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Abstract

We present a computational neural network model of recognition memory based on the biological structures of
the hippocampus and medial temporal lobe cortex (MTLC), which perform complementary learning functions. The
hippocampal component of the model contributes to recognition by recalling specific studied details. MTLC can not
support recall, but it is possible to extract a scalar familiarity signal from MTLC that tracks how well the test item
matches studied items. We present simulations that establish key qualitative differences in the operating characteris-
tics of the hippocampal recall and MTLC familiarity signals, and we identify several manipulations (e.g., target-lure
similarity, interference) that differentially affect the two signals. We also use the model to address the stochastic rela-
tionship between recall and familiarity (i.e., are they independent), and the effects of partial vs. complete hippocampal
lesions on recognition.
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Introduction

Memory can be subdivided according to functional
categories (e.g., declarative vs. procedural memory;
Squire, 1992; Cohen & Eichenbaum, 1993), and accord-
ing to neural structures (e.g., hippocampally-dependent
vs. non-hippocampally-dependent forms of memory).
Various attempts have been made to align these func-
tional and neural levels of analysis, e.g., Squire (1992)
and others have argued that declarative memory depends
on the medial temporal lobe, whereas procedural mem-
ory depends on other cortical and subcortical structures.
Recently, we and our colleagues have set forth a com-
putationally explicit theory of how hippocampus and
neocortex contribute to learning and memory (the Com-
plementary Learning Systems model; O’Reilly & Rudy,
2001; McClelland, McNaughton, & O’Reilly, 1995). In
this paper, we advance the Complementary Learning
Systems model by using it to provide a comprehensive
treatment of recognition memory performance.

Recognition memory refers to the process of iden-
tifying stimuli or situations as having been experienced
before, for example when you recognize a person you
know in a crowd of strangers. Recognition can be com-
pared with various forms of recall memory where spe-
cific content information is retrieved from memory and
produced as a response; recognition does not require re-
call of specific details (e.g., one can recognize a person
as being familiar without being able to recall who exactly
they are or where you know them from). Nevertheless,
recognition can certainly benefit from recall of specific
information — if you can recall that the person you rec-
ognized at the supermarket is in fact your veterinarian,
that reinforces your feeling that you actually do know
this person.

The fact that recognition memory can be subserved
by these two qualitatively different types of memory sig-
nals (non-specific familiarity and specific recall; Man-
dler, 1980; Jacoby, Yonelinas, & Jennings, 1997) makes
it a particularly rich and interesting domain for under-
standing the different contributions of underlying neural
systems — is it possible that different brain areas sub-
serve these qualitatively distinct functions? Recently,
Aggleton & Brown have suggested, based on a variety
of empirical findings, that the hippocampus is critically
important for recall, while surrounding medial temporal
lobe cortical areas (in particular, the perirhinal cortex)
can provide a non-specific familiarity signal (Aggleton &
Brown, 1999; Brown & Aggleton, 2001). Our model in-
corporates this general division of labor, but provides for
considerably more precise and subtle characterizations of
the differential contributions of these brain areas, based
on the functional characteristics of their respective bio-
logical substrates.
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Insofar as our model provides a computationally
explicit account of recognition memory, and is capa-
ble of simulating human performance on a variety of
recognition memory tests, it can be compared to other
mathematical memory models (e.g., Shiffrin & Steyvers,
1997; McClelland & Chappell, 1998; Hintzman, 1988;
Gillund & Shiffrin, 1984). The most salient difference
between our model and other mathematical models is
that other models are abstract — they describe the mem-
ory system in broad functional terms that do not re-
late specifically to underlying brain systems. Because
our model makes specific claims about the brain ba-
sis of recognition, the research presented here also ties
in to the broader cognitive neuroscience literature that
characterizes functional properties of the hippocampus
and cortical areas on the basis of data from anatomy,
physiology, the effects of lesions, and various neural
recording/imaging techniques (e.g., Squire & Zola, 1996;
Schacter, Wagner, & Buckner, 2000; Nyberg & Cabeza,
2000). Therefore, we view our model as providing a
critical bridge between mathematical modeling and cog-
nitive neuroscience approaches to recognition memory,
which have to this point been pursued in relative isolation
from each other. By making this bridge, we can take ad-
vantage of constraints from neuroscience to inform com-
putational models of recognition memory, and (recipro-
cally) we can use computational modeling to inform the
debate over how different brain structures contribute to
recognition.

The remainder of the paper is organized as follows.
In the next two sections, we will describe two ques-
tions that have proved challenging for math modeling
and cognitive neuroscience approaches to recognition,
respectively: In the math modeling literature, there has
been considerable controversy regarding how to charac-
terize the contribution of recall (vs. familiarity) to recog-
nition memory; in the cognitive neuroscience literature,
researchers have debated how the hippocampus (vs. me-
dial temporal lobe cortex) contributes to recognition. An
important goal of the paper is to show how our model
provides specific answers to these puzzles. Then in the
main body of the paper, we present the Complementary
Learning Systems (CLS) neural network model of recog-
nition memory; the CLS model consists of two compo-
nents: a hippocampal network, and a cortical network.
We show how the hippocampal network provides a recall
signal that discriminates between studied and nonstudied
items; likewise, we show how the cortical network pro-
vides a familiarity signal that also discriminates between
studied and nonstudied items.

We present simulations characterizing the basic prop-
erties of these signals, focusing on differences in how in-
formation is represented in the two networks, and how
these representational differences result in the two sig-



4 Modeling Hippocampal and Neocortical Contributions to Recognition

nals having different operating characteristics. We then
build on these basic simulation results by applying the
model to specific recognition memory paradigms; in this
context, we document key qualitative differences in how
lure relatedness and interference manipulations affect the
two signals. In our final set of simulations, we look at
how the two systems interact with one another; using a
combined cortico-hippocampal network, we explore how
different factors affect the statistical relationship between
recall and familiarity, and we explore how partial and
complete hippocampal and cortical lesions affect over-
all recognition performance. We conclude by discussing
the relationship between this work and other theoretical
perspectives.

Mathematical Models of Recognition Memory

The central feature of existing math models of recog-
nition memory is that they try to explain recognition per-
formance in terms of a unitary familiarity process that
indexes — in a holistic fashion — how well the test
probe matches all of the items stored in memory. Math
modelers have focused on explaining behavioral data
from list-learning experiments; within this domain, these
single-process models have been able to account for an
impressively wide range of findings (for reviews, see
Clark & Gronlund, 1996; Raaijmakers & Shiffrin, 1992;
Ratcliff & McKoon, 2000). This single-process approach
can be contrasted with the dual-process approach that
we and others have taken, which posits that subjects can
make recognition decisions based on a holistic familiar-
ity process or based on recall of specific studied details.

The potential for recall to make a distinct con-
tribution to recognition is most clearly illustrated by
paradigms where recall and familiarity are placed in op-
position (Jacoby, 1991) — i.e., where subjects can use
recall to reject lures that are familiar (either because they
were presented outside of the study list, or because they
resemble studied items). For example, Hintzman, Cur-
ran, and Oppy (1992) had participants study singular and
plural words; a given word was studied in its singular or
plural form (but never both). At test, participants had to
discriminate between studied words, switched-plurality
lures (e.g., study “RATS”, test “RAT”), and unrelated
lures (i.e., lures where the word was not studied in sin-
gular or plural form). Switched-plurality lures will be
familiar, but they can be rejected if subjects recall study-
ing that item in a different plurality (e.g., if they remem-
ber “I didn’t study RAT, I studied RATS”). Hintzman
et al. (1992) found that false recognition of switched-
plurality lures first increased, then (in some experiments)
decreased as a function of how many times the corre-
sponding studied item was presented; they argued that
repeating an item at study made the corresponding lure

more familiar (accounting for the initial increase in false
recognition), but also increased the odds that the corre-
sponding lure would trigger recall of the studied plurality
(accounting for the subsequent decrease in false recogni-
tion).

There has been extensive debate regarding whether
subjects actually utilize recall to reject similar lures in
this paradigm (e.g., Rotello, 2000). However, it is clear
that similar lures do sometimes trigger recall of the corre-
sponding studied item, and that subjects could (if they so
chose) use this recalled information to reject switched-
plurality lures. Also, it should be clear that recall can
be used as evidence that a test item was studied (when
recalled information matches the test probe).

The two main reasons why math models do not rou-
tinely incorporate a recall process are parsimony, and
lack of behavioral constraints. As mentioned above,
familiarity-only models can explain a wide range of
recognition findings — even findings, that at first glance,
appear to require a recall process; for example, McClel-
land and Chappell (1998) showed how a single-process
model can account for the Hintzman et al. (1992) data
described above. There are very few findings that un-
controversially necessitate a recall process, and many of
these findings come from specialized paradigms like Ja-
coby’s process dissociation procedure (Jacoby, 1991; see
Ratcliff, Van Zandt, & McKoon, 1995 for discussion
of how single-process models can account for process-
dissociation data). As such, it is always possible to treat
these findings as special cases that have little relevance
to performance on standard item-recognition tests. If it
is possible to account for the vast majority of the recogni-
tion dataspace using a single-process model, there would
be no point in positing a recall process. However, even
if a modeler wanted to build a dual-process model with
distinct recall and familiarity processes, they would run
into the second problem — lack of reliable behavioral
constraints.

To constrain a dual-process model using behavioral
data, one needs some way of measuring the separate
contributions of recall and familiarity. Over the last
decade, Jacoby, Yonelinas, and colleagues have devised
several techniques for quantitatively measuring the con-
tributions of recall and familiarity to recognition per-
formance (ROC analysis: Yonelinas, Dobbins, Szyman-
ski, & Dhaliwal, 1996; independence remember-know:
Jacoby et al., 1997; process dissociation: Jacoby, 1991;
Yonelinas & Jacoby, 1996; see also Yonelinas, in press).
All of these techniques rely on a core set of assumptions
about recall and familiarity: For example, they assume
that recall and familiarity are stochastically independent,
and that recall is a high-threshold process (meaning that
recall is all-or-none, and that it never occurs for lure



items). These assumptions are very controversial, es-
pecially the independence assumption (Curran & Hintz-
man, 1995). Testing the assumptions brings up a number
of chicken-and-egg problems. For example, one needs
to measure familiarity to assess its independence from
recall, but one needs to assume independence to mea-
sure familiarity. These chicken-and-egg problems have
led to arift between math modelers and other memory re-
searchers. On the empirical side, there is now a vast body
of data on recall and familiarity, gathered using these
assumption-laden measurement techniques — this data
could potentially be used to constrain dual-process mod-
els. However, on the theoretical side, modelers are not
making use of this data because of reasonable concerns
about the validity of the assumptions used to collect this
data. To resolve this impasse, we need some other source
of evidence that we can use to constrain dual-process
models. We show that if one pays attention to how the
brain implements recall and familiarity, this can provide
a critical source of constraints for dual-process models.

Cognitive Neuroscience Approaches to Recog-
nition Memory

Much of what we know about the brain basis of
recognition comes from the study of medial temporal
lobe amnesics — these patients typically have lesions
encompassing both the hippocampus and the medial tem-
poral lobe cortices (MTLC, including perirhinal, entorhi-
nal, and parahippocampal cortex) surrounding the hip-
pocampus.

Patients with medial temporal damage show im-
paired recall and recognition but intact performance on
other memory tests (e.g., perceptual priming, skill learn-
ing). One possible explanation for why recall and recog-
nition depend on the medial temporal region is that both
tasks require participants to form associations between
“core” item attributes (i.e., aspects of an item’s represen-
tation that vary minimally from context to context) and
contextually-varying attributes (e.g., the font that a word
is presented in; its position on the screen; elaborations
elicited by the encoding task) — recognition judgments
as studied in the laboratory do not just ask, did you ever
see this item; rather, they ask, did you see this item in
a particular context (presented in a particular manner,
at a particular time and location). The medial temporal
region is the only part of the brain that is set up to as-
sociate widely different types of information — it is lo-
cated on top of the cortical hierarchy and therefore is ide-
ally positioned to associate aspects of the current episode
that are being processed in domain-specific cortical mod-
ules (e.g., Mishkin, Suzuki, Gadian, & Vargha-Khadem,
1997; Mishkin, Vargha-Khadem, & Gadian, 1998) (Fig-
ure 1).
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Figure 1: Schematic box diagram of neocortex, MTLC, and
hippocampus. Medial temporal lobe cortex serves as the inter-
face between neocortex and the hippocampus. Medial tempo-
ral lobe cortex is located at the very top of the cortical pro-
cessing hierarchy — it receives highly processed outputs of
domain-specific cortical modules, integrates these outputs, and
passes them on to the hippocampus; it also receives output from
the hippocampus, and passes this activation back to domain-
specific cortical modules via feedback connections.

The finding of impaired recall and recognition in me-
dial temporal amnesics is the basis for several influen-
tial taxonomies of memory. Most prominently, Squire,
Cohen, and others have argued that the medial temporal
lobes implement a declarative memory system, which
supports recall and recognition, and that other brain
structures support procedural memory (e.g., perceptual
priming, motor skill learning; Squire, 1992, 1987; Co-
hen & Eichenbaum, 1993; Cohen, Poldrack, & Eichen-
baum, 1997; Eichenbaum, 2000). Recently, researchers
have sought to tease apart the contributions of differ-
ent medial temporal structures to declarative memory
by looking at more focal lesions, especially focal hip-
pocampal damage (sparing MTLC). If the hippocampus
is involved in both recognition and recall, then both re-
call and recognition deficits should be present after fo-
cal hippocampal damage. Consistent with this predic-
tion, these patients show severely impaired recall. The
surprising finding is that recognition is sometimes in-
tact after focal hippocampal damage in humans (Vargha-
Khadem, Gadian, Watkins, Connelly, Van Paesschen, &
Mishkin, 1997; Holdstock, Mayes, Roberts, Cezayirli,
Isaac, O’Reilly, & Norman, in press; Mayes, Holdstock,
Isaac, Hunkin, & Roberts, submitted; but see Reed &
Squire, 1997, Manns & Squire, 1999; Rempel-Clower,
Zola, & Amaral, 1996; Zola-Morgan, Squire, & Ama-
ral, 1986; Reed, Hamann, Stefanacci, & Squire, 1997,
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all of which found impaired recognition after focal hip-
pocampal lesions). The monkey literature parallels the
human literature — some studies have found relatively
intact recognition (indexed using the delayed nonmatch-
to-sample test) following focal hippocampal damage
(e.g., Murray & Mishkin, 1998) whereas others have
found impaired recognition (e.g., Zola, Squire, Teng, Se-
fanacci, Buffalo, & Clark, 2000; Beason-Held, Rosene,
Killiany, & Moss, 1999). Spared recognition follow-
ing hippocampal lesions depends critically on MTLC —
whereas recognition is sometimes spared by focal hip-
pocampal lesions, it is never spared after lesions that en-
compass both MTLC and the hippocampus (e.g., Aggle-
ton & Shaw, 1996).

This data can be summarized from the dual-process
perspective (e.g., Aggleton & Brown, 1999):

o The hippocampus supports recall.

o The MTLC can support some degree of (familiarity-
based) recognition on its own.

This framework captures, at a gross level, how hip-
pocampal damage affects memory, but it is too vague to
be useful in explaining variability across tests and pa-
tients in how hippocampal damage affects recognition.
According to this framework, recognition impairments
— when they occur — are due to the loss of the hip-
pocampal recall process. However, in the absence of fur-
ther specification of this hippocampal contribution (and
how it differs from the contribution of MTLC), it is not
possible to proactively determine whether this contribu-
tion will be missed on a given test.

To explain spared item recognition performance after
focal hippocampal damage (e.g., Vargha-Khadem et al.,
1997), Aggleton and Brown (1999) argue that the hip-
pocampus is required to form new associations, but cor-
tex can support memory for individual items or features
on its own. This implies that item memory should be
intact but associative memory should be impaired after
focal hippocampal damage. However, Andrew Mayes
and colleagues have found that hippocampally-lesioned
patient YR, who shows intact performance on some item
recognition tests (e.g., Mayes et al., submitted), shows
impaired performance on other item recognition tests
(e.g., Holdstock et al., in press), and spared performance
on some associative recognition tests (which require sub-
jects to associate unrelated stimuli, e.g., the words “win-
dow” and “reason”; Mayes, Isaac, Downes, Holdstock,
Hunkin, Montaldi, MacDonald, Cezayirli, & Roberts,
2001). Thus, it is becoming increasingly evident that the
effects of hippocampal damage are complex — it is un-
likely that simple dichotomies (like item vs. associative
memory) will be sufficient to describe the respective con-
tributions of hippocampus and MTLC to recognition.

Summary: Combining the Approaches

What should be clear at this point is that the
math modeling and cognitive neuroscience approaches
to recognition memory would greatly benefit from in-
creased crosstalk: Math modeling approaches need a
new source of constraints before they can fully explore
how recall contributes to recognition; and cognitive neu-
roscience approaches need a new, more mechanistically
sophisticated vocabulary for talking about the roles of
different brain structures in order to adequately charac-
terize differences in how MTLC vs. hippocampus con-
tribute to recognition.

The goal of our research is to achieve a synthesis of
these two approaches, by constructing a computational
model of recognition memory in which there is a trans-
parent mapping between different parts of the model
and different subregions of hippocampus and MTLC.
This mapping makes it possible to address neuroscien-
tific findings using the model. For example, to predict
the effects of a particular kind of hippocampal lesion, we
can “lesion” the corresponding region of the model. By
bringing a wide range of constraints — both purely be-
havioral and neuroscientific — to bear on a common set
of mechanisms, we hope to achieve a more detailed un-
derstanding of how recognition memory works.

The Complementary Learning Systems Model

Our overall view of cortical and hippocampal pro-
cessing builds on the Complementary Learning Systems
(CLS) framework (O’Reilly & Rudy, 2001; McClelland
et al., 1995). The central idea of this framework is that
there are two kinds of learning that people and other an-
imals need to do to successfully negotiate the environ-
ment:

¢ Memorize specific events.

o Extract the general structure of the environ-
ment (e.g., statistically regular patterns of co-
occurrence).

Furthermore, this framework posits that learning about
specifics and extracting generalities are computationally
incompatible tasks, so we have evolved specialized neu-
ral systems for performing these tasks (Figure 2; for
a contrasting perspective, see Carpenter & Grossberg,
1993).

If you want to remember specific events (e.g., where
you parked your car today), you need to block out inter-
ference from where you parked yesterday, and the day
before, and so on. The best way to minimize interfer-
ence is to assign separate representations to events, no
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Two Incompatible Goals
Remember Specifics Extract Generalities
Example: | Where is car parked? Best parking strategy?
Needto: | Avoid interference Accumulate experience
Solution:
1. | Separate reps Overlapping reps
(keep days separate) (integrate over days)

2. | Large learning rate
(encode immediately)

(parking
strategy)

Small learning rate
(integrate over days)

These are incompatible, need two different systems:

System: | Hippocampus

| Neocortex

Figure 2: Computational motivation for two complementary learning & memory systems in the brain: There are two incompatible
goals that such systems need to solve. One goal is to remember specific information, in this example where one’s car is parked
on a specific day. The other goal is to extract generalities across many experiences, for example in determining the best overall
parking strategy. The neural solutions to these goals are incompatible: Memorizing specifics requires separate representations that
are learned quickly, while extracting generalities requires overlapping representations (to represent commonalities across events)
and a small learning rate (such that no single event dominates the representation). Thus, it makes sense to have two separate neural

systems that are optimized for each of these goals.

matter how similar they are; using separate representa-
tions helps keep all of your different parking memories
from blending together. Also, to memorize specific (pos-
sibly transient) events, it is necessary to learn quickly by
using a large learning rate (because you only have one
chance to memorize the event before it goes away). In
contrast, if you want to determine the best overall park-
ing strategy, you need to accumulate experience — you
need to integrate across parking episodes to get a statis-
tical sense of which parking strategies are successful and
which are not. Here, the best solution is to assign over-
lapping representations to similar events — this overlap
allows you to represent what all of your successful park-
ing episodes have in common, and it allows the effects of
these multiple episodes to accumulate on a common set
of connection weights between neural units. Also, it is
necessary to learn using a small learning rate — each ex-
perience should slightly adjust the weights such that, in
the end, your parking strategy representation is roughly
an average of all of your parking experiences.

It should be clear from this discussion that learning
about specifics and learning about generalities are in-
compatible in neural networks — the two types of learn-
ing require different kinds of representations, and dif-
ferent learning rates. According to the CLS framework,
we avoid having to make a tradeoff between these differ-
ent functional demands by using two specialized leaming

systems:

o The hippocampus, which is specialized for rapidly
memorizing specific events.

o The neocortex, which is specialized for slowly
learning about statistical regularities in the environ-
ment.

The hippocampus assigns distinct (pattern sepa-
rated) representations to stimuli, thereby allowing it to
learn rapidly without suffering catastrophic interference.
In contrast, cortex assigns similar representations to sim-
ilar stimuli; use of overlapping representations allows
cortex to represent the shared structure of events, and
therefore makes it possible for cortex to generalize to
novel stimuli as a function of their similarity to previ-
ously encountered stimuli.

We have built hippocampal and neocortical networks
that incorporate key aspects of the biology of these struc-
tures, and instantiate the complementary learning sys-
tems principles outlined above. In the following two
sections, we describe the architecture of these networks,
and how we have applied the networks to recognition
memory. For a more detailed treatment of the neurobi-
ological and functional constraints incorporated into the
two networks, we refer the reader to our prior publica-
tions (O’Reilly & Rudy, 2001; McClelland et al., 1995;
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Input (lower-level neocortex)

Figure 3: Diagram of the cortical network. The cortical
network consists of two layers, an input layer (corresponding
to “lower” cortical regions that feed into MTLC) and a hid-
den layer (corresponding to MTLC). Units in the hidden layer
compete to encode (via Hebbian learning) regularities that are
present in the input layer.

O’Reilly & McClelland, 1994; O’Reilly & Munakata,
2000; O’Reilly, Norman, & McClelland, 1998).

Both the hippocampal and neocortical networks were
constructed using the Leabra model (O’Reilly & Mu-
nakata, 2000; O’Reilly, 1998, 1996), which brings to-
gether several widely-accepted characteristics of neural
computation. These include Hebbian LTP/LTD (long-
term potentiation/depression) and inhibitory competition
between neurons, which are emphasized in the present
model. Error-driven learning is part of the Leabra frame-
work, but it was not incorporated in the simulations re-
ported here. In the Leabra model, Hebbian LTP is im-
plemented by strengthening the connection (weight) be-
tween two units when both the sending and receiving
units are active together; Hebbian LTD is implemented
by weakening the connection between two units when
the receiving unit is active, but the sending unit is not
(heterosynaptic LTD). Inhibitory competition is imple-
mented in Leabra using a k-winners-take-all (kWTA) al-
gorithm, which sets the amount of inhibition for a given
layer such that ar most k units in that layer have sig-
nificant activation. The details of the Leabra algorithm
are discussed at length in O’Reilly and Munakata (2000),
and key aspects of the algorithm are summarized in Ap-
pendix A.

The Cortical Model

The cortical network is composed of two layers, in-
put (which represents the activation patterns of cortical
areas that feed into the MTLC), and hidden (correspond-
ing to MTLC) (Figure 3). The basic function of the

model is for the hidden layer to encode regularities that
are present in the input layer; this is achieved through the
Hebbian learning rule. To capture the idea that the input
layer represents many different cortical areas, it consists
of 24 10-unit slots, with 1 unit out of 10 active in each
slot. Thus, each slot represents a different cortical area,
roughly speaking. The hidden (MTLC) layer consists of
1920 units, with 10% activity (i.e., 192 of these units are
active on average for a given input). The input layer is
connected to the MTLC layer via a partial feedforward
projection where each MTLC unit receives connections
from 25% of the input units. When items are presented at
study, these connections are modified via Hebbian learn-
ing.

Input patterns were constructed from prototypes by
randomly selecting a new feature value (possibly iden-
tical to the old feature value) for a random subset of
slots. The number of slots that were flipped (i.e., given a
new value) when generating items from the prototype is
amodel parameter — increasing the number of slots that
are flipped decreases the average overlap between items.
When all 24 slots are flipped, the resulting item patterns
have 10% overlap with one another (i.e., exactly as ex-
pected by chance in a layer with a 10% activation level).
Thus, with input patterns one can make a distinction be-
tween prototypical features of those patterns, which have
a relatively high likelihood of being shared across in-
put patterns, and non-prototypical, item-specific features
of those patterns (generated by randomly flipping slots)
which are relatively less likely to be shared across input
patterns. Prototype features can be thought of as repre-
senting both high-frequency item features (e.g., if you
study pictures of people from Norway, most people have
blond hair) as well as contextual features that are shared
across multiple items in an experiment (e.g., the fact that
all of the pictures were viewed on a particular monitor
in a particular room on a particular day). Some simu-
lations involve more complex stimulus construction, as
described where applicable.

Familiarity as Sharpening

To apply the cortical model to recognition, we exploit
the fact that — as items are presented repeatedly — their
representations in the MTLC layer become sharper (Fig-
ure 4). That is, novel stimuli weakly activate a large num-
ber of MTLC units, whereas familiar (previously pre-
sented) stimuli strongly activate a relatively small num-
ber of units. Sharpening occurs because Hebbian learn-
ing specifically tunes some MTLC units to represent
the stimulus. When a stimulus is first presented, some
MTLC units, by chance, will respond more strongly to
the stimulus than other units; these units get tuned by
Hebbian learning to respond even more strongly to the
item then next time it is presented, and these strongly ac-



Figure 4: Illustration of the sharpening of hidden (MTLC)
layer activation patterns in a miniature version of our cortical
model. (a) shows the network prior to sharpening; MTLC ac-
tivations (more active = lighter color) are relatively undifferen-
tiated. (b) shows the network after Hebbian learning and in-
hibitory competition produce sharpening; a subset of the units
are strongly active, while the remainder are inhibited. In this
example, we would read out familiarity by measuring the aver-
age activity of the k = 5 most active units.

tive units start to inhibit units that are less strongly active.

This sharpening dynamic in our model is consistent
with neural data on the effects of repeated presentation of
stimuli in cortex. Electrophysiological studies show that
some neurons that initially respond to a stimulus exhibit
a lasting decrease in firing, while other neurons that ini-
tially respond to the stimulus do not exhibit decreased fir-
ing (e.g., Brown & Xiang, 1998; Li, Miller, & Desimone,
1993; Xiang & Brown, 1998; Miller, Li, & Desimone,
1991; Rolls, Baylis, Hasselmo, & Nalwa, 1989; Riches,
Wilson, & Brown, 1991). According to our model, this
latter population consists of neurons that were selected
(by Hebbian learning) to represent the stimulus, and
the former population consists of neurons that are being
forced out of the representation via inhibitory competi-
tion.

To index representational sharpness in our model —
and through this, stimulus familiarity — we measure the
average activity of the MTLC units that win the compe-
tition to represent the stimulus. That is, we take the av-
erage activation of the top & (192 or 10% of the MTLC)
units computed according to the kWTA inhibitory com-
petition function. This “activation of winners” (act-win)
measure increases monotonically as a function of how
many times a stimulus was presented at study. In con-
trast, the simpler alternative measure of using the aver-
age activity of all units in the layer is not guaranteed
to increase as a function of stimulus repetition — as a
stimulus becomes more familiar, the winning units be-
come more active, but losing units become less active
(due to inhibition from the winning units); the net effect
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Figure 5: Diagram of the hippocampal network. The hip-
pocampal network links input patterns in entorhinal cortex
(EC) to relatively non-overlapping (pattern-separated) sets of
units in region CA3; recurrent connections in CA3 bind to-
gether all of the units involved in representing a particular EC
pattern; the CA3 representation is linked back to EC via re-
gion CAl. Learning in the CA3 recurrent connections, and in
projections linking EC to CA3 and CA3 to CA1, makes it pos-
sible to recall entire stored EC patterns based on partial cues.
The dentate gyrus (DG) serves to facilitate pattern separation
in region CA3; see O’Reilly and McClelland (1994) for more
details.

is therefore a function of the exact balance between these
increases and decreases.

Although we will be using act_win in the simula-
tions reported below, we do not want to make a strong
claim that act_win is the way that familiarity is read out
from MTLC. It is the most convenient and analytically
tractable way to do this in our model, but there are other
ways of reading out familiarity that might be employed
by the brain (e.g., the time it takes for activation to spread
through the network). We discuss this issue later in the
general discussion section.

The Hippocampal Model

We have developed a “standard model” of the hip-
pocampus (O’Reilly et al., 1998; O’Reilly & Munakata,
2000; O’Reilly & Rudy, 2001; Rudy & O’Reilly, 2001)
that implements widely-accepted ideas of hippocampal
function (Hebb, 1949; Marr, 1971; McNaughton & Mor-
ris, 1987; Rolls, 1989; O’Reilly & McClelland, 1994;
McClelland et al., 1995; Hasselmo, 1995).
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In the brain, entorhinal cortex (EC) is the interface
between hippocampus and neocortex; superficial lay-
ers of entorhinal cortex send input to the hippocampus,
and deep layers of entorhinal cortex receive output from
the hippocampus (see Figure 1). Correspondingly, our
model subdivides EC into an EC.in layer that sends in-
put to the hippocampus and an EC_out layer that receives
output from the hippocampus. The basic function of the
hippocampal model is to store patterns of EC_in activ-
ity, in a manner that supports subsequent recall of these
patterns on EC_out.

In the hippocampal model, the input layer — which
is configured identically to the cortical-model input layer
— serves to impose a pattern of activation on EC_in via
fixed, 1-to-1 connections; from there, activity spreads
into the hippocampus. The three basic computational
structures in the hippocampus are:

o The feedforward pathway from the entorhinal cor-
tex input (EC_in) to area CA3 (via the dentate gyrus,
DG), which produces pattern-separated represen-
tations of new memories in CA3 that are stored
via Hebbian weight changes. These representa-
tions are conjunctive, in that they bind together dis-
parate stimulus elements into a unitary representa-
tion. Both the pattern separation and conjunctivity
effects arise from the use of sparse representations
(where relatively few units are active for a given
stimulus) in CA3 and especially DG (Marr, 1971;
O’Reilly & McClelland, 1994).

Recurrent connectivity within CA3, which binds to-
gether the units participating in a given represen-
tation. This is primarily important for recalling
previously stored memories via pattern completion,
whereby a partial input pattern reactivates the orig-
inal CA3 representation.

o Area CAl, which translates between the CA3 en-
coding and the EC input/output representation.
Thus, when pattern completion occurs in CA3, it
subsequently generates activation patterns over the
output (deep) layers of EC via CAl.

Figure 5 shows the structure of the model, and an ex-
ample activation pattern. Table 1 shows that the model
layers are roughly proportionately scaled based on the
anatomy of the rat, but the activation levels are generally
higher (less sparse) to obtain sufficient absolute numbers
of active units for reasonable distributed representations
given the small total number of units. These activity
levels are enforced by setting appropriate k parameters
in the Leabra kWTA inhibition function. Only Hebbian
learning is used because it is sufficient for simple infor-
mation storage.

Rat Model
Area Neurons  Activity (pct) Units  Activity (pct)
EC 200,000 7.0 240 10.0
DG 1,000,000 0.5 1600 1.0
CA3 160,000 25 480 40
CAl 250,000 25 640 10.0

Table 1: Rough estimates of the size of various hippocampal
areas and their expected activity levels in the rat, and corre-
sponding values in the model. Rat data from Squire et al., 1989;
Boss et al., 1987; Boss et al., 1985; Barnes et al., 1990.

In summary: The hippocampus supports recall via
learning that occurs at study in connections linking EC
to CA3 to CAl, and in the recurrent CA3 connections.
When a previously studied EC.in pattern (or a sub-
set thereof) is presented to the hippocampal model, the
model is capable of reactivating the entire CA3 pattern
corresponding to that item via strengthened weights in
the EC-to-CA3 pathway, and strengthened CA3 recur-
rents. Activation then spreads from the item’s CA3 rep-
resentation to the item’s CA1 representation via strength-
ened weights, and — from there — to the item’s EC_out
representation. In this manner, the hippocampus man-
ages to retrieve a complete version of the studied EC pat-
tern in response to a partial cue. In contrast, because
of pattern separation, even partially novel stimuli tend to
activate CA3 units that were not strongly linked to CA1
at study. As such, activity does not spread from CA3 to
CAl, and recall does not occur. Even if the EC_in ac-
tivity pattern corresponds to two components that were
studied, but not together (see the Associative Recogni-
tion section, below), the conjunctive nature of the CA3
representations will minimize the extent to which recall
occurs. Thus, there is a kind of “floor effect” on recall,
whereby the weights linking an item’s CA3 represen-
tation to CA1 have to be strengthened above a certain
threshold before any recall occurs; studied inputs cross
this threshold but nonstudied inputs rarely do.

The Hippocampal Recall Measure

To apply the hippocampal model to recognition, we
exploit the fact that studied items tend to trigger recall
(of the item itself), more so than lure items. Thus, a
high level of match between the test probe (presented on
the EC input layer) and recalled information (activated
over the EC output layer) constitutes evidence that an
item was studied. Also, we exploit the fact that lures
sometimes trigger recall of information that mismatches
the recall cue; for example, in the plurality-recognition
experiment described earlier, switched-plurality lures
sometimes trigger recall of the corresponding studied
item (e.g., the test cue “RAT” may cause a subject to
recall “I studied RATS, not RAT”). Thus, mismatch be-
tween recalled information and the test probe tends to



indicate that an item was not studied. .

For each test item, we generate a recall score using
the formula:

(match — mismatch)/(numslots) )

where match is the number of recalled features (on
EC_.out) that match the cue (on EC.in), and mismatch
is likewise the number that mismatch; numslots is a con-
stant that reflects the total number of feature slots in EC
(24, in these simulations).

One should appreciate that equation 1 is not the only
way to apply the hippocampal model to recognition. For
example, instead of looking at recall of the test cue itself,
we could attach contextual tags to items at study, leave
these tags out at test, and measure the extent to which
items elicit recall of contextual tags. Also this equation
does not incorporate the fact that recall of item-specific
features (i.e., features unique to particular items in the
item set) is more diagnostic of study status than recall
of prototypical features — if all items in the experiment
are fish, recall of prototypical fish features (e.g., “I stud-
ied fish”) in conjunction with a test item does not mean
that you studied this particular item. Furthermore, the
extent to which mismatch should be weighted in the de-
cision rule will vary according to the structure of the ex-
periment. For example, mismatching plurality recall is
more diagnostic in an experiment where either the sin-
gular or plural form of a word is studied (but not both)
than in an experiment where a given word might be stud-
ied in both singular and plural form. We selected the
match — mismatch rule because it is a simple way to
reduce the vector output of the hippocampal model to a
scalar that correlates with the study status of test items.
Assessing the optimality of this rule, relative to other
rules, and exploring ways in which different rules might
be implemented neurally, are topics for future research.

Simulation Methodology

Our initial simulations involve a side-by-side com-
parison of the cortical and hippocampal networks re-
ceiving the exact same input patterns. This method al-
lows us to analytically characterize differences in how
these networks respond to stimuli. A shortcoming of this
“side-by-side” approach is that we can not explore di-
rect interactions between the two systems. To remedy
this shortcoming, we will also present simulations us-
ing a combined model where the cortical and hippocam-
pal networks are connected in serial (such that the corti-
cal network that computes familiarity serves as the input
to the hippocampal network) — this arrangement accu-
rately reflects how cortex and hippocampus are arranged
in the brain.
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In our recognition simulations, the cortical and hip-
pocampal models were (separately) given a list of items
to learn, followed by a recognition test in which the
models had to discriminate between 10 studied target
items and 10 nonstudied lure items. No learning oc-
curred at test. Unless otherwise specified, all of our
recognition simulations used the same set of parameters
(hereafter referred to as the basic parameters; these pa-
rameters are described in detail in Appendix B). In our
basic-parameter simulations, we used a 20-item study
list, and the average amount of overlap between items
was 20% — 20% overlap was achieved by starting with
a 24-slot prototype pattern, and then generating items
by randomly selecting new feature values for 16 ran-
domly selected slots. To facilitate comparison between
the models, we used hippocampal and cortical param-
eters that yielded roughly matched performance across
the two models for both single-probe (yes-no, or YN)
and forced-choice (FC) recognition tests. We matched
performance in this way to alleviate concerns that dif-
ferential effects of manipulations on hippocampal recall
and MTLC familiarity are attributable simply to different
overall levels of performance in the two networks. How-
ever, this matching does not constitute a strong claim
that hippocampal and cortical performance are — in re-
ality — matched when overlap equals 20% and study list
length equals 20.

To simulate yes-no (YN; single-probe) recognition
performance, we computed hits and false alarms in the
two models by applying thresholds to the MTLC famil-
iarity and hippocampal recall measures, respectively. For
the cortical model, we set an unbiased threshold for each
simulated subject by computing the average familiarity
scores associated with studied and lure items (respec-
tively) and then placing the familiarity threshold exactly
between the studied and lure means. For the hippocam-
pal model, we took a different approach to threshold set-
ting; as discussed in the ROC Curves section below, it is
possible to set a high recall threshold that is sometimes
crossed by studied items, but never crossed by lures.
We assume that subjects are aware of this fact (i.e., that
high amounts of recall are especially diagnostic of hav-
ing studied an item) and set a recall threshold that is high
enough to avoid false recognition. Accordingly, in our
basic-parameter simulations, we used a fixed, relatively
high threshold (recall = .40); this value was chosen be-
cause — assuming other parameters are set to their “ba-
sic” values — it is sometimes exceeded by studied items,
but never by lures (unless lures are constructed to be sim-
ilar to specific studied items; see Simulation 4 for more
details).

We used d' (computed on individual subjects’ hit and
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false alarm rates) to index YN recognition sensitivity.'
In most of the simulations reported below, the qualitative
pattern of d' results is not contingent on threshold place-
ment (i.e., the results would be qualitatively the same
if we used an unbiased as opposed to a high threshold
for recall). In the few situations where recall threshold
placement does matter, we will note this fact and explain
how threshold placement impacts performance.

The goal of the simulation work presented here is to
establish key qualitative properties of the two networks,
using (whenever possible) a fixed set of underlying pa-
rameters. The model has not yet reached the point where
it can provide quantitative fits to recognition data, be-
cause — as discussed in the Variability and Scaling Ef-
JSects section of the paper — the number of units in our
models is very small relative to the actual number of
neurons in MTLC and the hippocampus, and there are
sources of variance present in our (relatively) small-scale
models we run that would not be present in a brain-sized
model. Furthermore, there are other sources of variance
(e.g., variability in how well different items are encoded)
that are not yet implemented in the model. Thus, our
models’ predictions regarding how manipulations affect
variance will not necessarily coincide with the predic-
tions of larger models that incorporate other sources of
variance like encoding variability, and variability due to
pre-experimental exposure to list items.

All of the simulation results reported in the text of
the paper are significant at p < .001. In graphs of simu-
lation results (starting with Figure 10 below), error bars
indicate the standard error of the mean, computed across
simulated subjects. When error bars are not visible, this
is because they are too small relative to the size of the
symbols on the graph (and thus are covered by the sym-
bols).

Finally, a point of rhetorical clarification. We use the
terms “recall” and “familiarity” to describe the respective
contributions of the hippocampus and MTLC to recogni-
tion memory, because these terms are heuristically use-
ful. The hippocampal contribution to recognition is “re-
call” insofar as it involves retrieval of specific studied
details. We use “familiarity” to describe the MTLC con-
tribution insofar as — like the other mathematical mod-
els discussed earlier — the MTLC signal is a scalar that
tracks the global match or similarity of the test probe to
studied items. However, the reader should keep in mind
that the contributions of MTLC and the hippocampus to
recognition (as set forth by the Complementary Learning

!'To avoid problems with d’ being undefined when hit or false alarm
rates equal 0 or 1, we adjusted hit and false alarm rates using the cor-
rection suggested by Snodgrass and Corwin (1988) prior to computing
d': P = (n+.5)/(N + 1), where n = the number of “old” responses,
N = the total number of items, and P = the corrected percent “old”
value.

Pattern Separation in MTLC and the Hippocampus
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Figure 6: Results of simulations exploring pattern separa-
tion in the hippocampal and cortical models. In these simu-
lations, we created pairs of items and manipulated the amount
of overlap between paired items. The graph plots the amount
of input-layer overlap for paired items versus: 1) CA3 overlap
in the hippocampal model, and 2) MTLC overlap in the corti-
cal model. In this graph, all points below the diagonal (dashed
line) indicate pattern separation (i.c., representational overlap
< input overlap). The hippocampal model showed a strong
tendency towards pattern separation (CA3 overlap < < input
overlap); the cortical model showed a smaller tendency towards
pattern separation (MTLC overlap was slightly less than input
overlap).

Systems model) do not map perfectly onto existing ideas
regarding how recall and familiarity contribute to recog-
nition. Indeed, we will systematically delineate how the
CLS model coincides with, and deviates from, existing
dual-process frameworks.

Part I: Basic Network Properties

Simulations in this section address basic properties
of the cortical and hippocampal networks, including
differences in their ability to assign distinct (“pattern-
separated”) representations to input patterns, and differ-
ences in their operating characteristics. We also discuss
sources of variability in the two networks.

Simulation 1: Pattern Separation and Blending

We begin the process of establishing the critical dif-
ferences between the MTLC familiarity signal and the



hippocampal recall signal by focusing on pattern sepa-
ration — the ability to assign relatively non-overlapping
representations to input patterns. As we will see, many of
the differences between hippocampally- and cortically-
driven recognition discussed later in the paper can be
traced back to differences in the two networks’ pattern
separation ability. We ran simulations exploring pat-
tern separation in the two networks; in these simula-
tions, we created pairs of items and manipulated the
amount of overlap between paired items. We had the
network “study” one item from each pair, and the other
item was presented at test. Figure 6 plots the amount of
input-layer overlap between paired study and test items,
against both hippocampal and cortical overlap for paired
items. Hippocampal overlap was measured as % over-
lap between paired items in CA3; cortical overlap was
measured in the hidden (MTLC) layer. Pattern separa-
tion is evident when representational (CA3 or MTLC)
overlap is less than the input overlap. As expected, there
is much greater pattern separation in the hippocampal
model compared to the cortical model; this is due primar-
ily to the greater levels of sparseness in the hippocampal
representations (see O’Reilly & McClelland, 1994 for a
thorough analysis). The cortical model exhibits a rel-
atively mild level of pattern separation; MTLC overlap
generally tracks the overlap between the input patterns.
These simulations also show that the hippocampus’ abil-
ity to assign distinct representations to stimuli is lim-
ited — as overlap between input patterns increases, hip-
pocampal overlap eventually increases above floor levels
(although it always lags behind input pattern overlap).

An important consequence of hippocampal pattern
separation is that recall of blends of multiple studied
items is rare. Generally speaking, features will be re-
called together only if they were studied together. The
only exception to this rule occurs when the average
amount of overlap between input patterns is high. In
this situation, pattern separation starts to break down,
and frequently-occurring prototype features sometimes
intrude into the recall vector (supplanting item-specific
features).

We ran a series of simulations using the hippocampal
model to explore the model’s robustness to blending. In
these simulations, we had the model study 20 input pat-
terns and re-presented these studied patterns at test; we
also manipulated the average amount of overlap between
input patterns (from 20% to 50%). In simulations with
20% input overlap, the rate of blending was extremely
low: on more than 98% of trials where the test cue trig-
gered recall, the recall vector was a partial version of a
specific studied item (as opposed to a blend of multiple
items). However, with higher levels of overlap, the rate
of blending increased. This increase is almost entirely
attributable to prototype features intruding into the re-
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Blending as a Function of Input Overlap
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Figure 7: Probability of prototype blending (i.e., intruding a
prototype feature into recall of some other pattern) and item-
specific blending (i.e., intruding a non-prototypical feature into
recall of some other pattern), as a function of the average level
of overlap between input patterns. Prototype blending increases
as overlap increases, but item-specific blending stays close to
floor.

call vector (Figure 7). The probability of item-specific
blending (i.e., recall of item-specific features that did not
occur together at study) remained very low, even with
high levels of overlap. The small amount of item-specific
blending that did occur is probably attributable to imper-
fect (pre-experimental) learning of the mapping between
CA1 and EC, rather than blending per se.

Simulation 2: ROC Curves

Another way to characterize how cortical and hip-
pocampal contributions to recognition differ is to graph
the operating characteristics of these signals using ROC
curves (Green & Swets, 1966). ROC curves plot hits vs.
false alarms while varying the recognition threshold; the
area under the ROC increases as a function of recognition
sensitivity. These curves have added importance because
the dual-process signal-detection framework of Yoneli-
nas & Jacoby (Yonelinas & Jacoby, 1996; Jacoby et al.,
1997) makes specific assumptions about the operating
characteristics of recall and familiarity in order to mea-
sure the respective contributions of these processes to be-
havioral recognition performance. Specifically, these as-
sumptions are:

o Familiarity is an equal-variance signal-detection
process: studied (signal) and lure (noise) familiarity
are both normally distributed; the two distributions
have equal variance and overlap extensively.

o Recall is a high-threshold process: recall is all-



14 Modeling Hippocampal and Neocortical Contributions to Recognition

or-none; studied items are sometimes called “old”
based on recall, but lure items are never called "old”
based on recall.

The assumption that studied and lure familiarity are
normally distributed implies that the ROC curve for fa-
miliarity (generated by sweeping a threshold across these
distributions) should be curvilinear. The normality as-
sumption also implies that it will be impossible to com-
plete eliminate familiarity false alarms without also elim-
inating familiarity hits; as such, the Y-intercept of the
ROC (i.e., the hit rate when false alarms = 0) should be
zero. Finally, the assumption that the studied and lure
familiarity distributions have equal variance implies that
the ROC should be symmetrical.

The assumption that recall is a high-threshold pro-
cess implies that the ROC curve for recall should have a
positive Y-intercept equal to the probability of recalling
a studied item (i.e., when subjects do not guess, the hit
rate equals the probability of recalling a studied item, and
the false alarm rate equals zero). High-threshold theory
posits that any recall false alarms are due to guessing on
test trials where “true recall” dues not occur; varying the
probability of guessing yields a linear ROC curve (see
Macmillan & Creelman, 1991 for more background on
ROC curves).

To generate ROC curves, we swept a threshold across
the act-win MTLC familiarity measure for the cortical
network, and across the match — mismatch recall mea-
sure for the hippocampal network, recording the asso-
ciated proportions of hits (for studied items) and false
alarms (for lure items). Four levels of average input over-
lap were used, ranging from .2 to .5, and lures were unre-
lated to studied items (i.e., lures and studied items were
randomly sampled from the same pool of patterns, such
that the average overlap between studied items and lures
was equal to the average overlap between different stud-
ied items). Results are plotted in Figure 8.

First, we consider the cortical ROC curves (Fig-
ure 8a). Regardless of overlap, the curves are smoothly
curvilinear with a zero Y-intercept, consistent with the
idea that MTLC familiarity is a classic signal detection
process. Also, the curves are approximately symmetri-
cal, which is consistent with Yonelinas’ assumption that
familiarity is an equal-variance signal-detection process.
However, we should not infer too much from this finding
of symmetry (and, by inference, equal variance), because
— as discussed in the Variability and Scaling Effects sec-
tion — there are sources of variance in this model that
are not present in brain-sized models, and there are also
sources of variance that are missing from this model.

Next, we consider the hippocampal ROC curves (Fig-
ure 8b). In the 20% (.2) input overlap condition, the hip-
pocampal ROC has a high Y-intercept (around .8), and
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Figure 8: (a) ROC curves generated by sweeping a thresh-
old across the act-win MTLC familiarity measure; (b) ROC
curves generated by sweeping a threshold across the match —
mismatch hippocampal recall measure. In both cases, input
overlap was manipulated from .2 to .5. The MTLC ROC curves
are curvilinear with Y-intercept = 0 regardless of input over-
lap; the hippocampal ROC is (mostly) linear with a positive Y-
intercept for low overlap values; for higher overlap values, the
hippocampal ROC is curvilinear, and the Y-intercept is closer
to zero.
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Figure 9: (a) histogram of the studied and lure hippocampal
recall distributions for low input overlap (.2); (b) histogram of
the studied and lure recall distributions for a higher input over-
lap value (.405).

the curve is generally linear but there is a small bend
close to the Y axis. Similar behavior occurs for the
.325 overlap case as well. Thus, for low-to-moderate
levels of input overlap, hippocampal ROC curves are
approximately consistent with the Yonelinas’ assump-
tion that recall is a high-threshold process. With higher
levels of overlap, the hippocampal ROC is curvilinear,
with a Y-intercept that is closer to zero. In other words,
the hippocampus transitions from this approximate high-
threshold behavior to signal-detection behavior (much
like the cortical model) as a function of input overlap.

To gain further insight into the two different modes
of hippocampal function, Figure 9 plots the underlying
distributions of recall scores for studied items and lures
(from which the ROC curves were constructed) for low
(.2) and high (.405) average input overlap.
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First, we will consider the low overlap condition
(Figure 9a). The approximate linearity of the ROC in
this condition occurs because the bulk of the lure recall
distribution is located at the zero recall point; sweeping
the threshold across the zero point causes a large spike
in false alarms, and the ROC consequently jumps from
a point very close to the Y axis (zero false alarms) to
a point further away from the Y axis. The absence of
strong lure recall in the 20% overlap condition is a conse-
quence of hippocampal pattern separation and the thresh-
olded nature of hippocampal recall, as discussed earlier
when the hippocampal model was introduced. The ROC
is not completely linear because the lure recall distribu-
tion is not completely located at the zero point; some
lures trigger above-zero (but still low) levels of recall.
The high Y-intercept of the ROC derives from the fact
that the maximum recall score triggered by lures is much
lower than the maximum recall score triggered by stud-
ied items; thus, it is possible to achieve a high hit rate
without making any false alarms. The maximum amount
of matching recall triggered by lures is limited by two
factors. First, the hippocampus will not recall nonstud-
ied features of lures because of the thresholded nature of
recall — generally speaking, the hippocampus will only
recall a feature if weights to that feature’s CA 1 represen-
tation (from CA3) were strengthened at study. The sec-
ond limiting factor is the property, mentioned earlier, that
blending is rare: Item-specific features of lures that did
not occur together at study will not be recalled together
at test.

The studied recall distribution is bimodal because of
nonlinear attractor dynamics in region CA3. If the recur-
rent weights linking active units in CA3 are sufficiently
strong, this generates positive feedback effects that am-
plify CA3 activity, thereby boosting recall. Most studied
items benefit from these positive feedback effects but, be-
cause of variability in initial weight values, some studied
items do not have weights strong enough to yield posi-
tive feedback effects. These items only weakly activate
CA3 and are poorly recalled, thereby accounting for the
extra “peak” at recall = 0.

Next, we consider the high overlap condition (Fig-
ure 9b). In this condition, both studied items and lures
trigger large amounts of recall, such that the studied and
lure recall distributions are roughly normal and overlap
extensively. High levels of lure recall occur in the high-
overlap condition because of pattern separation failure
in the hippocampus; as documented in Simulation 1 (Fig-
ure 6), the hippocampus loses its ability to assign dis-
tinct representations to input patterns when overlap be-
tween inputs is very high. In this situation, the same CA3
units — the units that are most sensitive to frequently-
occurring prototype features — are activated again and
again by studied patterns, and these units acquire very
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strong weights to the representations of prototype fea-
tures in CA1. When items are presented at test, they ac-
tivate these “core” CA3 units to some extent (regardless
of whether or not the test item was studied), and activa-
tion spreads very quickly to CA1, leading to possibly er-
roneous recall of prototype features. This phenomenon,
whereby increasing overlap increases erroneous recall of
prototype features, was documented in our exploration
of feature blending (Figure 7). When pattern separation
failure occurs, prototype recall (which is relatively non-
discriminative, because it is triggered by both studied
items and lures) swamps recall of more discriminative,
item-specific features, thereby boosting overlap between
the studied and lure distributions and lowering overall
discriminability.

In summary: The ROC results show that MTLC fa-
miliarity is a standard signal detection process, as as-
sumed by Yonelinas’ dual-process model. Hippocampal
recall has two modes of operation: When input patterns
have low-to-moderate average overlap, the hippocampus
exhibits approximate high-threshold behavior — stud-
ied items trigger recall (of item-specific and prototype
features) but lures trigger virtually no recall; in this
condition, our model’s ROC curves resemble the high-
threshold ROC curves predicted by Yonelinas in some
ways (a high Y-intercept) but not in others (the curves
are not strictly linear). In contrast, when input patterns
have high average overlap, recall functions as a standard
signal-detection process — both studied items and lures
trigger varying degrees of prototype recall, leading to
curvilinear ROCs with a zero Y-intercept.

Simulation 3: Variability and Scaling Effects

Recognition performance involves detecting the
presence of a variable memory signal against a back-
ground of noise. Many distinct forms of variability can
affect recognition performance; we need to carefully de-
lineate which of these sources of variability are present
in our models, because — as we will show later — dif-
ferent forms of variability have different implications for
recognition performance. We show here that the primary
source of variability in our models is sampling variabil-
ity: variation in how well, on average, neural units are
connected to (sampled by) other neural units in the net-
work.?

However, we also show that the magnitude of sam-

2Note that our use of the term “sampling variability” differs from
how other modelers have used this term. In our model, sampling
variability is a function of variability in the initial values assigned to
weights in the network. Other models use sampling variability to refer
to variability in which item features are presented to the model at study
and test (Atkinson & Estes, 1963), or variability in which memory trace
is retrieved at test (Gillund & Shiffrin, 1984).

pling variability is an inverse function of the size of the
networks, such that in a network scaled to the approx-
imate size of the human brain, this form of variability
would likely be negligible. Therefore, we conclude that
other forms of variability must be at play in the human
brain; we show how these other forms of variability can
be captured in our models and discuss the implications
of including other forms of variability.

Sampling Variability

Sampling variability arises in the cortical network
for several reasons. First, each unit in MTLC only
has connections to a randomly selected subset of input
units (25%); this partial connectivity helps MTLC form
specialized representations of the input space (i.e., they
come to represent some input features but not others).
It also has the consequence that, by chance, some in-
put features will be sampled better (i.e., they will have
more connections to MTLC) than other input features.
Furthermore, connections start with random weight val-
ues (sampled from a uniform distribution with a range of
.25 around a mean of .5), and this adds to the variabil-
ity in how well different input features are represented
in MTLC. Thus, input patterns that by chance happen to
be well-sampled tend to trigger higher familiarity scores
than input patterns that are poorly sampled.

Sampling variability also comes into play in several
places in the hippocampal network. For example, there is
variability in the (pre-learning) strength of weights link-
ing CA3 to CAL. If the weights between the CA3 repre-
sentation of an item and its CA1 representation happen
to be small prior to learning, this will hinder subsequent
recall (i.e., if they weights start small, they may be too
small even after learning to support recall). Also, there
is variability in the strength of the recurrent connections
between CA3 units. If the CA3 units activated by an
item happen, by chance, to be densely interconnected,
this will increase positive feedback between CA3 units
activated by the item at test, leading to increased overall
activation of CA3 units and better recall (and vice-versa
for less densely interconnected units).

We can perform some basic calculations to show that
sampling variability decreases with increasing network
size. Sampling variability in the cortical model is primar-
ily attributable to variability in how many times (across
all MTLC units) an input unit is sampled. The proba-
bility that an MTLC unit will sample a given input unit
(assuming 25% connectivity) is .25, so the total number
of times that an input unit is sampled, across all MTLC
units, is binomially distributed with parameters p = .25,
g =!p = .75, n = number of MTLC units. Therefore,
the variance of the proportion of MTLC units sampling
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Figure 10: Graph plotting how the size of the MTLC layer af-
fects the standard deviation (SD) of the familiarity signal trig-
gered by studied items and lures, as well as overall recognition
performance. As MTLC size increases, the SD of the studied
and lure familiarity distributions decreases, and overall recog-
nition performance increases.

a given input unit is:
var(S) = % ?)

From this equation, it is evident that variability in how
often (proportionally) an input unit is sampled will de-
crease as the number of hidden units n increases. In a
brain-sized network, with millions of units (instead of
the hundreds in our model), sampling variability will be
far too small to affect recognition performance.

We ran some simulations to illustrate this effect, in
which we manipulated MTLC (hidden layer) size and
recorded the standard deviation of the studied and lure
familiarity distributions; we also recorded overall recog-
nition sensitivity (d’). Figure 10 shows the results; in-
creasing MTLC size lowers the SD of the studied and
lure familiarity distributions; consequently, there is less
overlap between the studied and lure distributions, and
recognition sensitivity increases.

Increasing network size also reduces sampling vari-
ability in the hippocampus — here, the key is that in-
creasing network size increases the number of weights
that are involved in storing a particular pattern; increas-
ing the number of weights makes the average of these
weights less variable, thereby decreasing the odds that
— by chance — these weights will be too weak on av-
erage to support recall. Figure 11 shows the results of
simulations exploring the effect of CA3 size on recall of
studied items in the hippocampal model; as CA3 size in-
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Figure 11: Graph plotting how the size of CA3 affects re-
call performance in the hippocampal network. As CA3 size
increases, the amount of matching recall triggered by studied
items increases. The amount of matching recall triggered by
lures stays at floor.

creases, the mean amount of matching recall triggered
by studied items increases. Asymptotically, as CA3 gets
large enough, studied recall approaches ceiling, and con-
sequently variability in studied recall approaches floor.

In short, stimulus sampling variability, though domi-
nant in our small-scale simulations, should not be a ma-
jor factor in brain-sized networks. Therefore, we need
to look for other sources of variability in understanding
human performance.

Other Sources of Variability

A potentially important source of variability in recall
and familiarity scores is variability in how well stimuli
are encoded at study. This kind of encoding variability
can arise, for example, if subjects’ attention fluctuates
over the course of an experiment — some items will be
encoded more strongly than others, leading to higher re-
call and familiarity scores at test.

An important property of encoding variability, which
is not true of sampling variability, is that it affects stud-
ied items and similar nonstudied items (related lures)
in tandem; that is, encoding fluctuations that boost the
memory signal triggered by a studied item will also boost
the memory signal triggered by lures that are similar to
that studied item (e.g., if “cat” is encoded so as to be
especially familiar, the related lure “cats” will also be
highly familiar). In contrast, sampling variability oper-
ates independently on each input feature. Variability in
the sampling of shared features of studied items and re-
lated lures will always push the memory signal triggered
by studied items and similar lures in the same direction,
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but variability in the sampling of discriminative (non-
shared) features of studied items and related lures can
push studied and lure memory in different directions. In
small networks where sampling variability is the domi-
nant source of variance, unshared noise associated with
sampling of discriminative features of overlapping stim-
uli counteracts much of the shared variability in memory
scores triggered by these items. We will revisit this issue
later, when we present simulations using related lures.

Another source of variability in recall and famil-
iarity scores is variability in pre-experimental exposure
to stimuli: Some stimuli have been encountered exten-
sively prior to the experiment, in many different contexts;
other stimuli are relatively novel; for evidence that pre-
experimental presentation frequency affects recognition
memory, see Dennis and Humphreys (2001). Variability
in pre-experimental exposure (like encoding variability,
but unlike sampling variability), reliably affects studied
items and related lures in tandem.

Finally, in addition to variability in how much test
items overlap with pre-experimental memory traces,
there is also variability in how much items overlap with
other items presented in the experiment; this kind of
variability also affects studied items and related lures in
tandem. Overlap-related variability is already present
in the model, but its effect on performance is typically
dwarfed by sampling variability. Consequently, variabil-
ity in overlap should play a much larger role, proportion-
ally, in larger networks with minimal sampling variabil-
ity.

How Variability is Implemented in the Models

Given that sampling variability is not likely to be a
factor in human recognition memory performance, but it
is dominant in our small-scale models, one might con-
clude that we should eliminate this source of variabil-
ity and incorporate the more plausible sources just dis-
cussed. Unfortunately, this is not practical at present
— models that are large enough to eliminate sampling
variability cannot be feasibly run on available compu-
tational hardware. Furthermore, adding more variabil-
ity on top of sampling variability in our small networks
leads to poor performance, unless other steps are taken
to compensate for increased variability (e.g., increasing
the learning rate).

Nevertheless, it is relatively straightforward to incor-
porate other sources of variability, and we need to do
s0 to make some important points later. For example,
encoding variability can be implemented by randomly
scaling the learning rate by a multiplicative factor on
each study trial (simulating variations in attention), or
we can randomly delete features from patterns when they
are presented at study. To implement pre-experimental

variability in our model, we could pre-train experimental
stimuli (and vary the amount of pretraining that each item
receives) prior to the start of the actual “experiment”.

In summary, despite the limitations of our small net-
works, we can still use them to understand many impor-
tant phenomena that do not depend on the exact source of
variability; for those phenomena that do require specific
forms of variability, we can simulate these phenomena
by adding the appropriate form of variability on an “as
needed” basis. However, because of the limitations dis-
cussed in this section, we will refrain from making strong
predictions about variance in this paper.

Part II: Applications To Behavioral
Phenomena

The simulations in this part of the paper build on the
basic results described earlier, by applying the models
to a wide range of empirical recognition memory phe-
nomena (e.g., how does interference affect recognition
performance in the two models). Whenever possible, we
will present data that speak to the model’s predictions.

Simulation 4: Lure Relatedness and Test
Format Interactions

Here, we explore the implications of the pattern sepa-
ration differences between cortex and hippocampus (de-
scribed in Simulation 1) and the implications of incorpo-
rating different kinds of variability in the models, using
recognition simulations where we manipulate lure relat-
edness (i.e., the extent to which lure items resemble stud-
ied items).

As we saw in Figure 6, the hippocampus was bet-
ter able to separate out the representations of overlap-
ping inputs than the cortex; this finding implies that hip-
pocampus should outperform cortex on tests where sub-
jects have to discriminate between studied items and sim-
ilar (overlapping) lures. However, our simulations — de-
scribed below — also show that we can reduce this differ-
ence in performance by using a forced-choice (FC) test
format instead of the yes-no (YN) format typically used.
The FC format allows shared variability between stud-
ied items and closely related lures to be subtracted away,
thereby boosting cortex’s ability to discriminate between
studied items and similar lures.

YN Performance

First, we present the results of YN recognition sim-
ulations where we varied target-lure similarity. We used
our basic parameters, with 20% average overlap between
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Figure 12: YN recognition sensitivity (d') in the two mod-
els, as a function of target-lure similarity. Target-lure similarity
was operationalized as the proportion of input features shared
by targets and corresponding lures; note that the average level
of overlap between studied (target) items was held constant at
20%. These simulations show that the hippocampal model is
more robust to increasing target-lure similarity than the corti-
cal model; use of a recall-to-reject rule (where an item is called
new if it triggers any mismatching recall) further benefits hip-
pocampal performance when target-lure similarity is high.

studied items. For each studied (target) item, we created
a corresponding lure item by taking the studied item and
flipping a pre-specified number of slots; to vary target-
lure similarity, we varied the number of slots that we
flipped to generate lures (less flipping results in more
overlap). For comparison, we also ran simulations with
“unrelated” lures that were sampled from the same item
pool as studied items. We computed recognition d' val-
ues for the two models in the standard manner (i.e., based
on the match — mismatch hippocampal recall score,
and the act-win MTLC familiarity score). In addition,
we also explored the use of a “recall-to-reject” rule for
the hippocampus that places a much stronger weight on
mismatching recall. Whereas the match — mismatch
rule weights matching and mismatching recall equally,
the recall-to-reject rule posits that an item should be
rejected if it produces any mismatching recall (other-
wise, the recognition decision should be made based on
whether the item triggers an above-threshold amount of
matching recall). The recall-to-reject rule exploits the
fact that mismatching recall is highly diagnostic of an
item being new (nonstudied) in this simulation; related
lures sometimes trigger mismatching recall but studied
items virtually never do this. Figure 12 plots cortical d'
scores and hippocampal d’ scores (computed using both
the match —mismatch rule and the recall-to-reject rule)
as a function of target-lure similarity. Recognition per-
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Figure 13: Plot of the probability that lures and studied items
will trigger mismatching recall, as a function of target-lure sim-
ilarity. This probability is close to floor for studied items; the
probability that lures will trigger mismatching recall increases
with increasing target-lure similarity.

formance based on MTLC familiarity gets steadily worse
as lures become increasingly similar to studied items; by
contrast, the hippocampus is relatively robust to the lure
similarity manipulation — d' does not decrease appre-
ciably until target-lure similarity approaches 90%. Fig-
ure 12 also shows that hippocampal performance is better
for related lures when the “recall-to-reject” rule is used.

The cortical model results can be explained in terms
of the fact that the cortical model assigns similar repre-
sentations to similar stimuli — because the representa-
tions of similar lures (vs. dissimilar lures) overlap more
with the representations of studied items, similar lures
benefit more from learning that occurs at study. Thus,
lure familiarity smoothly tracks target-lure similarity;
increasing similarity monotonically lowers the target-
lure familiarity difference, leading to decreased discrim-
inability. In contrast, the hippocampal recall signal trig-
gered by lures is stuck at floor until target-lure similarity
> 60%, and lures do not start to trigger above-threshold
(i.e., > .40) recall until target-lure similarity > 80%. This
occurs because of hippocampal pattern separation and
the thresholded nature of hippocampal recall — lures
have to be very similar to studied items before they ac-
cess enough strengthened weights to trigger recall.

The hippocampus also benefits from the fact that it
can reject items based on mismatching recall. Figure 13
plots the probability that studied items and lures will
trigger mismatching recall, as a function of target-lure
similarity. This figure confirms the point, made ear-
lier, that studied items virtually never trigger mismatch-
ing recall, but lures sometimes do; also, it shows that
mismatching recall triggered by lures increases substan-
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tially with increasing target-lure similarity. This increase
in mismatching recall helps offset, to some degree, in-
creased matching recall triggered by related lures. Hip-
pocampal recognition performance is slightly better for
related lures with the recall-to-reject rule vs. the stan-
dard rule because recall-to-reject assigns a higher weight
to this (highly diagnostic) mismatch factor. With recall-
to-reject, the only way that lures can trigger an old re-
sponse in this case is if they trigger a large amount of
matching recall but no mismatching recall. The odds of
this happening are very low.

Importantly, the hippocampal model’s robustness to
the target-lure similarity manipulation (i.e., the fact
that d' does not decrease until target-lure similarity ap-
proaches 90%) depends in part on our use of a high recall
threshold. Because of the high threshold, false recog-
nition is at floor from 60%-80% similarity even though
the mean lure recall score is greater than zero in these
conditions. Lowering the recall threshold from .4 to 0
would have the effect of moving up the point at which
false recognition starts to occur (and d’ starts to decrease)
from around 90% similarity to around 60% similarity.

In summary: The model predicts that both hippocam-
pal recall and MTLC familiarity should be able to sup-
port good performance on YN recognition tests with
lures that are unrelated to studied items, but only the
hippocampal recall signal can support good performance
on YN recognition tests with related lures (i.e., lures
with considerable feature overlap with studied items).
This prediction is consistent with the view, expressed in
several empirical papers, that recall is especially impor-
tant for discriminating between studied items and very
similar distractors (e.g., Hintzman et al., 1992; Rotello,
Macmillan, & Van Tassel, 2000).

FC Performance

We now show that the use of a forced-choice (FC)
test format can improve the cortical network’s recogni-
tion performance with related lures. In an FC test, sub-
jects are simultaneously presented with a studied item
and a lure, and are asked to select the studied item. The
specific version of this test that boosts cortical perfor-
mance involves pairing studied items with corresponding
related lures (i.e., lures related to the paired studied item;
for example, study “RAT”, test “RAT” vs. “RATS”).

The central insight as to why this format improves
cortical performance with related lures is that, even
though related lures trigger strong feelings of familiar-
ity (because they overlap with the studied items), cor-
responding studied items will reliably be more familiar.
Because performance in an FC test is based on the dif-
ference in familiarity between paired items, even small
differences can drive good performance, as long as they
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Figure 14: FC accuracy in the MTLC model as a func-
tion of target-lure similarity, using corresponding and non-
corresponding FC testing. For high levels of target-lure sim-
ilarity, FC performance is slightly better with corresponding
lures vs. with non-corresponding lures.

are reliable.

Importantly, the reliability of the familiarity dif-
ference depends on where variability comes from in
the model. As discussed earlier, some kinds of vari-
ability (e.g., differences in encoding strength and pre-
experimental exposure) necessarily affect studied and re-
lated lure familiarity in tandem, whereas other kinds of
variability (e.g., sampling variability) do not. When the
former kind of variability predominates, the familiar-
ity values of studied items and corresponding lures are
highly correlated, and therefore their difference is reli-
able. When the sampling variability predominates, the
studied-lure familiarity difference is less reliable.

More formally, the beneficial effect of using an FC
test depends on covariance in the familiarity scores trig-
gered by studied items and corresponding related lures
(Hintzman, 1988, 2001). Specifically, FC recognition
performance is a function of the variability in the dif-
ference in familiarity between studied items and paired
lures:

Var(S—L) = Var(S)+Var(L)-2+xCov(S,L) (3)

where S represents familiarity of studied items and L
that of lures, Var is variance and Cov is covariance be-
tween S and L. Thus, the variance of the S — L fa-
miliarity difference is a function of the covariance — if
covariance is high, the difference in familiarity between
studied items and related lures will be highly reliable and
FC performance will be good.

The Cortical Model

To determine if the basic cortical model exhibits the
covariance necessary to have a FC advantage for related



lures, we ran simulations using a paradigm introduced by
Hintzman (1988). We compared FC performance with
corresponding related lures (i.e., study A, B; test A vs.
A’, B vs. B’, where A’ and B’ are lures related to A and B,
respectively) to FC performance with non-corresponding
lures (e.g., study A, B; test A vs. B’; B vs. A’). To
the extent that there is covariance between studied items
and corresponding lures, this will benefit performance
in the corresponding lure condition relative to the non-
corresponding lures. As shown in Figure 14, FC per-
formance is higher with corresponding related lures than
with non-corresponding lures — this replicates the em-
pirical results obtained by Hintzman (1988) and shows
that there is some covariance present in the basic cortical
model.

To quantify the level of covariance underlying these
results, we can compute the following ratio:

2xCov(S, L)

k= Var(S) + Var(L) @
When R = 1, covariance will completely offset studied
and lure variance, and the studied-lure familiarity differ-
ence will be completely reliable (i.e., variance = 0); R =
0 means that there is no covariance. Averaging across the
three highest target-lure similarity values (.96, .92, .88),
the covariance ratio R = .31 in the corresponding con-
dition and R = -.03 in the non-corresponding condition.
Thus, the model exhibits roughly one third the maximal
level of covariance possible.

Although the basic model can be said to qualita-
tively exhibit the FC advantage with corresponding re-
lated lures, this advantage is not quantitatively very large.
This is because the dominant source of variability in the
basic cortical model is sampling variability, which — as
discussed above — does not reliably affect studied items
and corresponding lures in tandem.

Simulations With Encoding Variability

Next, we wanted to explore a more realistic scenario
in which the contribution of sampling variability to over-
all variability is small, relative to other forms of variabil-
ity (like encoding variability) that affect studied items
and corresponding lures in tandem. Our earlier simula-
tions demonstrated that sampling variability is negligible
in brain-sized networks (Figure 10). When other forms
of variability — apart from sampling variability — pre-
dominate, the familiarity difference should be more reli-
able, and therefore cortex should benefit in a more robust
fashion from use of an FC-corresponding-lure test.

To test this idea, we set out to increase the influence
of encoding variability relative to sampling variability in
the model. We added encoding variability to the model
using the following simple manipulation: For each item
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at study, the learning rate was scaled by a random num-
ber from the 0-to-1 uniform distribution. However, this
manipulation by itself does not achieve the desired re-
sult; the influence of encoding variability is still too small
relative to sampling variability, and overall performance
levels with added encoding variability are unacceptably
low. To boost the relative impact of encoding variability
(and overall performance), we also increased the learn-
ing rate to three times its usual value, from .004 to .012.
Under this regime, random scaling of the learning rate
at study has a much larger effect on studied-item (and
related-lure) familiarity than random differences in how
well features are sampled. We should note that using
a large learning rate has some undesirable side-effects
(e.g., increased interference), but these side-effects are
orthogonal to the questions we are asking here.

Figure 15a shows the cortical results, together with
results from the hippocampal model that are discussed
next. The corresponding vs. non-corresponding differ-
ence for the cortical model is much larger in these simu-
lations than in the previous ones (Figure 14). Computing
the average covariance/variance ratio for the four highest
overlap conditions shows that R = .63 for correspond-
ing lures vs. R = -.06 for non-corresponding lures. This
is nearly double the covariance in the basic model (.63
vs. .31), and confirms our intuition that decreasing the
contribution of sampling variability relative to encoding
variability should increase covariance and boost perfor-
mance in the FC corresponding condition.

The Hippocampal Model

Figure 15a also shows how use of corresponding vs.
non-corresponding lures affects FC recognition in the
hippocampal model. Like the cortical-model simula-
tions, these hippocampal simulations incorporated en-
coding variability and they used a high learning rate (3X
the normal value). To maximize hippocampal recog-
nition performance, we used a recall-to-reject FC de-
cision rule — if one item triggered mismatching re-
call, but the other item did not, we selected the second
item; otherwise, we selected the item triggering a higher
match —mismatch recall score. We also ran YN recog-
nition simulations in both models using the same param-
eters (Figure 15b), so we could compare FC performance
to YN performance. The YN hippocampal simulations
also used a recall-to-reject rule.

The most interesting result is that FC correspond-
ing and non-corresponding performance are almost iden-
tical in the hippocampal model. It seems clear that
the same arguments about covariance benefiting FC-
corresponding performance should hold for hippocam-
pus as well as for cortex. Why then does the hippocam-
pus behave differently than the cortex in this situation?
This can be explained by looking at what happens on
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Figure 15: Cortical and hippocampal related-lure simulations
incorporating strong encoding variability. (a) Shows cortical
and hippocampal performance on FC-corresponding (C) and
FC-non-corresponding (N) tests. Cortex performs better with
corresponding vs. non-corresponding lures, but the hippocam-
pus (using recall-to-reject) performs equally well with corre-
sponding vs. non-corresponding lures. As a result, cortex is
more strongly impaired (relative to the hippocampus) on FC-
non-corresponding vs. FC-corresponding tests. (b) Shows cor-
tical and hippocampal performance on YN tests. As in the pre-
vious related-lure simulations (Figure 12), cortex was severely
impaired relative to the hippocampus on these tests.

trials where studied recall fails — on these trials, sub-
jects can still respond correctly if the lure triggers mis-
matching recall (and is rejected on this basis). The key
insight is that studied recall and lure misrecall are inde-
pendent when non-corresponding lures are used (in ef-
fect, subjects get two independent chances to make a
correct response), but they are highly correlated when
corresponding lures are used — if the studied item does
not trigger any recall, the corresponding lure probably
will not trigger any recall either. Thus, using correspond-
ing lures can actually hurt performance in the hippocam-
pal model by depriving subjects of an extra, independent
chance to respond correctly (via recall-to-reject) on tri-
als where studied recall fails. This harmful effect of
covariance cancels out the beneficial effects of covari-
ance described earlier. This analysis of the hippocam-
pal system is supported by the fact that when we use
the standard match — mismatch recall decision rule
(which places less weight on mismatch than the recall-to-
reject rule), the hippocampal model shows a substantial
corresponding-lure advantage, just like cortex.

Testing the Model’s Predictions

Figure 15 summarizes the key predictions that our
models make regarding performance on YN and FC tests
with related lures: The model predicts that cortex should
perform worse than the hippocampus on YN tests with
related lures, and on FC tests with non-corresponding re-
lated lures; but cortical performance should be relatively
spared on FC tests with corresponding related lures. On
FC tests with corresponding lures, the presence of co-
variance between studied items and related lures helps
cortical performance, but it can actually harm hippocam-
pal performance by depriving subjects of opportunities
to benefit from recall-to-reject. These factors, taken to-
gether, work to push cortical and hippocampal perfor-
mance closer together.

One way to test the model’s predictions is to look
at recognition in patients with focal, relatively complete
hippocampal damage. Presumably, these patients are
relying exclusively on MTLC familiarity when making
recognition judgments (in contrast to controls, who have
access to both hippocampal recall and MTLC familiar-
ity). As such, patients should perform poorly relative to
controls on tests where hippocampus outperforms cortex,
and they should perform relatively well on tests where
hippocampus and cortex are evenly matched. Applying
this logic to the above results, patients should be im-
paired on YN recognition tests with related lures (be-
cause these tests load heavily on recall) but they should
perform relatively well on FC-corresponding tests with
related lures, and on tests with unrelated lures (regard-
less of test format).




Figure 16: Sample stimuli from the Holdstock et al. (in press)
related lure experiment. Participants studied pictures of objects
(e.g., the horse shown in the upper left). At test, participants
had to discriminate studied pictures from three highly related
lures (e.g., the horses shown in the upper right, lower left, and
lower right).

To test this prediction, we collaborated with Andrew
Mayes and Juliet Holdstock to test patient YR, who suf-
fered focal hippocampal damage, sparing surrounding
MTLC regions (for details of the etiology and extent
of YR’s lesion, see Holdstock et al., in press). YR is
severely impaired at recalling specific details — thus,
YR has to rely almost exclusively on MTLC familiarity
when making recognition judgments. Holdstock et al.
(in press) developed YN and FC tests with highly related
lures that were closely matched for difficulty, and admin-
istered these tests to patient YR and her controls. Fig-
ure 16 shows sample stimuli from this experiment. Re-
sults from this experiment can compared to results from
15 other YN item recognition tests and 25 other FC item
recognition tests that used lures that were less strongly
related to studied items (Mayes et al., submitted); we
will refer to these tests as the YN-low-relatedness and
FC-low-relatedness tests, respectively.

Figure 17 shows that, exactly as we predicted, YR
was significantly impaired on a YN recognition test that
used highly related lures, but showed relatively spared
performance on an FC version of the same test (YR ac-
tually performed slightly better than the control mean on
this test). This pattern can not be explained in terms of
difficulty confounds (i.e., YR performing worse, relative
to controls, on the more difficult test) -— controls found
the YN test with highly related lures to be slightly eas-
ier than the FC test. Figure 17 also shows that YR was,
on average, unimpaired on YN-low-relatedness and FC-
low-relatedness tests. YR performed worse on the YN
test with highly related lures than on any of the 15 YN-
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Figure 17: Performance of YR relative to controls on matched
YN and FC-corresponding tests with highly related (Hi) lures;
the graph also plots YR’s average performance on 15 YN tests
and 25 FC tests with less strongly related (Low) lures. YR’s
scores are plotted in terms of number of standard deviations
above or below the control mean. For the YN and FC low-
relatedness tests, error bars indicate the maximum and mini-
mum z-scores achieved by YR (across the 15 YN tests and the
25 FC tests, respectively). YR was significantly impaired rel-
ative to controls on the YN test with highly related lures (i.e.,
her score was > 1.96 SDs below the control mean) but YR per-
formed slightly better than controls on the FC test with highly
related lures. YR was not significantly impaired, on average,
on the tests that used less strongly related lures.

low-relatedness tests; this difference can not be attributed
to the YN-low-relatedness tests being easier than the YN
test with highly related lures: YR showed unimpaired
performance on the 8 YN low-relatedness tests that con-
trols found to be more difficult than the YN test with
highly related lures; for these eight tests her mean z-score
was 0.04 (SD = 0.49; minimum = -0.54; maximum =
0.65; J. Holdstock, personal communication). We have
yet to test the model’s prediction regarding use of FC-
corresponding vs. FC-non-corresponding tests with re-
lated lures; based on the results shown in Figure 15, the
model predicts that YR will be more strongly impaired
on FC tests with non-corresponding (vs. corresponding)
related lures.

Simulation 5: Associative Recognition and
Sensitivity to Conjunctions

In this section, we explore the two networks’ sensi-
tivity to feature conjunctions. The hippocampus’ abil-
ity to rapidly encode and store feature conjunctions is
not in dispute — this is a central feature of practically
all theories of hippocampal functioning, including ours
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Associative Recognition in the Two Models
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Figure 18: Results of YN associative recognition simulations
in the cortical and hippocampal models. Using parameters that
yield matched performance for unrelated (novel) lures, cortex
is impaired relative to the hippocampus at associative recog-
nition; importantly, cortex performs well above chance on the
associative recognition tests.

(e.g., Rudy & Sutherland, 1995; Squire, 1992; Rolls,
1989; Teyler & Discenna, 1986). By contrast, many the-
orists have argued that neocortex is not capable of rapidly
forming new conjunctive representations (i.e., represen-
tations that support differential responding to conjunc-
tions vs. their constituent elements) on its own; see
O’Reilly and Rudy (2001) for a review. To measure
the two networks’ sensitivity to conjunctions, we used
an associative recognition paradigm, in which partici-
pants study pairs of stimuli (A-B, C-D); at test, subjects
have to discriminate between studied pairs and associa-
tive lures generated by recombining studied pairs (A-D,
B-C). To show above-chance associative recognition per-
formance, a network must be sensitive to whether fea-
tures occurred together at study — sensitivity to individ-
ual features does not help discriminate between studied
pairs and recombined lures.

In our associative recognition simulations, 20 item
pairs were presented at study — each “pair” consisted
of a 12-slot pattern concatenated with another 12-slot
pattern; at test, studied pairs were presented, along with
three types of lures: associative (re-paired) lures, feature
lures (generated by pairing a studied item with a non-
studied item), and nove! lures (generated by pairing two
nonstudied items). The first set of associative recognition
simulations used YN testing.

Figure 18 shows the results. It is clear that the hip-
pocampus is unaffected by any of the lure manipulations

— its natural tendency to develop conjunctive represen-
tations of inputs means that it is not fooled by associative
(re-paired) lures. In this simulation, associative lures did
not trigger any recall. This is a consequence of the fact
that we cued memory in this simulation with both pair
items simultaneously; the presence of novel conjunctions
in the test cue leads to pattern separation. As discussed
below, an alternate approach to associative recognition is
to cue with one pair item at a time; this approach (us-
ing partial cues) tends to trigger pattern completion as
opposed to pattern separation (O’Reilly & McClelland,
1994).

There are two important conclusions to be gleaned
from the cortical model results: First, the cortical model
performs worse than the hippocampal model on the as-
sociative recognition test, indicating that MTLC famil-
iarity is relatively less sensitive to conjunctions than hip-
pocampal recall. However, cortical performance on the
associative recognition test is well above chance — this
indicates that cortex is sensitive (to some degree) to fea-
ture co-occurrence in addition to individual feature oc-
currence.

The ability of the cortical model to encode stimulus
conjunctions can be explained in terms of the fact that
cortex, like the hippocampus, uses sparse representations
(as enforced by the k-winners-take-all algorithm). The
kWTA algorithm forces units to compete to represent in-
put patterns, and units that are sensitive to multiple fea-
tures of a given input pattern (i.e., feature conjunctions)
are more likely to win the competition than units that are
only sensitive to single input features. Representations
are more conjunctive in the hippocampus than in cor-
tex because representations are more sparse (i.¢., there is
stronger inhibitory competition) in the hippocampus than
in the cortex. Importantly, this explanation is in keep-
ing with the idea that practically all differences between
cortex and the hippocampus can be placed on a contin-
uum — i.e., it is wrong to say that hippocampus is sensi-
tive to conjunctions and cortex is not, or that hippocam-
pus uses non-overlapping representations but cortex uses
overlapping representations; in each of these cases, the
difference is better described as a matter of degree (i.e.,
hippocampus is more sensitive to conjunctions, and hip-
pocampal representations overlap less than cortical rep-
resentations).

Effects of Test Format

Although the model predicts that the hippocampus
will outperform cortex on YN associative recognition
tests, the model also predicts that the hippocampus will
show less of an advantage on FC associative recognition
tests where subjects have to choose between a studied
item and an overlapping re-paired lure (i.e., study A-B,




C-D; test A-B vs. A-D). Typically these overlapping-lure
tests are structured in a way that emphasizes the shared
item: Subjects are asked, “which of these items was
paired with A: B or D?”. We argue that this format en-
courages subjects to adopt a cued recall strategy whereby
they cue with the shared item (A).

When subjects cue with individual items (as opposed
to item pairs), hippocampal associative recognition per-
formance depends critically on recall-to-reject; single
items from re-paired lures will frequently trigger recall,
but when this happens the lure can typically be rejected
based on mismatch (e.g., for the test pair A-D, subjects
might cue with A and then recall that A was studied
with B, not D). The hippocampal model performs rela-
tively poorly on FC tests with overlapping choices (as-
suming that subjects cue with the shared item) because
— in this situation — matching and mismatching recall
are completely redundant: If A triggers recall of the A-B
pair, subjects can respond correctly either by choosing
B (based on match) or by rejecting D (based on mis-
match); if A fails to trigger recall, subjects will not be
able to respond correctly based on match or mismatch.
In both cases, rejecting items based on mismatch con-
fers no extra benefit above what you would get from
accepting items based on match. In contrast, subjects
do benefit from paying attention to mismatch on FC as-
sociative recognition tests with non-overlapping choices
(i.e., study A-B, C-D, E-F; test A-B vs. C-F) because the
probability of the lure triggering recall-to-reject is inde-
pendent of the probability of the studied item triggering
matching recall. Subjects also benefit from paying atten-
tion to mismatch on YN tests (when they cue with single
items) insofar as this allows them to confidently reject
re-paired lures.

Our next simulation is a simple demonstration of
the fact that, in our model, FC tests with overlapping
lures (FC-OLAP tests) prevent subjects from benefiting
from recall-to-reject; it compares hippocampal associa-
tive recognition performance on FC-OLAP tests and FC
tests with non-overlapping lures (FC-NOLAP tests). On
both tests, we cued with the first pair item and mea-
sured how well recalled information matches the second
pair item; on FC-OLAP tests, we cued with the shared
pair item for both test alternatives; on FC-NOLAP tests
we cued with the first item of each test alternative. We
ran one version of the simulation where responses were
based purely on matching recall, and we ran another ver-
sion of the simulation where subjects used a recall-to-
reject rule.

We had to adjust some model parameters to get the
model to work well using partial cues; specifically, we
used a higher-than usual learning rate (.03 vs. .01) to help
foster pattern completion of information not in the cue,
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Figure 19: Associative recognition performance in the hip-
pocampal model, as a function of recall decision rule (match
only vs. recall-to-reject) and test format (FC-OLAP vs. FC-
NOLAP). FC-NOLAP performance benefits from use of recall-
to-reject, but FC-OLAP performance does not benefit at all.
When only matching recall is used, OLAP performance is bet-
ter than NOLAP performance, but when recall-to-reject is used,
NOLAP performance is better than OLAP performance.

and we increased the activation threshold for counting a
feature as recalled (from .90 to .95) to compensate for the
fact that the output of the model is messier with partial
cues.

Figure 19 shows the results of this simulation. FC-
NOLAP performance benefits strongly from use of
recall-to-reject (vs. the “match only” rule), but FC-
OLAP performance does not benefit at all. When only
matching recall is used, OLAP performance is better than
NOLAP performance; this reflects the beneficial effects
of covariance in recall scores triggered by the shared cue
(i.e., when you cue with the shared item, recalled infor-
mation always matches the studied item at least as much
as the lure, usually more). In contrast, when recall-to-
reject is used, NOLAP performance is better than OLAP
performance. Consistent with this prediction, Clark,
Hori, and Callan (1993) found better performance on an
FC-NOLAP associative recognition test than on an FC-
OLAP associative recognition test. They explained this
finding in a manner that is consistent with our account
— they argued that subjects were using recall of studied
pairs to reject lures, and that subjects have more unique
(independent) chances to recall useful information in the
NOLAP condition.

Tests of the Model’s Predictions

In summary, the model predicts that hippocampus
will outperform cortex on YN associative recognition
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Effect of Hippocampal Damage (Kroll et al., 1996)
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Figure 20: Results of Experiment 1 from Kroll et al. (1996),
which examined associative recognition in a patient with bilat-
eral hippocampal damage; d' scores for the patient and controls
were computed based on average hit and false alarm rates pub-
lished in Table 3 of that paper. The patient performed better
than adult controls at discriminating studied items from novel
lures but was worse than controls at discriminating studied
items from feature lures (where one part of the stimulus was old
and one part was new) and was much worse that controls when
lures were generated by re-combining studied stimuli. The pat-
tern reported here is qualitatively consistent with the model’s
predictions as shown in Figure 18.

tests for two reasons: First, when subjects cue with both
parts of a re-paired lure, this typically does not result
in any recall because of hippocampal pattern separa-
tion; second, when subjects cue with single items, the
hippocampal model can typically reject re-paired lures
based on mismatching recall. Use of an FC-OLAP test
(where subjects cue with the shared item) reduces the
hippocampal advantage because use of single-item cues
deprives subjects of benefits conferred by hippocampal
pattern separation, and cuing with the shared item pre-
vents subjects from benefiting from recall-to-reject. The
implications of these simulation results for patient per-
formance are clear: Patients with focal hippocampal le-
sions should be impaired, relative to controls, on YN as-
sociative recognition tests, but they should be relatively
less impaired on FC-OLAP associative recognition tests.

No one has yet conducted a direct comparison of how
well patients with hippocampal damage perform relative
to controls, as a function of test format. However, there
are several relevant data points in the literature. The
only published study looking at YN associative recogni-
tion in patients with focal hippocampal damage was con-
ducted by Kroll et al. (1996). Results from Experiment
1 of Kroll et al. (1996) are plotted in Figure 20; in this
experiment, participants studied 2-syllable words (e.g.,
“barter”, “valley”) and had to discriminate between stud-

List Type Target ltems Interference Items

short: bike robot apple

long: bike robot apple cat tree towel

weak interf..  bike robot apple cat tree towel

strong interf..  bike robot apple cat tree towel
cat tree towel
cat tree towel

Table 2: Interference conditions: list length compares short
and long lists, list strength compares weak interference items
with strong ones.

ied words and words created by re-combining studied
words (e.g., “barley”). In keeping with the model’s pre-
dictions, YN associative recognition performance was
impaired in a patient with bilateral hippocampal dam-
age (caused by anoxia) but YN discrimination with novel
lures (where neither part of the stimulus was studied) was
intact; furthermore, even though the patient was impaired
at associative recognition, the patient’s performance in
this experiment was above chance. This is consistent
with the idea that cortex is sensitive (to some degree) to
feature conjunctions. However, this study does not speak
to whether cortex can form novel associations between
previously unrelated stimuli — because stimuli (includ-
ing lures) were familiar words, subjects do not necessar-
ily have to form a new conjunctive representation to solve
this task.

Two studies (Vargha-Khadem et al., 1997; Mayes
et al., 2001) have examined how well patients with focal
hippocampal damage perform on FC-OLAP tests where
subjects are cued with one pair item and have to say
which of two items was paired with that item at study.
The Vargha-Khadem et al. (1997) study used unrelated
word pairs, nonword pairs, familiar face pairs, and unfa-
miliar face pairs as stimuli, and the Mayes et al. (2001)
study used unrelated word pairs as stimuli. In all of these
studies, the hippocampally-lesioned patients were unim-
paired. This is consistent with the model’s prediction that
patients should perform relatively well, compared to con-
trols, on FC-OLAP tests. Furthermore, the patients’ ex-
cellent performance on these tests despite having large
hippocampal lesions, coupled with the fact that the tests
used novel pairings, provides clear evidence that cortex is
capable of forming new conjunctive representations (that
are strong enough to support recognition, if not recall)
after a single study exposure.

Simulation 6: Interference and List Strength

We now turn to the fundamental question of how
interference affects recognition: How does studying
an item affect recognition of other (previously studied)




items? This question has been studied empirically in
the context of the list length manipulations, which in-
volve adding new items to the study list, and list strength
manipulations, which involve strengthening memory for
some, but not all, list items (Table 2). The relationship
between these paradigms can be made clear with a sim-
ple example. First, we construct a list of target items
(e.g., BIKE, ROBOT, APPLE). In a list length manipu-
lation, we compare recognition of these target items by
themselves (a short list) to recognition of target items af-
ter we add interference items to the list (e.g., CAT, TREE,
TOWEL — the long list). If studying these additional
items interferes with memory for the target items, perfor-
mance should decrease in the long list condition. In a list
strength manipulation, we compare recognition of target
items in a list where targets and interference items are
presented once (the weak interference list) with recogni-
tion of target items in a list where targets are presented
once, and interference items are presented multiple times
(the strong interference list). Thus, list strength effects
measure how much repeated study of other items inter-
feres with memory for the target items. Put another way,
list length measures how much studying other things
once interferes, while list strength measures additional
interference from repeated study of these items.

What makes these interference paradigms particu-
larly interesting in the context of recognition memory is
that there appears to be a dissociation between list length
and list strength effects: list length effects are reliably,
though not universally, observed (e.g., Ohrt & Gronlund,
1999; Murnane & Shiffrin, 1991a; Gillund & Shiffrin,
1984; but see Dennis & Humphreys, 2001 for discus-
sion of confounds present in some list length studies);
by contrast, list strength effects appear to be non-existent
or even sometimes slightly negative (i.e., recognition in
the strong interference condition is actually slightly bet-
ter than recognition in the weak interference condition)
(Ratcliff, Clark, & Shiffrin, 1990). In other words, study-
ing additional items once seems to cause interference,
but studying them muitiple additional times does not.
Understanding why this can happen presents a challenge
to any memory model, especially given that most mod-
els have a strong tendency to produce interference ef-
fects. In particular, it has been argued that interference
is inevitable in neural network models that use overlap-
ping representations (e.g., Ratcliff, 1990; McCloskey &
Cohen, 1989), leading some researchers to dismiss such
models on the grounds that they can not explain null in-
terference effects that have been reported in the literature
(see, e.g., Murnane & Shiffrin, 1991a).

In this section, we first review how and why neural
network models that use Hebbian learning are suscepti-
ble to interference. Then, we explore the cortical and hip-
pocampal models’ susceptibility to interference, starting
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Figure 21: Two input patterns (A and B) that activate the same
hidden unit (lighter colors = more activation). Studying pat-
tern A increases weights to features that are shared by A and
B (Hebbian LTP), and decrements weights to features that are
unique to B (Hebbian LTD).

with the list strength paradigm. Our list strength simula-
tions demonstrate that, although both networks are sus-
ceptible to interference (in the sense that new learning
degrades stored traces), there are important differences
in how interference manipulations affect recognition per-
formance in the two networks. In particular, we show
that the cortical network exhibits a null list strength effect
on recognition sensitivity under many conditions, while
the hippocampal network is more prone to showing list
strength effects. The models make several novel, testable
predictions about when interference effects should be ob-
tained in recognition memory experiments — we sum-
marize the results of several experiments conducted by
Norman (submitted) that validate the models’ predic-
tions. After discussing list strength, we discuss the list
length effect and explain how list length and list strength
can have differential effects on recognition performance.

General Principles of Interference in our Mod-
els

At the most general level, interference occurs in neu-
ral networks whenever a weight connecting two units is
used in conflicting ways for two different memories. The
level of overlap between different memory representa-
tions determines the extent to which weights are shared,
and thus the potential for interference. This is why sparse
representations in the hippocampus help to minimize in-
terference — they minimize pattern overlap.

It is important to emphasize, however, that even if
weights participate in storing multiple different memo-
ries, interference only arises if the weights are used in
conflicting ways. In other words, interference does not
occur for weights that encode shared features between
two memories; rather, interference occurs for weights as-
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sociated with discriminative (non-shared) features of the
respective memories. Figure 21 illustrates this fact; it
shows a simple network with a single hidden unit that
receives input from five input units; initially, the hid-
den unit is activated above threshold by two different in-
put patterns, A and B. The Hebbian learning rule used
in our models dictates that weights to active input fea-
tures get strengthened (LTP), and weights to inactive in-
put features get weakened (LTD). Thus, when pattern A
is studied, weights to features shared by patterns A and B
increase due to Hebbian LTP (producing a stronger rep-
resentation of these features), but weights to features that
are unique to pattern B decrease due to Hebbian LTD. In
short, studying pattern A degrades the network’s repre-
sentation of the discriminative features of pattern B (and
vice-versa).

In the long run, this weakening of discriminative fea-
tures is bad for recognition performance. If you train the
network on a large number of overlapping patterns (e.g.,
several pictures of fish), the network will become more
and more sensitive to features that are shared across the
entire item set (e.g., the fact that all studied stimuli have
fins), and it will become less and less responsive to the
discriminative features of individual stimuli (e.g., the fact
that one fish has a large green striped dorsal fin). How-
ever, these discriminative features are the only way to
distinguish a studied fish item from a lure item that is
also a fish, so weaker representations thereof can clearly
lead to impaired performance. Whether or not recogni-
tion performance is actually harmed by this effect de-
pends on the extent to which interference differentially
affects responding to studied items and lures. In the next
section, we explore this issue in the context of our two
models.

List Strength Results

‘We begin our exploration of interference by simulat-
ing the list strength paradigm as diagrammed in Table 2.
The only difference is that — instead of strengthening
items by presenting them repeatedly — we strength-
ened interference items by increasing the learning rate
for these items (from .01 to .02). This approach to
strengthening allows us to implement an arbitrarily pow-
erful strengthening manipulation (by boosting the learn-
ing rate) without increasing the amount of time it takes
to run the simulations.? In these simulations, the study
list was comprised of 10 target items, followed by 10 in-

31n our models, strengthening by repetition and strengthening by
increasing the learning rate have qualitatively similar effects; however,
quantitatively, repetition has a larger effect on weights (e.g., doubling
the number of presentations leads to more weight change than doubling
the learning rate), because the initial study presentation alters how ac-
tive units will be on the next presentation, and greater activity leads to
greater learning (according to the Hebb rule).

terference items. We also manipulated average between-
item overlap (ranging from 10% to 50%) to see how this
factor interacts with list strength — intuitively, increas-
ing overlap should increase interference.

Figure 22 shows the effect of list strength on recog-
nition sensitivity in the two models, as a function of in-
put overlap. In the cortical network (Figure 22a), there
was no effect of list strength on recognition when input
pattern overlap was relatively low (up to .26), but the
list strength effect (LSE) was significant for higher levels
of input overlap. In contrast, the hippocampal network
showed a significant LSE for all levels of input overlap
(Figure 22by); the size of the hippocampal LSE increased
with increasing overlap (except in the .5 overlap condi-
tion, where the LSE was compressed by floor effects).
Figure 22c directly compares the size of the LSE in the
two models.

We also measured the direct effect of strengthen-
ing interference items on memory for those items; both
models exhibited a robust item strength effect whereby
memory for interference items was better in the strong
interference condition (e.g., for 20% input overlap,
interference-item d’ increased from 2.13 to 3.22 in the
hippocampal model; in the cortical model, d' increased
from 2.08 to 3.12), thereby confirming that our strength-
ening manipulation was effective.

The data are puzzling: For moderate amounts of
overlap, the hippocampus shows an interference effect
despite its ability to carry out pattern separation, and cor-
tex — which has higher baseline levels of pattern overlap
— does not show an interference effect. We address the
hippocampal results first.

Interference in the Hippocampal Model

The hippocampal list strength effect is, at a general
level, easy to understand because it basically amounts
to a neural network exhibiting interference effects (as
they are prone to do). At a more detailed level, there
are two key points. First, even though there is less over-
lap between representations in the hippocampus than in
cortex, there is still some overlap (as shown in our pat-
tern separation simulations; see Figure 6). These over-
lapping units cause interference — specifically, recall
of discriminative features of studied items is impaired
through Hebbian LTD. Second, recall of discriminative
features of lures (i.e., features of lures not shared by stud-
ied items) is at floor, because of the thresholded nature of
hippocampal recall — a feature will only be recalled if
weights to that feature were strengthened at study. Be-
cause recall of discriminative features of lures is at floor,
it can not decrease as a function of interference. Putting
these two points together, the net effect of interference is
to move the studied distribution downwards towards the
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Figure 22: Results of list strength simulations in the two models. The study list consisted of 10 target items, followed by 10
interference items; list strength (weak interference vs. strong interference) was manipulated by doubling the interference-item
learning rate in the strong interference condition. (a) shows MTLC results; (b) shows hippocampal results; (c) re-plots data from (a)
and (b) as list strength difference scores (weak interference d’ - strong interference d') to facilitate comparison across models. For
low-to-moderate levels of overlap (up to .26), there was a significant LSE in the hippocampal model but not in the cortical model;

for higher levels of overlap there was an LSE in both models.
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Figure 23: Studied recall histograms for the strong and weak
interference conditions, 20% overlap condition. Increasing list
strength pushes the studied recall distribution to the left (to-
wards zero).

at-floor lure distribution, which increases the overlap be-
tween distributions and therefore impairs discriminabil-
ity (Figure 23). We should note that, in high-overlap sit-
uations, increasing list strength may lead to increased re-
call of shared prototypical features (insofar as weights to
these features get strengthened). However, this effect is
not differential — it occurs equally for studied items and
lures; therefore, it does not affect discriminability.

The above explanation implies that there will always
be interference effects on hippocampal recall, insofar as
there will always be some overlap, and overlap always
leads to decreased recall of discriminative features of
studied items. However, when ceiling effects are present
for recall of studied stimuli, and when overlap between
items is relatively low, interference effects may be very
small and hard to detect. That is: When the studied re-
call distribution is located far to the right of the recall
threshold, interference effects (which push this distribu-
tion to the left) may not lead to an appreciable decrease
in above-threshold recall. We ran a list strength simu-
lation in the hippocampal model using distinctive inputs
(10% overlap) and a high learning rate for target items
(.03, instead of .01) that produces strong recall. In the
weak interference condition, 99.8% of items triggered
above-threshold (i.e., > .40) recall, and 94% of items
triggered perfect recall scores. Increasing list strength
(by tripling the learning rate for interference items) led
to a decrease in the proportion of items triggering per-
fect recall scores (91%) but the proportion of studied
items triggering above-threshold recall scores was virtu-
ally unchanged (99.7%). Finally, we should note that —
in experiments where encoding is not tightly controlled
— ceiling effects might be present for recall of individual
items even if overall recall performance is not at ceiling;
to the extent that this occurs, it will curtail the effect of
interference on recall (for more discussion of this issue,
see Norman, submitted).
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Effect of List Strength on Weights to Discriminative Features
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Figure 24: Average weights to discriminative features of tar-
get items and lures, as a function of list strength; the graph also
plots the studied-lure weight difference. Overall, increasing
list strength results in lower weights to discriminative features;
there is also an interaction with item type, whereby weights to
the discriminative features of lures decrease more quickly than
weights to the discriminative features of studied target items; as
a result, the target-lure gap in sensitivity to discriminative fea-
tures actually increases (at first) with increasing list strength.

Interference in the Cortical Model

Next, we need to explain why an LSE was not ob-
tained in the cortical model (for low-to-moderate levels
of input overlap). The critical difference between the cor-
tical and hippocampal models is that lure familiarity is
not at floor in the cortical network, thereby opening up
the possibility that lure familiarity (as well as studied fa-
miliarity) might decrease as a function of interference.
Discriminability is a function of the difference in stud-
ied and lure familiarity (as well as the variance of these
distributions); therefore, if lure familiarity decreases as
much as (or more) than studied familiarity as a func-
tion of interference, overall discriminability may be un-
affected. This is in fact what occurs in the cortical model.

As discussed earlier, recognition performance de-
pends critically on sensitivity to discriminative features
of studied items and lures (sensitivity to shared features
does not benefit recognition performance, because these
features are equally present in studied items and lures).
More specifically, the fact that studied items are more fa-
miliar than lures can be traced back to the fact that the
network has stronger weights to the discriminative fea-
tures of studied items than to the discriminative features
of lures. Because sensitivity to discriminative features
is such an important determinant of recognition perfor-
mance, we developed a direct measure of this factor —
we can then see how sensitivity to discriminative features

of studied items and lures (and, critically, the difference
in sensitivity) changes as a function of interference. Sen-
sitivity was measured as follows: For each target and
lure item, we computed the average weight value link-
ing the discriminative (i.e., non-prototypical) features of
that item to that item’s MTLC representation, prior to
interference items being presented. Then, we measured
the exact same weights after interference items were pre-
sented. List strength was manipulated by varying the
learning rate for interference items.

Figure 24 plots the results of these simulations. Be-
cause of Hebbian LTD effects, increased learning of in-
terference items reduces sensitivity to the discriminative
features of both studied items and lures in a monotonic
fashion. However, discriminability depends on the dif-
ference in sensitivity to features of studied items and
lures — this difference initially rises slightly and then
decreases with increasing interference. This rise hap-
pens because sensitivity to the discriminative features of
lures decreases more rapidly than sensitivity to the dis-
criminative features of studied items. This is the key
to explaining the null (and sometimes trending negative)
list strength effect in neocortex, and we will discuss why
this occurs in the Differentiation subsection below. Of
course, changes in the “target-lure sensitivity gap” must
be weighed together with changes in variability, which
can degrade performance even if the target-lure sensi-
tivity gap increases. In the simulations reported here,
variability does not increase enough to negate the afore-
mentioned increase in the sensitivity gap; however, we
can not rule out the possibility that adding other forms of
variability to the model (and eliminating sampling vari-
ability; see the Variability and Scaling Effects section)
might alter these predictions.

With enough interference, the target-lure sensitivity
gap starts to shrink again. This is primarily attributable
to floor effects on weights to discriminative features of
lures, which tend to be smaller to begin with and thus
have less to lose. This “floor effect” dynamic mirrors
what occurs in the hippocampal model. Also, as inter-
ference increases, MTLC units that are predominantly
sensitive to discriminative features start to drop out of
item representations (i.e., because their weights are so
weak, they no longer win the competition to be active)
— these units are replaced by MTLC units that are rel-
atively more sensitive to shared features. This dropout
factor accelerates the inevitable shrinkage of the target-
lure sensitivity gap. Figure 24 misses these dropout ef-
fects because it plots weights to MTLC units that were
active prior to interference, regardless of whether they
were still active after interference items were presented.
Figure 25 is identical to Figure 24, except it only plots
weights to MTLC units that were active after interfer-
ence items were presented — therefore, the weights plot-
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Figure 25: Figure 24, adjusted to reflect “dropout effects”
(i.e., the fact that — with increasing interference - units sensi-
tive to discriminative features tend to drop out of item represen-
tations; these units are replaced by other units that are less sen-
sitive to discriminative features, and more sensitive to shared
features). Note how the target-lure sensitivity gap decreases
more rapidly in this figure than in Figure 24.

ted here reflect dropout effects in addition to the factors
discussed earlier. When we factor in dropout effects, the
target-lure sensitivity gap shrinks more rapidly as a func-
tion of interference.

To this point, we have focused on discriminative
weights because they are the primary determinant of
recognition performance. Interesting dynamics also oc-
cur in the raw familiarity scores triggered by targets and
lures as a function of interference (Figure 26a). Ini-
tially, target and lure familiarity decline — the decrease
in weights to discriminative features outweighs the con-
comitant increase in weights to shared features. How-
ever, with enough interference, target and lure familiar-
ity both start to increase. This increase happens because
weights to discriminative features approach floor (for
both studied items and lures); therefore, these weights no
longer decrease enough to offset the increase in weights
to shared features. Because weights to discriminative
features of lures hit floor before weights to discriminative
features of studied items, the “upturn” in lure familiarity
occurs before the upturn in studied-item familiarity.

Figure 26b plots the difference in target and lure
familiarity scores. Initially, the difference increases
slightly as a function of interference, but then the dif-
ference starts to shrink. These results are qualitatively
identical to the results from our analytic weight simula-
tions (Figure 25) and therefore validate our use of the
“target-lure weight gap” as an analytic means of predict-
ing the familiarity gap in the model.
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Figure 26: (a) Plot of how target and lure familiarity are af-
fected by list strength (with 20% input overlap). Initially, target
and lure familiarity decrease; however, with enough interfer-
ence, target and lure familiarity start to increase. (b) Plot of
the difference in target and lure familiarity, as a function of list
strength; initially, the difference increases slightly, but then it
decreases.

Boundary Conditions on the Null LSE

It should be clear from the above explanation that we
do not always expect a null list strength effect in the corti-
cal model. With enough interference the model’s overall
sensitivity to discriminative features always approaches
floor and the studied and lure familiarity distributions
converge. The amount of overlap between items deter-
mines how quickly the network arrives at this degenerate
state — more overlap yields faster degeneration. When
overlap is high, raw familiarity scores increase (and the
familiarity gap decreases) right from the start; this is il-
lustrated in Figure 27, which plots target and lure famil-
iarity as a function of list strength, for 40.5% input over-
lap.

Differentiation

We have documented that lure representations ini-
tially degrade faster than studied representations, but we
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Figure 27: Plot of how target and lure familiarity are affected
by list strength with 40.5% input overlap. When overlap is
high, target and lure familiarity increase right from the start,
and the target-lure familiarity gap monotonically decreases.

have not yet explained this result (which is the basis of
the cortical null LSE). This finding can be explained in
terms of the principle of differentiation, which was first
articulated by Shiffrin, Ratcliff, and Clark (1990); see
also McClelland and Chappell (1998). Shiffrin et al. ar-
gued that studying an item makes its memory represen-
tation more selective, such that the representation is less
likely to be activated by other items. Intuitively, the more
you know about an item, the less likely you are to con-
fuse it with some other item.

In our model, differentiation is a simple consequence
of Hebbian learning (as it is in McClelland & Chappell,
1998). The net effect of Hebbian learning in our model is
to tune MTLC units so that they are more sensitive to the
studied input pattern (because of LTP), and less sensi-
tive to other, dissimilar input patterns (because of LTD).
Because of this LTD effect, studied-item representations
are less likely to be activated by interference items than
lure-item representations; put another way, studied item
representations will overlap less with the representations
of interference items. As such, studied items suffer less
interference than lures. As an example of how studying
an item pulls its representation away from other items,
in the 20% input overlap simulations the average amount
of MTLC overlap between studied target items and inter-
ference items (expressed in terms of vector dot product)
was .150, whereas the average overlap between lures and
interference items was .154; this difference was highly
significant.

Summary and Predictions

In neural net models with Hebbian learning, interfer-
ence necessarily degrades the network’s responding to
the discriminative (non-prototypical) features of studied

itemns and lures. Given the inevitability of degradation,
the only way to avoid an interference effect on overall
recognition discriminability is for responding to lures to
degrade as much as (or more than) responding to studied
items. This occurs in the cortical model because of dif-
ferentiation: Studied items overlap less with interference
items, therefore they suffer less interference than lures.
This dynamic (whereby responding to lures initially de-
grades more than responding to studied items) does not
apply to the hippocampus because of the thresholded na-
ture of the hippocampal recall measure — lure recall is
at floor, so it can not decrease with interference.

Thus, the main prediction from our models is that
recognition based on hippocampal recall should gen-
erally exhibit an LSE, whereas recognition based on
MTLC familiarity should not. Importantly, these patterns
are not absolute, and are instead reliably affected by a
number of experimental parameters. For example, strong
target item encoding together with low input overlap can
produce a ceiling effect on hippocampal recall that nul-
lifies the hippocampal LSE. In the cortex, high levels of
interference item strengthening produce list strength ef-
fects, as do high levels of input overlap. These stand as
important testable predictions of the models.

Testing the Model’s Predictions

Consistent with the hippocampal model’s prediction,
some studies have found an LSE for cued recall (e.g.,
Kahana, submitted; Ratcliff et al., 1990) although not all
studies that have looked for a cued recall LSE have found
one (e.g., Bauml, 1997). However, all published studies
that have looked for an LSE for recognition have failed
to find one (Ratcliff et al., 1990; Murnane & Shiffrin,
19914, 1991b; Ratcliff, Sheu, & Gronlund, 1992; Yoneli-
nas, Hockley, & Murdock, 1992; Shiffrin, Huber, &
Marinelli, 1995). Although this null LSE for recogni-
tion is consistent with our cortical model’s predictions
(viewed in isolation), it is nevertheless somewhat sur-
prising that overall recognition scores do not reflect the
hippocampal model’s tendency to produce a recognition
LSE.

One way to reconcile the null LSE for recognition
with the model’s predictions is to argue that hippocampal
recall was not making enough of a contribution, relative
to MTLC familiarity, on existing tests. This explanation
leads to a clear prediction: List strength effects should
be obtained for recognition tests and measures that load
more heavily on the recall process. Norman (submitted)
carried out three experiments to test this prediction, as
summarized below.
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LSE is significant. As the confidence threshold is lowered, the
LSE gets smaller and eventually reverses direction.

Confidence Ratings

One way to test the model’s prediction is to look at
confidence rating data; several studies have found that re-
call is associated with high confidence “old” responses,
whereas familiarity is associated with a range of con-
fidence responses (Tulving, 1985; Yonelinas, in press;
Yonelinas et al., 1996; Yonelinas, 1994). The high level
of confidence associated with recall can be explained in
terms of the diagnosticity (reliability) of the recall sig-
nal — the fact that false recall is rare means that, if you
do recall an item, this is very strong evidence that the
item was studied. The aforementioned results suggest
that, if we compute recognition sensitivity based on high-
confidence “old” responses (thereby isolating the contri-
bution of recall), then we should find an LSE for recog-
nition sensitivity.

In the experiment, Norman compared a weak inter-
ference condition (target and interference items stud-
ied once) with a strong interference condition (interfer-
ence items studied six times, targets once). Participants
studied concrete noun stimuli, using an encoding task
(“would this item fit in a small box?”; 1.15 sec per word)
that was designed to yield memory traces rich enough to
support some recall, but not so distinctive as to yield ceil-
ing effects on recall. At test, participants rated recogni-
tion confidence from 1 (sure new) to 6 (sure old); recog-
nition sensitivity (indexed using A'; Donaldson, 1993)
was computed using different confidence thresholds for
accepting an item as “old” (e.g., conf > 3 “old”; conf
<=3 “new”).
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Figure 28 shows the results of the experiment, plot-
ting the size of the list strength effect (A’ for targets in
the weak interference condition minus A’ for targets in
the strong interference condition) as a function of the
confidence threshold used to compute “old” responses.
As predicted, a significant LSE on recognition sensitivity
emerged when A’ was computed using a high confidence
threshold (4 or 5) for accepting an item as “old.” This is
the first time that anyone has documented a significant
list strength effect on recognition sensitivity. When A’
was computed using a lower confidence threshold, we
obtained the same null (non-significant) list strength ef-
fect that other studies have found. Indeed, the results
show a linear trend whereby the list strength effect de-
creases monotonically as the confidence threshold is low-
ered; this is consistent with the idea that lowering the
confidence threshold for saying “old” increases the rel-
ative contribution of familiarity (thereby attenuating the
list strength effect).

Self-Report Measures

A more direct way to isolate the contribution of recall
is to look at self-report measures: Whenever a subject
recognizes an item, you can simply ask them whether
they recall studying the item or whether the item just
seems familiar. Jacoby et al. (1997) showed that, if
you make some assumptions about recall and familiarity
(most prominently, independence), it is possible to use
self-report data to separately examine how manipulations
like list strength affect recall, and how they affect famil-
iarity (the independence remember-know, or IRK proce-
dure). Specifically, you can estimate P(R), the proba-
bility of recalling a studied item, and F'd’, familiarity-
based discrimination. The CLS model’s prediction in
this context is clear: List strength should affect the de-
rived measure of recall, but not the derived measure
of familiarity. Norman (submitted) tested this predic-
tion using a paradigm that was structurally very simi-
lar to the paradigm used in the confidence-rating exper-
iment, except — instead of giving confidence ratings —
participants had to say whether the item was “old” or
“new”, and if they responded “old”, participants had to
say whether they remembered specific details (i.e., they
recalled the item) or whether the item just seemed famil-
iar.

Figure 29 shows the results of the experiment, plot-
ting the size of the list strength effect for the derived mea-
sure of recall, P(R), the derived measure of familiarity,
Fd', and for old/new recognition sensitivity (indexed us-
ing A"). In this experiment, the effect of list strength on
old/new recognition sensitivity was nonsignificant, repli-
cating the null LSE obtained by Ratcliff et al. (1990).
However, if you break recognition into its component
processes, it is clear that list strength does affect per-
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Figure 29: Plot of the size of the list strength effect for three
dependent measures: P(R), the derived measure of recall; A,
our measure of old/new recognition sensitivity; and Fid', the
derived measure of familiarity-based discrimination. The LSE
was significant for recall, but the LSE was not significant for
familiarity-based discrimination or old/new recognition sensi-
tivity.

formance — as predicted, there was a significant LSE
for recall; and there was a trend towards a negative LSE
for familiarity-based discrimination. These results are of
course contingent on the validity of the various assump-
tions that underlie the measurement procedure (e.g., in-
dependence, which we explore later), but they are highly
consistent with the results of the first experiment.

Lure Relatedness

Yet another way to isolate the influence of recall is
to use related lures at test — as discussed earlier, the
model predicts that yes-no (YN) recognition tests with
related lures should load heavily on recall, relative to
tests with unrelated lures. Thus, we would expect a larger
list strength effect on YN test with related lures, than on
a YN test with unrelated lures. To test this hypothesis,
Norman (submitted) used a plurals recognition paradigm
(Hintzman et al., 1992; Curran, 2000) in which partici-
pants studied singular and plural words. At test, partici-
pants were instructed to say “old” if the test word exactly
matched a studied word, and to say “new” otherwise;
there were two kinds of lures: related switched-plurality
(SP) lures (e.g., study “scorpion”, test “scorpions”) and
unrelated lures. The model predicts that the ability to
discriminate between studied words and related SP lures
should depend on recall. Thus, we should find a signifi-
cant list strength effect for studied vs. SP discrimination,
but not necessarily for studied vs. unrelated discrimina-
tion, which can also be supported by familiarity.

Furthermore, we can also look at SP vs. unrelated
pseudodiscrimination, i.e., how much more likely are
subjects to say old to related vs. unrelated lures. Famil-
iarity boosts pseudodiscrimination (insofar as SP lures
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Figure 30: Results from the plurals LSE experiment. In
this experiment, recognition sensitivity was measured using Ag
(Macmillan & Creelman, 1991) The graph plots the size of the
list strength effect for three different kinds of discrimination:
Studied vs. related switched-plurality lures (S vs. SP); studied
vs. unrelated lures (S vs. U); and related vs. unrelated lure pseu-
dodiscrimination (SP vs. U). There was a significant LSE for
studied vs. related lure discrimination, and there was a signifi-
cant negative LSE for related vs. unrelated lure pseudodiscrim-
ination.

will be more familiar than unrelated lures), but recall
of plurality information lowers pseudodiscrimination (by
allowing subjects to confidently reject SP lures). If
list strength boosts familiarity-based discrimination, but
lowers recall, both of these effects will work in concert
to boost pseudodiscrimination. Hence, we predict a large
negative LSE for pseudodiscrimination (i.e., it should be
higher in the strong interference condition than the weak
interference condition).

Apart from the plurality manipulation, the design of
this experiment was very similar to the design of the prior
two experiments.

The results from this experiment are shown in Fig-
ure 30. As predicted, the LSE for studied vs. SP lure
discrimination was significant; the LSE for studied vs.
unrelated lure discrimination was nonsignificant; and the
LSE for SP lure vs. unrelated lure pseudodiscrimination
was negative (and highly significant).

Summary

In summary, the models predict a dissociation
whereby list strength effects should be obtained for
recognition driven by hippocampal recall, but not for
recognition driven by cortical familiarity. Norman (sub-
mitted) confirmed this prediction using three separate
experiments, each of which used a different means of
isolating the contribution of recall to recognition perfor-
mance. However, the model’s more complex list strength
predictions (delineating boundary conditions on the null




cortical LSE, and the positive hippocampal LSE, as a
function of factors like the amount of input pattern over-
lap) remain to be tested.

Simulation 7: List Length and Dissociations
with List Strength

Having explained how the CLS model can account
for the null list strength effect for recognition, we now
turn to the list length paradigm. As mentioned earlier, the
memory literature indicates that there is a list length/list
strength dissociation, whereby adding new items to the
study list (increasing list length) hurts recognition, but
additional study of these interfering items (increasing list
strength) does not lead to further recognition deficits;
for a particularly well-controlled demonstration of this
dissociation, see Murnane and Shiffrin (1991a). Our
models, in their most basic form, can not accommo-
date the length/strength dissociation — list length and
list strength manipulations induce a comparable amount
of interference; thus, the cortical model can not predict
a list length effect at the same time that it predicts a null
list strength effect.

However, our cortical model does produce the
length/strength dissociation given the added postulate
that the first presentation of an item leads to substantially
more weight change than subsequent presentations of an
item. As discussed earlier, learning about an item de-
grades the cortical network’s ability to represent discrim-
inative features of other items — the cortical network has
a limited capacity to absorb these weight changes before
discrimination starts to suffer (see Figure 25). If study-
ing items for the first time (increasing list length) causes
more weight change than repeating already-studied items
(increasing list strength), then increasing list length will
cause more degradation and therefore is more likely to
push the network into the zone where it exhibits interfer-
ence effects on d'.

This pattern of weight change is not an ad-hoc as-
sumption to fit the data — it is directly supported by neu-
robiological research on long-term potentiation (LTP).
Studies of LTP have found that presenting a potentiating
stimulus generates a large increase in synaptic efficacy
that decays to a smaller asymptotic value in a time win-
dow on the order of tens of minutes (e.g., Malenka &
Nicoll, 1993; Bliss & Collingridge, 1993); additional
stimulus presentations boost the asymptotic synaptic effi-
cacy value but these repetition-induced adjustments tend
to be small relative to the initial, transient increase in
synaptic efficacy. To incorporate this dynamic in the
model, we added transient fast weights that saturate af-
ter a single study trial, and decay rapidly (see Hinton &
Plaut, 1987 for an early implementation of a similar
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LTP in the Cortical Model with Fast Weights
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Figure 31: Hlustration of how the weight between two units
is affected by a potentiating stimulus (presented at time = 0) in
a network with both fast weights and long-term weights. The
size of the LTP effect is transiently large relative to its asymp-
totic value. The large, transient effect is attributable to fast
weights, and the smaller, lasting effect is attributable to long-
term weights. The pattern of weight change graphed here mir-
rors the dynamic observed in actual LTP studies (e.g., Nicoll
et al., 1988; Malenka & Nicoll, 1993).

mechanism). This fast weight is added to the standard,
slowly-adapting long-term weight to yield the effective
strength of a given synapse; fast weights and long-term
weights are adjusted separately by learning using our
standard Hebbian LTP and LTD mechanisms, although
the learning rate is higher for fast weights (see Appendix
C for details). Figure 31 shows the results of a simpie
simulation in which we connected two units, activated
them simultaneously, and measured how this affects the
strength of the weight between the two units; because of
the presence of fast weights, the resulting LTP effect is
transiently large relative to its asymptotic value.

We ran closely matched list length and strength sim-
ulations using this fast weight mechanism in the cor-
tical model. There were three different types of lists:
a weak/short list comprised of 5 once-presented targets
and 5 once-presented interference items; a long list com-
prised of 5 once-presented targets and 15 once-presented
interference items; and a strong list comprised of 5 once-
presented targets and 5 interference items presented 3
times. Note that the total number of interference pre-
sentations is the same in the strong vs. long conditions.
Comparing memory for target items in the short/weak vs.
long conditions provides a measure of the list length ef-
fect, because the number of interference items changes;
comparing memory for target items in the short/weak vs.
strong conditions provides a measure of the list strength
effect, because the strength of each interference item
changes, but the total number of interference items does
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List Length and Strength Effects with Fast Weights
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Figure 32: List length and strength effects in the cortical
model with fast weights. These simulations used learning rate
= .0025 for network weights; fast weight parameters are pro-
vided in Appendix C; there was 20% average overlap between
input patterns. There was a highly significant list length effect
(d' was lower in the long condition than in the weak/short con-
dition) but no list strength effect (d' was almost identical in the
strong and weak/short conditions).

not. To ensure that the lag between studying a target and
testing that target was the same in all three conditions,
we inserted 10 delay trials (in which no stimulus was pre-
sented) after the study list in the short/weak condition.

Figure 32 shows the simulation results. As in our
previous list strength simulations (with 20% overlap),
there was no list strength effect (i.e., target recogni-
tion was equivalent in the short/weak and strong con-
ditions). However, there was a highly significant list
length effect — target d' was worse in the long con-
dition than in the short/weak condition. These simula-
tions clearly demonstrate that adding rapidly-saturating,
quickly-decaying fast weights to the cortical model re-
sults in a list length/list strength dissociation like the one
obtained by Murnane and Shiffrin (1991a). Importantly,
d' for interference items was higher in the strong condi-
tion (2.73, SEM = .01) than in the weak condition (2.38,
SEM = .02) — this shows that the null list strength ef-
fect observed here can not be attributed to use of an inef-
fective strengthening manipulation.

The model shows a list length effect because of the
large learning rate associated with fast weights, which
leads to large amounts of trace degradation — study-
ing new interference items completely overwrites the fast
weight values associated with discriminative features of
other, overlapping items. The model does not show a
list strength effect because fast weights saturate after a
single study presentation; thus, subsequent presentations
of interference items primarily affect long-term weights.

List Length/Strength w/Fast Weights, After a Delay
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Figure 33: List length and strength effects in the cortical
model with fast weights, after an 80-trial delay is interposed
between study and test. In contrast to the (short-delay) simula-
tions shown in Figure 32, which found a significant list length
effect, the list length and list strength effects are both null after
an 80-trial delay.

These long-term weights follow the exact same trajec-
tory as a function of interference in this simulation as in
our earlier simulations; increasing interference leads to
a small decrease in weights to discriminative features of
studied items, but this is offset by a similar decrease in
weights to discriminative features of lures, so there is no
interference effect on d'.

Decay and Delay Predictions

The fact that fast weights decay relatively quickly im-
plies that the effects of fast weights should go away if a
long delay is interposed between study and test. This
means that the list length effect should disappear if fast
weights are allowed to decay to zero, whereas any learn-
ing effects manifest in the permanent weights should per-
sist. To test this prediction, we inserted 80 delay trials at
the end of :each study list in the length/strength simula-
tion, thereby allowing the fast weights to decay to 20%
of their maximal value (given the decay rate of .02).

In these “long-delay” simulations, there was no list
strength effect or list length effect (Figure 33). However,
item memory itself was only moderately diminished, and
there was still a robust item strength effect (d' for inter-
ference items = 2.67 in the strong condition, vs. 1.53 in
the weak condition). This clearly demonstrates that fast
weights are responsible for the list length effect (and the
length/strength dissociation), but item repetition effects
are largely due to changes in long-term weights.

These simulation results lead to interesting pre-
dictions that can be tested in behavioral experiments.
Specifically, we predict that interposing a delay between




study and test on the order of the transient-LTP decay
constant (tens of minutes) should greatly diminish the list
length effect. In support of this prediction, a recent study
with a 5 minute delay between study and test did not
show a list length effect (Dennis & Humphreys, 2001).
The next step in testing this hypothesis will be to run ex-
periments that parametrically manipulate study-test lag
while measuring list length effects.

Simulation 8: The Combined Model and the
Independence Assumption

Up to this point, we have explored the properties of
hippocampal recall and MTLC familiarity by presenting
the same input patterns to separate hippocampal and neo-
cortical networks — this approach is useful for analyti-
cally mapping out how the two networks respond to dif-
ferent inputs, but it does not allow us to explore inter-
actions between the two networks. One important ques-
tion that cannot be addressed using separate networks is
the statistical relationship between recall and familiar-
ity. As mentioned several times throughout this paper,
all extant techniques for measuring the distinct contribu-
tions of recall and familiarity to recognition performance
assume that they are stochastically independent (e.g., Ja-
coby et al., 1997). This assumption can not be directly
tested using behavioral data because of the chicken-and-
egg problems described in the Introduction.

To assess the validity of the independence assump-
tion, we implemented a combined model in which the
cortical system that computes familiarity serves as the
input to the hippocampus — this arrangement more ac-
curately reflects how the two systems are connected in
the brain. The combined model is structurally identical
to the hippocampal model except the projection from In-
put to EC_in has modifiable connections (and 25% ran-
dom connectivity) instead of fixed 1-to-1 connectivity.
Thus, the Input-to-EC._in part of the combined model has
the same basic architecture and connectivity as the sepa-
rate cortical model; this makes it possible to read out our
act.win familiarity measure from the EC_in layer of the
combined model.

There are, however, a few small differences between
the cortical part of the combined model, and the separate
cortical network. First, the EC_in layer of the combined
model is constrained to learn “slotted” representations,
where only one unit in each 10-unit slot is strongly ac-
tive; limiting the range of possible EC representations
makes it easier for the hippocampus to learn a stable
mapping between CA1 representations and EC represen-
tations. Second, the EC_in layer for the combined model
only has 240 units, compared to 1920 units in the MTLC
layer of the separate cortical network. This reduced size
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derives from computational necessity — use of a larger
EC_in would require a larger CA1, which together would
make the simulations run too slowly on current hard-
ware. This smaller hidden layer in the combined model
makes the familiarity signal more subject to sampling
variability, and thus recognition d’ is somewhat worse,
but otherwise it functions just as before. We used the
same basic cortical and hippocampal parameters as in our
separate-network simulations, except we used input pat-
terns with 32.5% overlap — this level of input overlap
yields approximately 24% overlap between EC_in pat-
terns at study.

As a first attempt at addressing the statistical rela-
tionship between the MTLC familiarity signal (act-win,
read out from the EC_in layer) and the hippocampal re-
call signal (match — mismatch between EC_out and
EC_in), we ran a simple recognition simulation and mea-
sured the correlation between these signals. A priori,
one might think that, because the cortical and hippocam-
pal systems are so closely interconnected, the two sig-
nals must be positively correlated to some extent. That
is, sharper EC_in representations (which are associated
with high familiarity scores) may propagate more effi-
ciently into the hippocampus, leading to increased recall.
Consistent with this view, we found a significant recall-
familiarity correlation for studied items in this simulation
(r = .27, SEM = .02). The recall-familiarity correlation
for lures was not significantly different from zero (r =
.02, SEM = .02) due to the fact that most runs of the
network produced zero lure recall.

Interference Induced Decorrelation

However, just because recall and familiarity are cor-
related (for studied items) in this simulation does not
mean that they will always be correlated. In the next
set of simulations, we show how the presence of inter-
ference between memory traces can reduce the recall-
familiarity correlation. In the Interference section of
the paper, we discussed how the two systems are dif-
ferentially affected by interference: Hippocampal recall
scores for studied items tend to decrease with interfer-
ence; familiarity scores decrease less, and sometimes in-
crease, because increased sensitivity to shared prototype
features compensates for lost sensitivity to discriminative
item-specific features. Insofar as items vary in how much
interference they are subject to (due to random differ-
ences in between-item overlap), and interference pushes
recall and familiarity in different directions, it should be
possible to use interference as a “wedge” to decorrelate
recall and familiarity.

We ran simulations measuring how the recall-
familiarity correlation changed as a function of interfer-
ence (operationalized using a list length manipulation).
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Figure 34: Simulations exploring how list length affects the recall-familiarity correlation for studied items and lures. The learning
rate (lrate) for target items in the hippocampus was manipulated (.01 vs. 05). Figures (a) and (b) plots the recall-familiarity
correlation as a function of list length for studied items and lures, respectively. Increasing list length lowers the recall-familiarity
correlation for studied items, but it leads to a slight increase in the recall-familiarity correlation for lures. Increasing list length leads
to a sharper decrease in the studied-item recall-familiarity correlation when hippocampal target Irate equals .05 vs. when target Irate
equals .01. (c) Plots how raw studied recall and studied familiarity scores are affected by list length. Recall decreases (more so
for Irate .05 than for Irate .01) but familiarity stays relatively constant. (d) Plots how raw lure recall and lure familiarity scores are

affected by list length. Both recall and familiarity increase slightly.

Recall



There were 10 target items followed by 0 to 150 (non-
tested) interference items. We were concerned that floor-
effects on item-specific recall might reduce the effec-
tiveness of the list length manipulation; to address this
concern, we manipulated the target item learning rate
in the hippocampus, using both our standard value (.01)
and a much larger value (.05) (interference-item learn-
ing rate was always .01). As expected, increasing list
length lowers the recall-familiarity correlation for stud-
ied items (Figure 34a) in the model. There is also an in-
teraction with hippocampal target learning rate (.01 vs.
.05): With learning rate .05, the correlation starts out
very high, but then decreases steeply and eventually goes
to zero; with learning rate .01, the correlation starts out
lower, decreases less steeply, and the curve asymptotes
around correlation = .07.

We can get further insight into these results by look-
ing at how interference affects raw familiarity and re-
call scores for studied items in these simulations (Fig-
ure 34c). When the hippocampal target learning rate
is large (.05), recall starts out very high; basically, re-
call only fails in this condition when the cortical input is
weak — this explains why the recall-familiarity correla-
tion is initially very large. With increasing interference,
recall decreases sharply but familiarity stays relatively
constant; this differential effect of interference works to
de-correlate the two signals. With a smaller hippocampal
target learning rate (.01), recall decreases less sharply,
because of floor effects. Once recall approaches floor,
recall and familiarity are affected in a basically similar
manner (i.e., not much); this lack of a differential effect
explains why the recall-familiarity correlation does not
continue to decrease all the way to zero.

Figure 34b shows that the recall-familiarity correla-
tion for lures starts out at floor and then increases slightly
as a function of interference. This can be explained by
looking at raw recall and familiarity scores for lures (Fig-
ure 34d): With increasing interference, both lure famil-
iarity and lure recall increase slightly; this is because
increasing interference increases the cortical network’s
sensitivity to prototype features (thereby boosting famil-
iarity), and it also increases the odds that the hippocam-
pal network will recall these prototype features, instead
of recalling nothing at all. This parallel effect of interfer-
ence on familiarity and recall boosts the extent to which
they are correlated.

Effects of Other Kinds of Variability

Other sources of variability also affect the recall-
familiarity correlation. For example, the high “baseline”
recall-familiarity correlation exhibited by the model (in
the absence of interference) is primarily due to sampling
variability in EC_in; the small size of this layer (only 240
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Figure 35: Simulations exploring the effect of encoding vari-
ability on the recall-familiarity correlation for studied items.
As encoding variability (operationalized as the probability that
subjects will “blink” and fail to encode half of an item’s fea-
tures at study) increases, the recall-familiarity correlation in-
creases.

units) results in large, sampling-related fluctuations in
the sharpness of cortical representations. These fluctu-
ations in sharpness induce a correlation because they af-
fect recall and familiarity in tandem — sharp representa-
tions trigger a large familiarity score and they propagate
better into the hippocampus, bolstering recall. Therefore,
reducing sampling variability (by increasing the size of
the network) should reduce the recall-familiarity correla-
tion.

Conversely, adding other forms of variability to the
model that affect cortical representation strength should
increase the recall-familiarity correlation. For example,
at present, the model lacks encoding variability. Curran
and Hintzman (1995) pointed out that encoding variabil-
ity can boost the recall-familiarity correlation; if items
vary substantially in how well they are encoded, poorly-
encoded items will be unfamiliar and will not be re-
called; well-encoded items will be more familiar, and
more likely to trigger recall. We ran simulations in the
combined model where we manipulated encoding vari-
ability by varying the probability of partial encoding fail-
ure (i.e., encoding only half of an item’s features) from 0
to .50. The results of these simulations are presented in
Figure 35; as expected, increasing encoding variability
increased the recall-familiarity correlation in the model.

Summary and Implications

In summary, the combined model gives us a princi-
pled means of predicting how different factors will affect
the statistical relationship between recall and familiarity.
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We identified two factors that push the recall-familiarity
correlation in opposite directions: Interference makes the
correlation smaller, and encoding variability makes the
correlation larger. Importantly, even though the model
predicts that recall and familiarity can be correlated, this
does not mean that we have to abandon measurement
techniques that assume independence. Instead, once we
have identified the key determinants of independence us-
ing the model, we can use this information to guide the
design of experiments so as to minimize violations of the
independence assumption (e.g., by taking steps to mini-
mize encoding variability, and to bolster interference).

Simulation 9: Lesion Effects in the Combined
Model

In this section, we show how the combined model
can provide a more sophisticated understanding of the ef-
fects of different kinds of medial temporal lesions. One
virtue of the combined model is that it lets us simu-
late how lesioning one structure affects performance in
other structures — something that we could not do us-
ing our “separate networks” approach. Furthermore, the
combined model lets us simulate how partial damage
to various structures affects overall recognition perfor-
mance. Whereas complete hippocampal lesions com-
pletely eliminate the contribution of recall, the effects of
partial hippocampal lesions can be more complex; as we
will show, partial hippocampal lesions can change the
operating characteristics of hippocampal recall without
eliminating the contribution of this signal to recognition
performance.

Lesion Controversies

As mentioned in the Introduction, studies examining
the effects of hippocampal damage on recognition mem-
ory have obtained widely varying results; some stud-
ies have found deficits but others have found relatively
spared performance. Baxter and Murray (2001b) re-
cently conducted a meta-analysis of studies that have
looked at hippocampal and perirhinal (MTLC) lesion
effects on recognition in monkeys using a delayed-
nonmatching-to-sample (DNMS) paradigm. They found,
surprisingly, that partial hippocampal lesions may lead to
larger recognition deficits than more complete lesions —
in the meta-analysis, lesion size and recognition impair-
ment were negatively correlated. In contrast, the Baxter
and Murray meta-analysis found that perirhinal lesion
size and recognition impairment were positively corre-
lated. Thus, it may be possible to explain discrepant re-
sults across studies in terms of variability in the com-
pleteness of lesions, but in a somewhat counter-intuitive

way. However, Baxter and Murray’s claim is highly con-
troversial; Zola and Squire (2001) re-analyzed the data
in the Baxter and Murray meta-analysis, using a differ-
ent set of statistical techniques that control, e.g., for dif-
ferences in mean lesion size across studies, and found
that the negative correlation between lesion size and im-
pairment reported by Baxter and Murray (2001b) was no
longer significant (although there was still a nonsignifi-
cant trend in this direction; see Baxter & Murray, 2001a
for further discussion of this issue).

Partial Lesion Simulations

An important missing piece to this puzzle is that no
one (to date) has described a concrete mechanism that
generates the hypothesized negative correlation between
lesion size and impairment (although Baxter & Murray,
2001b outline several possible explanations in general
terms). To explore this issue, we ran simulations map-
ping out the effects of partial vs. complete hippocampal
and MTLC lesions in our combined model. The results
of these simulations were consistent with the Baxter and
Murray meta-analysis — partial hippocampal lesions (of
a certain size) did impair recognition more than com-
plete hippocampal lesions; by contrast, complete MTLC
lesions impaired recognition more than partial MTLC
lesions. Most importantly, these simulations provide a
concrete and principled account of why partial lesions
are especially harmful, and how more complete lesions
ameliorate these harmful effects. The central principle
is that partial hippocampal lesions impair the hippocam-
pus’ ability to assign pattern-separated representations
to stimuli; as a result, the amount of recall triggered by
lures increases sharply — this becomes a source of noise
that disrupts recognition performance, pulling it below
the level that would be expected based on familiarity
alone. Moving from a partial to a complete hippocampal
lesion effectively removes this source of noise, thereby
boosting recognition performance. Details of the lesion
simulations are provided below.

In all of the lesion simulations, the size of the lesion
(in terms of % of units removed) was varied from 0%
to 95% in 5% increments. In the hippocampal lesion
simulations, we lesioned all of the hippocampal subre-
gions (DG, CAl, CA3) equally by percentage; in the
MTLC lesion simulations, we lesioned EC_in. To estab-
lish comparable baseline (pre-lesion) recognition perfor-
mance between the hippocampal and cortical networks,
we boosted the cortical learning rate to .012 instead of
.004; this increase compensates for the high amount of
sampling variability present in the (240 unit) EC_in layer
of the combined model.

In order to predict overall recognition performance
when both processes are contributing, we had to make
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Figure 36: Effect of hippocampal damage on forced-choice
(FC) recognition performance. This graph plots FC accuracy
based on MTLC familiarity, hippocampal recall, and a combi-
nation of the two signals, as a function of hippocampal lesion
size. FC accuracy based on MTLC familiarity is unaffected
by hippocampal lesion size (insofar as the hippocampus comes
after cortex in the processing chain). FC accuracy based on hip-
pocampal recall declines steadily as lesion size increases. FC
accuracy based on a combination of recall and familiarity is af-
fected in a nonmonotonic fashion by lesion size: going from 0
to 75% hippocampal damage, combined FC accuracy declines;
however, larger lesions lead to an increase in combined FC ac-
curacy.

some assumptions about how subjects prioritize recall
and familiarity information; specifically, we assume that
recall takes precedence over familiarity. This assump-
tion, which is shared by other dual-process theories (e.g.,
Jacoby et al., 1997) is reasonable in light of the fact that,
in normal circumstances, recall is more diagnostic than
familiarity. Furthermore, it is supported by the finding
that recall is associated with higher average recognition
confidence ratings than familiarity (e.g., Yonelinas, in
press). In these simulations, we used a forced-choice
test format to maximize comparability with the DNMS
studies included in the Baxter and Murray (2001b) meta-
analysis. Our decision rule was that if one item triggered
a larger positive recall score (atch — mismatch) than
the other, then that item was selected. Otherwise, the
decision falls back on familiarity. Certainly other rules
would be possible, but this captures the critical functional
properties in a simple way.

Figure 36 shows how hippocampal FC performance,
cortical FC performance, and combined FC performance
(using the decision rule just described) vary as a function
of hippocampal lesion size. As one might expect, hip-
pocampal FC performance decreases steadily as a func-
tion of hippocampal lesion size, while cortical perfor-
mance is unaffected by hippocampal damage (insofar as
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familiarity is computed before activity feeds into the hip-
pocampus).

Because the combined decision emphasizes hip-
pocampal recall, combined recognition degrades along
with the hippocampal signal, until the hippocampus is
too strongly damaged to produce any signal, at which
point combined performance rises to match cortical FC
performance. This replicates the Baxter & Murray find-
ing that partial hippocampal lesions can lead to worse
recognition performance than complete hippocampal le-
sions — focusing on the right-hand side of the curve
(starting at 75% damage), the size of the hippocampal
lesion is negatively correlated with overall FC perfor-
mance.

As mentioned earlier, the key to understanding the le-
sion results is that hippocampal damage impairs the hip-
pocampus’ ability to carry out pattern separation. We
assume that lesioning a layer lowers the total number of
units but does not decrease the number of active units; as
such, percent activity (active units/total units) increases
with lesion size — representations become less sparse
and the average amount of overlap between patterns in-
creases. There is neurobiological support for this as-
sumption: In the brain, the activity of excitatory pyrami-
dal neurons is regulated primarily by inhibitory interneu-
rons (Douglas & Martin, 1990); assuming that both ex-
citatory and inhibitory neurons are damaged by lesions,
this loss of inhibition is likely to result in a (propor-
tional) increase in activity for the remaining excitatory
neurons. Future work will explore these damage effects
in more realistic networks with explicitly-simulated in-
hibitory interneurons.

As we saw in Simulations 1 and 2 (Figures 7 and 8),
low pattern separation switches the hippocampus from
a system with (approximate) high-threshold operating
characteristics to more of a signal detection process,
where both studied items and lures trigger varying de-
grees of prototype recall, and the two distributions over-
lap strongly. Thus, as a result of the lesion, the recall
signal becomes much more noisy and much less diag-
nostic.

To back up this claim, we computed the distributions
of recall scores triggered by studied items and lures in the
intact and lesioned models, and we plotted ROC curves
for these models. Figure 37a shows the ROC curves:
The intact-model ROC has a positive Y-intercept around
.60, whereas the ROC for the 75%-lesioned model has a
curvilinear shape and a zero Y-intercept. Figure 37 parts
b and ¢ show the underlying recall distributions for the
intact and lesioned models, respectively. In the intact
model, the lure recall distribution is centered on zero;
furthermore, it is possible to set a high recall threshold
that is exceeded by (some) studied items but not by lures.
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Figure 37: (a) Recall ROC curves for the intact combined model, and after a 75% hippocampal lesion. (b) Histogram showing
the distribution of studied and lure recall scores in the intact combined model. (¢) Histogram showing the studied and lure recall
distributions after a 75% hippocampal lesion. The intact-model ROC has a high Y-intercept (around.60) but the lesioned-model
ROC has a zero Y-intercept. The intact-model histogram shows that lures do not trigger recall scores greater than .5, but studied
items frequently do. In contrast, the lesioned-model histogram shows a high degree of overlap between studied and lure recall.
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Figure 38: Plot of the probability of studied items and lures
triggering above-zero recall, as a function of hippocampal le-
sion size. For studied items, the probability of above-zero re-
call declines monotonically as a function of lesion size. For
lures, the probability of above-zero recall first increases, then
decreases, as a function of lesion size.

In the lesioned model, the studied and lure recall distri-
butions overlap strongly, making it impossible to set a
recall threshold that is only exceeded by studied items.
Figure 38 shows that the probability that lures will
trigger above-zero recall scores increases steadily with
increasing lesion size until it reaches a peak of .41 (for
55% hippocampal damage). Crucially, we hypothesize
that lesioned subjects continue to prioritize recall in their
recognition decisions even though the presence of recall
is not, in fact, highly diagnostic. Overall recognition per-
formance in these subjects suffers because the noisy re-
call signal drowns out useful information that is present

in the familiarity signal. However, as lesion size ap-
proaches 60%, the amount of above-zero recall triggered
by lures (and studied items) starts to decrease sharply.
Thus, larger lesions cause the hippocampus to effectively
go silent, and control of the recognition decision reverts
to familiarity. This benefits recognition performance in-
sofar as familiarity does a better job of discriminating
between studied items and lures than the recall signal
generated by the lesioned hippocampus.

Region-Specific Hippocampal Lesions

To get at the precise anatomical basis of the ef-
fects discussed above, we focally lesioned either DG and
CA3 (the hippocampal structures primarily responsible
for pattern separation) or CA1 (the hippocampal struc-
ture that “decodes” CA3 representations, thereby allow-
ing for recall). Figure 39 shows that lesioning the struc-
tures responsible for pattern separation (DG and CA3)
leads to a large increase in false recall of lures; false re-
call continues to increase until lesions are so large that
the system stops working altogether (around 85% dam-
age), at which point both studied and lure recall drop pre-
cipitously. In contrast, lesioning CA1 leads to a steady
decrease in recall associated with studied items and lures.

Thus, the effect of hippocampal damage on recog-
nition can be subdivided into two separate effects: Le-
sioning the pattern separation apparatus (DG and CA3)
adversely affects the diagnosticity of recall, whereas le-
sioning the translation apparatus (CA1) adversely affects
the amount of recall, but not its diagnosticity. When all
three structures are lesioned together, the first effect (pat-
tern separation failure) initially predominates, but then
the second effect (recall failure) eventually takes over,
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Figure 39: Plot of the probability of studied items and lures
triggering above-zero recall, as a function of DG/CA3 and CA1
lesion size. (a) DG/CA3 lesions lead to a sharp increase in
(false) recall triggered by lures, until lesion size exceeds 80%
(at which point studied-item recall and lure recall both drop off

sharply). (b) CAl lesions lead to a monotonic decrease in the
amount of recall triggered by studied items and lures.

removing the harmful effects of noisy recall.

MTLC Lesions

Turning to the effects of MTLC lesions, we find
that lesioning EC_in hurts both cortical and hippocampal
recognition performance (Figure 40). Therefore, overall
recognition performance decreases steadily as a function
of MTLC lesion size. This is exactly the result that was
obtained by Baxter & Murray: MTLC lesion size is pos-
itively correlated with recognition impairment. The ob-
served deficits result from the fact that overlap between
EC.in patterns increases with lesion size — this has a
direct adverse effect on cortically-based discrimination;
furthermore, because EC_in serves as the input layer for
the hippocampus, increased EC.in overlap leads to in-
creased hippocampal overlap, which hurts recall.
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Figure 40: Effect of MTLC (specifically, EC-in) damage on
forced-choice (FC) recognition performance. This graph plots
FC accuracy based on MTLC familiarity, hippocampal recall,
and a combination of the two signals, as a function of EC.in
lesion size. All three accuracy scores (recall-alone, familiarity-
alone, and combined) decline steadily with increasing lesion
size.

Summary and Implications

In summary, the model was able to reproduce the
full pattern of results obtained by Baxter and Murray
(2001b) — moving from partial (e.g., 75%) to complete
hippocampal lesions improved overall recognition per-
formance, but moving from partial to complete MTLC
lesions hurt recognition performance. Most importantly,
we were able to provide a principled explanation of why
partial hippocampal lesions are so harmful for recogni-
tion performance, in terms of pattern separation failure
resulting in a noisy recall signal that subjects neverthe-
less rely upon when making recognition judgments.

We should emphasize that our lesion simulations do
not predict complete sparing of recognition performance
following complete hippocampal damage. Insofar as re-
call and familiarity both make independent contributions
to recognition, losing recall should always hurt recog-
nition to some degree. But the resulting deficit may be
very small and thus hard to detect in single-case studies
— the exact size of the deficit will depend on how well
the recall signal discriminates between studied items and
lures, how strongly correlated recall is with familiarity in
this instance, and the exact decision rule that subjects are
using.

The finding that partial hippocampal lesions are es-
pecially harmful to recognition explains why it is so dif-
ficult to find selective sparing of recognition after hip-
pocampal damage (in either humans or monkeys): If the
lesion is too small, you end with a partially-lesioned hip-
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pocampus that injects noise into the recognition process;
if the lesion is too large, then you hit perirhinal cortex (in
addition to the hippocampus) and this leads to deficits
in familiarity-based recognition. To get selective sparing
of recognition, the lesion has to encompass almost all of
the hippocampus, and virtually none of the surrounding
cortices; the odds of this happening by chance are quite
low.

Finally, our model’s account of why partial hip-
pocampal lesions impair recognition leads to the follow-
ing testable prediction. If patients with partial hippocam-
pal lesions show impaired recognition performance be-
cause of a noisy recall signal, it should be possible to
improve these subjects’ recognition performance by us-
ing a paradigm that forces them to rely exclusively on
familiarity. One way to do this is to use speeded re-
sponding — recall comes “on-line” later than familiar-
ity because the hippocampus is located downstream of
MTLC; thus, it should be possible to eliminate the in-
fluence of recall on performance by forcing subjects to
respond quickly (for examples of how this technique has
been used in behavioral studies, see Gronlund & Ratcliff,
1989; Hintzman & Curran, 1994; Rotello & Heit, 2000;
Hintzman, Caulton, & Levitin, 1998). In summary, we
predict that speeded responding should improve recog-
nition in partial-hippocampal-lesion patients, by mitigat-
ing recall-related noise. In contrast, speeded responding
should hurt recognition in control subjects — recall is a
highly diagnostic signal for controls, so removing recall
should result in worse performance.

General Discussion

In the Introduction, we highlighted two important
challenges for recognition memory research. The first
challenge is to characterize how recall contributes to
recognition memory, and how this contribution is dif-
ferent from the contribution of familiarity. The second
challenge is to characterize how the hippocampus con-
tributes to recognition memory, and how this contribu-
tion is different from the contribution of surrounding
medial temporal lobe neocortex (MTLC). Rather than
treating these challenges as distinct, we have found con-
siderable synergy in addressing these questions together
using a new, biologically-based, dual-process computa-
tional model of recognition memory — the Complemen-
tary Learning Systems (CLS) model. The hippocam-
pal component of this model discriminates between old
and new items based on a recall signal, the properties
of which depend critically on biologically-motivated pat-
tern separation mechanisms. The neocortical component
contributes a non-specific familiarity signal that tracks
the sharpening of cortical representations that occurs as

a result of Hebbian learning and inhibitory competition.
By establishing a clear, mechanistic mapping between
the brain structures involved in recognition, and the pro-
cesses they support, the CLS model makes it possible to
bring constraints from neuroscience to bear on the ques-
tion of how recall and familiarity contribute to recogni-
tion. Furthermore, our use of an explicit computational
model allows us to describe the respective contributions
of hippocampus and neocortex to recognition in a more
nuanced fashion.

In what follows, we briefly review the results of our
simulations, and then explore the implications of these
results for extant theories of recognition memory. We
compare our model to other neurally-inspired and ab-
stract memory models. Finally, we discuss some of the
limitations of the current model, and our plans for future
simulation research.

Summary of Key Simulation Results

We have identified several fundamental, qualitative
differences between the hippocampal recall and MTLC
familiarity signals. The most important difference is that
recall is more diagnostic than familiarity: Assuming low-
to-moderate levels of overlap between stimuli, recall be-
haves in an approximate high-threshold fashion — it is
possible to set a threshold for matching recall that studied
items cross but lures do not. Also, lures sometimes trig-
ger mismatching recall, but studied items do not. Thus,
above-threshold levels of matching recall are strong ev-
idence that an item was studied, and mismatching recall
is strong evidence that an item was not studied. Approx-
imate high-threshold behavior in the hippocampus is a
consequence of the hippocampus’ ability to assign dis-
tinct representations to stimuli (pattern separation) and
the thresholded nature of recall, whereby a feature will
be recalled only if weights linking that input feature to
the output layer were strengthened at study. The hip-
pocampus’ tendency to encode feature conjunctions (as
opposed to individual features) minimizes the extent to
which blending of features from different patterns occurs
— assuming that average overlap between input patterns
is not too high, the hippocampus will only recall features
together if these features occurred together study.

We also showed that there are clear boundary con-
ditions on high-threshold responding and low blending
in the hippocampus; when hippocampal pattern sepa-
ration mechanisms fail (because of high input overlap,
or as a consequence of damage) the hippocampus de-
generates into a state where recall of item-specific fea-
tures of studied items is poor, and both studied items
and lures trigger strong recall of prototype features; these
prototype features sometimes are mistakenly recalled in
place of item-specific features, resuiting in blends. In




this situation, recall resembles a signal detection pro-
cess more than a high-threshold process. Whereas recall
only has signal-detection properties in certain situations,
MTLC familiarity always behaves like a signal-detection
process — the familiarity distributions associated with
studied items and lures are roughly normal and overlap
strongly. Because pattern separation is much weaker in
cortex than in the hippocampus, the MTLC familiarity
signal smoothly tracks the extent to which the test probe
matches studied items. Lures that resemble studied items
are assigned MTLC representations that overlap strongly
with the MTLC representations of studied items; con-
sequently, these lures trigger a strong MTLC familiarity
signal.

Recognition tests with related lures (i.e., lures made
to resemble specific studied items) reveal a clear dis-
sociation between the two systems: The hippocampus
can successfully discriminate between studied items and
related lures (because of its superior pattern separation
abilities) but cortex is fooled by the strong familiarity
signal that these lures generate. However, we also found
that use of a forced-choice (FC) test format greatly ben-
efits cortical recognition performance with related lures
— covariance in the familiarity scores triggered by stud-
ied items and corresponding related lures makes the fa-
miliarity difference between these items highly reliable.
In contrast, hippocampal forced-choice performance (on
tests with corresponding related lures) can actually be
harmed by covariance: Specifically, covariance between
matching recall triggered by studied items, and mis-
matching recall triggered by related lures, makes it less
likely that subjects will be able to reject the lure (due
to mismatching recall) in situations where studied recall
fails. One way of summarizing the model’s predictions
is that hippocampally-lesioned patients, who are relying
exclusively on MTLC familiarity, should perform poorly
relative to controls on standard YN recognition tests with
related lures, but they should perform relatively well
on FC tests with corresponding related lures, because
covariance benefits cortical performance (but not hip-
pocampal performance) on these tests. Holdstock et al.
(in press) recently tested a patient with focal hippocam-
pal damage and obtained the predicted pattern of results.

A basic prediction from our model is that the hip-
pocampus should be highly sensitive to conjunctions of
input features; cortex should demonstrate some sensitiv-
ity, but less than the hippocampus. We demonstrated this
using an associative recognition paradigm, where sub-
jects study pairs of stimuli (A-B, C-D) and then have to
discriminate studied pairs from recombined pairs (A-D).
On a yes-no associative recognition test, hippocampus
was clearly better than cortex at rejecting recombined
pairs, although cortex nevertheless showed above-floor
performance on this task. The model also predicts that
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the hippocampus shouid show less of an advantage on
FC associative recognition tests with overlapping lures
(i.e., study A-B, C-D; test A-B vs. A-D). We hypoth-
esize that, on these tests, subjects cue recall using the
shared pair item (A); this strategy yields suboptimal hip-
pocampal performance, because subjects do not benefit
from the pattern separation that occurs when you cue
with both parts of a recombined lure, nor do they benefit
from recall-to-reject — if the shared cue does not trigger
any recall, subjects will not be able to respond correctly
based on match (to the studied item) or mismatch (to the
lure).

Another key difference between hippocampal and
cortical processing is that recognition based on hip-
pocampal recall is more susceptible to interference than
recognition based on MTLC familiarity. Interference is
typically operationalized in terms of how adding new list
items (increasing list length) or strengthening memory
for some list items (increasing list strength) affects mem-
ory for other list items. We showed that list strength ef-
fects are present for hippocampal recall regardless of in-
put pattern overlap (unless recall is at ceiling) but, for
low-to-moderate levels of input overlap, cortex shows a
null list strength effect for recognition. The key differ-
ence is that, in cortex, interference degrades the model’s
responding to both studied items and lures, such that
(initially) the gap in the model’s responding to studied
items and lures does not decrease; by contrast, in the hip-
pocampus responding to lures is at floor, so decreased re-
sponding to studied items necessarily pushes the studied
and lure recall distributions closer together. The studied-
lure gap in cortex actually increases slightly with inter-
ference, because of differentiation — studying an item
makes its representation overlap less with the representa-
tions of other, interfering items, thus studied items suffer
less interference than lures. Importantly, there are lim-
its on this differentiation dynamic; with high levels of
interference item strengthening and/or high input over-
lap, the model’s sensitivity to discriminative features of
studied items and lures approaches floor and the distri-
butions converge. We presented data from three new list
strength experiments (Norman, submitted) that provide
support for the model’s prediction that list strength af-
fects recall-based recognition but not familiarity-based
recognition.

Whereas list strength effects are typically not found
in recognition memory experiments (except in the cir-
cumstances described by Norman, submitted), list length
effects are more reliably obtained. We showed that
incorporating biologically-motivated temporal dynamics
into our weight change rule allows us to account for
this length-strength dissociation using the cortical model:
Presenting an item for the first time generates a large
(but transient) weight change that produces measurable
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interference effects. Repeatedly presenting an item has
a small, lasting effect on network weights; however, it
does not affect the large, transient component of learn-
ing because this component saturates quickly — as such,
item repetitions tend not to cause additional interference
above and beyond the amount resulting from the item’s
initial presentation.

Finally, we used our combined cortico-hippocampal
model to explore the statistical relationship between re-
call and familiarity, and the effects of partial hippocam-
pal and cortical lesions. We found that increasing inter-
ference lowers the recall-familiarity correlation for stud-
ied items — this occurs because interference pushes raw
familiarity and recall scores in different directions. In-
terference is not the only factor that affects the recall-
familiarity correlation (e.g., encoding variability and cor-
tical sampling variability boost the recall-familiarity cor-
relation); however, it is the only factor we found that
acts to decorrelate the two signals. In the lesion simula-
tions, we found that partial hippocampal lesions can ac-
tually lead to worse performance than complete lesions
— partial lesions reduce the diagnosticity of the recall
signal; if subjects continue to rely heavily on this non-
diagnostic signal then performance suffers. These re-
sults are consistent with a recent meta-analysis showing
a negative correlation between recognition impairment
and hippocampal lesion size (Baxter & Murray, 2001b).

Comparison with other Theories and Models

Aggleton & Brown’s Recall/Familiarity Theory

The CLS model is perhaps closest in spirit to the neu-
ropsychological theory of episodic memory set forth by
Aggleton and Brown (1999) (A&B). This theory holds
that the hippocampus is essential for recall of studied
stimuli, following limited exposure to those stimuli, and
that MTLC implements a familiarity process that can,
in some circumstances, support good discrimination of
studied items from nonstudied items (see also Eichen-
baum, Otto, & Cohen, 1994, who argue that MTLC is
important for “intermediate-term” storage of item infor-
mation). These are clearly central themes of our CLS
model. The main difference between the CLS model and
the A&B theory is that the CLS neural network model
incorporates specific claims about how the hippocampus
implements recall, and how familiarity can be read out
from MTLC representations. Moreover, we have imple-
mented these ideas in a working computational model
that can be used to test their sufficiency and generate
novel predictions. This additional level of mechanis-
tic detail allows the CLS model to provide a more nu-
anced account of how different manipulations will affect
hippocampally-mediated recall and MTLC-mediated fa-
miliarity.

For example, A&B assert that the MTLC familiarity
process can support intact item recognition performance
on its own, whereas memory for associations between
items depends on the hippocampal system. However,
we showed that the cortex can support a substantial level
of associative recognition performance; this explains re-
ports of good associative recognition (using, e.g., unre-
lated word pair stimuli) in patients with focal hippocam-
pal damage (Vargha-Khadem et al., 1997; Mayes et al.,
2001), which are otherwise problematic for the straight-
forward dichotomy proposed by A&B. Furthermore, the
CLS model predicts that cortex will be strongly impaired
relative to the hippocampus on certain kinds of item
recognition tests (€.g., yes-no tests where lures are sim-
ilar to studied items); see Holdstock et al. (in press) for
evidence consistent with this prediction.

Both our model and the A&B theory predict that item
recognition (with unrelated lures) should be spared, rel-
ative to recall, following complete hippocampal lesions
(as was found, e.g., by Mayes et al., submitted). Thus,
it is potentially quite problematic for both models that
some studies have found roughly equivalent deficits in
recognition and recall following focal hippocampal dam-
age (e.g., Manns & Squire, 1999). We do not claim
to fully understand why hippocampal lesions have such
variable effects on item recognition; however, it may be
possible to account for some of this variability in terms
of the idea, set forth by Baxter and Murray (2001b) and
explored in simulations here, that partial hippocampal le-
sions are especially harmful to recognition. This idea is
still controversial and needs to be tested directly (e.g., by
varying lesion extent and measuring DNMS performance
in monkeys).

Yonelinas & Jacoby’s Dual-Process Signal Detection
Model

As mentioned earlier, Yonelinas & Jacoby’s dual-
process signal detection model (Jacoby et al., 1997) is
the basis for several widely-used techniques for teasing
apart the contributions of recall and familiarity to be-
havioral recognition performance. This model assumes
that familiarity is an equal-variance signal detection pro-
cess and recall is a high-threshold process (i.e., recall is
all-or-none, and only studied items are recalled as be-
ing “old”; some variants of the model also make the dual
high-threshold assumption that lures — but never studied
items — are sometimes recalled as being “new”). The
Yonelinas & Jacoby model also assumes that recall and
familiarity are independent. The CLS model provides
some converging support for these assumptions, but it
also makes it clear that we should not expect these as-
sumptions to hold under all circumstances. For example,
our hippocampal model behaves in a manner that is ap-
proximately consistent with dual high-threshold theory




when input overlap is not too high, but it deviates from
this behavior in cases of high input overlap or as a re-
sult of partial damage. Furthermore, the model’s behav-
ior is never strictly consistent with high-threshold theory
(e.g., recall is not all-or-none, and lures sometimes trig-
ger above-zero recall scores).

The independence assumption is the most controver-
sial part of the dual-process signal detection model. The
CLS model predicts that some degree of positive correla-
tion will be present because the cortical and hippocampal
networks are tightly interconnected (i.e., fluctuations in
MTLC activity, which are registered as changes in fa-
miliarity, affect the extent to which activity propagates
through the hippocampus). In our basic-parameter sim-
ulations, this “baseline” positive correlation was large
(.27) but this may be an artefact of the high degree of
sampling variability present in the 240-unit MTLC layer
of the combined model. More importantly, the model
predicts that situational factors will affect the size of the
recall-familiarity correlation: Increasing interference re-
duces the correlation, but encoding variability boosts the
correlation.

In summary: The CLS model allows us to predict, in
a principled fashion, when the high-threshold and inde-
pendence assumptions will hold true. Interestingly, the
preconditions for these assumptions being met are, to
some extent, in conflict with one another — increasing
the average amount of overlap between stimuli boosts
interference (which helps foster independence), but too
much overlap leads to violations of the high-threshold as-
sumption. Thus, the presence of an intermediate amount
of overlap between traces (coupled with low encoding
variability) should result in optimal compliance with the
assumptions of dual-process signal-detection theory. In
this situation, the independence and high-threshold as-
sumptions may not be perfectly valid, but they should
hold well enough such that measurement techniques that
rely on these assumptions will yield meaningful results.

Bayesian Global Matching Models (e.g., REM)

We have emphasized how our model spans the gap
between neurobiological data and abstract mathematical
models, e.g., the REM model developed by Shiffrin &
Steyvers, 1997 and its close relative (McClelland &
Chappell, 1998). Both of these abstract models carry out
a Bayesian computation of the likelihood that an ideal
observer should say “old” to an item, based on the ex-
tent to which that item matches (and mismatches) stored
memory traces. Our cortical familiarity model resem-
bles these abstract models in several respects: Like the
abstract models, our cortical model computes a scalar
that tracks the “global match” between the test probe
and stored memory traces; furthermore, both our corti-
cal model and models like REM attempt to explain the
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null LSE for recognition using the differentiation princi-
ple introduced by Shiffrin et al. (1990). Thus, our model-
ing work relies critically on insights that were developed
in the context of abstract models like REM.

We can also draw a number of contrasts between the
CLS model and abstract Bayesian models. First, our
model posits that two processes contribute to recognition
whereas these other models attempt to explain recogni-
tion data in terms of a single familiarity process. Sec-
ond, our model incorporates explicit claims about how
different brain structures (hippocampus and MTLC) sup-
port recognition memory, whereas abstract models do
not address how recognition is implemented in the brain.
Because of this brain-model mapping, we can constrain
our model using neurobiological and neuropsychologi-
cal data in addition to purely behavioral data. Indeed,
there is a strong sense in which the brain-model map-
ping makes our dual-process approach possible — as dis-
cussed in the Introduction, it is not clear how to constrain
a dual-process model based on behavioral data alone (be-
cause of chicken-and-egg problems). One way of view-
ing the distinction between abstract and neurobiological
recognition memory models is that abstract models char-
acterize recognition memory processes at the algorithmic
level whereas models like ours focus more on implemen-
tational details (Marr, 1982). Thus, the two approaches
can be viewed as complementary. However, it is not
true that the two levels of analysis are completely inde-
pendent — considering how recognition is implemented
in the brain constrains the range of possible algorithms
(O’Reilly & Munakata, 2000). Some aspects of current
abstract models are highly implausible in light of what
we know about brain-style computation, for example the
assumption made by REM that memory traces are stored
separately, such that no structural interference occurs be-
tween memory traces at study.

We have not included head-to-head comparisons be-
tween our model and abstract models like REM because
our model is, at present, incomplete — as discussed ear-
lier, the model incorporates some sources of variance that
we plan to remove and lacks some sources of variance
that we plan to add; furthermore, we have not yet set-
tled on a combined decision rule (i.e., an algorithm for
making recognition decisions based on recall and famil-
iarity). As such, we are not yet in a position to pro-
vide precise fits to behavioral recognition memory data.
This issue of how subjects utilize memory signals is quite
complex, and it lies at the core of the debate over single-
process vs. dual-process approaches to memory. No
one would deny that recall can contribute to recognition
memory; the defining characteristic of single-process ap-
proaches is the claim that subjects (for whatever reason)
do not utilize recall information that is available. We are
committed to the idea that subjects do frequently make
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use of recall on recognition tests, but we certainly do not
want to claim that subjects always make full use of the
recall signal.

In this paper, we have focused on describing qual-
itative model predictions, and the boundary conditions
of these predictions. Working at this level, it is clear
that there are some fundamental differences in the pre-
dictions of the CLS model vs. models like REM. For
example, one key difference between the models is that
— in our model — interference occurs at study, when
one item re-uses weights that are also used by another
item, whereas REM posits that memory traces are stored
in a non-interfering fashion, and that interference arises
at test, whenever the test item spuriously matches mem-
ory traces corresponding to other items. Because study-
ing one item degrades the memory traces of other items,
our model predicts — regardless of parameter settings
— that the curve relating interference (e.g., list length
or list strength) to recognition sensitivity will always
asymptotically go to zero with increasing interference.
In contrast, in REM it is possible to completely eliminate
the deleterious effects of interference items on perfor-
mance through differentiation; if interference items are
presented often enough, they could become so strongly
differentiated that the odds of them spuriously matching
a test item are effectively zero; whether or not this actu-
ally happens depends on model parameters.

Ratcliff 's (1990) Neural Network Recognition Model

Ratcliff (1990) presented a neural network model of
recognition memory that is, in some respects, similar
to our CLS model. Ratcliff’s model is a 3-layer feed-
forward network, which learns (using error-driven back-
propagation) to reproduce input patterns in the output
layer. Like our hippocampal model, Ratcliff’s model
uses a recall-based dependent measure (i.e., how well
does the output pattern match the input pattern), and,
like our cortical model, Ratcliff’s model uses overlap-
ping distributed representations in its hidden layer. Rat-
cliff deemed this model to be unsuitable because it shows
excessive levels of interference (see also McCloskey &
Cohen, 1989).

According to our framework, Ratcliff’s model shows
excessive interference because it combines two proper-
ties (use of a recall dependent measure and overlapping
representations) that, in the brain, apply to distinct sub-
systems. Mixing these properties in one system does not
work. In systems that use a recall dependent measure,
interference effects on d' are inevitable because of floor
effects on recall of lures — in general, if you did not
study a feature, then weights to that feature will not be
large enough to support recall; because lure recall is at
floor, any decrease in studied recall necessarily pushes
the studied and lure recall distributions closer together,

thereby reducing discriminability. Our hippocampal net-
work avoids excessive interference, despite its use of a
recall dependent measure, by incorporating automatic
pattern-separation mechanisms that reduce overlap be-
tween representations in CA3. Our cortical network
works in the opposite fashion — it avoids undue inter-
ference (despite its use of overlapping representations)
because it uses a dependent measure (act-win) that is
above floor for both studied items and lures; as discussed
earlier, interference degrades studied and lure familiar-
ity in tandem, so the studied-lure gap in familiarity is
preserved. If we forced our familiarity model to use a
recall dependent measure, it would suffer from many of
the same problems as Ratcliff’s model.

Other Neural Network Models of Hippocampus and Cor-
tex

The hippocampal component of the CLS model is
part of a long tradition of hippocampal modeling (e.g.,
Marr, 1971; McNaughton & Morris, 1987; Rolls, 1989;
Levy, 1989; Touretzky & Redish, 1996; Burgess &
O’Keefe, 1996; Wu, Baxter, & Levy, 1996; Treves &
Rolls, 1994; Moll & Miikkulainen, 1997; Hasselmo &
Wyble, 1997). Although different hippocampal models
may differ slightly in the functions they ascribe to par-
ticular hippocampal subcomponents, a remarkable con-
sensus has emerged regarding how the hippocampus
supports episodic memory (i.e., by assigning minimally
overlapping CA3 representations to different episodes,
with recurrent connectivity serving to bind together the
constituent features of those episodes). In the present
modeling work, we build on this shared foundation by
applying these biologically-based computational model-
ing ideas to a rich domain of human memory data (for an
application of the same basic model to animal learning
data, see O’Reilly & Rudy, 2001).

The Hasselmo and Wyble (1997) model (hereafter,
H&W) deserves special consideration because it is the
only one of the aforementioned hippocampal models
that has been used to simulate patterns of behavioral
list-learning data. The architecture of this model is
generally similar to the architecture of the CLS hip-
pocampal model, except H&W make a concrete distinc-
tion between item and (shared) context information, and
posit that item and context information are kept sepa-
rate throughout the entire hippocampal processing path-
way, except in CA3 where recurrent connections allow
for item-context associations; furthermore, in the H&W
model recognition is based on the extent to which item
representations trigger recall of shared contextual infor-
mation associated with the study list. The H&W model
predicts that recognition of studied items should be ro-
bust to factors that degrade hippocampal processing be-
cause — insofar as all studied items have the same “con-



text vector” — the CA3 representation of shared con-
text information will be very strong and thus easy to
activate. However, the fact that the CA3 context rep-
resentation is easy to activate implies that related lures
will very frequently trigger false alarms in the H&W
model (in contrast to the CLS model, which predicts
low hippocampal false alarms to related lures). The
H&W model also predicts a null list strength effect for
hippocampaily-driven recognition, and a null main ef-
Sect of item strength on hippocampally-driven recogni-
tion (in contrast to our model, which predicts that both
item strength and list strength effects should be obtained
in the hippocampus). Thus, because H&W use a differ-
ent hippocampal recognition measure, and separate item
and context representations, their model generates recog-
nition predictions that are very different from the CLS
hippocampal model’s predictions. However, we should
emphasize that, if H&W used the same recognition mea-
sure as our model (match - mismatch), their model and
the CLS model would likely make very similar predic-
tions because the two model architectures are so similar.

The neocortical component of the CLS model has
much in common with other, recently published neural
network models that address the role of cortex in famil-
iarity discrimination (Bogacz, Brown, & Giraud-Carrier,
2001; Sohal & Hasselmo, 2000). These models, like
ours, posit that familiarity discrimination in cortex arises
from Hebbian learning that tunes a population of units
to respond strongly to the stimulus. Both models differ
in some ways from ours as well. For example, in the
Bogacz et al. (2001) model familiarity is computed by a
specialized population of novelty detector units that are
not directly involved in representing stimulus properties,
whereas our model does not contain specialized novelty
detection units — rather, the familiarity signal is com-
puted directly from the activity of units involved in rep-
resenting the stimulus; at a more detailed level, the Bo-
gacz et al. (2001) model posits that both homosynaptic
Hebbian LTD (decrease weights if the sending unit is ac-
tive but the receiving unit is not) and heterosynaptic Heb-
bian LTD (decrease weights if the receiving unit is active
but the sending unit is not) are important for familiar-
ity discrimination, whereas our model only incorporates
heterosynaptic Hebbian LTD. The Sohal and Hasselmo
(2000) model, like ours, does not include specialized
novelty-detection units, but like the Bogacz model (and
unlike ours), it incorporates homosynaptic as well as het-
erosynaptic Hebbian LTD. For a detailed comparison of
the architectural properties of our model vs. the Bogacz
et al. (2001) and Sohal and Hasselmo (2000) models, see
Bogacz and Brown (submitted).

Perhaps the most salient difference between our mod-
eling work, and the work presented by Bogacz and Sohal
& Hasselmo, is that neither Bogacz nor Sohal & Has-

Norman & O’Reilly 49

selmo use their models to address detailed patterns of
behavioral recognition data; instead, they focus on ex-
plaining single-cell recording data in monkeys. While
the CLS model can not make detailed predictions about
spiking patterns of single neurons, we can account for
more general patterns of firing rate changes with famil-
iarity. For example, as discussed earlier, the CLS model
predicts that some neurons in perirhinal cortex that ini-
tially fire in response to a stimulus will show decreased
responding as the stimulus becomes more familiar (e.g.,
Brown & Xiang, 1998; Li et al., 1993) — these are the
neurons that lost the competition to represent the stim-
ulus. In contrast, the neurons that win the competition
will not show decreased firing; in our model the activ-
ity of these winning neurons actually increases (and we
use this increase in act_win to index familiarity), but in
variants of the model that use more realistic forms of
inhibition instead of the k-winners-take-all “shortcut”,
the activity of winning units does not always increase;
in this case, we can read out familiarity in some other
way (see the Alternate Dependent Measures section be-
low). The model also predicts that neurons that show
decreased (vs. asymptotically strong) firing in response
to repeated stimulus presentation should be neurons that
initially had a less strong response to that stimulus. Al-
though there is not space to carry out this analysis here,
we think that it would be useful to conduct a detailed
comparison of our model’s single-cell-firing predictions
with the predictions of the other two models, and to de-
termine which model’s predictions are most in keeping
with the data. We are very open to the possibility that
we will have to incorporate additional mechanisms into
the model to appropriately fit the single-cell data; further-
more, we realize that adding these mechanisms may alter
the model’s predictions regarding behavioral recognition
performance — one of the strengths of the CLS model
is the fact that it provides a conduit whereby low-level
neuroscientific results can impact the model’s behavioral
predictions and vice-versa.

Finally, we should briefly discuss how our model re-
lates to the cortico-hippocampal network model set forth
by Gluck and Meyers (e.g., Gluck, Ermita, Oliver, & My-
ers, 1997; Gluck & Meyers, 2001). The hippocampal
component of the Gluck and Meyers (G&M) model is
a three-layer predictive autoencoder network that learns
(via error backpropagation) to reproduce the input pat-
tern and predict outcomes on the output layer. G&M
have primarily explored hippocampal contributions to
conditioning and discrimination learning, and — within
this context — they have argued that the primary role
of the hippocampus is to pull apart the representations
of stimuli that are associated with different outcomes or
responses; they call this predictive differentiation. The
G&M cortical model, by contrast, is not capable of car-




50 Modeling Hippocampal and Neocortical Contributions to Recognition

rying out predictive differentiation on its own. Predictive
differentiation is a form of pattern separation; however,
unlike hippocampal pattern separation in the CLS model,
which happens instantly and is automatic, predictive dif-
ferentiation in the G&M hippocampal model happens
over multiple trials, and it only occurs when input pat-
terns are associated with different outcomes/responses.
While the G&M model has had considerable success in
predicting hippocampal lesion effects in multi-trial dis-
crimination learning tests, we wish to point out that it
is not well-suited for modeling episodic memory per-
formance. The G&M hippocampal model is structurally
highly similar to the Ratcliff (1990) model discussed ear-
lier (both are three-layer autoencoders that learn via error
backpropagation) — like the Ratcliff model, the G&M
hippocampal model would suffer from catastrophic in-
terference on episodic memory tests (assuming use of
a recall dependent measure) because it does not incor-
porate an automatic pattern-separation mechanism; also,
it would not be able to accommodate any of the other
results discussed earlier that rely on automatic pattern-
separation in the hippocampus (e.g., superior hippocam-
pal performance on YN related-lure tests). While we can
not strongly fault the G&M model for not being able to
account for phenomena outside of animal learning, we
should point out that the CLS model can account for both
animal learning phenomena (O’Reilly & Rudy, 2001)
and episodic memory phenomena (as described in this
paper) using the same networks.

Alternate Dependent Measures

In this research, one important choice we faced was
how to apply the cortical and hippocampal networks to
recognition, i.e., how do we “read out” signals from these
networks that are useful in discriminating between stud-
ied and nonstudied items? It is reasonable to ask how
much the model’s predictions depend on our particular
choice of dependent measures. For example, we dis-
cussed earlier how the cortical model’s robustness to in-
terference (relative to the hippocampus) is due in part to
its use of the act_win measure as opposed to a “match-
ing recall” measure; are all of the differences between
the hippocampus and cortex discussed in this paper due
to this difference in how signals are read out from the
models?

To address this question, we tested whether the same
act_win measure used in our cortical model could be
used as a recognition signal when applied to area CA1
in the hippocampus. Indeed, we found that this CAl
act-win measure yielded respectable d' scores; cru-
cially, it had the same approximate high-threshold prop-
erty as the match — mismatch hippocampal recall sig-
nal (in contrast to the signal-detection property mani-
fested by cortical act_win); CA1 act.win was more ro-

bust to target-lure similarity manipulations than cortical
act_win, and it showed a list strength effect on d' just
as our recall signal does. Thus, even when an act_win
measure is used in both hippocampus and cortex, the key
differences noted earlier are still present; as such, the
aforementioned differences can not simply be reduced
to differences in how we read out signals from the net-
works.

Another important question has to do with the bio-
logical plausibility of the act_win measure — it is not
immediately clear how some other structure in the brain
could isolate the activity of only the winning units (be-
cause “losing” units are still active to some small ex-
tent, and there are many more losing units than win-
ning units). Therefore, we carried out a fairly exhaustive
search through the space of familiarity measures, to see if
we could come up with a measure that yields as good or
better d’ scores than act_win, while also being more bi-
ologically plausible. This search yielded one promising
measure: the time it takes for activity to spread through
the network (setrle_time). This measure exploits the fact
that activity spreads more quickly for familiar vs. un-
familiar patterns. To test this measure, we ran corti-
cal simulations recording settle_time, which was oper-
ationalized as the number of processing cycles needed
for average activity in MTLC to reach a certain thresh-
old (.03). The d' score computed on this settle_time
measure was 1.81 (SEM = .02), which was compara-
ble to the act.win d’ score (2.00, SEM = .03). The
settle time measure is more biologically plausible than
act_win, insofar as it only requires some sensitivity to
the average activity of a layer, and some ability to as-
sess how much time elapses between stimulus onset and
activity reaching a pre-determined threshold.

Finally, we wanted to know if the settle_time mea-
sure is affected in a manner that is qualitatively sim-
ilar to act_win by key independent variables like list
strength. We ran a list strength simulation in the cor-
tical model (list strength was manipulated by doubling
the interference-item learning rate from .004 to .008)
and computed d' using settle_time. We found that
settle time, like act_win, does not show a list strength
effect on d' — recognition discrimination was actually
better in the strong interference condition (weak inter-
ference d' = 1.81, SEM = .01; strong interference d’
= 2,05, SEM = .01). This is important because it
shows that our interference results extend to other de-
pendent measures besides act_win. Further research will
be necessary to determine if the qualitative properties of
act.win and settle_time are completely identical or if
there are manipulations that affect them differently.




Future Directions

Future research will address limitations of the model
that were described earlier. Increases in computer pro-
cessing speed will make it possible to grow our net-
works to the point where sampling variability is neg-
ligible, and we will replace lost sampling variability
by adding encoding variability and variability in pre-
experimental presentation frequency to the model. In-
cluding pre-experimental variability (by presenting test
items in other contexts a variable number of times prior
to the start of the experiment) will allow us to address a
range of interesting phenomena, including the so-called
frequency mirror effect, whereby hits tend to be higher
for low-frequency (LF) stimuli than for high-frequency
(HF) stimuli, but false alarms tend to be higher for HF
stimuli than LF stimuli (see, e.g., Glanzer, Adams, Iver-
son, & Kim, 1993); recently, several studies have ob-
tained evidence suggesting that recall is responsible for
the LF hit-rate advantage and familiarity is responsible
for the HF false-alarm-rate advantage (Reder, Nhouy-
vanisvong, Schunn, Ayers, Angstadt, & Hiraki, 2000; Jo-
ordens & Hockley, 2000; Reder et al. also present an ab-
stract dual-process model of this finding).

Furthermore, we plan to directly address the ques-
tion of how subjects make decisions based on recall and
familiarity. Clearly, people are capable of employing a
variety of different decision strategies that can differen-
tially weight the different signals that emerge from the
cortex and hippocampus. One way to address this issue
is to conduct empirical Bayesian analyses to delineate
how the optimal way of making recognition decisions in
our model varies as a function of situational factors, and
then compare the results of these analyses with subjects’
actual performance. A specific idea that we plan to ex-
plore in detail is that subjects discount recall of proto-
type information, because prototype recall is much less
diagnostic than item-specific recall. The frontal lobes
may play an important part in this discounting process
— for example, Curran, Schacter, Norman, and Galluc-
cio (1997) studied a frontal-lesioned patient (BG) who
false alarmed excessively to nonstudied items that were
of the same general type as studied items; one way of
explaining this finding is that BG has a selective deficit
in discounting prototype recall. Thus, the literature on
frontal lesion effects may provide important constraints
on how recognition decision-making works, by showing
how it breaks down.

Supplementing the model with a more principled
theory of how subjects make recognition decisions will
make it possible for us to apply the model to a wider
range of recognition phenomena, for example situations
where recall and familiarity are placed in opposition
(e.g., Jacoby, 1991). We could also begin to address
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the rich literature on how different manipulations af-
fect recognition ROC curves (e.g., Ratcliff et al., 1992;
Yonelinas, 1994).

One other topic for future research involves improv-
ing crosstalk between the model and neuroimaging data.
In principle, we should be able to predict fMRI activa-
tions during episodic recognition tasks by reading out
activation from different subregions of the model; to
achieve this goal, we will need to build a “back end” onto
the model that relates changes in (simulated) neuronal
activity to changes in the hemodynamic response that is
measured by fMRI. Finally, Curran (2000) has isolated
what appear to be distinct ERP correlates of recall and fa-
miliarity; as such, we should be able to use the model to
predict how these recall and familiarity waveforms will
be affected by different manipulations. Our first attempt
along these lines was successful; we found that — as pre-
dicted by the model — increasing list strength did not af-
fect how well the ERP familiarity correlate discriminates
between targets and lures, but list strength adversely af-
fected how well the ERP recall correlate discriminates
between targets and lures (Norman, Curran, & Tepe, in
preparation).

Conclusion

We have provided a comprehensive initial treat-
ment of the domain of recognition memory using our
biologically-based neural network model of the hip-
pocampus and neocortex. This work extends a similarly
comprehensive application of the same basic model to a
range of animal learning phenomena (O’Reilly & Rudy,
2001). Thus, we are encouraged by the breadth and depth
of data that can be accounted for within our framework.
Future work can build upon this solid foundation to ad-
dress a range of other human and animal memory phe-
nomena.
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Appendix A: The Leabra Algorithm

This appendix describes the computational details of
the Leabra algorithm that was used in the simulations.
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Pseudocode

The pseudocode for Leabra is given here, showing
exactly how the pieces of the algorithm described in
more detail in the subsequent sections fit together.

Outer loop: Iterate over events (trials) within an
epoch. For each event:

1. Iterate over minus and plus phases of settling for
each event.

(a) At start of settling, for all units:

i. Initialize all state variables (activation,
v_m, etc).

ii. Apply external patterns (clamp input in
minus, input & output in plus).

(b) During each cycle of settling, for all non-
clamped units:

i. Compute excitatory netinput (g (t) or 7;,
eq 7).
ii. Compute kWTA inhibition for each layer,
based on g (eq 10):
A. Sort units into two groups based on
g top k and remaining k + 1 to n.
B. Set inhib conductance g; between g,?
and g9, ; (eq 9).
ili. Compute point-neuron activation com-
bining excitatory input and inhibition
(eq5).

2. Update the weights (based on linear current weight
values), for all connections:

(a) Compute error-driven weight changes (not
used in these simulations).

(b) Compute Hebbian weight changes from plus-
phase activations (eq 11).

(c) Increment the weights according to net weight
change, and apply contrast-enhancement

(eq 13).

Point Neuron Activation Function

Leabra uses a point neuron activation function that
models the electrophysiological properties of real neu-
rons, while simplifying their geometry to a single point.
This function is nearly as simple computationally as
the standard sigmoidal activation function, but the more
biologically-based implementation makes it consider-
ably easier to model inhibitory competition, as described
below. Further, using this function enables cognitive
models to be more easily related to more physiologically

detailed simulations, thereby facilitating bridge-building
between biology and cognition.

The membrane potential V;, is updated as a function
of ionic conductances g with reversal (driving) potentials
E as follows:

dVm(t)
dt

=T Z 9c(1)gc(Ec — Vin(t)) ©)]

with 3 channels (c) corresponding to: e excitatory input;
! leak current; and ¢ inhibitory input. Following elec-
trophysiological convention, the overall conductance is
decomposed into a time-varying component g.(t) com-
puted as a function of the dynamic state of the network,
and a constant g that controls the relative influence of
the different conductances. The equilibrium potential
can be written in a simplified form by setting the exci-
tatory driving potential (E,) to 1 and the leak and in-
hibitory driving potentials (E; and E;) of 0:

o_ 9B

Vm 9eJe + 9iT1 + 9iFi ©
which shows that the neuron is computing a balance be-
tween excitation and the opposing forces of leak and
inhibition. This equilibrium form of the equation can
be understood in terms of a Bayesian decision making
framework (O’Reilly & Munakata, 2000).

The excitatory net input/conductance g.(t) or 7; is
computed as the proportion of open excitatory channels
as a function of sending activations times the weight val-
ues:

1
n = ge(t) = (miwy) = = D mwyy (D

The inhibitory conductance is computed via the kWTA
function described in the next section, and leak is a con-
stant.

Activation communicated to other cells (y;) is a
thresholded (©) sigmoidal function of the membrane po-

tential with gain parameter :
1
vi(t) = ®
' (1 + 5 (tlj-er )
m +

where [x]4. is a threshold function that returns 0 if z < 0
and z if X > 0. This sharply-thresholded function is
convolved with a Gaussian noise kernel (¢ = .005),
which reflects the intrinsic processing noise of biological
neurons. This produces a less discontinuous determinis-
tic function with a softer threshold that is better suited
for graded learning mechanisms (e.g., gradient descent).

k-Winners-Take-All Inhibition

Leabra uses a kWTA function to achieve sparse dis-
tributed representations. Although two different versions




are possible (see O’Reilly & Munakata, 2000 for details),
only the simpler, more rigid form was used in the present
simulations. A uniform level of inhibitory current for all
units in the layer is computed as follows:

9 = g9 + (g — 9811 ©)

where 0 < g < 11is a parameter for setting the inhibition
between the upper bound of g© and the lower bound of
g,?+1. These boundary inhibition values are computed as
a function of the level of inhibition necessary to keep a
unit right at threshold:

4@ = 9e8e(Be = ©) + 95 (Fi — ©)
! ©—-E;

where g; is the excitatory net input without the bias
weight contribution — this allows the bias weights to
override the kWTA constraint.

In the basic version of the kWTA function used here,
which is relatively rigid about the kWTA constraint, g,?
and g9, are set to the threshold inhibition value for the
k th and k + 1 th most excited units, respectively. Thus,
the inhibition is placed exactly to allow k units to be
above threshold, and the remainder below threshold. For
this version, the ¢ parameter is almost always .25, allow-
ing the k th unit to be sufficiently above the inhibitory
threshold.

Activation dynamics similar to those produced by the
kWTA function have been shown to result from simu-
lated inhibitory interneurons that project both feedfor-
ward and feedback inhibition (O’Reilly & Munakata,
2000). Thus, although the KWTA function is somewhat
biologically implausible in its implementation (e.g., re-
quiring global information about activation states and
using sorting mechanisms), it provides a computation-
ally effective approximation to biologically plausible in-
hibitory dynamics.

(10)

Hebbian Learning

The simplest form of Hebbian learning adjusts the
weights in proportion to the product of the sending (z;)
and receiving (y;) unit activations: Aw;; = z;y;. The
weight vector is dominated by the principal eigenvector
of the pairwise correlation matrix of the input, but it also
grows without bound. Leabra uses essentially the same
learning rule used in competitive learning or mixtures-of-
Gaussians (Rumelhart & Zipser, 1986; Nowlan, 1990),
which can be seen as a variant of the Oja normalization
(Oja, 1982):

Anepswij = aFyf —yfwij =y (aF —wyy) (A

Rumelhart and Zipser (1986) and O’Reilly and Mu-
nakata (2000) showed that, when activations are inter-
preted as probabilities, this equation converges on the
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conditional probability that the sender is active given that
the receiver is active.

To renormalize Hebbian learning for sparse input ac-
tivations, equation 11 can be re-written as follows:

Aw,',- = e[yja:,-(m - w;,-) + yj(l - $,‘)(0 - w,-j)] (12)

where an m value of 1 gives equation 11, while a larger
value can ensure that the weight value between uncorre-
lated but sparsely active units is around .5. Specifically,
wesetm = 2 and o = .5 — gm(.5 — @), where &
is the sending layer’s expected activation level, and gy,
(called savg_cor in the simulator) is the extent to which
this sending layer’s average activation is fully corrected
for (¢, = 1 gives full correction, and g,,, = 0 yields no
correction).

Weight Contrast Enhancement

One limitation of the Hebbian learning algorithm is
that the weights linearly reflect the strength of the condi-
tional probability. This linearity can limit the network’s
ability to focus on only the strongest correlations, while
ignoring weaker ones. To remedy this limitation, we
introduce a contrast enhancement function that magni-
fies the stronger weights and shrinks the smaller ones
in a parametric, continuous fashion. This contrast en-
hancement is achieved by passing the linear weight val-
ues computed by the learning rule through a sigmoidal
nonlinearity of the following form:

Wi = —lw = (13)
1+ (072%4)
where ;; is the contrast-enhanced weight value, and the
sigmoidal function is parameterized by an offset § and
a gain +y (standard defaults of 1.25 and 6, respectively,
used here).

Appendix B: Basic Parameters

20 items at study: 10 target items (which are tested)
followed by 10 interference items (which are not tested)

20% overlap between input patterns (flip 16/24 slots)
Fixed high recall threshold, recall = .40

The following are other basic parameters, most of
which are standard default parameter values for Leabra:
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Parameter Value | Parameter Value
E 015 | @ 0.235
E; 015 | & 1.0
E, 1.00 | ge 1.0
Vrest 015 (© 0.25
T .02 vy 600
MTLC ¢ .004 | Hippoe .01
MTLC savgcor 4 Hippo savg_cor 1

Appendix C: Fast Weight Mechanisms

The fast weight values used in the list length simu-
lations are computed by adding in an extra weight value
f to the normal weight value w (computed just as in the
standard Leabra model), using a scaling term A, to pro-
duce an overall weight value W'

Wi = wij + Afiy (14)

The fast weight value is also updated just as the nor-
mal weight value is, with two exceptions. First, an offset
of .5 is subtracted from the fast weight value so that it is
naturally centered around O and maintained in the range
between -.5 and .5, so that when it is added to the reg-
ular weight value it acts like an offset from the normal
weight value. Second, the fast weight value decays back
to zero as a multiplicative function of its current value
(i.e., exponentially):

fij(t +1) = fi;(t) + ef[Afi; — dfi; ()] (15)

Where ¢; is the fast weight learning rate, d is the de-
cay rate, and A f;; is the weight change computed just as
Aw,-j.

The values of these parameters in the simulation
were: lambda = .009, ¢; = 1.0,d = .02.
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