four). We can conclude the production systems used in this experiment did
not only predict the type of operators used by subject, but even the correct
sequencing during application. These analyses then rule out that a flawed
task analysis was responsible for the discrepancy between predicted and
observed transfer scores in the earlier experiment.

For the second set of analyses, the results from a declarative knowledge
test, given at the beginning of the training phase, and the verbal protocols
from the first learning session (day 1) were scored for evidence of known or
inferred declarative knowledge elements. Declarative Knowledge was
represented as a network of nodes with directed links. Concepts such as “list’,
‘element’, ‘first’ or ‘insert’, as well as well as related attributes such as ‘returns
first element of a list’ were represented as nodes. Whenever a subject openly
mentioned one concept after considering another, or whenever an action
implied, that such knowledge must have been accessed, a link was drawn
between the respective nodes. In this manner, correct, as well as incorrect
inferences were recorded. For each trial the previous representation was
updated. Updating was established by incrementing link strengths for each
correct access of that trace. If new concepts of relations were mentioned, they
were simply added to the old representation. This process produced 60
representations for each subject, where each representation stood for the
subject’s declarative knowledge after a certain number of practicing trials.

Comparison between the final representations provides us with the
following information: First, subjects elaborate their initial declarative
knowledge structure (from reading instructional texts) a great deal by applying
it to practice problems and interpreting feedback from the system. Secondly,
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the complexity of the knowledge maps increases greatly during the first 30
practice trials, but does not extensively extend thereafter. Third, the final
knowledge maps derived from subjects practicing generation and evaluation
contain extremely similar nodes and links. However, despite their general
similarity, the maps derived from the protocols of the generation practice
subjects are somewhat more complex. This added complexity represents
some wrong inferences that had been drawn by subjects in this condition as a
consequence of false interpretations of error feedback. This analysis therefore
shows that the declarative representation of the domain is very similar, no
matter if it was established during evaluation or generation of the Lisp
problems. This shared set of declarative knowledge therefore is a very likely
candidate to explain the high transfer scores in this and the previous
experiment. In fact, the slightly less wrong representation derived from the
generation subjects might be an explanation for the finding, that subjects that
transferred from evaluation to generation did somewhat better than their
counterparts.

In this study then we have further unanimous support for the
hypothesis that transfer of learning can happen on the back of a well practiced
and elaborated declarative knowledge base, even though only minimal
overlap in terms of productions exists. The study provides strong evidence
for the hypothesis that high transfer in this and the earlier experiment were
due to use of the practiced (incrementation of ‘correct’ links) and elaborated
(learning of new concepts and links) declarative representation of the skill.
This declarative learning took effect after the ‘official’ declarative learning
phase (the reading of the instruction booklet). The analysis of the verbal
protocols clearly showed that subjects actively enriched their representation
of the new concepts during problem solving, through the processes of self
explanations and the interpretation of feedback. This study leaves us with the
important conclusion that declarative learning of new concepts, operators
and symbols (such as the parsing of lists and their elements), is a slow and
gradual process. This process may overlap with the initial phases of
procedural learning in the domain, in fact the process of procedural learning
may be instrumental for the acquisition of declarative knowledge. Whenever
such declarative learning happens during the initial practice trials, transfer is
possible in terms of access to a richer and better practiced declarative
representation of the new domain.

3.3.3 Summary. Both, the logic theorem proving experiment, as well
as the Lisp experiment provide evidence for the importance of declarative
transfer. It is still an open question what type of declarative learning (and
what type of representation) will improve procedural learning most. The
former experiments (the logic and calculus studies) suggest that simple
familiarization with the new concepts merely improves the speed of access to
those concepts, but not the accuracy of the selection of operators. This result
suggests that this type of learning did not improve differentiation between
the new concepts. In the Lisp experiment, subjects did not only learn the
recognize the concepts, but they explicitly learned their distinctions, and the
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contexts in which they applied. An error analysis (that we did not report
above) suggests, that a great amount of error reductions was due to better
differentiation between concepts that could be easily confused. This suggests,
that in order to reduce errors in initial procedural learning the concepts have

to be well differentiated.

We will discuss in the next chapter that these two components of
declarative learning, familiarization with a set of new concepts , as well as
differentiation between them, have been the focus of investigation in the
transfer work of the verbal learners. First, the experimental results reviewed
in this section will be summarized.

3.4 Conclusions.

There are four general conclusions to be drawn from this survey of
transfer research. The first concerns the conditions under which a common
productions theory can explain experimental data well, the second concerns
the possibility that even in those cases transfer might have been due to
declarative transfer. The third issue concerns the effect for theories of
learning and transfer. A final issue addresses the proper level of analysis for
investigating transfer and leads into the final chapter of this paper.

(A) Common production theories make excellent predictions about
observed levels of transfer in certain conditions: First, if there is a fair amount
of shared knowledge between skills in terms of productions, and new
productions have to be acquired from scratch (without benefit of access to
practiced declarative representations). This was demonstrated for the case of
the studies investigating transfer in the domain of software application skill.
For these tasks all the relevant declarative knowledge practiced in the
training tasks had also been incorporated in productions. If new productions
had to be acquired in the transfer tasks the relevant declarative knowledge
had not been practiced before (such as different command bindings etc.)
Therefore declarative transfer did not play an important role in the
acquisition of these new rules, and transfer could be explained perfectly on
the background of shared productions.

Second, if the declarative concepts that are accessed during the first
stage of skill acquisition are well known to subjects, so that additional
processing of this information does not further change the accessibility and
discriminability of this knowledge between the source and the transfer task.
When these two conditions (large amount of shared procedural knowledge
and general familiarity of the concepts in the new domain) are not fulfilled in
an experiment (such as in the calculus, logic theorem and Lisp experiments),
we can expect to observe declarative transfer.

(B) Even though common production theories explain transfer in the
given conditions well, there is the logical possibility that what has been
interpreted as procedural transfer in those cases, is in effect also the product of
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declarative transfer. In the software skill experiments the overlap in terms of
procedural and declarative knowledge between the source and transfer tasks
might be perfectly confounded. Therefore transfer could probably be predicted
based on analyses of both knowledge components. An experimental set up to
investigate this possibility might involve training subjects to different degrees
before transfer. In one condition subjects might be practiced to a degree after
which the assessment of declarative learning does not show any further
improvement (in the Lisp experiment after the 30st trial). A second group of
subjects receives further procedural practice (performance will still improve
further in terms of decreased planning time, and accuracy measures). If
transfer on the basis of formed productions indeed exceeds transfer on the
basis of a shared declarative base, the transfer scores of the two groups should
be different from each other. A further clarifying manipulation would
involve the number of learned and transferred productions by keeping the
amount of declarative practice constant. If transfer depends on the number of
shared productions, transfer should vary with such manipulations.

(C) Learning theories like Act* have underrated the importance of a
declarative learning phase that may precede or overlap with the problem
solving phase leading to compilation of productions. These theories have
put most emphasis on the difficulty of learning the association between a
given cognitive representation of a problem state and an appropriate operator
to apply in this state. However, for many tasks the learning of such a
connection might be relatively simple as compared to the acquisition of
representations for a new set of concepts and cognitive operations. For
example, new mathematical symbols or Lisp terms and code must initially
appear as arbitrary meaningless characters to subjects. Depending on the
number and similarity of such newly introduced concepts, it might be very
difficult to encode and distinguish them successfully. The initial phases of
problem solving may therefore be less concerned with learning appropriate
condition - action associations as with learning about the involved concepts
and operations themselves. However, there is the possibility that concepts
will be defined by the types of actions that are successful in their context, or
new actions may be distinguished by certain classes of conditions in which
they apply. More research is needed that addresses the interaction between
problem solving, concept acquisition and the acquisition of productions in
the early stages of skill acquisition.

(D) This discussion illustrates that procedural transfer may have been
analyzed on too high a level. We started with an analysis of transfer on the
basis of relatively large knowledge units. Productions are relatively complex
representations of cognitive states and cognitive operations, The importance
of declarative practice for skill acquisition emphasizes that the acquisition of
concepts that make up the conditions and actions of productions may precede
their association and transfer independently. This hypothesis is paralleled by
the development that was taken in the Verbal learning paradigm. In this
earlier line of research, the initial concern was with investigation of transfer
(or interference) based on Stimulus-Response associations. However,
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evidence accumulated that suggested that smaller components of learning
(such as stimulus and response learning and differentiation) were important
factors in transfer in certain experimental conditions.

In the final chapter this experimental evidence will be reviewed to
gather some additional information about the component processes that
underly declarative learning and transfer.
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Chapter 4. Transfer in the Verbal Learning Paradigm

There are two striking parallels between the directions in which
research has been developing for both the verbal learners and the ‘procedural
learners’.

Both schools started investigating transfer from the absolute
standpoint of explaining transfer in terms of a single phenomenon. The
verbal learners investigated transfer in terms of associations between verbal
stimulus-response material. We will try to show below that these
associations might be described as declarative knowledge of concepts and their
associations. In the process of investigating this phenomenon, interfering
components of transfer were discovered. The first group (‘general
components’), which included warm up and learning to learn can be
reinterpreted to be a true procedural skill component (see our arguments
below). In the process of investigating what we might call declarative transfer
today, these researchers therefore discovered what we might call procedural
transfer.

The parallel to the development in the recent transfer work is that
these researches started their investigation with the goal of exploring
procedural transfer, but were surprised with high levels of declarative
transfer. Both components therefore seem to be of importance.

The second parallel is with the level of analysis. Within the
‘declarative’ or ‘specific transfer component’ of the verbal learners, smaller
components of transfer were discovered to be of importance than the learning
of whole S-R units. In particular, the learning of a new set of stimuli and
responses and the differentiation between them was discovered to be of great
importance in certain experimental conditions. We suspect that the same
decomposition of the declarative learning phase (into gradual concept
learning and differentiation) also holds for the declarative learning phase
connected to skill acquisition.

In the following section the work of the verbal learners will be
introduced in general, and the components of transfer will be discussed in
some detail.

4.1 General introduction

The verbal learners were essentially the predecessor to modern
cognitive psychology. It was a functionalist approach to describe learning
results in a stimulus-response paradigm, without any use of such mentalist
constructs like memory, cognitive processes, representations etc., influenced
by the behaviorist philosophy of the time. The goal was to establish
functional laws that describe the relation between (objectively observable)
stimulus and learning conditions and (objectively observable) learning
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results. The verbal learners conceptualized learning as the establishment of
associations between stimuli (word lists) and responses (particular words or
meaningless syllables). Transfer was investigated mainly in its form of
negative transfer or interference between previously established and
currently learned associations between stimuli and responses. For example,
negative transfer would be expected when a new response to a stimulus, that
is already associated to another response, has to be learned. This would be
the familiar phenomenon, in which a woman who changed her name with
her marriage, will still be remembered by her prior name.

The transfer work produced by the verbal learners used exclusively
verbal material in form of word lists, lists of meaningless syllables, or simple
drawings of meaningful or meaningless patterns. In a typical experiment, a
subject learns paired associates, that means they learn to associate a given list
of stimuli (for example a list of words) with a given list of responses (for
example a list of meaningless syllables). Let the notation A-B stand for a
certain stimulus A paired with a certain response B. After learning a list of
such paired associates to a certain criterion, the subject then is transferred to
the learning of a second list. For example, a list A-B has to be learned in the
original trial and a new list A-C has to be acquired in the transfer trial. This
means that the original stimuli are paired with a new set of responses in the
transfer condition. In this case moderate negative transfer is expected in the
learning of the transfer task, because previously learned associations interfere
with the acquisition and retention of the new responses. Table 4 summarizes
the five basic transfer conditions (Postman, 1971), and the predicted transfer
results based on the establishment of S-R associations and interference alone.

Design Description expected Transfer
A-B A-B stimuli and resp. stay same positive

A-B A-C same stimuli., new resp. moderately negative
A-B C-D control, all new material zZero

A-B C-B new stimuli, old responses positive

A-B A-Br new combination, old material strongly negative

Table 4. Basic Transfer Designs of the Verbal Learners

As Martin (1965) summarized, the early work of the verbal learners (i.e.
Miiller & Schumann, 1894, and culminating in Osgood’s (1949) transfer
surface) saw positive or negative transfer mainly in terms of transferring or
interfering associations between certain S-R combinations. However,
researchers in the 1960’s and 70’s had to recognize that learning and transfer
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times are an additive of a range of components, such as learning to learn,
warm up, response learning and so on (see Table 5 below). In fact, research
during these years was mainly concerned with investigating the conditions
and estimating the effects of these components of transfer.

4.2 Components of Learning

On the side of specific transfer effects, namely the effects of associative
interference, five components were distinguished on theoretical grounds (see
Postman, 1971, p. 1060). First, if the responses are meaningless letter
sequences they have to be acquired independently from their association with
a particular stimulus. This is what has been termed response learning (see
Table 5 (a)., Underwood & Schultz, 1960). Furthermore, Postman lists
stimulus and response discrimination (b,c) as possible sources for transfer. He
argues that in a list learning experiment, responses as well as stimuli have to
be discriminated from each other, before they can be successfully associated to
their respective associates. List discrimination acquired in first list learning
can therefore transfer to learning to the second list, because the members of
one list have already been discriminated from each other. Finally, Postman
distinguishes between two truly associative components of transfer: (e)
forward and (f) backward associations. These are the learned associations
between two memory items that have been established during the learning of
the first list. Forward associations are expected to interfere with learning of
new responses to old stimuli, because the stimulus evokes the old response
association during learning of the second list. Forward associations may have
a positive effect when the new responses are similar to the old responses.
Backward associations are the effect by which a response (B) learned in context
with a particular stimulus (A-B) will evoke the stimulus (A). This might
have an interfering effect whenever an old set of responses has to be
associated with a new set of stimuli (C-B). Postman describes this effect as a
possible withholding of the correct response when the first list associations
are elicited during second list learning, where the backward associations serve
a 'checking function' to edit responses (Twedt and Underwood, 1959,
McGovern, 1964).

These ‘specific’ transfer components were distinguished from two
effects called ‘unspecific’ or general transfer. Concern for the effect of these
transfer components came from unpredicted empirical results. For example,
transfer was observed in the basic control condition (A-B, C-D). If transfer is
conceptualized as the effect of interfering memory elements, transfer should
not be expected when learned list items are not identical or even similar to
each other (as in A-B, C-D). Therefore these transfer effects were puzzeling.
Similarly, in experiments where negative transfer had been predicted as an
offect of associative interference, (A-B, A-D), some researchers reported a
failure to establish the predicted effects (Heron, 1928). However, Heron
observed that all second lists in his experiment were learned faster, when
they were acquired during the same session. Subjects did not show any
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improvement from one session to the next, though. Such findings led to
experimental investigations of the general transfer component.

Compone_n_t; of Transfer effects in basic designs
CD AB AD CB A-Br

Unspecific components

(a) warm up + - + + ¥
(b) learning to learn + - + + +
Specific components
(a) response learning 0 + 0 + -
(b) response differentiation 0 + 0 + +
(c) stimulus differentiation 0 + + 0 +
{e) forward associations 0 + - 0 -
(f) backward associations 0 + 0 - -

Table 5. Components of Transfer

Again one might simply reliable the unspecific transfer components
with ‘procedural transfer’, because the experiments that describe learning to
learn, suggest that it is very similar to characteristics of procedural skill
acquisition. The specific components that relate interference and transfer
performance to particular variations in the experimental material may be re-
labeled ‘declarative component’. In fact, interference has been explained by
the fan effect, related to certain conditions of declarative learning and
retrieval (see chapter 2.)

We will now describe characteristics of each of the components in
some detail.

4.2.1 Learning to Learn

Learning to learn is defined as the acquisition of learning skills and
habits that are specific for a particular class of tasks, such as paired associate
learning or serial list learning. An example is transfer in the A-B, C-D
paradigm (as discussed above), where training on a previous paired-associate
task leads to better performance on succeeding paired associate learning even
though no transfer would be predicted on grounds of the specific transfer
components. Learning to learn was shown to have certain characteristic
effects, that were investigated in detail.

42.1.1 Leamingto learn asa negativ ely accelerated fundion of am ount of practice.
Postman reports several independent experiments that show that
improvement on a particular task is essentially a negatively accelerated
function of the amount of practice on that task. Improvement is strong
during the first trials on a task, and levels off in later trials. Evidence for this
comes from experiments involving serial learning of nonsense syllables
(Ward, 1937), and words and numbers (Melton & von Lackum, 194, and
Postman, 1962), as well as paired associate learning of adjectives (Greenberg &
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Underwood, 1950), and nonverbal learning involving visual patterns as
stimuli and lever presses as responses (Duncan, 1950). Task difficulty (in
terms of variation in the material or higher performance criteria) has
influence on the number of trials until asymptote is reached, but no effect on
the general shape of the practice function (Melton & Von Lackum, 1941).

4.2.1.2 Effects of varied and constant practice. If continued practice on a
particular tasks is given, transfer to a test task will be greater when the
subjects where trained with varying sets of stimuli, as when they were trained
with the same set of stimuli. Evidence for this effect comes from an
experiment by Duncan (1958), in which paired associates between visual
patterns and lever presses had to be learned. Practice effects were found to be
greater when subjects were trained on varying stimulus sets during practice.
When only practice is not varied however (as in an experiment by Postman &
Schwartz, 1964), transfer is more extreme when the training task involved the
same learning method (serial learning or paired-associate learning), or the
same learning material (adjectives or trigrams), as the transfer task.

However, lower levels of transfer are even found for practice on the different
method or material as compared to a no practice control condition. (Postman
& Stewards, 1964).

4.2.1.3 Organizational skill in free recall learning. Finally, several free
recall experiments show that improvement in the ability to recall a list of
items can be related to an increasing use of subjective organization in the
recall of the items. Evidence for this effect is reported in studies by Dallett
(1963), Tulving, McNulty & Ozier (1965), and Mayhew (1967). In Mayhew's
study, subject learned two lists of 30 words per day on three consecutive days.
One group of subjects were informed about useful ways to organize the items
and encouraged to use them, whereas the other group of subjects did the
experiment naive. For both conditions the recall probabilities increased at the
same rate as subjective organization scores, but the learning curve was more
accelerated for the informed group.

4.2.1.4 Learning to learn under modern perspective. These three
characteristics of learning to learn suggest that this component is indeed the
same that has been studied in the modern literature under the label skill
acquisition. First, the negatively accelerated practice function is essentially
the Power Law of Practice, that has been found to describe the acquisition of
any cognitive or motor-perceptual task (see for example Card, Moran &
Newell, 1983). It states, that speedup on a particular task is approximately
proportional the power of the amount of practice given on that task. The
function has been repeatedly used to describe the acquisition of various
cognitive skills, such as editor use or learning to code in lisp (i.e. Polson, 1988,
and Singley & Anderson, 1989). The mechanism in Soar that explains how
this architecture would learn paired-associates in recall-problem spaces is a
good hypothesis about the type of procedural skill that may be learned to
facilitate paired-associated chunking.
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Second, the effects of varied and continuous practice prior to transfer
has been examined in the modern literature under the headers ‘schema-
building’ or ‘generalization of rules’. The general argument goes like this: If
continuous training on a particular task is given, training with varying
material will produce more general productions, that in turn will be
applicable to a broader set of new material. If only training on one prior task
is provided, the newly learned productions are specific to their use in that
previous context. Therefore, transfer on the next trial will be greatest, when
the material is exactly the same. If the material is slightly different from the
previous, then the old production would have to be modified, which could be
expected to take some additional learning time (see Polson,et al., 1985). In the
modern work it has been difficult to find evidence for the effect of
generalization on transfer performance (i.e. Polson, 1988). The data reported
here then provide some ‘new’ evidence for the existence of this effect during
learning. We will address accounts of this learning process in a later chapter.

Third, moderate transfer between two slightly different methods (serial
vs. paired associate learning) is most likely due to the application of a subset
of productions that have been acquired in the learning task. This
interpretation is supported by the observation that training on “paired-
associate learning disposed the subjects to subdivide the series (of words) into
a sequence of pairs." (Postman, 1971, p. 1043. This is clear evidence for
transfer of a production that was learned in one task (paired associate
learning) to a similar task (serial list learning).

Finally, increased performance in free recall produced by increased
'subjective organization', has been described in detail as the build up and use
of elaborate memory structures, that serve in encoding and retrieval of
presented information (see Chase & Ericsson, 1985).

4.3 Specific Transfer components

The specific components of transfer as identified by Postman can be
roughly divided into two groups by their emerging during different learning
phases (Underwood & Schultz, 1960). First, the new stimuli and responses
have to be learned as independent events, and items within lists have to be
distinguished. This phase of learning entails response learning, stimulus and
response differentiation. After stimuli and responses have become available
as independent events, associations between them can be established. This is
the associative phase of learning in which forward and backward associations
are acquired. In the following sections evidence for the effect of the proposed
specific transfer components (see Table 5) will be reviewed briefly. In a final
section it will be considered whether and how these transfer components
might be incorporated into a analysis based on a production system analysis.

4.3.1 Response Learning. The literature provides rich evidence for the
importance of response learning. Experiments demonstrating the effect rely
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on the argument that subjects need longer time to learn low meaning
responses than high meaning responses. (for example trigrams instead of
words). Therefore the positive transfer effect of the response learning
component should be stronger when low meaning responses are transferred
to the second task (C-B, A-Br, A-B'), as when high meaning responses are
used. This result for the C-B and A-B' paradigm is reported in the literature
(Jung, 1963; and Merikle, 1968). Jung compared the transfer of low and high
meaning trigram responses in the A-B, C-B paradigm. Transfer was positive
for low, and slightly negative for high meaning responses. Merikle produced
the same result with the same type of material using a A-B, A-B' paradigm.

4.3.2 Stimulus differentiation. Postman (1971) reports only weak
evidence for the effect of stimulus differentiation. In a study by Underwood
and Ekstrand (1968) subjects were trained in an A-B, A-D paradigm with
varying intralist similarity of A. The experiment relies on the assumption
that stimulus differentiation is more difficult with items that are highly
similar to each other. Therefore the transfer effect achieved for the high
similarity stimuli should be more positive than for the stimulus lists that are
clearly distinguishable. Underwood and Ekstrand’s data show this predicted
trend, but the effects lack statistical significance.

4.3.3 Response differentiation. Postman (1971) does not report any data
that bear directly on the existence of this transfer component. However, the
appropriate design to study the phenomenon should combine the
experimental logic of the two paradigms reported above. In a factorial design,
the two factors meaningfulness of responses and intralist similarity of
responses should be combined. The appropriate transfer paradigm would be
A-B, C-B. If response differentiation has an independent effect from response
learning, then there should be a main effect for intralist similarity and
meaningfulness, but no interaction between the two factors.

4.3.4 Forward Associations. The data reported by Postman show only
weak support for the effect of the associative component on transfer. The
design that would isolate this component most effectively is A-B, A-D with
meaningful stimulus lists that have low intralist similarity. The interfering
effect of forward associations should increase with higher levels of first list
learning in this design, where the effect of stimulus differentiation is kept at a
minimum. An experiment by Mandler and Heinemann (1956) included one
condition similar to this, where the stimuli had low meaning. The data show
a trend toward higher levels of interference after longer first list learning,
however this trend is not significant.

4.3.5 Backward Associations. Evidence for the effect of backward
associations comes from the same experiment (Mandler & Heinemann, 1956),
and again does not yield statistical significance. The A-B, C-B paradigm
would isolate negative interference based on backward associations best.
Again, the data show a trend towards more negative transfer at high levels of
overlearning. However, the same criticism of the design applies as for the
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condition representing the A-B, A-C design: Highly meaningful and easily
distinguishable responses would have minimized the positive effect of
response learning and differentiation, however low meaning items were
used in the experiment.

4.3.6 Summary The review of this literature shows that it has been
difficult to provide clean evidence for the importance for each of the
proposed specific components, even in this paradigm, where it is relatively
easy to control the important characteristics of the involved material.
However, many researchers have agreed (i.e. Kintsch, 1963; Polson, Restle &
Polson, 1965; Greeno, James, & DaPolito, 1971, and Martin, 1971) that paired-
associate learning can be described by two phases, where the first phase is
attributed to some type of learning or encoding of the independent events,
and the second phase is attributed to learning appropriate associations
between them, or in other words establishing efficient retrieval structures.

As in the examples from the procedural learning literature, the first,
stimulus learning phase is of particular importance when the involved
material is low in initial meaningfulness (such as lists of Lisp expressions, or
a new set of logic rules), and when the set of new concepts or items is difficult
to differentiate. In most situations involving procedural skill in a realistic
domain, both of these characteristics will be confounded. Whenever a new
set of terms is introduced it will be difficult for the learner to distinguish
between them. With the acquisition of a semantic representation, each item
in the set will be easier to recognize, as well as it will be easier to distinguish
from other items in the set.

We have shown that two general components, one that could be
termed procedural and another that can be called declarative combine to
explain transfer in the domain of verbal learning. This result combined with
the evidence from the current transfer work emphasizes that transfer has to
be analyzed under consideration of both of these factors.

Furthermore, there is evidence from both research directions, that the
declarative learning phase might consist of two components or sub processes.
One of these components is connected to establishing some representation of
the new concepts, whereas the second phase is responsible for learning
particular associations (of either conditions and actions, or of particular
concepts from this domain).
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Chapter 5. General Conclusions

In the present paper we discussed learning and transfer in the
procedural domain, as well as learning and transfer of simple declarative
material such as paired-associates. Procedural learning has been characterized
as the transition of two main learning phases: a problem solving phase in
which appropriate condition actions pairs are discovered in a declarative
representation of the problem space. Once these appropriate pairings have
been established (‘compilation’ in Act*), further learning is a process of
tuning and adaptation of the these production rules for special cases of
application and a combination of smaller rules into larger units for frequently
repeated sequences of steps.

5.1 Procedural vs. declarative learning

A previously presented argument (Anderson, 1983, 1987; and Polson,
1988) was that transfer of procedural skill is the sole effect of whole-cloth
transfer of such compiled rules, where general rules may be applied in a range
of similar problems, and specific rules apply only to very similar situations.
The review of recent transfer experiments however shows that initial
problem solving time may vary greatly dependent of the state of the
declarative representation of a given domain. If a domain is already well
represented (such as the key concepts in the text editing domain: moving,
printing, deleting), general problem solving productions may access relevant
parts of this representation and derive correct solution steps in a relatively
efficient way. However, if the concepts are not accessible, or if no problem
relevant representation of the new concepts is given, these problem solving
mechanisms may have nothing to work with. It may be that in such a case
much more elementary problem solving, or concept learning mechanisms
have to be invoked before a meaningful representation of the concepts can be
established.

We argued that in such cases (such as in the experiments in the
domains of Lisp programming, and Calculus and Logic reviewed in Chapter
3), transfer subjects can benefit from an improved representation of the new
domain, even if there are few shared productions between the subtasks, such
as between generating and evaluating Lisp code. If part of what was acquired
during original learning was to establish a rich declarative representation of
the new domain, then transfer subjects can benefit from this newly acquired
declarative knowledge representation.

5.2 QOutlook

We pointed out that further research needs to address the distinction
between transfer based on common productions and common declarative
knowledge more clearly. In most of the current research, the newly acquired
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declarative knowledge may overlap with the productions that have been
proposed to account for the transfer effect. Properly designed experiments
should address whether the transfer results were in fact due to applicable
productions or whether declarative transfer can also be held responsible for
these results.

Furthermore, the inter-dependencies between problem solving and
acquisition of declarative knowledge need to be understood more clearly.
This point can be decomposed into two important questions. First, we need
to understand what characteristics of a declarative representation are most
important for skill acquisition in a new domain. Is it important that new
concepts become well elaborated, and is it important that this elaboration is
problem-relevant? A rich elaboration of key concept may influcence their
retrievability negatively (via fan-effect). Is accessibility of new concepts more
or less important than the semantic richness of their representation? Second,
what are the conditions under which a new conceptual structure can be
acquired? Should concept learning be understood as problem solving?
Which types of tasks lead to a fast and effective acquisition of concepts that
furthermore aid procedural learning optimally? In other words, a finer
grained analysis of the interaction between concept learning and problem
solving may be indicated.
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