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Abstract
A tutoring approach is derived from a model of problem comprehension, based on the van
Dijk and Kintsch (1983; Kintsch, 1988) theory of discourse processing. A problem
statement is regarded as a text from which the student must glean propositional and
situational information and make critical inferences. The student must coordinate this
information with known problem schemata so that formal (i.. algebraic) operations can be
applied and exact solutions obtained. We argue that this task is a highly reading oriented
one where poor text comprehension and an inability to access relevant long-term
knowledge lead to serious errors. Further, formal algebraic expressions are so abstract their
meaning is often elusive; this contributes to mistranslations and misinterpretations. We
describe experimental results with ANIMATE, an unintelligent tutoring system which
knows nothing of the problem at hand or of the student's actions. Subjects who build
animations of situations described in typical word problems consistently outperformed tutor
users with no animation and students using only equations in both training tasks and near
and distant transfer tasks. Performance differences were greatest for novel problems. We
conclude that by providing an environment which gives equations situation-based meaning
and makes the ramifications of students' formal manipulations clear, students learn to relate
formal expressions to the referent situations. This enhances problem comprehension and

gives a stronger representational base to the problem solving process.
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A Theory of Algebra Word Problem Comprehension and its
Implications for Unintelligent Tutoring Systems

Cognitive scientists are currently paying a great deal of attention to the development
of Intelligent Tutoring Systems (ITSs) for areas traditionally left to human instruction, such
as computer programming instruction (Anderson, Boyle, Corbett, & Lewis, in press;
Reiser, Kimberg, Lovett, & Ranney, 1989) and mathematics (e.g. Anderson, Bolye &
Yost, 1985; Brown, 1985; Singely, Anderson, Gevins, and Hoffman, 1989). Intelligent
tutors are computer programs intended to track the behavior of a student and provide
meaningful feedback about performance errors. At tﬁc core of an ITS is an expert system
for the field of concern (e.g. geometry). At the core of the ITS philosophy is the belief that
by understanding the student's learning processes and feedback requirements, a
knowledge-based system can be produced which will appropriately interact with the student
to bring about heightened skill retention and problem comprehension. Yet there are areas of
instruction -- such as word problem solving -- where we seem unable to provide much help
to students. Furthermore, while it may be possible to build expert knowledge into computer
systems, the educational intent behind a tutor is not simply to construct an expert capable of
correcting student actions. Of paramount importance is to instruct the student so that his or
her performance is enhanced when the tutor is removed.

Developing a better understanding of the psychological requirements for problem
comprehension may alert us to students’ instructional needs and provide us with the
functional requirements for computer-based tutors. In this paper we present a theory of
word problem comprehension based on research in the field of discourse processing (e.g.
van Dijk & Kintsch, 1983). The theory focuses on the mental representations that are
produced during reading comprehension. In solving word arithmetic or word algebra

problems, errors made by students can be viewed as failures to produce the intended mental
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representations, or failures to see how the situation described in the problem statement
relates to the formal expressions one must work with in order to produce a quantitative
(e.g. numeric) solution. Previous work has shown that text complexity and comprehension
failures are central to the difficulty of word problems (Carpenter, Corbitt, Kepner,
Lindquist, & Reys, 1980; Cummins, Kintsch, Reusser, & Weimer, 1988; Kintsch &
Greeno, 1985). Indeed, empirical analyses of how college students actually solve word
algebra problems have shown that reasoning explicitly about the situation, and not the
algebra per se, plays a crucial role (Hall, Kibler, Wenger, & Truxaw, 1989). Here, our
major theoretical claim is that in order to comprehend a problem the student must make a
correspondence between the formal equations and the student’s own informal
understanding of the situation described in the problem. Our tutoring system facilitates this
correspondence by making this relationship explicit. In doing so, we believe students will
better comprehend the problem and ultimately improve their problem solving performance.
In this paper we describe a computer tutoring system, ANIMATE, which embodies
our theory and present results of students’ use of it when solving typical high school and
college level algebra word problems. Our theory suggests that development of an intelligent
tutor is not necessary, as long as the tutoring environment triggers the appropriate
reasoning from the student, allowing the student to generate, manipulate and understand
abstract, formal expressions. Students learn to construct a formal problem schema which
organizes both information given in a problem statement and information inferred by the
reader (Kintsch & Greeno, 1985). The information in the problem schema -- the values and
mathematical relations -- is in turn used by the tutor to drive a computer animation. The
student compares the activity shown on the computer screen to his or her own expectations
based on the situation described in the problem story. Errors in specifying the problem

schema lead to incorrect animations, the resolution of which is highly constrained by its
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relation to the situation. Students "debug" the problem schema until they are satisfied that
the appropriate animation appears on the screen. It is then a simple matter to derive the
appropriate equations from the schema which can then be solved. The system we have
developed is unintelligent in the sense that it knows nothing of the specific problems under
consideration and has no model of the students' knowledge base, though it knows about
algebra and the conceptual structure of algebra word problems. The experimental work to
be reported below shows that even such a minimal system can help students to better
understand and solve algebra word problems.

We begin this paper by illustrating the derivation of our model of problem
comprehension, drawing on earlier work in this area. After highlighting the essential
components of current theories, we discuss the distinctions we have drawn regarding
students' mental representations of a problem. This is followed by an elaboration of the
role that each of the model's components plays in the comprehension process. In
conjunction, recent discussions concerning computer-based instruction, the role of student
errors, and system feedback during student training, are presented. From this, and various
theories of instruction, a set of instructional principles are derived which guide the design
of the tutor ANIMATE. After illustrating how ANIMATE relies on our model of problem
comprehension, the functionality and features of the tutor are demonstrated by way of an
example problem solving session. We then present empirical results of students use of the
tutor in a laboratory setting. These preliminary results are encouraging. They are discussed
both in terms of problem solving performance and near and distant skill transfer. Finally,
we present our findings in the context of modelling human problem solving.

Problem Solving and Comprehension
A (complete) theory of problem solving must include the language comprehension

process, the resulting mental representations, the role of inferences and real world
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knowledge, and the necessary formal calculations for deriving a solution. While models of
problem solving behavior abound (e.g. Newell & Simon, 1972; Paige & Simon, 1966)
few studies address the process by which solvers comprehend problems; that is, how they
digest problem information and access the relevant real world knowledge so they may then
apply solution strategies to a coherent problem representation.

In this paper we outline such a theory, extending the work of Kintsch and Greeno
(1985), Reusser (1988), and Cummins et al. (1988). These studies have shown that
arithmetic word problem comprehension can be understood within the framework of the
general theory of discourse processing of van Dijk and Kintsch (1983). Thus, Kintsch and
Greeno theorize that when reading a problem statement, a propositional representation,
termed the textbase, is formed, as with any other text, to capture the meaning of the
passage. The reader also forms a (qualitative) situation model which is the basis for
understanding actions in a text (Reusser, 1988). Models for concrete situations and events
are often based on imagery, especially dynamically changing imagery as in an animation.
Problem solvers additionally must produce a representation of the problem structure which
includes the conceptual relations among quantities in the problem. This schema; or problem
model as it has been referred to from time to time, is the level at which students can apply
formal calculation methods such as algebra for generating verifiable solutions.

Kintsch and Greeno (1985) equate the problem model with the situation model,
while here we distinguish between a representation for events and one which is constructed
with formal relations in mind. In our view, understanding and solving word problems,
therefore, involves three mutually constraining levels of representation which must be
constructed by the student: a representation of the textual input itself -- the fextbase; a model
of the situation conveyed by the text in everyday terms -- the situation model; and the

formalization of that situation -- the problem model.
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Kintsch and Greeno (1985) simulated the reading behavior of first graders solving
arithmetic problems, using a production-rule model. Productions were used to construct a
representation of a story problem and to select among possible problem solving strategies.
The problems always consisted of several sets of objects (e.g. marbles) specified in a
certain way (e.g. Fred gave some to Joe). The simulation demonstrated that the problem
solving processes used by students could be reliably modelled by a computer program.
Later work by Cummins et al. (1988) showed that incorrect problem solving behavior
could be simulated by introducing faults into the program. Of the two classes of defects
introduced -- incorrect arithmetic algorithms and linguistic deficiencies -- language
processing errors modelled students' faulty behavior best. Cummins et al. (1988) also
showed that solution performance was associated with the ability to recall the problem
statements. Students who could correctly recall the stories were more likely to produce
correct solutions. Students who incorrectly recalled the problems apparently encoded a
different problem than the one presented, which they often then solved correctly. This
study suggests that word problem solving is highly dependent upon language
comprehension skills and prescribes that instruction must focus on linguistic as well as

mathematical aspects of word problem solving.

Algebra Word Problem Solving
Processing algebra word problems can be viewed as similar to processing
arithmetic problems. First, a propositional textbase is formed, just as with any other text.
This textbase is organized into a (qualitative) situation model and mapped into an algebraic
(quantitative) problem structure. A set of algebraic schemata -- templates for organizing
problem relevant information -- serve as cues for constructing these problem models. The
schemata which allow one to construct models for the word problems commonly found in

college algebra texts are described in the following section. We then show how equations
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can be derived from the relations specified in a problem model using a method of constraint

propagation. We first illustrate this process with a single, worked-out example.

lem 1; Distance-Rate-Ti lem
A plane leaves Denver and travels east at two hundred miles per hour. Three hours
later a second plane leaves on a parallel course and travels east at two hundred and fifty

miles per hour. How long will it take the second plane to overtake the first plane?

nerating a Propositional Representation
We show how a reader extracts the propositional representation from a problem.
This step is not performed by the tutor but by the reader attempting to encode the presented
information. We include it to give the entire workings of our model of problem
comprehension, accounting for the transitions from a text, to a set of mental representations
for the meaning of the text, to a final, mathematical description. When reading Problem 1, a

list of propositions can be derived (as in van Dijk & Kintsch, 1983):

Propl LEAVE[PLANE!, DETROIT, Timel]
Prop2 RATE([Propl, 200 mph]

Prop3 DIRECTION[Prop1, EAST]
Prop4 LATER[Propl, Prop5, 3 HOURS]
Prop5S LEAVE[PLANE2, DETROIT]
Prop6 DIRECTIONI[Prop5, EAST]

Prop7 LOCATION[Prop5, Prop8]

Prop8 PARALLEL[COURSE]

Prop9 RATE[Prop5, 250 mph]

Prop10 HOWLONG(Prop11]

Propl1 OVERTAKE[PLANE2, PLANEI1]
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The top-level macroproposition for this text would be "PLANE2 overtakes
PLANE]1," with information about how fast they are going, when they are starting, and so
on, subordinate to it. The corresponding situation model might involve a description of the
two planes speeding along a parallel course, capturing the moment when the second plane
just passes the first. All of this would be just as in understanding a story. We assume that
students have sufficient experience to allow them to understand the situation adequately.
This will be the case for many of the algebra problems we consider here, but not for all.
For some problems (e.g. those involving the notion of monetary "interest," which is quite
vague for many students) we shall have to teach the situational understanding first.

nerati lem

In solving an algebra word problem, a mathematical description must be composed
which is consistent with the situation model. In constructing this description we note from
our example that Prop2 specifies a relation between a distance and a time, thus eliciting a
distance-rate-time (DRT) schema labelled PLANEI1 (see Figure 1). This schema has slots
for distance (D), rate (R), and time (T): Prop2 is assigned to Slot R, while Propl and
Prop3 go into slots which help to further specify the problem. Prop9 initiates the
construction of a second DRT schema for PLANE2, fills the R slot with 250 mph, and
assigns Prop5 through Prop8 to the role of additional specifications. Prop4, because it
relates the two DRT schemata, is tagged as a supporting relation; one which holds "delay"
information. Supporting relations are special. They are not generally found alone, but are
used to relate two or more stand-alone schemata. Prop10, which the problem solver must
reason deals with the travel time of Plane2, is assigned to the T slot in PLANE2, indicating

that it must be filled with a variable or "unknown," while Propll acts as another

supporting relation. Thus, propositions in the text base aid in the construction or
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instantiation of a (situation-specific) problem schema, which in turn organize the
propositions into solvable algebraic formalisms.

We have chosen a simple graphical form to represent the problem schemal. Each
"Distance = Rate * Time" schema is shown as three ovals, corresponding to the distance
(D), rate (R), and time (T ) slots, respectively, in a vertical arrangement, connected by line
segments labelled by mathematical operators, such as "=" and "*". For clarity in analyzing
this example, the text propositions organized by these schemata are written next to the ovals
and/or lines to which they have been assigned (see Figure 1). Inside each oval quantitative
information derived from the text propositions is shown. Line segments are labelled in such

a way that the lines and ovals can be read as equations, either horizontally or vertically.

Insert Figure 1 about here

A traditional algebraic representation for the story problem given above along with

the corresponding propositions and inferences from which it is derived would be

Equations Propositions Inferences

Distl =200 x Timel 1,2,3 -

Dist2 = 250 x Time2 5, 6,9 --

Timel= Time2 + 3 1,4 "later” as "+ 3"
Distl = Dist2 5,6,7,11 "overtake" as "="
T2=? 10 -
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The distinction between understanding the situation in everyday terms, and
understanding the problem structure in terms of an algebraic schema is central to our
approach to tutoring: Students require the most support when constructing an algebraic
problem model. They are often familiar with the everyday situations which these problems
describe, and indeed, this familiarity can serve as a source of support for constructing the
formal model. We do not propose a stage theory, however, in which situational
understanding must precede the formation of the problem model. The kind of situation-
based understanding that is required for word problems must from the very beginning be
driven by the salient features of the problem text. The algebraic schema provides a
perspective that is useful in constructing a situation model. Thus the nascent formalism
actually helps the student to understand the situation in terms of the problem model and so
to better comprehend the problem statement (Nathan, 1988). Consequently, we find a
mutually supporting relationship, where situational understanding helps students to realize
the episodic meaning of a formal problem model and, reciprocally, sensitivity to the
problem model aids in the construction of a suitable situation model.

neratin ion

Ovals in Figure 1 which have not been given explicit values but are referenced as
being critical for solving the problem can be filled in with variables -- placemarkers
indicating their importance. Other empty ovals can be filled in by a process of constraint
propagation where subsequent ovals, when filled, must be consistent with the expressions
already specified. For instance, in Problem (1) we are asked for the travel time of the
second plane, t. We can use the supporting relation which states that the second plane
started 3 hours later (Prop4) to obtain "t+3" as the time for the first plane (slot T for the

first column). The two vertical DRT schemata can supply entries for their respective
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Distance (D) ovals. Applying the inferred equality relation (from Propl1) for the two
distances yields the equation 200*(t+3) = 250%*t.
Al ic Schem

Problem models and equations can be constructed in much the same way as in
Figure 1 for most algebra word problems found in college and high-school textbooks. With
a list of the required algebraic schemata, one can a priori construct all of the necessary
problem models. Mayer (1981) has compiled a list of 1097 story problems from standard
textbooks, which he classified into eight families. The first four families, comprising the
majority of these problems, are various kinds of rate problems, while the others are
Number problems (such as Age problems), Geometry (e.g. Area problems), Physics (e.g.
Ohm's Law), and Statistics. The general rate schema is of the form

UNIT1 = Rate-of-UNIT1-per-UNIT2 x UNIT 2.
The differences among the four rate families are differences in the nature of the

units:

UNIT1 UNIT2

RATE-FAMILY 1 amount time
RATE-FAMILY 2 cost unit
RATE-FAMILY 3 portion total cost
RATE-FAMILY 4 amount amount

Number problems, on the other hand, generally are not so clearly tied to a particular
schema; instead, relations tend to be specified in the text, except for certain abstract
properties of numbers (e.g. that even numbers are always 2 x N). For physics problems,
each physical law or formula corresponds to a schema in our analysis. Newton's Second

Law, that the sum of all forces for a system in equilibrium must be zero, is one example. In
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the Envisionment Machine, Roschelle (1986) graphically depicts a problem situation using
the given and resultant force vectors as the formal problem model in order to help students
to visualize a situation which is helpful for solving common kinematics problems. Similarly
for geometry problems and statistics problems there is generally a schema for each formula
and theorem.

In the Appendix, two representative problem types are shown for each family of
rate problems. The many subtypes within each category listed by Mayer (1981) differ from
the examples analyzed here in the nature of the supporting relations given and/or the
unknown value being asked for. These variations are represented similarly. The rate
schema in its various forms is, therefore, all we need for the construction of problem
models for thousands of word algebra problems. Instead of over 1,000 problem types, we
need to be concerned with only a limited set of building blocks for algebraic schemata. Our
goal will be to teach students the building blocks which produce the appropriate schemata,
and show them how to derive algebraic equations from these graphs.

The schematic formalism that we have developed is supposed to help students better
understand the conceptual structure of an algebra word problem, but it does not understand
it for the student. Students must still make the hard inferences, still apply their knowledge
of the situations described and still ultimately generate algebraic equations. The graphic
representation reduces student memory load by constraining the sort of information that is
to be considered, providing cues for what might be important, and making it apparent when
vital information is absent from the problem model. In the problem model of Figure 1 some
important inferences had to be made so that the verbally represented problem could be put
into a solvable form: Prop11 says only that one plane overtakes the other. In our situation
model we have one slower plane leaving initially and, after some delay, a faster plane

approaching the first plane from behind. One can infer from the situation that the distances
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travelled by the two planes must be equal at the point of "overtake" and this must be
represented mathematically. Prop10 states that we want to know how long it is before the
overtake occurs. It is not from the textbase but again from the situation model that a reader
realizes that this corresponds to the travel time of the delayed plane. Inferences of this type
are crucial for understanding a problem so that the appropriate information is gathered and
incorporated into a solvable problem model. We find that failure to include such situation-
directed inferences leads to problem solving errors on the part of students.

From this discussion it should be clear that one of the goals of our tutor will be to
help students organize and search for missing‘\information by making otherwise covert
structures overt in a graphical form. A second purpose will be to provide the student with a
way to check what has been done. An animation driven by the student's formal problem
representation makes apparent the situational implications of that structure. For example,
seeing the fast plane overtake the slower one and continue across the screen indefinitely
may suggest to the student that incorporation of additional constraints in the problem model
will bring about the intended animation: namely, that the two planes must not pass their
ultimate destination. The top horizontal arc of Figure 1 which equates the distances
travelled by the two planes represents such a constraint.

The most important benefit that we claim for our tutor is that it may help to avoid
the isolation of algebraic knowledge by forcing students to consider formal expressions

with reference to a particular situation.

Making Formalisms Situationally Meaningful
Word problem solving is both an exercise in text processing and mathematics
skills. Teachers, however, often focus their efforts on developing students' skills in

manipulation of formal mathematical expressions, rather than on strategies of problem
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comprehension (Mayer, 1985), though there is strong evidence (e.g. Cummins et al.,
1988) that the latter is what makes word problems so notoriously difficult.

It seems that students readily learn to manipulate the necessary formal relations.
They demonstrate early familiarity with "translation rules" which help map keywords found
in word problems into the language of algebraic expressions, e.g. "by" mapping to times;
“altogether” as plus (Nesher & Teubal, 1975). But students often do not learn the
principles which underlie the algebra; nor do they see the formulae as mathematical models
(i.e. descriptions) of the situations described (Greeno, 1989). Thus, students will assign a
meaning to the symbols of a formal expression, though it may not be consistent with the
situation described. When given situationally impossible problems, for example, some
students blindly translate passages into formal expressions and produce answers which,
while mathematically correct, are in reality absurd (Paige & Simon, 1966). Those who
form situational representations of the symbols and expressions realize either the
impossibility of the problem setting, or, upon calculation, the impossibility of the solution
(e.g. requiring a negative amount of money in one's pocket). Similar findings are available
from research on physics problem solving (Caramazza, McCloskey & Green, 1981;
Larkin, 1983), geometry (Schoenfeld, 1987), and programming (Pennington, 1987).
Wertheimer (1946) with his famous discussion about teaching students to find the area of a
parallelogram, was probably the first to draw attention to this disassociation between
formal expressions and the situation described.

Greeno (1989) explains many of these results as instances where abstract symbol-
space representations and transformations, and real world or situation-space representations
coexist as disconnected systems. Consequently, students learn to procedurally solve
symbolic expressions without learning how to properly reason about related “real world”

problems. When these representations exist as disconnected entities, it is possible for
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problem solvers to perform operations on symbolic expressions which are no longer
faithful to the situations to which the expressions are intended to refer. It is by establishing
a correspondence of the symbols to the situation that one roots the formalisms into the
space of permissible and expected events (Greeno, 1989). Unfortunately, institutional
instruction sometimes ignores this and fosters the acquisition of procedures which are not
anchored to real world situations.

The tutor which we describe below was designed to help students see how a formal
problem description, such as a set of equations, relates to a concrete situation. We cannot
always bring the real world into the classroom -- flying real planes and mixing real liquids,
but we do have the technology to provide reasonable animations of these events that can be
substituted for the real thing.

Figure 2 sketches this bridging function of our tutor. The lower portion of the
graph depicts how, according to our model, algebra word problems are solved without the
aid of the tutor. The text of the word problem is comprehended, and both a situational
representation and a formal algebraic problem model are constructed. General world
knowledge enters into the former process, and more specialized algebraic knowledge
determines the latter. The point in our model where decontextualization can occur is
indicated in the sketch by the broken line labelled "coordination." The tutor ANIMATE
does two things. First, it requires the student to construct an explicit, graphical
representation of the conceptual problem model, as implied by the theory, before deriving
an equation to actually solve the problem. We shall discuss below the benefits expected
from introducing this intermediate step. Second, by having an animation illustrate the
actions implied by the student’s problem representation, ANIMATE provides a link
between the formal domain of algebra and a situation in the “real world.” It is not only that

the student can use the animation to check whether the problem was conceptualized
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correctly or not (the "Is it right?" link). That is important. But equally important is to
establish the link between the concepts and structures in the formal model to the events in
the animated world. Changes to the conceptual network make something happen in the
animation; so the animation provides a context for the formalism and grounds it in a

depiction of reality.

Insert Figure 2 about here

There are other tutoring systems with similar goals, notably the Envisionment
Machine (Roschelle, 1986) and the TRIP tutor (Gould & Finzer, 1981). Envisionment, like

ANIMATE, supports multiple representations. One representation simulates (real)

situations, while the other provides a manipulable formal problem model (force diagrams,
in this case). A problem solver must coordinate these two representations and resolve
conflicts so that they are consistent. Furthermore, the resulting situation must be plausible
for the objects behaving in the world as we know it, and the symbolic expressions must be
legal and follow all known constraints.

The TRIP tutor (Gould & Finzer, 1981) was designed to help students formulate

the appropriate Distance-Rate-Time equation from a written problem statement. TRIP lets

students build computer animated descriptions of collision problems and then evaluate their
own equations based on the behavior of the animation. Unlike our tutor, TRIP has no
intermediate conceptual representation mediating between the verbal formulation of the
problem and the equations. Also, no attempts were made to base TRIP on an explicit theory
of problem comprehension. It is the teacher in TRIP who provides the criteria for
correctness of the constructed picture, while ANIMATE exploits the student’s ability to

assess this. ANIMATE also provides the student with greater flexibility in the construction




ALGEBRA WORD PROBLEM COMPREHENSION

18

of situation and problem models, whereas TRIP contains explicit knowledge of each
problem assigned -- the distances, rates, travel times. Students can only enter values which
are correct for that problem, and the animation will run only when the problem description
is correct. ANIMATE has no notion of a correct problem description, only an internally
consistent one. The student can arbitrarily vary a problem to have different values,
constraints and unknowns. Indeed, even partial and incorrect problems can be run. This
contributes to the exploratory nature of ANIMATE.

The work of Hall et al. (1989) has educational implications similar to our own.
Relying on extensive empirical analyses of how college students actually solve such
problems, the authors observe that "model based" reasoning plays a crucial role in word
algebra problem solving. They conclude that “integrating dual representations of a problem
at situational and quantitative levels is a central aspect of competence” (p. 269). To
represent the quantitative level of a problem Hall et al. (1989) use a graphical scheme based
on the work of Shalin and Bee (1985) and Greeno et al. (1986) which has many similarities
with the schematic representation proposed above. Their situational representation,
however, is not an animation but is based on a more abstract description of situational
relations. It is a "learning system" in the sense of Nesher (1989), intermediate to the formal
problem model and to the situation itself. In contrast, we use animations as a substitute for

a directly experienced situation.

A Strategy for Tutor Design: Discourse Comprehension Theory and Instructional Principles
Our tutor rests on a double foundation: a theory of how students understand and
solve word problems, and a set of instructional principles.
The Theory
ANIMATE is directly based on the theory of word problem understanding

originally proposed in Kintsch & Greeno (1985) and elaborated by Reusser (1988),
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Cummins et al. (1988), and Kintsch (1988). While previous work dealt with arithmetic
problems, the extension of this theory to algebra, which we have described above, is quite
straightforward. In place of the “set” schema and its variants, we introduce a larger set of
algebraic schemata, primarily the various rate schemata described above (see Appendix).
We need to replace the counting strategies employed in arithmetic problems with more
powerful calculational strategies, viz. the constraint propagation procedures for generating
equations from the problem model, and the algebraic procedures for solving these
equations.

Kintsch and Greeno's (1985) theory of arithmetic word problem solving has been
formalized as a computer simulation and tested empirically, so we have some assurance that
it captures the essential features of how first-grade students solve simple arithmetic word
problems. It does not at present seem possible to formalize and test empirically our model
for algebra word problem comprehension in the same way. In order to construct a
simulation for word algebra one would need a knowledge base that included an enormous
amount of general world knowledge, in addition to knowledge about algebra. It is not clear
at present how to construct such a large and general knowledge base, nor how to operate
with it if we had one (but see Lenat & Guha, 1989, for a presentation of a system with this
goal in mind). Hence a simulation is impractical at this time and we have no ready means to
derive and test empirical predictions from the model.

Instead, we can consider our tutor as a test of the theory following Anderson,
Boyle, & Yost (1985) in this respect. Obviously this is a risky strategy. If the tutor fails to
improve student problem solving performance and comprehension, we don't know if the
underlying theory was wrong, or if we made poor system design decisions that are
unrelated to the theory. Similarly, if subjects using the tutor demonstrate elevated

comprehension and solution performance, we have only an indirect test of the theory.
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In building a tutor, we need to address both the question of what to tutor and how
to go about it. The answer to the first question can be obtained by taking our model
seriously: We must make the relation between certain mental representations explicit so that
students understand that symbolic expressions have a situation-based interpretation. In
principle this model can be worked out to the same level of detail as was done for arithmetic
word problems, making explicit all the steps involved, as in the examples above. Many of
these steps, of course, people do not need help with -- we presume our students can read,
for instance. Taking our earlier discussion and the results of Cummins et al. (1988) as a
cue, we focus here upon the task of helping students to learn the translation from the
problem text into a formal, conceptual structure2.

The answer to our second question -- how to tutor -- cannot be derived solely from
the process model of how students solve word problems. A host of questions arise
concerning various aspects of tutoring and user interface principles that are outside the
domain of our process model. Recently much has been done to apply the laboratory
findings of cognitive psychology to the field of instruction. We borrow from this work to
help us determine the principles which will guide our computer-based tutor.

Instructional Principles

Anderson, Boyle, Farrell, and Reiser (1984) present several principles derived
from experimental research in cognitive psychology which they argue are central to
tutoring. There is a strong case and widespread agreement, for instance, on the importance
of minimizing students' working memory loads during problem solving (cf. Polson &
Richardson, 1988; Scardamalia et al., 1989). Also widely agreed upon is that making
students' goals and processes overt, instructing them in the context of the specific task, and
providing support for successive approximations toward a solution, all help the student in

task performance and skill acquisition (Glaser & Bassok, 1989).
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A more controversial principle states that feedback from a tutor needs to be
immediate if students are to optimally improve (e.g. Anderson et al., 1984; Reiser et al.,
1989). This is based on the view that "...an error comes close to being a necessary and
sufficient condition for tutorial intervention” (Anderson, 1989; p. 343) and on experimental
findings which have shown that when subjects get “lost” they must use tremendous
cognitive resources to get back to their original goals (Anderson, 1982). Such episodes, it
is argued, do little to help students learn and can confuse the memory traces of correctly
learned behavior. However, recent studies on computer-based feedback lessen the strength
of these claims. Schmalhofer, Kuehn, Messamer, and Charron (1989) have shown that a
“selective” tutor -- one which provides feedback only after two consecutive errors have
occurred -- had certain advantages in introductory LISP learning and problem solving over
an “immediate” tutor -- the type advocated by Anderson and others. Similarly, Lee (1989)
showed that delayed feedback can lead to better overall problem solving performance than
immediate feedback, especially on hard and novel problems. Immediate feedback in these
domains seems to foster "blind learning" where students can use trial-and-error to complete
a problem, but have no notion as to the reasoning process underlying a solution. Since the
reasoning remains hidden, it is difficult for the student to learn it.

The term "error" may have different meanings in these two bodies of research.
Anbderson (1982; 1989) is primarily concerned with skill acquisition and the compilation
of the steps of a task into a single, efficient procedure. It is through this that he hopes to
bring about error-free performance. In reasonably constrained domains, such as algebraic
manipulation and introductory programming and geometry, this seems to be a fruitful
approach. In open-ended domains, such as life sciences, however, one is more concerned
with developing critical thinking abilities and hypothesis generation and testing. In open

domains errors are valuable, often serving as learning opportunities. In such arenas, we
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may wish to reward students for trying out possibilities, even though many may initially
prove to be erroneous, since it may force students to restructure their knowledge and alter
their reasoning.

Instructional principles recently laid out by Scardamalia et al. (1989) focus on the
need for tutoring systems to encourage students' active participation in processes such as
planning, self-assessment and monitoring, problem relevant inferencing, goal-setting,
knowledge organization and problem solving. It is the student, not the tutor, that needs to
perform diagnosis, goal-setting, and planning, to obtain the maximum opportunity for
learning. Systems must provide the facilitating structures and tools which enable students
to use their intelligence and knowledge, rather than providing knowledge and intelligence to
simply guide learning. However, Scardamalia et al. (1989) note also that giving students
total autonomy can lead to poor results because the system cannot help the student (a) learn
to learn; (b) set cognitive goals; (c) facilitate problem comprehension; and (d) develop self-
monitoring and knowledge organization skills. This view seems to be supported by
experimental evidence with environments such as LOGO -- the prototypical learning-by-
exploration system (Papert, 1980): Work with elementary school-aged students using
LOGO has not upheld the expectations for improvements on reading and math tests (e.g.
Clements, 1986; Battista & Clements, 1986; though see Fischer, Boecker, & Eden, in
press, for a more thorough discussion). Thus, neither an all-knowing system that takes
control and initiative away from the student, nor unguided exploration which offers the
learner no support at all seem optimal for instruction.

Why Un-intelligent Tutoring May Work

We make two points here: that the time for intelligent tutoring systems has not yet

come for many instructionally significant domains; and that unintelligent tutors (systems

that do not try to understand the student’s actions or the problems) are sufficient to enhance
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students' learning, provided they are capable of supporting students in an active learning
process.

For a program to adaptively customize its behavior, the tutoring system must
understand what the student is doing. We need a psychological process model of the
behavior in question. This is often not available, or too sketchy to be of much use.
Intelligent tutoring without the necessary intelligence is a risky business. If the system
misclassifies a student's response or behaves inconsistently, it can easily confuse or
discourage the student (Holland, Holyoak, Nisbett, & Thagard, 1986). For most tasks,
including mathematics, there is no single, unique way to solve a problem. It is insufficient
to merely evaluate a student's answer; instead it is the method which leads to the correct
answer that intelligent tutors need to impart. A program that misclassifies minor errors (or
typos) as major conceptual errors, or lets an erroneous method go uncorrected because it
led to a correct answer, may do more harm than good. In the absence of a principled
method for task analyses, and of psychological process models which account for varied
learning styles and which allow students to perform subtasks in many different orders,
intelligent tutoring for many domains doesn't look very promising in the near future.
Intelligent tutoring is possible today in closed domains, such as geometric proofs
(Anderson, Boyle, & Yost, 1985), but not in open domains such as word problems which
require a huge store of general world knowledge.

Robust, flexible tutoring systems which are expected to exhibit intelligence may
best be regarded as a long term goal. Our goal is the more immediate development of a
computer system which aids students in problem understanding and learning. We propose
an approach which assigns to the computer program tasks that it is good at doing today.
Among these are executing simple, time-varying graphics, bookkeeping, and processing

formally described relations (e.g. equations). Tasks which lie outside of today's
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technology -- natural language processing, inductive reasoning -- are left for the student.
Other systems, such as EUCLID (Smolensky & Fox, 1987), a computer system for
specifying argumentation, and CSILE (Scardamalia et al., 1989), share this philosophy. In
our system the computer program serves as an informative worksheet for mathematics and
animation. The student reads a problem, constructs a formal problem model, and obtains
feedback from the animation as to its correctness. The intelligence is all the student's. The
system is there merely to help organize problem information around selected schemata and
allow the student to see the situational correlate of specified formal relations.

But quite apart from questions of feasibility, the idea of intelligent tutoring in many
cases represents intellectual overkill. The good tutor, human or machine, does not
spoonfeed and prechew, but makes it possible for students to do the work themselves and
learn from their mistakes (Scardamalia et al., 1989). A body of instructional theory has
evolved that emphasizes "procedural facilitation:" Learning must be done by the students
themselves, and the function of instruction is to facilitate that learning (Bereiter, &
Scardamalia, 1989; Brown, & Palincsar, 1989; Collins, Brown, & Newman, 1989). We
believe that a machine can support this, without actually having to understand in any deep
way either the problem or the student.

ANIMATE

ANIMATE is an interactive tutor that facilitates comprehension of word problems
by helping the student construct a formal problem network, which is then used to run a
simple animation of the problem. It is written in HyperCard™ and runs on Apple™
Macintosh computers. It requires a minimum of a Macintosh Plus™ with two drives.
Currently, ANIMATE only tutors problems in the AMOUNT-PER-TIME RATE family of
word problems (Mayer, 1981). These are problems which employ the "distance = rate x

time" equation and includes "overtake,” "collision" and "distance apart” problems.
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The tutor was designed so that students can use it with little or no instruction. All
available commands and network values are displayed on the screen as buttons. Students
choose commands and change values by selecting the appropriate button with a free rolling
mouse-cursor and pushing the mouse button. Consequently, this situation driven interface
reduces working memory load by only allowing legal commands. While students are
guided in the correct use of the system, ANIMATE gives them a great deal of control over
how to decompose each problem and the order in which to achieve subgoals. A student
may run an animation on partial and incorrect networks, or interrupt the network building
process to enter new animation parameters. He or she may also construct new problems or
make problem variants to explore algebra and develop more experience about mathematics.

An effective way to explore the functionality of the system is with an example of
how a student would use ANIMATE to solve a specific algebra problem. We assume that
the student has been given the instruction to produce the equations necessary to solve the
following:

Problem 2: Collisi lem
A huge ant is terrorizing San Francisco. It travels east toward

Detroit, which is twenty four hundred miles away, at four hundred miles

per hour. The Army learns of this one hour later and sends a helicopter

west from Detroit at six hundred miles per hour to intercept the ant. If the

ant left at 2 PM, what time will the helicopter and the ant collide (ignoring

any time changes).
The student decides on an initial goal of describing the movement of the ant. He or

she pushes the button "Pick Character 1" and is presented with pictures representing the

possible characters (Figure 3). After choosing the ant, buttons appear at the bottom of the

fead
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screen which allow the student to select a pointing hand for the ant's starting location and
travel direction. The student chooses the leftmost, east facing button and the ant appears in

the corresponding position on the screen.

Insert Figure 3 about here

To specify the motion of the ant, the student must build and customize a problem
model. Pushing the "Equations" button causes a palette of suggested network equations to
appear (see Figure 4). The equation palette provides the student with small schema building
blocks to organize problem information rather than requiring the student to work only at the
level of entire schemata (for justifications of this approach, see Schank, 1984; Kintsch,

1988). The student chooses

(oD
(=D
*
0 and the first D=R*T equation in the network appears. This equation may
be made the stopping condition for the animation, if the student chooses. The animation
will then stop when it is satisfied by the position and travel time of the ant. The selection of
a stopping condition encourages the student to link the problem model and the situation-
based goal since real events need a specified end to be properly described. The student then
selects the rate node (R1) of the network and, in accordance with the information of

Problem 2, uses the calculator to enter the number 400 (see Figure 5). o
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Insert Figures 4 and S about here

To check his progress, the student pushes the "Run" button which first checks the
problem schema for algebraic and network errors. The student could check for problem
model errors without also running an animation by selecting the "Check Net" button; but
running an animation always initiates a preliminary network check. The tutor finds no
errors and so begins the animation by moving the ant across the screen at a correlate of 400
miles per hour. The animation, along with the clock that shows the elapsed (animation)
time, the calibrated ruler at the top of the screen, and the distance gauges, all provide the
student with valuable situation-based feedback for gssessing the correctness of the problem
model. Because distance and time variables are u‘hspcciﬁed, the animation will continue
until the student pushes the "Stop" button. After determining that the initial goal of
describing the ant has been met, the student develops the remainder of the problem model.

To build the rest of the network the student chooses from the palette

[©
23
(12)

and an animation stopping condition of

Oata®

raend
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The final equation appears in the network with a box around it, indicating the
relation as the situation's stopping condition. The student enters the remaining values given
in the problem, putting 2400 in the D3 node to show the characters' initial distance apart,
and 600 as the helicopter's rate (R2). From the text the student knows the helicopter leaves
1 hour after the ant and so mistakenly believes that this delay (T3) should be subtracted
from the helicopter's time. The student knows also from the text that the ant leaves at 2 PM
and so erroneously enters 2 for T1. Since the helicopter leaves one hour later, 3 is entered
for the T2 node. He or she then pushes the "Check Net" button and the tutor finds no math
erTors or obvio/iis net errors, such as an incomplete equation.

The student then enters the distance values by multiplying the rates and times in the
network (400%2, 600*3). When "Check Net" is pushed now, the tutor warns that 800 +
1800 = 2400 is not correct, and highlights the flawed equation (Figure 6). This feedback
indicates that there must be an error in the network. If the distance values were changed so
that they correctly add to 2400 then the vertical D=R*T equations would be incorrect. The
student decides to ignore the error and, with no further errors found, pushes the "Run”

button.

Insert Figure 6 about here

The student immediately notices that the helicopter, not the ant, starts moving first
(Figure 7) which is contrary to any situation-based expectations. The mismatch suggests
that the delay for the characters is improperly specified in the network. The Time equation

in the bottom row is suspect. He or she stops the animation and picks the equation



ALGEBRA WORD PROBLEM COMPREHENSION

29

DaCa®

The equation now means situationally that the delay is attributed to the helicopter (i.e. the
ant travels for more total time). The Time equation in the network changes from 2=3-1 to
2=31+1, which is obviously wrong arithmetically. The student realizes now that he or she
has entered "starting times" for the characters whereas the network needs “travel times” to
produce an appropriate animation. Since these times are unknown, the student enters
variables in the associated distance and time bubbles of the network.

When the animation is run this time, the ant leaves an hour before the helicopter. As
the ant and helicopter near the point of collision (Figure 8) the student decides that the
animation matches his or her mental image of the word problem. The following verified

equations are taken from the net.

DI =400xTI
D2 =600xT2
D1 + D2 = 2400
TI=T2+1

Insert Figures 7 and 8 about here

The above example illustrates how a problem solution is reached through a series of

successive approximations. ANIMATE supports this by helping the student to generate and
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then diagnose a formal problem network. Normally the problem schema is an implicit,
intermediate, mental structure in a long line of such structures generated from the initial
stages of reading a problem to the eventual production of a solution. By making this
structure overt, and explicitly tying it to a situation, the student gains a more concrete
understanding of the conceptual relations of a problem.

ANIMATE knows nothing of the problem being solved and so cannot tell the
student if the network being built is correct. We rely upon the student's understanding of
the situation described in the problem statement to set his or her expectations for how the
animation should appear. In Figure 2, this is represented in our model by the "Is It Right?"
link from the student's situation model to the computer animation. This question is
addressed by the student; it is he or she who decides whether the animation matches the
problem representation, and so answers the question, "Is It Right?" A mismatch suggests
how the student may alter the problem model to create the expected animation. In this way,
the student also addresses the "What Went Wrong?" link. Thus, we can restate our goal in
designing the tutor as providing situation-based feedback so that students can detect and
correct their formal problem models -- that is, successfully address the "Is It Right?" and
"What Went Wrong?" links.

In order to encourage active participation by the student in the construction of the
network and evaluation of the animation, the tutor provides visual, auditory, problem
model level, and situation level feedback. Visual feedback is demonstrated not only by the
animation but through the "button" based interface. When a student selects a button or
network node, the button briefly highlights to indicate it has been selected. For example,
network nodes are highlighted as the subject enters new values. Auditory feedback includes
short musical pieces indicating when the animation has begun, is interrupted or is

completed. Problem model feedback is provided by an equation palette as a network
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building tool and the arithmetic and network level checks. The animation specified by the
network is the source of the tutor’s situation level feedback. It includes the characters
which move in specified directions, the clock, ruler and other gauges.

Preliminary System Evaluation

Is ANIMATE a good tutor -- better than traditional classroom instruction, perhaps
even approaching an experienced human tutor? Even more importantly, does ANIMATE
truly help the student to bridge the gap between real world situations and formal
operations? Is it a way to avoid decontextualized learning, as we had hoped for? We do not
have definitive answers to these questions. In particular, we do not have a large-scale,
long-term classroom evaluation of the effectiveness of ANIMATE, nor do we yet have a
system complete enough and sufficiently robust that it could be used for such an
evaluation. Nevertheless, the question of the empirical adequacy of the tutor is important
enough, so that even the preliminary results that we have so far obtained are of interest.

In a study by Nathan (1988) subjects were given limited training in the Network
approach to solving distance-rate-time problems. After only a 20-minute training session,
these subjects produced significantly more problem-related inferences in their recall
protocols than did subjects who used the traditional equation method or who simply read
the problem for comprehension. These subjects did not, however, show significantly better
problem solving performance. This suggests that the network method facilitates problem
organization in terms of the situation model but it does not support solution generation to a
greater degree than equations do. Another study investigated the psychological reality of the
problem schema level, similar to the network described above, as an intermediate
representation between the cover story and the underlying equations. Weaver & Kintsch
(1988) showed that subjects rated problem pairs significantly more similar when similarity

was based on structure of the schemata than when based on the form of the underlying
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equations. Given the wide-spread finding that subject are very poor at detecting structural
similarities among such problems (e.g. Reed, 1987), Weaver and Kintsch (1988) argue
this may be in part due to the way we define "structure.” Subjects are indeed sensitive to
the conceptual structure of a problem though not to its equation form. In the next section
we report empirical results from a study that explores two components of our model: the
problem model as a distinct level of representation and its effect on problem solving
performance; and the impact that animation will have on problem solving performance and
near and far transfer tasks when that animation serves to anchor the necessary mathematical
formalisms to a concrete situation model.
Role of the Animationin A TE

Like the two studies mentioned above (Nathan, 1988; Weaver & Kintsch, 1988),
the experiment which follows is limited because of the extremely brief training period, and
because problems of only one type (distance-rate-time problems) were used. The
experiment was designed to explore the overall effectiveness of the animation component of
the tutor in facilitating problem comprehension and giving meaning to the abstract symbols
used for formal problem solving. For that purpose, four training groups were compared: an
Equation group, which served as the control group, reviewed traditional procedures for
solving algebra word problems; an Animation group which was trained in the use of the
ANIMATE tutor; and two groups which used non-animation based tutors. The Stopping-
condition group used a tutor which was identical to the ANIMATE tutor in that it included
all the graphical problem representation machinery, character selection, and stopping
condition selection, but did not provide a way to run the animation; and the Network group
which was identical to Stopping-condition group except that it did not ask users to select a
stopping condition when equations were chosen from the palette. The three "tutor”

conditions -- Animation, Stopping-condition and Network groups -- were designed to tease
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apart any effects due to the different aspects of setting up and running an animation. The
four groups of subjects solved word problems in quite different ways, and hence they may
be expected to react differently to the various types of problems. We tested what our
subjects had leamned with a range of transfer problems, measuring near and distant transfer
and involving situational elements to a greater or lesser extent.

Method

Subjects. Fifty-six undergraduates from the University of Colorado participated ina
two hour experiment as part of their course requirements for Introduction to Psychology.

Design and materials. Subjects were randomly assigned to either the Equation,
Stopping-condition, Network or Animation treatment and run in groups of 14 students at a
time to mimic a classroom setting. All groups received identical pretests, analogous task
booklets which constituted the active part of their training sessions, and identical post-tests
which contained two near transfer tasks, one distant transfer task and one which may be
considered an intermediate transfer task. Those in the Network, Stopping-condition and
Animation groups additionally used tutoring programs which ran on Apple™ Macintosh
computers, distributed one to each subject.

The paper-and-pencil pretest consisted of four problems. The first two problems
were standard distance-rate-time problems. Students were told to write down a set of
equations that could be used to solve each problem. They did not need to do the algebra to
actually solve the problems. Problem 3 was a debugging problem: four potentially flawed
equations involving travel times and distances were given after the verbal statement of a
problem. Subjects were to find and correct any errors. The final problem consisted of a set
of time and distance equations. Subjects were asked to write a short story which could be a

legitimate word problem for the given equations.
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Four different problems of the same type and difficulty as given in the pretest were
used in the post-test to assess the transfer of skills presented during the training session.
Students were not permitted to use the tutors during this exam, although they were
encouraged to apply any new methods or principles that they thought were appropriate. The
standard equation generation problems are taken to be near transfer tasks. The debugging
problem may be regarded as intermediate as it contained a word problem statement and
equations in a familiar form, although the expressions were not suitable for the given
situation. Identifying and correcting formal expressions is likely a task that subjects
performed in producing a final solution, although they may not have had the task expressed
in exactly this way before. The story-writing problem is considered to be a distant transfer
task since it was not reviewed during training, and had probably not been encountered
before this experiment. The post-test consequently provides three levels of transfer upon
which we can evaluate each treatment's effect on performance.

Three problems arranged as a task booklet were used during training. The first task
was a standard multiple choice word problem with three possible solutions from which
students had to select the correct set of equations. For the second training task students had
to generate a complete set of equations which would lead to a numerical solution of the
given word problem. In the third task a "buggy" set of equations was given as the possible
solution to a word problem. Students were asked to find and correct any errors.

Training methods. Subjects all received a training session which reviewed the basic
principles of the Distance = Rate X Time equation, its physical and mathematical
interpretation, and how to apply it to several representative examples. Whereas subjects in
the Equation group used the strictly algebraic approach of deducing equations directly from
the problem texts, the three tutor groups learned to use the graphic-based network approach

presented earlier an intermediate step in the translation (see Figure 1). Equations were then
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derived from the network. The network approach was taught first by demonstration and
then by practice on the respective computer tutor (either ANIMATE, Stopping-condition or
the Network-only tutor).

Procedure. All groups were pre-tested on their knowledge of algebra. Subjects then
had either a brief review of traditional algebra (Equation group) or a 30-min. tutorial on the
network method. Subjects then solved 3 problems in a task booklet using the method
introduced in their training sessions. Those working with a computer tutor used either the
complete ANIMATE computer program, or slightly modified versions which provided the
Stopping-condition program -- which is identical in every respect to the ANIMATE tutor
except that it gives no situation-bascd feedback (i.e. no animation) -- or the Network-only
version. Finally, all subjects took an identical post-test administered without use of the
computer tutors. An independent experiment revealed that the pretest and the post-test were
of comparable difficulty, F(1,31) < 1.

Scoring. Stories had to be completely correct to receive credit, and, likewise,
multiple choice problems received either a score of 1 or 0. Partial credit was assigned for all
other problems involving the writing or correcting of formal expressions (equations or
networks). Analyses of student performances scored with no partial credit yielded similar
results to those scored with partial credit, so all subsequent results reported are for scores
with partial credit assigned for all but the story-writing and multiple choice problems.
Results and Conclusions

We first consider the results of the pretests and post-tests. Since these two tests
were in every respect identical for the four groups of subjects, it provides the fairest
measure for the overall effectiveness of the treatment. Table 1a shows the results of these
tests. All groups improved from pretest to post-test, FE(1,55) = 48.65, p<.0001. But
ANIMATE tutor users improved far more than the Equation group, E(1,55) = 13.6,
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p<.0005, which showed an 11.25% improvement. Furthermore, the Animation group
improved more than the non-animation tutors, by 52.75%, versus a 23.6% average for the
other tutor groups, F(1,55) = 8.8, p<.005. The non-animation tutor users did not improve
appreciably more than equation users, F(1,55)=1.64, n.s., nor did inclusion of the
stopping condition lead to greater improvements over the Network-only condition,
F(1,55)<1.0. These results are complicated by the fact that the Equation group had a
significantly higher pretest score than the three tutor groups, E(1,55) = 4.3, p<.05, which
did not differ from each other. Although this difference can only be attributed to random
effects in the selection of subjects, it does affect the interpretation of these results
somewhat. Nevertheless, even 30-min. of training with ANIMATE leads to more than four
times the improvement of standard procedures for solving problems in the word algebra
tests we gave -- the effect of ANIMATE is rather impressive.

One could easily suppose that after more than a thousand hours of practice with
standard algebraic methods, a brief session with this new approach might only serve to
confuse the students. Instead, the exposure to ANIMATE proved quite helpful on the post-
test where problems were solved without the help of the tutor. This is true in particular for
the near and distant transfer tasks. The distant transfer task entailed writing a story to
correspond to a given set of equations. ANIMATE helped subjects perform this novel task
quite successfully, leading to significantly greater improvement than the other three
conditions, F(1,55)=4.8, p<.05. Furthermore, the animation component of ANIMATE
really appeared to matter. The Network and Stopping-condition groups, which used the
same mathematical approach as the Animation group, but which were not exposed to
situation-based feedback, showed improvements in line with the equation group.

There were no measurable differences in problem solving performance attributable

to treatment for the intermediate transfer task. This was the debugging task which required
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that students correct a flawed set of equations intended to describe (i.e. solve) a given
story. Our hypothesis was that the Animation group would receive advantageous feedback
regarding the situational inappropriateness of the given equations. The link that they would
have formed between the animation and components of the formal problem model was
thought to constrain the search involved in error detection and correction. Although
improvement was greatest for all groups on the debugging problem, the ceiling on
performance was not nearly achieved. The overall correct performance on the post-test for
this problem was about 60%, with only 64.3% of the highest scoring groups (Network and
Animation) solving the it correctly (see Table 1b).

Two near transfer tasks were given in the post-test. These were both conventionally
structured problems where students read a story and then wrote down either the network or
the set of equations appropriate to the solution. Students practiced this both during the
training presentation and in their training booklets. Since no reliable differences were found
between the two problems, all subsequent analyses are based on their combined scores.
Students in the Animation group showed highly significant improvement on these
problems, greater than all other groups, F(1,55)=12.7, p<.001. The large effect is
attributable both to the difference between animation and non-animation students,
F(1,55)=15.45, p<.0005, and to the relatively small improvement (4%) by the Equation
group (see Table 2). Compared to this, both non-animation tutors exhibited significantly
greater improvement, F(1,55)=4.15, p<.05. Recall that the Equation group showed a
significantly higher pretest score than all other groups. This initial bias is in part due to their
high pretest performance on the same type of problem, which exceeded all other groups,
especially the Animation group, F(1,55)= 8.78, p<.05.

All analyses were redone taking into account whether or not students in the

Equation group used pictures to solve or set up the various problems. This factor did not
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reveal any new effects, a finding that is consistent with the earlier work by Mayer (1982).
As with Mayer's study, picture drawing received no feedback on correctness or
appropriateness. Nor was there a compelling reason, as with the animation-based tutor, to
make sure that the picture jived with the formal expressions. ANIMATE, in contrast,
provides the opportunity for students to "scaffold" from animated pictures to an appropriate
mental representation which has a tie to the formal equations.

We find that while improvements differed significantly, there are no reliable group
differences in students' post-test performance on the near transfer tasks. Thus, while all
tutors, and the ANIMATE tutor in particular, helped students to improve on conventional
equation generation tasks, they do not appear to bring students' level of performance above

that of the initially more-competent students in the Equation group.

Insert Tables 1a and 1b about here

For problems solved during training, the results are in agreement with the pre- and
post-test scores. Table 2 shows that overall the Animation group strongly outperformed all
of the other groups, F(1,55)=14.1, p<.0005. The Equation group and non-animation tutor
groups performed at a comparable level, with no significant differences apparent.
Animation students, more specifically, achieved much better problem solving performance
than either those using the modified tutors, F(1,55)=10.1, p<.0025, or those in the
Equation treatment, F(1,55)=13.7, p<.0005; this difference was not due to any one

group's inferior performance.
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Table 2 also shows the results for the three individual training tasks. The Animation
group was superior to the other groups in solving the multiple choice problem,
F(1,55)=12.3, p<.001, while those groups showed similar performance, F(1,55) < 1.0.
When subjects had to generate the appropriate equations themselves, the tutor groups all
surpassed the (Equation) control group, F(1,55)=11.72, p<.0001. While the Animation
group clearly outperformed the Equation group, F(1.55)=10.3, p<.0025, there were no
reliable differences among the tutors, although the difference between the non-animation
tutor users and the ANIMATE users approached significance.

The effect of animation on problem solving seems clearly positive up to this point.
Although debugging skills (found to be the most difficult task regardless of treatment,
F(1,55)=15.7, p<.0002) were not significantly better for Animation subjects, these data are
in line with the findings for all of the other tasks. All that may be lacking to reliably show

this difference is greater statistical power.

Insert Table 2 about here

For every task, subjects who worked with the complete ANIMATE tutor
outperformed those who did not have access to the animation. Even the debugging task,
while not showing demonstrable improvement for animation students above and beyond
the improvements gained by other students, shows performance which parallels the other
types of problems. As shown in Table 3, the Equation group had similar performance
improvements. These improvements, we speculate, are based on familiarity of the problem.
Students all saw the debugging problem three times, during training, pretest and post-test.
When solving this problem, students may draw upon general strategies of formula

recognition rather than true mathematical understanding. The 53.6% improvement by
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animation students as compared to a 35.7% improvement by the control group is still
noteworthy, however, and may indicate a deeper understanding of the problem. Animation
subjects, for example, were found to be more likely than Equation subjects to appropriately
correct a buggy equation if they detected it, F(1,55)=5.0, p<.05. Students outside of the
Animation condition fail to show a similar performance improvement on the Story problem,
for which there was no training practice (Table 3). For this task, it is less clear what general
strategies students may have access to, especially given the extreme novelty of the problem.
With regard to the Solve problem, the room for improvement demonstrated by Animation
subjects appears to have been used up in the high pretest performance shown by Equation
subjects.

Solving algebra word problems is not just a question of getting the formalism
right, it seems to depend on the student's understanding of how this formalism is rooted in
a real-world situation. What is encouraging about these results, above all, are the
indications that ANIMATE may indeed help overcome students’ tendency in traditional
mathematics instruction to learn decontextualized formal procedures, achieving the
conceptual understanding necessary to reason mathematically. The little amount of training
our subjects received with ANIMATE helped them excel in the problem solving tasks,
indicating that it is an effective aid in solving distance-rate-time word problems. The
improvement that Animation subjects exhibited on the transfer test, where they did not have
access to the tutoring system, was also remarkable. ANIMATE, while particularly useful
on the most common type of problem, proved highly effective in boosting performance on
the unusual and unfamiliar story-writing problem.

The experimental results seem to support the notion that by providing a weakly
structured environment which makes an explicit correspondence between the symbols of an

algebraic equation and a simple depiction of the situation described, students improve their
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ability to recognize and generate solutions to distance-rate-time problems. This advantage
appears to persist even after the training wheels are removed. Subjects exposed to the
animation-based treatment performed consistently better than those using non-animation
based tutors and those in the control group, on both near and distant transfer tasks.
Although many questions remain, we have obtained some understanding of how
students solve word problems with and without the tutors we provided. Additional
exploration is still needed to determine what facets of problem solving support help
students most. It is noteworthy that using ANIMATE achieved more for our subjects than
providing them with "just another trick” (i.e. the network) to solve word problems.
Furthermore, it was not enough to have students merely consider what a situation might
demand (as was done in the Stopping-condition group). Many Equation group subjects
drew pictures; their performance was still consistently below that of the Animation group.
The results are encouraging and from them greater development and testing of ANIMATE

in an educational setting seems in order.

T
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Footnotes

1. For related approaches, see Shalin and Bee (1985), Greeno, Brown, Foss,
Shalin, Bee, Lewis, and Vitolo (1986), as well as Hall et al. (1989).

2. Although students also need help in solving the algebraic equations, we shall
only be concerned with the construction of conceptually correct equations. Other tutors

(e.g. Brown, 1985; Singely et al., 1989) exist that focus on solving equations.
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Table 1a: Percent correct solutions (and raw scores) on
pre- and post-tests for the four treatments

Animation Stopping-condition ||Network Equation Total
Pretest 18.75 % 3525 % 24.25 % 41.5 % 30 %

(.75) (1.41) (.97) (1.66) (1.2)
Post-test 71.5 % 60.25 % 46.5 % 52.75 % 57.75 %

(2.86) (2.41) (1.86) (2.11) (2.31)
Improvement 5275 % 25 % 22.25 % 11.25 % 27.75 %
(Pretest - Post-Test) || (2.11) (1.0) (.89) (.45) (1.11)
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Table 1b: Percent improvement on pre- and post-test
for each problem, by treatment
Animation Stopping-condition |{Network Equation Total
Solve 63.4 % 24.1 % 357 % 4 % 319 %
(Near transfer)
Debug 53.6 % 14.3 % 46.4 % 35.7 % 37.5 %
(Medium transfer)
Story-writing 50 % 35.7 % 7 % -7 % 214 %
(Far transfer)
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Table 2: Percent correct solutions (and raw scores) on
training tasks for three training conditions.

Animation Stopping-condition | [Network Equation Total

Total Scores 85.7 % 58.3 % 60 % 50 % 63.3 %
(2.57) (1.75) (1.8) (1.5) (1.9)

Task 1: Mult. Choice} | 31 % 16.7 % 12 % 143 % 18.3 %
(.93) (.50) (.36) (.43) (.55)
Task 2: Set up 29.7 % 27.3 % 28 % 19 % 26 %
(.89) (.82) (.84) (.57) (.78)
Task 3: Debug 25 % 143 % 203 % 16.7 % 19 %
(.75) (.43) (.61) (.50) (.57)
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Table 3: Raw scores on Debug (intermediate transfer) and Story (Distant transfer) and Solve (near transfer)

problems on the training task booklets and pre- and post tests, for Animation and Equation groups.

Problem Pretest Training Post-Test
Equation Debug (intermed.) |} .21 S50 57
Group Story (distant) 29 N/A 21
Solve (near) .62 57 .66
Animation Debug (intermed.) |{.11 75 .64
Group Story (distant) 21 N/A 71
Solve (near) 21 .89 .85
Network Debug (intermed.) || .18 .61 .64
Group Story (distant) .07 N/A .14
Solve (near) .38 .84 71
Stopping-condition || Debug (intermed.) || .39 43 .54
Group Story (distant) 07 N/A 43
Solve (near) .48 .82 72

53
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Figure Captions

Figure 1. A conceptual problem model for Problem 1 using the Network Method. Nodes
serve as placeholders or slots for values and variables (e.g. t) while arcs are labelled with
operators. This network is additionally labelled with the propositions derived from the
textbase of Problem 1 to show how text comprehension supports problem model

generation.

Figure 2. A graphical depiction of our theory of problem comprehension. From the bottom
moving up, problem-relevant and situation-relevant information are both extracted from a
problem text and form independent and potentially isolated mental representations. True
problem comprehension is achieved when these representations cohere. By having students
explicitly link a problem model network to a situation model-like animation, we expect to
facilitate their coordination. Students manipulate the network to produce changes in the

animation until the animation matches their expectation of the problem situation.

Figure 3. Pushing the "Pick Character 1" button presents a selection of characters for
playing out the situation on the computer screen. Students select first a character and then a
screen location and direction. Here, a student has just selected the ant character for the

passage of Problem 2.

Figure 4. Problem model building is supported by a palette which presents network

components. Any chosen component may stipulate the mathematical conditions for which
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the animation should stop. Deciding this may be an important part of forming a sound

situation model.

Figure 5. Values and variables are entered into a selected node by way of a calculator

interface. Here, the rate of the ant given in Problem 2, 400 mph, is being entered.

Figure 6. A fully-developed problem model, including the ant, the helicopter and all the
associated values and relations. The Distance equation is boxed indicating its role as the
stopping condition for the animation. This equation is also highlighted in black to indicate

that the tutor has detected an algebraic error which the student may choose fix or to ignore.

Figure 7. The student elected to ignore the error message shown in Figure 6. After 19 sec
of running the animation only the helicopter has moved while the ant waits, behavior which
is specified by a negative delay value in the horizontal Time equation. This contradicts the

situation described in Problem 2.

Figure 8. After debugging the problem model network, and introducing variables for
unknown quantities, the animation is run and shows a situation in accordance with
expectations, Eventually, the ant and helicopter meet. Time and distance gauges show
solution values while the network contains the problem formalism. The final algebraic

equations can be read from the network horizontally and vertically.
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Appendix

Problem Models for Two Examples From Each of The First
r of Maver's (1981) Seven Algebra Wor lem Famili
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FAMILY I: AMOUNT-PER-TIME RATE

Current

The current in a stream moves at a speed of 4 km/h. A boat travels 4 km upstream
and 12 km downstream in a total time of 2 hours. What is the speed of the boat in
still water?

4/(s-4)+12/(s+4) = 2

Work

Mary can do a job in 5 hours and Jane can do the job in 4 hours. if they work
together, how long will they take to do the job if Jane starts 1 hour after Mary?

1= 1/5"t+1/4* (1)
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FAMILY ll: COST-PER-UNIT RATE

Fixed Cost

Sixteen balls of yarn can be bought from a mail order housefor 29¢ each plus
$2.72 for postage. What does the total order cost?

29*16+2.72 =¢C

Cost Postage Total

Dry Mixture

A grocer mixes peanuts worth $1.65 a pound and almonds worth $2.10 a
pound. She wants 30 pounds of the mixture worth $1.83 a pound. How many
pounds of each should the grocer include in the mixture?

Cost: $

Price: $/Ib

Amount: Ibs

Peanuts Almond Mixture

1.65p + 2.10(30-p) = 1.83*30
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FAMILY lil: PORTION-TO-TOTAL-COST RATE

Suppose $750 is invested at 5% annually. What amount will be in the account
at the end of 2 years?

R:%

Year 1 Year 2

An appliance store drops the price of a certain TV 18% to a sale price of $410.
What was the former price?

Part: $

R:%

discount sale price old price
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FAMILY IV: AMOUNT-TO-AMOUNT RATE

Inverse Variation :

The voluime of gas varies inversely with the pressure on it. The volume of gas
is 200 cc under a pressure of 32 kg/sqcm. What will be its volume under a
pressure of 40 kg/sqcm ?

Constant
32*200 = 40v
Pressure Q{z)
Volume 200
Wet Mixture :

A chemist has 3 liters of a 5% acid solution. How many liters of a 20% acid
solution must be added to make a mixture which is 10% acid?

Amount: Liters

R:%

U: Liters + =

A B Mixture

.05*3 + .20*a = .10*(3+a)




