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EXPERT BLIND SPOT

Abstract

Expertise in a content area is immensely valuable for effective teaching. However, domain expertise can also lead
educators to organize their pedagogy in accordance with the structure of the domain rather than the learning needs
of novices. We term this phenomenon expert blind spot and use historical, psychological, and textual evidence in
the area of mathematics education to explore its effect on curriculum and pedagogy. The existence of expert blind
spot in education poses a serious dilemma for pre-service and in-service teacher education programs, and for

educational researchers involved in curriculum development and teaching reform.



EXPERT BLIND SPOT

Expert Blind Spot: When Content Knowledge and Pedagogical Content

Knowledge Collide

The importance of content knowledge for proficiency in teaching practices is well documented. Research
suggests that more content knowledge is always better (Borko et al., 1992; Grossman, Wilson, & Shulman, 1989;
Shulman, 1986-a, 1986-b). But is this statement completely unimpeachable? Are there drawbacks for teaching
that are due to expertise in content areas? In this paper we draw on historical events, analyses of a corpus of
textbooks, and empirical studies of teacher cognition to show evidence for expert blind spot. We define expert
blind spot as the inability to perceive the difficulties that novices will experience as they approach a new domain
of knowledge. In education it is manifest as the tendency for content area experts to perceive the organization of
the domain of study as the central structure for organizing students’ learning experiences, rather than basing
instruction on students’ actual developmental processes. The existence of expert blind spot contributes to the
distinction made between content knowledge (e.g., knowing how to do mathematics) and pedagogical content
knowledge (e.g., knowing how to present mathematics to support novice learning; Shulman, 1986-a). In this
article, we do not contend that content knowledge is bad for teaching — it is clearly crucial. Rather, we raise the
issue that advanced content knowledge without concomitant advancements in the knowledge for how novices
actually learn within a content area can lead toward views of instruction that align more closely with the
organization favored by the domain experts than the learning needs of students.

In the following sections, we first briefly discuss the nature of content area expertise and its desirable and
undesirable traits. We next review prior research on the roles of content knowledge and pedagogical content
knowledge in expert and novice teaching practices. Then, we present evidence for the existence of an expert blind
spot in mathematics education, and discuss its impact on the structuring of students’ learning experiences. The
existence of expert blind spot poses a serious dilemma for pre-service and in-service teacher education programs,
and we offer several recommendations to address it. Finally, we raise questions of the views about learning and

teaching held by members of the educational research community, and acknowledge that these views, shaped by
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our own expert blind spots, may hinder progress in research and educational reform if they are allowed to go

uninvestigated.

The Nature of Expertise

Before the launching of the cognitive science research program in the 1950’s, experts were considered to be a
different breed from others. They were regarded as more intelligent than average people, and as having greater
memory capacity and superior intellectual resources (Bruer, 1993). The inferences seemed plausible: Experts in a
wide range of fields such as musical-and athletic performance, strategic games, and medical practice, reasoned
more accurately and more quickly, multi-tasked better, and assimilated far more information than non-experts
(Ericsson & Smith, 1991).

However, careful research into the reasoning processes of experts has shown that they function with the same
internal constraints as non-experts (Ericsson & Smith, 1991; Frensch & Buchner, 1999). Expert performance has
been shown to be due to vast amounts of well-organized, domain-specific knowledge; intense, long-term practice
within a narrow field; psychological and physiological adaptations; and the exploitation of regularities of familiar
tasks (Bereiter, 1993; Ericsson & Lehmann 1996; Glaser, 1990). For example, in a year-long study, one subject,
SF, was able to perform expert memory feats and reliably recall strings of numbers presented one every 2 seconds
at ten times the span of most people. Yet his capacity returned to the typical 7 items when letters were used in
place of digits (Ericsson, Chase, & Faloon, 1980). Even so, the demystification of expertise does not undermine
its significance or its allure for education, and many prominent researchers argue that our educational efforts
should be guided by expert achievements (Brown & Campione, 1994; Glaser, 1976; Hatano & Inagaki, 1986;
Soloman, 1993; Sternberg, 1996).

Expertise is not without its shortcomings, however. It has been shown that subjects with a large amount of
domain knowledge may actually be at a disadvantage when compared to novices on certain tasks such as forming
remote associations among disparate concepts. Wiley (1998) argued that this is because experts’ knowledge and

experiences tend to confine their efforts to highly probable events, and things like disparately related concepts
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may elude them. In other words, expert domain knowledge can act as a mental set, fixating experts on
unproductive solution paths during creative problem-solving tasks while novices may behave more flexibly.

Verbal “think aloud” reports also show that experts are less likely than novices to have access to memory
traces of their cognitive processes when engaged in tasks within their domain of expertise, because these highly
practiced cognitive and perceptual processes have become automatized (Ericsson & Simon, 1984; Schneider,
Dumais, & Shiffrin, 1984). This means there is nothing in memory for experts to “replay,” verbalize, and reflect
upon. Among novices, these processes tend to be deliberate and stepwise, and so they leave a memory trace that is
inspectable and verbalizable.

One particularly striking example of this phenomenon comes from a case study of an expert in literature
training to be a secondary school reading teacher (Holt-Reynolds, 1999). The subject matter expertise of this
teacher was well established in the study: She was a committed, life-long reader with straight A’s in her college
literature classes, and was valedictorian of a large high school. In interviews, she demonstrated sophisticated
literary analyses for a range of texts (using such techniques as inter-textual references, and parallel analyses of the
writings and the life and times of the author), and had a strong preference for poetry. Yet this woman’s expertise
did not translate into an understanding of how to model or instruct others in the reading process. Her own reading
and analytic processes were so well developed and automated that they left no memory trace to reflect upon. She
had no awareness of her own reading process — she did not even see reading as something that she once had
learned — and she was unable to transform her own disciplinary knowledge into a form that novice learners could
use and apply. As Holt-Reynolds (1999) described, this pre-service teacher apparently imagined all students to be
“replications of herself” (p. 41); she simply could not imagine some one not knowing how to read and needing to
be taught. This expert blind spot interfered greatly with the teacher’s professional development, and contributed to
a rather lackluster style of teaching, as evident from follow-up observations of her own classroom.

In summary, research on expertise shows that domain experts develop limited but powerful cognitive
structures that allow them to approach familiar tasks deeply and efficiently. This is an admirable achievement, and

we do not want to dismiss the importance of such an accomplishment. However, the development of domain



EXPERT BLIND SPOT

expertise leaves people largely unaware of the workings of their own expert behavior and the processes and

learning experiences that led to its development.

Content Knowledge and Pedagogical Content Knowledge in Teaching

Expertise in teaching is a complex phenomenon that appears to substantiate many of the general claims about
experts described above. Expert teachers differ from novices along several dimensions: They notice different
things about the classroom environment, do more planning and plan differently than novices, and organize their
knowledge of content, students, and pedagogy in ways that readily facilitate lesson planning and teaching (Borko
& Livingston, 1989). Expert teaching practices also seem to be more schema based, tending toward “routinization
and consistency” (Leinhardt, 1988, p. 147) to provide high quality instruction in an efficient manner. Even so,
characteristics associated with expert teaching behaviors, as with expertise in general, have been shown to be
quite fragile, and generally limited to familiar and well-practiced teaching situations (Borko & Livingston, 1989;

Rich, 1993).

Content knowledge

Expert teaching behavior is highly dependent upon efficient access to vast, well-managed knowledge
structures concerning, among other things, pedagogy and subject matter. For example, among Shulman’s (1987-b)
case studies from the “Knowledge growth in teaching project,” Grossman described the practices of a beginning
English teacher, Colleen, whose knowledge of literature was far better developed than her knowledge of grammar.

In teaching literature, she conducted open-ended discussions, welcoming student questions
and alternative interpretations of the text. When teaching a grammar lesson, Colleen looked like a
very different teacher. She raced through a homework check at the speed of light, avoiding eye
contact, and later admitted that she didn’t want to give students the chance to ask questions she
couldn’t answer. She later explained that in grammar, unlike literature, she wasn’t interested in
student opinion because the students were usually wrong. (Shulman, 1987-b, p. 15).
Others have also shown the strong tie between content knowledge and teaching practices. In their study of a

veteran fifth grade teacher, Stein, Baxter, and Leinhardt (1990) documented how gaps in the teacher’s knowledge
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about graphing and mathematical functions translated into lessons that missed valuable opportunities to form
conceptual connections, tended toward mathematical rules that had limited generalizability, and provided a weak
foundation for future conceptual development. Lee (1995) found that areas of science instruction that were
relatively unfamiliar resulted in one elementary school teacher’s excessive use of individual activities (e.g.,
seatwork) as opposed to group activities that might have led to discussions that strayed outside the teacher’s
comfort zone. Lee also observed that the teacher relied more heavily on the textbook to guide her curricular
choices in areas outside her expertise. This pattern was less evident in lessons on social studies, in which the

teacher held a bachelors degree.

Pedagogical content knowledge

While the importance of content knowledge for teaching has long been known, only recently has the
educational community become concerned with the knowledge teachers possess for how to teach that content to
novices. Shulman introduced the term “pedagogical content knowledge” (PCK) to describe the “blending of
content and pedagogy into an understanding of how particular topics, problems, or issues are organized,
represented and adapted to the diverse interests and abilities of learners for instruction” (Shulman, 1987-a, p. 8).
As the name implies, PCK is highly related to content knowledge. For example, physical education teachers with
greater content knowledge tend to be more comfortable in their teaching roles, and plan and execute lessons that
are more accommodating to students with a wide range of abilities (Schempp, Manross, Tan, and Fincher, 1998).
Science teachers with higher levels of chemistry knowledge also make better use of representations that are
helpful for concept learning, and are more sensitive to the learning obstacles that may arise for students
(Clermont, Borko, and Krajcik, 1994). Consequently, the expert chemistry teachers studied showed greater
flexibility than did non-experts in simplifying their science demonstrations to facilitate conceptual development in
their students.

However, it is not the case that educators who have an advanced and well-developed body of content
knowledge necessarily have well-developed PCK. As suggested in one study of science teaching, content

knowledge seems to be a prerequisite for well-developed PCK, but it appears that PCK develops out of classroom
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teaching experiences as well as subject area knowledge (van Driel, Verloop, and de Voss, 1998; see also Rich,
1993). This notion is underscored by a study in which teachers of varying levels of experience openly analyzed a
video of classroom events (Copeland, Birmingham, DeMeulle, DeMidiocaston, & Natal, 1994). Regardless of
their knowledge of the content, non-educators analyzed the instruction in relatively simplistic ways, describing
mostly surface-level characteristics of teaching behaviors. In contrast, educators with varying degrees of actual
experience tended to focus on the central purposes of the instruction and the connections between the teacher’s
actions and goals and student responses. The most highly experienced and most decorated teachers gave rich
accounts and also offered suggestions for the videotaped teacher for how to improve student involvement and

learning.

Expert Blind Spot in Mathematics Education

Pedagogical content knowledge has indeed been established as a principal component for effective teaching.
But if pedagogical content knowledge is the confluence of knowledge of content and pedagogy, then expert blind
spot is where these bodies of knowledge collide. In this collision, domain-centered expert knowledge dictates
pedagogical decisions even though it may conflict with the needs of learners.

We consider three arenas in which people with advanced content knowledge in mathematics tend to make
assumptions about student learning that are in conflict with students’ actual performance and developmental
trajectories. In this way, we highlight particular instances of “Expert Blind Spot” in mathematics instruction.
Later, we examine its potential impact on teaching practices, and on research on mathematics and teacher
education.

The first example takes an historical perspective and looks at the so-called “New Math” movement of the
1950°s in the USA. The second example looks at teachers’ and researchers’ intuitions regarding students’
mathematical development in the domain of early algebra. The third example examines the organizational
structure of algebra textbooks. Each example shows how advanced knowledge of mathematical content leads to
an expert blind spot for mathematical instruction, whereby knowledgeable mathematicians and educators believe

that, like themselves, mathematics learners will find symbolic formalisms of quantitative relations and
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mathematical concepts most accessible because of their relative parsimony — regardless of the empirical evidence.
This view of mathematics learning and development leads these experts to make non-optimal decisions about

curriculum and instruction.

New Math

The first example of expert blind spot we consider occurred half a century ago. In the 1950’s, the state of
mathematics achievement, interest, and instruction in the United States was scrutinized by the National Council of
Teachers of Mathematics (NCTM) in its Second Report of the Commission on Post War Plans (NCTM,
1945/1970-b), as well as by the University of lllinois Committee on School Mathematics (UICSM), and the
College Entrance Examination Board (CEEB) Commission on Mathematics. The declining enrollment and
interest toward mathematics education that began prior to WWII was still continuing, despite the growing
importance and marketability of a technical education. By the mid-1950’s, the popular press of the time, along
with the university mathematicians, declared that the content of K-14 mathematics education had been determined
by professional educators for too long, with insufficient progress. To turn this tide, academicians turned their
attention to school curricula (NCTM, 1970-a). The fix, they reasoned, was to base mathematics education on the
same foundational concepts that were being used to organize the domain of mathematics for university study — set
theory and number theory. In 1958 the NCTM, MAA, and AMS empowered the School Mathematics Study
Group (SMSG) to produce curricula based on this new conceptual structure. Led by mathematicians, the SMSG is
often regarded today as the face of the “New Math” movement. Thr group was very productive in generating
curricular outlines and guidelines, and in producing surveys, evaluations, sample textbooks, and enrichment
materials that served as a guide for commercial textbooks for many years to follow.

Critics of the New Math curriculum, such as Morris Kline of NYU, and others (e.g., NCTM, 1970-a), argued
that New Math pedagogy was poor and often absent; that the curriculum did not motivate students; that it
neglected areas of application; that the curricula did not promote active participation by students; and that it failed
to develop students’ intuitive notions of mathematics necessary to form the mathematical generalizations of

concern. Kline criticized what he saw as an over-emphasis on the formal structure and notation of set theory. He
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also criticized the lack of staff development for teachers, noting that teachers needed to be better informed about
the curricular structure and goals.

The New Math program failed, not simply because it offered a poor curriculum, but, as Roberta F lexer, a
professor of mathematics education states, because “the mathematicians [who organized SMSG] didn’t know a lot
about kids or teachers” (personal communication, Oct. 24, 1998). The mathematical content that formed the basis
of New Math had been designed by mathematicians to highlight the organization of the domain of mathematics,
with little regard to how that domain was to be learned by children, understood by teachers, or taught in
classrooms (Loveless, 1997). The mathematical experts who led the New Math movement believed that, by
revealing the logical foundations of mathematical structure to the learner, children’s understanding would
naturally follow Unfortunately, their expertise in mathematics made them blind to the struggles experienced by

non-expert teachers and students.

Views of algebra development among teachers and researchers

As a second example of expert blind spot, we consider contemporary educators’ views of algebra
development. In a recent study (Removed-For-Review-1), investigators compared algebra students’ problem-
solving performance to teachers’ expectations about problem difficulty. Elementary, middle, and high school
teachers (n = 105) ranked a set of problems from easiest for their students to solve, to most difficult. The high
school teachers in the sample all had college level mathematics degrees or the equivalent. Table 1 shows how the
problems given in the ranking task can be organized into six categories. The rows show problems that are either
arithmetic (with the result as the unknown) or algebraic (with a starting quantity as the unknown). The columns
show the same underlying mathematical relations in one of three forms: a contextualized verbal story problem, a
non-contextualized verbal word equation, and a symbolic equation.

Recent research on the problem-solving performance of ninth grade students in two samples (n; = 76, n, =
171; Removed-For-Review-2) who had completed a year of formal algebra instruction showed that students
generally found symbolically presented arithmetic and algebra problems to be harder than verbally presented

problems. These students correctly solved fewer than 30% of the symbolic equations, compared to 50% of the
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verbal problems, leading to a significant advantage for verbal problems in both samples. Students who could
solve verbal problems could not necessarily solve matched symbolic problems, but students who accurately
solved symbolic problems were very likely to solve the matched verbal problems. This led the investigators to
suggest that algebra students may follow a verbal precedence model of mathematical development, whereby
verbally based reasoning about quantitative relations precedes symbolic reasoning (Removed-For-Review-3;
Removed-For-Review-1). The results are also consistent with findings by Case and his colleagues in early number
development (Case, 1991; Case & Okamoto, 1996), rational number processing (Moss & Case, 1999), and
reasoning about functions (Kalchman, 1998; Kalchman & Case, 1998).

Analyses of students’ problem-solving strategies and errors (Removed-For-Review-4) revealed that students
generally tried to solve symbolic problems using symbolic strategies (e.g., symbol manipulations), which were
fraught with errors and misconceptions and were often abandoned. Verbal problems both with and without a
supportive context (i.e., both word equations and story problems in Table 1) tended to elicit more reliable
informal strategies, such as guess-and-test and working-backwards. (For a detailed account of students’ problem-
solving strategies, see Removed-For-Review-4).

When teachers were asked to judge the relative difficulty of the problems, their pattern of responses was clear.
First, teachers generally considered arithmetic (result-unknown) problems to be easier for students to solve than
algebra (start-unknown) problems, and this pattern was borne out in the student data. Second, among high school
teachers (n = 39), verbal problems (word equations and story problems like P1, P2, P4, and P$ of Table 1) were
considered to be more difficult for students than symbol problems (P3 and P6). In fact, high school teachers
considered algebra word and story problems to be most difficult for students. This directly contradicts the student
data described above. In their written comments and later interviews, high school teachers reasoned that symbolic
problems should be easiest for students because they were written in “pure math,” while verbal problems needed
to be translated to equations before being solved, and this required understanding the language on top of the
mathematics. A representative comment from one high school teacher defending her ranking order captures this

well:
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Students are used to expressions written algebraically [such as P3 in Table 1] and have
typically had the most practice with these. Translating straight from mathematical words [as in
the word-equation problems, P2 and P5] to mathematical expressions usually isn't too difficult.
Translating "English" or "non-mathematical" words is a difficult task for many students.

The difficulty ranking data were obtained concurrently with data on teachers’ beliefs. These data showed that
high school teachers tended toward a symbol precedence account of mathematical development, held symbolic
forms of reasoning in the highest regard, and held the efficacy of students’ informal solution methods in relatively
low regard. This seemingly traditional view of mathematics instruction was accompanied by a relatively reform-
minded view of student learning. Teachers across the grade levels tended to agree with statements like
“Mathematical understanding is more clearly shown in a student's reasoning than in the final answer a student
produces.” This suggests that expert blind spot is highly robust, and can persist even in the face of conflicting
views such as those advanced in current educational reforms (e. g., NCTM, 2000).

In contrast with the views of high school teachers, middle school teachers (n = 30) with less post-secondary
mathematics education predicted that students would find story and word problems to be easiest. The belief
instruments showed that these teachers held students’ intuitions in higher regard, and they believed that students
were more likely to invent effective problem-solving methods that were not symbol based (Removed-For-
Review-1). In addition, middle school teachers were far more accurate than high school teachers at predicting the
relative order of students’ problem-solving performance on the six problem types (Kendall’s rank statistic 7 (6) =
.733, p = .034). Elementary teachers’ predictions were marginally predictive (7 (6) = .67, p = .06). Surprisingly,
the ranking provided by high school teachers was not significantly related to student performance at all, despite
their more extensive mathematics education, providing further support for expert blind spot hypothesis that
greater mathematics knowledge may move these teachers further away from the learning experiences of novices.

To test the scope of this bias toward symbolic precedence, researchers also studied the decision making of a
small group of mathematics education researchers (n = 35) who focused on algebra reasoning and instruction
(Removed-For-Review-4). Like the teachers, the majority of the respondents (about 66%) accurately predicted

that algebra (start-unknown) problems would be consistently harder for students to solve than arithmetic (result-
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unknown) problems. As a group, researchers were more likely than teachers to judge equations as difficult. But,
like the teachers, the researchers still expected equations to be easier for beginning algebra students to solve than
verbal problems. Only 23% of the researchers ranked equations as harder than word and story problems.

The findings on teachers indicated that they generally held contemporary views of pedagogy, student
learning, and mathematics activities. Yet, mathematically knowledgeable teachers at the high school level did not
seem to be guided by these views when they judged how students would perform on a specific set of arithmetic
and algebra problems. Their views of student development, along with those of educational researchers, seemed
to be guided instead by notions of the centrality of symbolic formalisms and procedures to the field of

mathematics, despite student performance data to the contrary.

Sequencing of topics in algebra textbooks

As a third piece of evidence for the expert blind spot hypothesis, we consider the sequencing of topics in
algebra textbooks. Researchers in one study (Removed-For-Review-5) analyzed the organization of ten common
algebra textbooks, and found that textbooks tended to place symbolic problems and activities (e.g., solving
algebra equations) before verbally based tasks. The sample of books included one pre-algebra textbook and one
algebra textbook from each of five major publishers (Glencoe/MacMillan/McGraw-Hill; Harcourt Brace
Jovanovich; Houghton/Mifflin; McDougal, Littell; and The University of Chicago School Mathematics Project),
which comprised al large portion of the US algebra textbook market.

Textbook sections were chosen as the unit of analysis because new material is introduced at this level.
Sections devoted exclusively to the review of prior content were excluded from the analyses. In all, 1,083
textbook sections were analyzed. Each section was coded for certain patterns of presentation by examining the
“written exercises” portions of the sections.

Topic sequencing within the textbook sections was examined to determine if new topics tended to be
presented first symbolically and then verbally, as would be expected by a symbol-precedence view. The first
written exercise in each section was first coded as either symbolic (e.g., an equation) or verbal in presentation

format (e.g., a story problem). If a written exercise was presented only in Arabic numbers or algebraic notation it
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was coded as symbolic. If a written exercise contained words and phrases, it was coded as verbal. After the first
item was coded, the remaining section items were compared to determine the code for the entire section. If the
first written exercise for a section was coded as symbolic, and all of the later exercises in that section were also
symbolic, then the section was coded as Symbol-to-Symbol (SS). If a verbal problem followed the initial
symbolic exercise, the section was coded as Symbol-to-Verbal (SV). The same method was used for sections that
began with verbal problems: Verbal-to-Verbal (VV) sections were all verbal, and Verbal-to-Symbol (VS) sections
introduced topics verbally, and then moved on to symbolic problems. From this coding, one of four mutually
exclusive pattern designations was possible for each textbook section. Textbooks would be consistent with the
symbol precedence hypothesis evident among educators if SV patterns occurred more frequently than VS
patterns.

Among the 1,083 chapter sections analyzed, 45% of them (487 sections) initially presented activities
symbolically, followed by verbal problems as “applications” or “challenge problems.” Fewer than 18% of the
sections (194) presented verbal problems before symbolic problems. This pattern differed significantly from what
one would expect given no symbol-precedence bias, as indicated by a statistical analysis on the 681 sections that
followed both the SV and VS patterns, Chi-square (1, N=681) = 134.81, p <.001). Symbol-to-symbol (11%) and
verbal-to-verbal (26%) patterns made up the remaining 402 sections of the textbooks. These results indicate that a
symbol-precedence view was the governing model of students’ algebraic development used by the publishers in
that sample.

The investigators (Removed-For-Review-5) argued that the dominant SV curricular organization portrays
symbolic problems as easier for students to solve, and verbal problems as more demanding. However, when
compared to student performance, the symbol precedence view describes the performance of far fewer students
than the verbal precedence model. A quantitative comparison of developmental models of mathematics showed
that 55% of all the students in one sample (n = 171) could be described by either a verbal precedence or a symbol
precedence trajectory, because of overlapping states in the hypothetical trajectories. However, only 7% uniquely

fit the symbol precedence model, whereas 36% uniquely fit the verbal precedence model (Removed-For-Review-
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4). Thus, according to the original student data, the verbal precedence model provides a better quantitat{ve fit than
the symbol precedence model.

The curricular approach taken by textbook authors and publishers is yet another example of expert blind spot,
in which the symbolic formalisms that help mathematicians to structure their own mathematical thinking are
presumed to provide the best model for mathematics pedagogy and the development of mathematical reasoning.
This stands in contrast to empirical data on student performance showing that verbal reasoning tends to precede

symbolic reasoning.

Discussion

These examples of expert blind spot highlight the distinction between content knowledge and pedagogical
content knowledge that have been previously made by Shulman (1987) and others. This distinction has proven to
be a powerful one, and has helped to differentiate between knowledge needed to perform well within a domain
and the knowledge that is specific to teaching a domain to new learners. The educational community must also be
aware that highly developed content knowledge can subtly influence pedagogical content knowiedge and teacher
decision making. We have presented evidence from historical, psychological, and textual sources indicating that
domain expertise in mathematics can lead educators to adopt a symbol precedence view of mathematical
development because of the primacy and enormous utility of symbolic formalisms within the field of
mathematics. We share the goal to advance learners’ understanding of and facility with symbolic representations
within mathematics. However, we recognize that students do not tend to develop these formal representations
first, and that symbolic reasoning may trail or even depend upon the prior development of verbally based
representations and procedures (Kalchman, Moss, & Case, 1999; Removed-For-Review-3; Removed-For-
Review-4).

In the current zeitgeist of educational reform, many see a need for teachers to have greater understanding of
their subject areas in order to be more effective instructors. Some see subject matter preparation as paramount,
and put pedagogy in a distant second place (e.g., the Holmes Group, 1986). This view is echoed in the current

“Math Wars” between calculation-centered and activity-centered curricula. It has led at least one educationally
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oriented foundation president to push for higher standards for teachers’ content knowledge, and to advocate that
the American mathematics research community (“Number one in the world”) lead the reform of our mathematics
curricula (Goldman, 1997).

There is no doubt, in our view, about the essential role of content knowledge for effective teaching, and we
certainly do not argue that more highly developed content knowledge is bad. Yet we raise the issue that
advancements in content knowledge without collateral advances in pedagogical content knowledge can lead
educators to adopt expert-based views of curricula that shape their pedagogical practices, even though they may
be at odds with students’ actual learning processes. This tension between content knowledge and pedagogical
content knowledge creates a dilemma for teacher educators who must conceptualize and design programs that
address both content and pedagogy. Furthermore, this dilemma may not be unique to mathematics instruction, and
seems to be evident in other areas of education, such as history (Quinlan, 1999), physical education (Schempp,
1998), language arts (Holt-Reynolds, 1999), and medical school (Krisman-Scott et al., 1998).

We recommend several ways to address this dilemma. First, teacher education programs should provide
prospective teachers with the experiences they need to develop a strong base of pedagogical knowledge. Content
knowledge is necessary, but not sufficient for this purpose. Extensive practicum experiences observing students’
classroom-based learning and analyzing student work must be a part of every teacher education program. In fact,
contrary to the directives of the Holmes Group (1986), we believe these experiences should be in place as early as
possible in the teacher education program, so that pedagogical content knowledge develops concurrently with
subject-matter knowledge. This way, the two bodies of knowledge do not form in isolation from one another and
thus have a greater likelihood of becoming convergent.

Second, teacher education programs and the associated Arts and Sciences programs that provide content-
based courses should be designed toward what Hatano and Inagaki (1986, 2000) term “adaptive expertise.” We
have seen that expertise can operate outside of the practitioner’s awareness, and can instill the rigidity of behavior
that accompanies all automated processes. In most cases, expertise develops through the deliberate practice of
routinized problems that can eventually be solved using schema-based approaches (Ericsson & Smith, 1991;

Hatano & Inagaki, 1986). In contrast to routinized expertise, adaptive expertise is aimed at how people deal
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effectively with unfamiliar situations in dynamic and unpredictable environments, such as becoming a life-long
learner or teaching in authentic settings. Whether one becomes a routine expert or an adaptive expert depends on
the nature of the extended practice. If practice is oriented exclusively toward skillfully but repeatedly solving a
fixed class of problems, people tend to become experts characterized by fast, accurate performance and automatic
procedures. They become efficient problem solvers, but also become rigid and relatively non-reflective. When
flexibility and adaptiveness are the hallmarks of success, experts tend to focus on understanding the meaning of
problem representations and solution procedures, and are more able to adapt their knowledge to ever-changing
conditions (Hatano & Inagaki, 2000).

This distinction between routine expertise and adaptive expertise is related to Berliner’s (1986) distinction
between “knowing that” and “knowing how.” Well-developed content knowledge (knowing thar) is certainly
essential for the development of either routine or adaptive expertise. But in isolation, content knowledge
education tends to lead to routinized expertise. If teachers are to develop a flexible and responsive base of
pedagogical content knowledge, content knowledge training must be coupled with educational experiences that
focus on teaching for student understanding, rather than exclusively on rapidly generating correct answers or
covering the curriculum. Teachers in these settings become more reflective about their own teaching, more
sensitive to their own intellectual processes and the obstacles to learning, and more aware of how they know what
they know and do what they do (i.e., Berliner’s knowing how). These teachers also become more attuned to what
students actually understand about new material and how students learn (Zech & Davies, 2000).

In addition to developing adaptive expertise, both new and practicing teachers need to be aware that they may
hold untested and inaccurate assumptions about student learning, no matter how self-evident these notions may
seem. As a third recommendation, we believe that teacher education programs should draw upon empirical
support for instructional prescriptions, and should instill in pre-service teachers a critical stance toward prescribed
teaching methods. Practicing teachers should consider formative assessment to be an integral and frequent part of
their instructional practices (e.g., Shepard, 2000). One approach to this is the use of “embedded assessments,” in
which curricula and assessments are derived from the same tasks and activities (Snow & Mandinach, 1991).

Despite their infrequent use, Black and Wiliam (1998) showed strong positive effects of embedded assessment on
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student learning. We believe that embedded assessments can improve the accuracy of teachers’ conceptions of
students’ learning and development. Teacher educators should strive to develop embedded assessment tools that
can be used by teachers in their classrooms to challenge and advance their own knowledge of student thinking and
development.

One example of using classroom-based formative assessment techniques is the use of “Problem Design”
materials (Removed-For-Review-6). In this approach, teachers give students comparison tasks (such as pattern
generalization tasks with either tables of values or with manipulatives) to see which yields the most student
participation, the richest mathematical discourse, and the greatest conceptual learning. Problem design has its
roots in curricular design and experimental assessment design aimed at diagnosing what factors make tasks
difficult for students. The problem design approach allows teachers to systematically compare the impact of
instructional tasks on learning during classroom lessons. Glaser (1976) notes that periods of reform invite teachers
to experiment with their instructional practices as they reflect upon and revise their teaching. We see embedded
assessment practices as necessary to counter-balance expert blind spot and identify inaccurate assumptions
educators may hold about student reasoning.

Lastly, we acknowledge the limitations of the knowledge and intuitions held by members of the educational
research community. There is data showing that we, too, are susceptible to expert blind spots and that we
sometimes hold inaccurate assumptions about student behavior that can negatively influence our research
activities and curricular contributions. For example, as reported above, researchers in mathematics education also
tend to hold to a symbol precedence view of algebra development that guides their decision making. This may
also be true for educational researchers in other content areas. Because of the active role that the research
community plays in classroom instruction and teacher education, unchecked assumptions at this level invite
misconceptions that may influence curriculum design and the development of new teachers’ pedagogical content
knowledge. Members of the research community must exercise a strong critical stance on taken-for-granted views
of learning and approaches to instruction. Assessment and experimentation are natural mechanisms for

challenging false assumptions. In addition, researchers and practitioners must actively exchange research findings,
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classroom observations, and theoretical advances to further refine the knowledge base of the entire educational

community.
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Tables

Table 1: The design structure of the six problem types given to students and teachers, with example entries.
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Presentation — Verbal problems Symbolic
Unknown value Story Word Equation Equation
Result-unknown  P4. When Ted got home from his  P5. Starting with P6. Solve for X:

(Arithmetic)

waiter job, he took the $81.90 he
earned that day and subtracted the
$66 he received in tips. Then he
divided the remaining money by
the 6 hours he worked and found
his hourly wage. How much per

hour does Ted make?

81.9, if I subtract 66
and then divide by (81.90-66)/6=X
6, I get a number.

What is it?

Start-unknown

(Algebra)

P1. When Ted got home from his
waiter job, he multiplied his
hourly wage by the 6 hours he
worked that day. Then he added
the $66 he made in tips and found
he earned $81.90. How much per

hour does Ted make?

P2. Starting with P3. Solve for X:
some number, if |
multiply it by 6 and X*6+66=81.90
then add 66, I get

81.9. What number

did I start with?
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