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Abstract

The present study investigated middle school students’ abilities to work within and
translate among tabular, graphical, verbal, and symbolic representational formats. Seventh
and eight grade algebra students were more successful at solving problems using a
representation than at translating among representations. However, performance was
strongly dependent on the particular representational formats used. Student performance
improved with instruction, and the greatest gains were found for an experimental
curriculum (Bridging Instruction) that focused on both linear and nonlinear relations, and
made explicit links to students’ invented strategies and representations. Students’
performance suggests that there are often significant gaps between their abilities to
comprehend and to produce representations. Finally, students appear to attain fluency with
instance-based representations (such as tables and point-wise graphs) before holistic

representations (such as symbolic equations and verbal expressions).
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One important aspect of mathematical competence is the ability to reason with and
among multiple representations. The importance of this skill, which we call representational
fluency, is becoming increasingly recognized as the mathematics education community
struggles to reform algebra instruction and curricula. In the Principles and Standards for
School Mathematics, the National Council of Teachers of Mathematics (2000)
acknowledges that there has historically been a “preoccupation with number” (p. 211) and
calls for an increased focus on a variety of representations, including graphs, tables,
symbolic expressions and verbal expressions, as well as the interconnections among them.

Members of the research community have also trumpeted both the need for and the
benefits of making these connections (e.g., Ainsworth, 1999; Brenner, et al., 1997;
Confrey & Maloney, 1996; Dossey, 1997; Knuth, 2000). For example, Knuth (2000)
showed that advanced high school algebra students who are familiar with equations and
graphs do not readily connect graphical representations such as the Cartesian coordinate
system to their knowledge of equations, and fail to use graphs even when graphical
solutions are easier and more efficient. He suggests this may be due to an almost exclusive
curricular and instructional focus on symbolic representations and manipulations.
Ainsworth (1999), in his analysis of types and trade-offs of multiple representations,
argues that translation across representations should be supported because it can maximize
learning outcomes. Kaput (1989) suggests that mathematical meaning making is actually
built upon the ability to translate within and among various representations, and that
fundamentally, meaning is based on a “relational semantics” between “linking
representations” including internal mental representations and physical systems as well as
tables, symbols, and graphs (p. 168). Moschkovich, Schoenfeld, and Arcavi (1993) argue
that competence in the mathematics of functions depends upon moving flexibly among
representations. They go so far as to use the criterion of connections among representations

to evaluate curricula and student assessments. At the same time, they document just how
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rare and difficult this level of competence is among students.

Research from a psychological perspective has also shown important benefits of
multiple representations for learning and performance. For example, Tabachneck and
colleagues (1992; Tabachneck, Leonardo, & Simon, 1994, 1995) showed how an expert in
economics achieved an understanding of an economic situation that was thought to be out
of the reach of novices by combining graphical and verbal representations. Schwartz
(1995) found that the availability of multiple representations played a key role in students’
generation of abstract representations. Dyads of students working together were more
likely to generate abstract representations than were matched individuals working alone,
and Schwartz attributed this difference to their need to communicate across the multiple
representations generated by the dyad members. Evidence from both behavioral research
(e.g., Griffin, Case, & Siegler, 1994; Stenning & Oberlander, 1995) and neuroscience
(e.g., Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999) point to a dual system of
linguistic and spatial representations that supports mathematical reasoning. Still,
psychological models of how people integrate multiple representations in support of
problem solving reveal that this process can be very cognitively demanding (e.g., Stenning

& Oberlander, 1995; Tabachneck, et al., 1994, 1995).

Focus of Research

Despite the perceived and documented benefits of representational fluencys, little is
known about the various performance tradeoffs for different representations used by
mathematics students, or about how well students move among various representational
formats during problem solving. Prior studies of these questions have had some key
limitations, emphasizing study of mature students and adults, typically in laboratory and
“pull-out” settings (see Grouws, 1992, for review). One important exception is an in-class,
one-month intervention conducted by Brenner and her colleagues (1997) with English and

Spanish-speaking students. The intervention emphasized translation among different
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representations (tables, graphs, words, equations) as students discussed, represented, and
solved problems with meaningful contexts in a collaborative, guided discovery setting.
Students in the treatment condition improved more than comparison students on a variety of
word problem solving and representational use measures, regardless of ESL status.
Motivated by the promise of studies such as Brenner and colleagues (1997)
and the need for more sustained, in-school research on students’ representational use, the
current study was carried out in a classroom setting. It addresses two sets of questions,
described below, about the performance of middle school students in mixed 7"/8" grade
classes using and translating among various representations (words, tables, graphs, and
algebraic symbols) as they reason about quantitative problems. For each set of questions,
we investigated the impact of a theoretically-guided approach for classroom instruction
lasting 9 weeks and taught by the regular classroom teacher that is aimed at the

development of algebraic reasoning prior to formal, pre-algebra instruction.

Working with representations in support of problem solving
- How is student problem-solving performance influenced by representational
formats?

- How is representation use enhanced by instruction?

Translating among representations
- How well can early algebra students translate among representations?

- How is fluency among representations enhanced by instruction?

These four questions were studied with respect to two curricula. Connected
Mathematics — Seventh Grade Series (Lappan et al., 1998a, 1998b) was the standard
curriculum for the schools, and so served as the control condition. This reform-based

curriculum takes a conceptual approach and emphasizes collaborative, discussion-oriented
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activities that use data gathering and representation as well as problem solving to make
mathematical representations and procedures meaningful to students. Connected
Mathematics (CM) is widely used in the U.S. and has been shown to be an effective
curriculum for teaching middle school mathematics (Hoover, Zawojewski, & Ridgway,
1997).

The alternative curriculum, Bridging Instruction (Koedinger & Nathan, 1999;
Nathan & Koedinger, 2000c), also takes a collaborative, problem-solving based approach
to develop a conceptual understanding of mathematical representations and procedures.
However, Bridging Instruction (BI) starts with students’ informal approaches to problem
solving and translation tasks. These intuitive notions serve as the foundation for classroom
teaching and discussion that help to conceptually bridge between students’ informal
mathematical ideas and the target, formal representations and procedures. For example, the
iterative nature of the guess-and-test approach that students commonly invent to solve
algebra problems before they have had algebra instruction serves as a starting point to
introduce the notion of variable.

The BI method takes an approach that is highly inductive and reflective of students’
ideas and problem-solving processes. BI grew out of research on students’ pre- and post-
instructional algebraic reasoning that showed the prevalence and power of students’
invented solution strategies and representations that came from outside of their formal
instruction (Hall et al., 1989; Kieran, 1988, 1992; Koedinger & Nathan, 1999; Koedinger,
Alibali & Nathan, 2000; Nathan & Koedinger, 2000a, 2000b; Tabachneck et al., 1994).
Results from some of these earlier studies challenged deep-seated views of instruction and
curricular sequencing, such as the idea that instruction in symbolic problem solving should
precede word problem solving (e.g., Nathan & Koedinger, 2000b; Nathan, Long, &
Alibali, in press). To date, BI has been used with a small number of 6", 7", and 8" grade
students in previous teaching experiments to study its impact on student performance and

on teachers’ understandings of student reasoning and development (Masarik & Nathan,
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2000; Nathan, 1999). Generally, bridging from students’ intuitive conceptions of
quantitative relations to more formal representations proves to be a powerful and practical
way to make symbolic representations and procedures meaningful to students (Nathan &

Koedinger, 2000c).

Method

Participants

Ninety 7" and 8" grade students in four mathematics classrooms in a middle/upper-
middle class school district in the Midwestern U.S. participated in this study. Eight
students were excluded from the final analyses because they switched classrooms in a way
that altered their condition assignment during the course of the study. Of the remaining 82
students, 70 took both the pretest and posttest assessments and therefore are included in all
analyses that involve participants as the unit of analysis. An additional 12 students took
only one of the two assessments and were absent for the other. Data from these 12 students
is included in analyses that involve items as the unit of analysis. Thus, the item analyses are
based on the performance of 82 students.

Two of the classrooms were designated control classes and implemented the
Connected Mathematics seventh grade curriculum (Lappan et al., 1998a, 1998b), while the
other two classrooms were designated experimental classes and implemented the Bridging
Instruction approach described in the introduction. The same teacher taught all four classes.
All were mixed 7"/8" grade classes. The proportion of 7" graders was not identical across
conditions (CM: 70.3% 7th graders; BI: 60.6% 7th graders); however there was no
significant difference in performance between 7" and 8" graders either at pretest or

posttest, and thus grade level was not considered as a factor in the analyses.
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Materials

The materials used in this study consisted of an assessment instrument that was
given twice to students, before and after intervention, and the curriculum, which varied for
the Connected Mathematics (CM) and Bridging Instruction (BI) conditions.

Assessment design. The assessment instrument used a factorial design to allow
systematic examination of the effects of problem linearity (linear or nonlinear), slope-sign
(increasing or decreasing function), input representation (graph, symbol, or word
expression), and (for translation items) input-output pair (a graph, symbol, or word
expression input paired with a graph, symbol, table, or word expression output) on student
performance. For each linearity-slope-sign pair (linear increasing, linear decreasing,
nonlinear increasing, and nonlinear decreasing), two “cover stories” were developed. For
example, all linear increasing problems were presented either in the context of Luke riding a
scooter and keeping track of the distance he traveled, or Cassandra selling phone cards and
keeping track of the relationship between the cost of the card and the number of minutes
available on the card. Nine problems were constructed for each of the eight cover stories
resulting in a total of 72 different problems.

These 72 problems were distributed among twelve different forms with three linear
and three nonlinear and three increasing and three decreasing problems per form. These
twelve forms were broken into six pairs, with forms in each pair having identical
mathematical structure but different cover stories. For example, one form presented a
linear, increasing, graph input-table output problem using the “scooter” cover story while
its pair presented a linear, increasing, graph input-table output problem using the “phone
card” cover story.

All problem situations were first introduced in words. Problems then presented the
“input” representation (i.e., a graph, symbolic equation, or word expression) and asked
students to respond to three items. On linear problems, the first item asked students to use

the input representation to find a specific value of the dependent variable given a specific
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value of the independent variable, while the second item asked students to find a specific
value of the independent variable given a specific value of the dependent variable. On
nonlinear problems, the first item asked students to use the input representation to find a
specific value of the dependent variable given a specific non-zero value of the independent
variable, while the second item asked students to find the value of the dependent variable
when the value of the independent variable was zero. In both cases these first two items are
considered problem-solving items. Regardless of problem linearity, the third item asked
students to represent the underlying functioﬁal relationship expressed in the problem using
a representation different from the one initially presented. This was considered a translation
item. Appendix A provides a detailed look at the linear and nonlinear problems presented to
students and the many forms that they took when different input-output pairs were
considered.
Curriculum differences. The dimensions used to compare the curricula are shown in
Table 1. The Connected Mathematics curriculum was used regularly by the mathematics
teacher, and so served as the control curriculum. CM emphasizes how words, tables,
graphs and algebraic symbols can depict data for linear relations, and how these
representations are interrelated. Across all of its strands, the CM curriculum emphasizes
“moving flexibly between graphic, numeric, symbolic, and verbal representations and
recognizing the importance of having various representations of information in a situation”
(http:/fwww.math.msu.edu/cmp/Process.html). The Algebra strand, one of the four that
specify the curriculum content across the grade levels, targets, among others, the following
four competencies (http://www.math.msu.edu/cmp/Strand. html):
- Using tables, graphs, symbolic expressions, and verbal descriptions to describe
and predict patterns of change in variables.
- Recognizing, in various representational forms, patterns of change associated

with linear, [and by 8" grade] exponential, and quadratic functions.
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- Using numeric, graphic, and symbolic strategies to solve problems involving
linear [for 7" grade], exponential, and quadratic functions [by 8" grade].
- Solving linear equations and [by 8" grade] simple quadratic equations by

manipulating symbols and by using tables and graphs.

Place Table 1 about here

Participants in the experimental condition used the Bridging Instruction (BI)
approach (Nathan & Koedinger, 2000c). Like CM, BI emphasizes representational
fluency. However, as described in the Introduction, BI distinguishes itself from CM in that
the teacher explicitly draws on students’ intuitive mathematical notions and invented
solution strategies and representations as starting points for instruction. Thus, students’
intuitive notions of how to organize data, how to depict it pictorially, and how to describe
both linear and nonlinear relationships among variables served as the precursor to the use
of tables, graphs, and equations, respectively. Nonlinear relations addressed both quadratic
and exponential functions. Quadratic functions were taught using Kalchman’s method of
building graphs by recomposing manipulatives (1998; Kalchman, Moss & Case, 2001) and
was based on students’ grounded notions of are. Exponential relations were taught in the

context of splitting and doubling, based on work by Confrey and Smith (1995).

Procedure

Students in all four classes were given the written assessments at pretest and,
approximately 10 weeks later, at posttest. Each assessment form consisted of six problems
that tested students’ problem-solving abilities (solving for an unknown value) and their
abilities to translate from one mathematical representation to another. The regular classroom

teacher administered the assessment instrument during the normal time scheduled for
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students’ mathematics class. Students were given 35 minutes to complete the examinations

and were allowed to use calculators.

Scoring and Coding

Problem Solving. As noted, the problem-solving portion of the assessment
presented students with a representational input (a graph, symbolic equation, or word
expression) and asked them to use this representation to find a specific value of the
dependent variable given a specific value of the independent variable and vice versa. Given
a symbolic equation or word expression as input, answers were coded as correct only if
they were exact, with the exception of one problem for which the story context permitted
rounding. Given a graph as input, answers were coded as correct if they fell within 1/8
inch of the algebraically correct value on the coordinate system. Such error was considered
acceptable because students were not given corresponding algebraic equations along with
the graphs and thus had to rely solely on the graphs themselves to find solutions.

Translation. As noted, translation problems asked students to create a
representational “output” (a graph, symbolic equation, table, or word expression)
containing information mathematically equivalent to that given in the “input” representation
presented in the problem-solving portion of each problem. Given the diverse nature of the
outputs, separate criteria for correctness were established for each.

Graphs. To qualify as correct, graphs needed to have at least three correct data
points and no incorrect data points. It was not necessary for the axes to be labeled with
words or for the points to be connected with a line or curve.

Symbols. To qualify as correct, symbolic equations needed to be completely
accurate. It was acceptable for words to be used in place of variables (e.g., distance = 8 x
min).

Tables. To qualify as correct, table outputs needed to have at least three accurate

entries (ordered pairs) and no inaccurate entries. These entries needed to be exact with the
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exception of those generated from graphs, for which the previously described 1/8-inch rule
was employed. It was not necessary for table columns to be labeled.
Word Expressions. To qualify as correct , word expressions needed to accurately
describe the computational strategy necessary to solve the given problem(either entirely in

words or in a word-symbol combination).
Results

The results are divided into two main sections. The first section presents pretest and
posttest results for the problem-solving portion of the study, and the second section does
the same for the translation portion of the study.

The data were analyzed in two ways: by participant and by test item. Item analyses
considered the following main effects and their interactions: condition, date (i.e., pretest
versus posttest), linearity, slope-sign, and representation. Because representation and
slope-sign were not balanced across participants, the participant analyses considered only

the main effects of condition, date, linearity, and their interactions.

Problem Solving

Pretest performance. Students in the control group performed slightly better on
problem-solving items at pretest than students in the experimental group: (Control M =
52.2%, SD = 34.3% vs. Experimental M = 45.9%, SD = 36.1%). This difference in
performance was not significant in the participant analysis, F(1, 68) = 2.63, p = 0.11,
though it was significant in the item analysis, F(1, 12) = 5.83, p = 0.03.

Both linearity and representation influenced students’ success on the problem
solving tasks. Students performed better on linear problems than nonlinear problems
(linear M= 58.3%, SD = 32.1% vs. nonlinear M= 39.7%, SD = 36.0%), , F(1, 68) =
47.50, p <0.0001 across participants, and F(1, 12) = 10.07, p = 0.01 across items.

Students succeeded more often when the given representation was a graph than when it
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was a symbolic equation or word expression, regardless of linearity, F(2, 12) =95.43,p <
0.0001. Slope-sign (increasing versus decreasing) did not significantly influence students’
problem-solving performance.

In addition to the main effects of linearity and representation, the interaction of these
factors was also found to be significant, F(2, 12) = 18.62, p < 0.0001. As shown in
Figure 1, linearity did not influence student performance when problems were presented in
graphs or symbols (M = 86.0%, SD = 12.7% on linear graph problems and M = 85.3%,
SD = 12.2% on nonlinear graph problems; M = 24.0%, SD = 21.0% on linear symbol
problems and M = 20.8%, SD = 19.8% on nonlinear symbol problems). However, for
problems that were presented in words, students succeeded more often on linear problems
(M = 65.1%, SD = 22.3%) than non-linear problems (M = 13.0%, SD = 12.3%).
Examining this interaction from a different perspective, we found that students succeeded
more often on linear problems that were presented in words than on those that were
presented in symbols, whereas on nonlinear problems the reverse was found to be true.
These results lend support to previous findings that document a verbal advantage for
problems of relatively low complexity, but a symbolic advantage for problems of relatively
high complexity (Koedinger, Alibali, & Nathan, 2001). This study showed that, given a
fairly simple linear problem situation, students succeed more often when the problems are
presented verbally (e.g., as word expressions or story problems) than when they are
presented in symbols. However, for more complex problems, students perform better
when problems are presented symbolically (e.g., as algebraic equations). The present
results replicate the earlier findings. They also extend the results to include graphical
representations, suggesting that, like tables, graphs are highly reliable for low-complexity
tasks, and, like equations, graphs scale nicely as complexity increases. This dual nature of
graphs is elaborated upon in the Discussion section.

Problem solving gains. Considering the pretest and posttest data together, we again

found significant effects of linearity, representation, and the linearity by representation
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interaction. Because these factors were significant at pretest as well, we focus in this
section on students’ problem-solving gains from pretest to posttest, considering this main
effect of date and its interactions with condition, problem linearity, and problem
representation.
As expected, students performed better at posttest than at pretest, F(1, 68) = 11.62,
p =0.001 across participants and F(1, 12) = 4.99, p = 0.05 across items (Pretest M =
9.0%, SD = 35.2%; Posttest M = 53.7%, SD = 29.9%). However, this main effect of date
was qualified by significant interactions with both problem representation and condition.
Students made greater pre-to-post gains on symbolic problems than on graph and word
expression problems, as revealed in the problem representation by date interaction, F(2,
12) = 6.374, p = 0.01. It should be noted that there was little room for improvement on
graph problems, as pretest scores were already quite high (M = 85.7%, SD = 12.3%; see
figure 1).
Pretest to posttest gains also varied by condition. Students in the BI group made
greater gains from pretest to posttest than did students in the CM group (see figure 2), F(1,
68) = 4.01, p = 0.05 across participants, and F(1, 12) = 9.478, p = 0.01 across items. In
fact, performance in the control group actually dropped from 52.2% success (SD = 34.3%)
at pretest to 50.6% success (SD = 28.4%) at posttest, while performance in the
experimental group improved from 45.9% success (SD = 36.1%) at pretest to 56.8%
success (SD = 31.3%) at posttest. It thus appears that the experimental instruction
positively influenced students’ problem-solving performance. We next consider the specific
nature of these improvements and how they compare to improvements made by the control
group (see figure 2).
Gains for students in the control classes were almost exclusively limited to linear
problems in which the mathematical representation presented was a symbolic equation.
This is perhaps not surprising given the control classrooms’ use of the Connected

Mathematics seventh grade curriculum, which focuses largely on linear relationships
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represented symbolically and graphically. However, the gains in symbolic-linear problems
were offset by losses in word-linear problems.

On the other hand, student gains in the experimental classes that used Bridging
Instruction were much broader, with improvement dispersed across both levels of linearity
and both verbal and symbolic problem representations. This is consistent with the attention
the experimental instruction gave to exposing students to multiple mathematical
representations and patterns of change. These gains also make clear that seventh and eighth
grade students can in fact improve their reasoning about nonlinear functions in various
representational formats.

As noted, the control curriculum did not address nonlinear relationships during the
time in which the study took place, whereas the experimental curriculum addressed both
linear and non-linear relationships. As both curricula were implemented over the same 9-
week period, it is clear that the experimental curriculum devoted less time to linear
functions relative to the control curriculum. However, despite the control curriculum’s
exclusive emphasis on linear situations and the experimental curriculum’s more dispersed
focus, gains on linear problems were actually greater for the experimental group. The
control group dropped from 62.0% correct (SD = 31.2%) at pretest to 61.3% correct (SD =
22.2%) at posttest, for a percentage loss of 0.7% (those losses occurring on graph and
word expression problems), while the experimental group improved from 54.7% correct
(SD =33.2%) at pretest to 64.8% correct (SD = 26.4%) at posttest, for a percentage gain
of 10.1%. Within the same time period students using BI also showed a marked
improvement solving problems with nonlinear relations (pretest M = 37.0%, SD = 37.3%

and posttest M = 48.8%, SD = 34.2%).

Place Figure 2 about here
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Finally, item analyses of problem-solving gains also uncovered a significant three-
way interaction among problem representation, linearity, and date, F(2, 12) =4.62,p =
0.02. Given a graphical representation, student performance held fairly steady across date
and linearity (most likely due to ceiling effects). Given a word expression representation,
students showed greater pre-to-posttest gains on nonlinear problems than linear problems.
Given a symbolic representation, students showed greater pre-to-posttest gains on linear

problems than on non-linear problems, which remained largely unchanged.

Translation

Recall that translation problems are ones in which the student is asked to produce a
representational “output” (a graph, symbolic equation, table, or word expression) that
contains information mathematically equivalent to the representational “input” (a graph,
symbolic equation, or word expression) presented in the problem. Example translation
items are shown in Appendix A.

Translation pretest. Overall translation pretest performance was quite poor, with
slight success only with a small number of input-output pairs. Overall mean scores were
11.2% correct (SD = 20.7%) for the control group and 8.3% correct (SD = 20.4%) for the
experimental group. Based on the pretest data in Figure 3, one can see that success varied
across the input-output pairs. Student performance differed significantly from zero only on
graph-to-table and word expression-to-symbol translations, with performance on word-to-

table translations being marginally better than zero.

Place Figure 3 about here

Students performed better on translation items that involved linear relations than on
items that involved non-linear relations, F(1, 68) = 12.36, p = 0.0008 across participants

and F(1, 4) =21.91, p = 0.009 across items.
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Translation gains. Considering the pretest and posttest data together, we again
found that linearity had a significant main effect on students’ translation performance, F(1,
68) = 23.27, p < 0.0001 across participants and F(1, 4) = 30.63, p = 0.005 across items.
Slope-sign did not significantly impact translation performance, as was found with
problem-solving items.

Overall, students were more successful on the translation items at posttest than at
pretest, F(1, 68) = 42.86, p < 0.0001 for participant and F(1, 4) = 14.89, p = 0.02 for
item. However, students in the BI group made greater gains than students in the control
group, as revealed in tests of the condition by date interaction, which was significant in the
participant analysis, F(1, 68) = 5.94, p = 0.02, and which approached significance in the
item analysis, F(1, 4) = 5.76, p = 0.07. The control group experienced a 5.6% increase in
correct responses, while the experimental group experienced a 17.6% increase. Gains for

each input-output combination are presented in Figure 4.

Place Figure 4 about here

Although students’ translation performance did improve from pretest to posttest,
overall posttest scores were still quite low, as seen in Figure 5. As at pretest, the given
input-output pair again influenced students’ translation success at posttest. Students in the
CM group learned to translate from any of the input representations to a table of values.
Students in the BI group made even broader improvements, learning to translate from any
of the input representations to tables of values and to graphs, as well as between word
expressions and symbols. This finding suggests an emerging reciprocity between words
and symbols that may be based on their mutual compatibility as holistic and propositional

representations.
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Place Figure 5 about here

CM students’ relatively good performance on table-output translations and BI
students’ relatively good performance on table-output and graph-output translations invites
us to consider the arithmetic nature of these tasks. To succeed on each of these tasks,
students needed to generate legitimate instances from the given function. For graphs, this
required reading and recording specific points (instances) in the function along the plotted
contour. In contrast, to succeed with word and symbolic equations students needed to
substitute values into the given relation and record the corresponding value. The relatively
large performance gains on instance-based input-output relations are in stark contrast to the
small gains observed with more holistic verbal expressions and symbolic equations.

This contrast between success on instance-based versus holistic tasks can be
highlighted not only across representations but—in the case of graphs—within
representations. Recall that in order to qualify as correct, graphs only needed to have three
correct data points and no incorrect ones. It was not necessary for the axes to be labeled
with words, for the points to be connected with a line or exponential curve, or for the y-
intercept to be included. Had these additional requirements been in place, the graph
production task would have required a more holistic understanding of the representation
and the function it described.

We recoded the graph-output translation data using these more “strict” criteria, to
evaluate whether students also possessed a more holistic understanding of the function
described. With these new holistic criteria in place, performance across dates and
conditions was very poor, with both groups having 0% success at pretest, and neither
group significantly above zero at posttest (Control M = 4.2%, SD = 8.3%; Experimental M

=4.3%, SD = 8.1%). Clearly, a holistic understanding of graphical representations was far
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less attainable than an instance-based one. The comparative demands of point-wise and

holistic representations are addressed further in the Discussion section.

Discussion

We now reconsider the empirical findings in light of our original research questions
and discuss the broader implications of representation use in terms of students’ quantitative

problem solving and learning.

How Problem-Solving Performance is Influenced by
Representation: The Representation-Complexity Interaction

The first research question explored how problem-solving performance is
influenced by representation. The findings suggest that students’ initial problem-solving
performance is heavily influenced by the specific characteristics of the various
representational formats that are commonly found in algebraic activities. Chief among these
findings is that problem-solving performance using pre-constructed graphical
representations exceeds that of all of the other matched representations. Performance
success with graph-based problems averaged 85.7%, fully 46.7% ahead of word
expressions, the closest contender, and 63.3% ahead of symbols. This graphical advantage
holds regardless of slope-sign (i.e., increasing or decreasing) for both linear and nonlinear
functions.

Algebra instruction in classrooms and in textbooks emphasizes use of symbolic
representations (Mayer, Sims & Tajika, 1995). Students’ level of success with pre-
constructed graphs suggests that graphs could play a more central role in the development
of early algebraic reasoning than they do in current curricula. In the language of Bridging
Instruction, graphs may serve as a conceptual grounding for new concepts and procedures,
just as verbal representations have in previous investigations (Koedinger & Nathan, 1999;

Nathan & Koedinger, 2000c).
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The second finding that warrants attention concerns the representations that best
serve linear and nonlinear problem solving. Pretest data showed greater success when the
problems were presented in a verbal format for linear problems than when they were
symbolically presented. However, when problems dealt with nonlinear relations, symbols
proved to be more effective than verbal representations. As noted, this result replicates
earlier findings showing a complexity-based trade-off among representations. Previous
work (Koedinger, et al., 2001) has shown that simple algebra problems involving a single
occurrence of an unknown variable are solved most readily when the problems are
presented in words. However, for high complexity algebra problems that used multiple
occurrences of the unknown (e.g., x - 0.15x = 38.24), students performed better when
they problems were presented symbolically. This interaction between complexity and
representation was due in part to the fact that verbal problem formats tend to elicit highly
reliable arithmetic-based solution strategies (such as guess-and-test and working
backwards) , which work well when solving simple relations. However, with increasing
complexity the verbal formats quickly become computationally unwieldy, while symbol-
based representations “scale up” far better. This representational trade-off was apparent
among remedial college students (n = 153), and college students with extremely strong
mathematical reasoning skills (mean SAT = 719 out of 800; n = 65).

In a parallel fashion, the current study showed (see Figure 1) that verbal
representations are most effective when solving the lower complexity linear problems
(linear word pretest M = 65.1%, SD = 22.3%; linear symbol pretest M = 24.0%, SD =
21.0%), whereas symbolic representations are more effective than words for higher-
complexity non-linear problems (nonlinear word pretest M = 13.0%, SD = 12.3%;
nonlinear symbol pretest M = 20.8%, SD = 19.8%).

In addition to replicating the basic representation-complexity interaction, the current
study extends it by including graphical representations. As is evident in Figure 1, graphs

“scale” nicely with the shift in complexity. This makes sense as reading a point off the
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graph is not much more difficult for the nonlinear graphs used in the assessment than for
the linear graphs. It also underscores the high utility of graphical representations across a

range of relations.

How Representation Use is Enhanced by Instruction: Bridging
Instruction and Contrasting Cases

Our second research question explored the effect of a 9-week instructional
intervention on students’ use of various representations for algebraic problem solving.
Instruction in both the nationally marketed Connected Mathematics program (Lappan et al.,
1998a, 1998b) and the newly developed Bridging Instruction approach (Koedinger &
Nathan, 1999; Nathan & Koedinger, 2000c) led to measurable gains in students’ algebra
problem solving. Gains were small for graph-based problems, most likely because students
had little room for improvement on average, given their strong pretest performance (Figure
1). Gains with symbolically presented problems were the largest, and showed that both
instructional approaches improved students’ abilities to reason about equations.

However, some important differences emerged between the two conditions.
Students in the classes that used the BI approach showed larger gains than the students in
the CM classes, even though all were taught by the same teacher. CM students, who
received instruction exclusively on linear relations, only showed gains in linear, symbolic
problem solving (from 28.9% to 46.8%, a 17.9 point gain). In contrast, BI students, who
received instruction in both linear and non-linear relations during the same time period,
showed comparable gains in linear, symbolic problem solving (from 19.0% to 39.2%, a
20 point gain), superior gains in linear problem-solving overall (collapsing across
representational formats, +10.1%), and significant gains in non-linear problem solving
(collapsing across representational formats, +11.8%). The data also showed that whereas
improvement in the CM group was limited to symbolic representations, students in the BI

condition showed gains in symbol use as well as significant gains in word expressions,
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particularly for non-linear problems (nonlinear CM word gain = -1.5%, nonlinear BI word
gain = 22.8%).

One interpretation of these findings is that the BI approach engendered more
learning than CM in the same amount of time — an extremely positive result for a
theoretically based curriculum unit. We present some plausible hypotheses for why BI may
have produced larger and broader gains in problem solving performance. First, it is
possible that teaching students about linear and non-linear functions is beneficial to their
learning of each. Each type of function may actually serve as a contrasting case (Schwartz
& Bransford, 1998) for the other, reinforcing important common concepts while helping
students attend to the important differences between them. It is also plausible that by
explicitly connecting algebraic representations and procedures to students’ invented
strategies and representations, the Bridging Instruction approach provides a conceptual
grounding for the meaning of these representations that supports fluency. This would
corroborate and extend prior studies of early algebra learning that built on students’
invented strategies and representations for algebra story problem solving (e.g., Nathan &
Koedinger, 2000c). The present study does not allow us to make any strong claims about
the individual and combined effects of bridging or of teaching linear and non-linear
functions in tandem. Further studies of the contributions of each of these toward the

development of students’ representational fluency are needed to be more conclusive.

How Well Early Algebra Students Translate Among Representations:
Differential Demands Between Comprehension and Production

The third question that guided this research focused on students’ pre-intervention
fluency among graphical, tabular, verbal and symbolic representations. The data on
translation tasks makes it clear that representational fluency is an advanced skill: students
struggled to move among tabular, graphical, verbal and symbolic forms of representation

far more than they struggled to use individual representational formats to solve problems.
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At pretest, performance was essentially at zero for all but a few types of translation
problems. Students could translate from verbal rules to symbolic equations (performing at
about 30%), and could map from graphs to tables (at about 20%). Students are better at
linear than non-linear relations, but there is tremendous room for improvement in all areas
of translation that we explored.

These data point to an important difference in the psychological demands between
comprehending a representation and producing one. Of particular interest here is the
differential performance in graph use between translation and problem solving. Students
could use pre-constructed graphs at about the 80% level for problem solving. However,
their performance levels dropped to about the 12.6% level when they had to produce them.
Pre-intervention graph use is generally poor among US students, owing, in part, to its
relative absence in standard curricula (e.g., Demana, Schoen & Waits, 1993). Tasks that
use pre-constructed representations that serve as effective memory cues allow students to
access knowledge that would otherwise remain forgotten (cf. Tulving & Thompson,

1973). Yet the differing demands for problem solving and production-intensive tasks can
be overlooked by practitioners. This important distinction must be acknowledged whenever

students’ representational fluency is being assessed.

How fluency among representations is enhanced by instruction

The final question that guided this research had to do with the effects of instruction
on students’ representational fluency. At posttest, students in both groups succeeded on
problems that required them to produce tables of values from words, graphs or equations.
Students in the BI group, in addition to those gains, also succeeded on problems that
required them to produce graphs from word expressions and symbolic equations. Gains on
symbol and word output tasks were relatively minimal. The patterns of success that
contrast high table and graph output with low symbol and word output suggest that

attributes of the representations themselves are important factors in students’ learning.
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One interpretation of these data is that students gained most when they could
generate representations that were instance-based (i.e., point-wise) or local in their
representational scope. Tables of values naturally have this instance-based emphasis, as
reflected by the scoring criteria. Consequently, successful performance can be achieved by
successfully specifying independent points through predominantly arithmetic means. In
contrast, students struggled with more holistic representations, such as word and symbolic
equations. Holistic representations like equations require students to abstract from specific
instances and capture the covariation of a function for all values (in this case, the infinitely
large set of all real numbers) in a concise, unified, and syntactically accurate description.
Graphs present an interesting case within the instance-based/holistic dimension as
they can take on a local flavor (as with scatter plots and bar graphs) or can be holistic (as
with line graphs). To further understand students’ performance with representations along
this dimension, we compared experimental students’ post-intervention abilities to produce
proper graphs when they were judged with instance-based and holistic scoring criteria.
When experimental students’ graphs were evaluated from a more lenient, point-wise
perspective, students exhibited relatively high levels of performance (M = 29.5%). When
they were evaluated with the more stringent, holistic criteria, performance was much lower
(M =4.3%).
Our findings are consistent with Kalchman, Moss, and Case’s (2001; Kalchman, -
1998) theory of developmental progression for children’s understanding of mathematical
functions. Kalchman’s model holds that, in the minds of students, procedurally based (i.e.,
computational) representations, such as tables of instances, and analogical representations
of mathematical functions, such as bar graphs, developmentally precede and form the basis
for the more integrative, geometric representations, such as line graphs. From this, one
would expect to see greater success with instance-based graph and table output problems as
shown in the current work. Our work also shows that graphs can be used in either an

instance-based or holistic fashion, which follows from its twofold nature as an integrative
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representation. This duality is not as apparent with symbolic, word, or table
representations.

A plausible hypothesis is that tables and instance-based graphs may naturally serve
as entry points into the mathematics of covariation, which serves as a central idea for the
mathematics of functions. Graphs may be particularly effective in helping students to
bridge to more holistic representations. Ultimately, they may help students to learn the
symbolic formalisms and reap their rewards in the face of increasingly complex

relationships.

Conclusion

In sum, the present study investigated early algebra students’ abilities to work
within and translate among various representational formats. On the whole, students were
more successful at solving problems than at translating among representations. However,
performance was strongly dependent on the particular representational formats used.
Student performance improved with instruction, and the greatest gains were found for an
experimental curriculum (Bridging Instruction) that focused on both linear and nonlinear
relations, and the made explicit links to students’ invented strategies and representations.
Students’ performance suggests that there are often significant gaps between their abilities
to comprehend particular representations and their abilities to produce those
representations. Finally, students appear to attain fluency with instance-based
representations (such as tables and point-wise graphs) before they attain fluency with more
global, holistic representations (such as symbolic equations and verbal expressions). These
findings highlight the challenges of fostering representational fluency in early algebra

instruction, and indicate areas for future curricular development.
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Appendix A

Table Al. Example of multiple forms of a linear problem.

Problem Section

Information Presented

Situation introduced

Cassandra sells phone cards to college students so they can make long
distance calls for a good price. Each card has a base charge and a per-

minute rate.

Input presented

Graph Inpur: Below is a graph you could use to find the price of the

card if you know the number of minutes on it.

9.00 g

0,00 biisirti s sosersstnimmisememnopmmmmrsrspamimese e v oot sttt

20 30 40

Minutes

Symbol Input: The expression below shows how to find the price of
the card, p, of you know the number of minutes on it, n.

p=0.99 +0.12n

Word Expression Input: The description below tells you how to find
the price of the card if you know the number of minutes on it.

To find the price of the card, you multiply the number of minutes by the

per-minute rate of $0.12, and then add the base charge of $0.99.

Part a (problem solving)

What would be the price of a card with 30 minutes?

Part b (problem solving) How many minutes would be on a card that cost $6.99?
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Part ¢ (translation) Graph Output: Make a graph that you could use to find the price of the
card if you know the number of minutes. (Examination packets had
graph paper included.)

Symbol Output: Write a mathematical expression that tells how to find
the price of the card if you know the number of minutes.

Table Output: Make a table of values that you could use to find the price
of the card if you know the number of minutes.

Word Expression Output: Describe in words how to find the price of

the card if you know the number of minutes.
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Table A2. Example of multiple forms of a nonlinear problem.

Problem Section

Information Presented

Situation introduced

Marine biologists are concerned that the population of sea otters is

rapidly decreasing in one area.

Input presented

Graph Input: Below is a graph that you could use to find the population
of sea otters in that area, if you know the number of years since the

study began.

Number of Sea Otters

Years

Symbol Input: The expression below shows how to find the population
of sea otters in that area, p, if you know the number of years since the
study began, n. p = 1000(1 - .10)"

Word Expression Input: To find the population, you take 1 minus 0.10
and raise it to the power of the number of years since the study began,
and then you take the result and multiply it by the starting population of
1000.

Part a (problem solving)

What was the population of sea otters after 5 years of the study?

Part b (problem solving) What was the population of sea otters when the study began?
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Part ¢ (translation) Graph Output: Make a graph that you could use to find the population
of sea otters if you know the number of years since the study began.
(Examination packets had graph paper included.)
Symbol Output: Write a mathematical expression that tells how to find
the population of sea otters if you know the number of years since the
study began.
Table Output: Make a table of values that you could use to find the
population of sea otters if you know the number of years since the
study began.
Word Expression Output. Describe in words how to find the population

of sea otters if you know the number of years since the study began.
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Figure Captions

Figure 1. Proportion of problem-solving pretest items solved correctly by problem
representation and linearity.

Figure 2. Control and experimental group gains on symbol and word expression
representations by linearity.

Figure 3. Students’ pretest success producing graph, symbol, table, and word
expression outputs given graph, symbol, and word expression inputs. Asterisks (*)
indicate means significantly different from zero, p < .05.

Figure 4. Student gains producing graph, symbol, table, and word expression
inputs given graph, symbol, and word expression inputs.

Figure 5. Students’ posttest success producing graph, symbol, table, and word
expression outputs given graph, symbol, and word expression inputs. Asterisks (*)
indicate means significantly different from zero, p < .05. For Word input to Symbol output

for the control group, p < .10.
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Table 1. Comparison of the experimental and control curricula.

Assessment Dimensions BI Curricula CM Curricula
Use of Representations
Words <All> V,M
Tables B&P, PC, CP, MT V.M
Graphs B&P, BS, CP, MT V.M
Symbols BS, PC, PF, CP, MT V.M
Translation between <All> V,M
representations
Linear B&P, PC, CP, MT V.M
Non-linear’ BS, PC, PF, CP, MT --
Increasing functions B&P, BS, PF, CP, V,M
MT
Decreasing functions PC, MT M**

B&P = Bridges and Pennies; BS = Building Squares; PC = Paper Cutting; PF =

Paper Folding; CP = Cube Problem; MT = Matching Task.

Vi= “Variables and Patterns” (CM) unit i

Mi = “Moving Straight Ahead” (CM) unit i

* CMP Investigation 5: “Exploring Slope”

** Note: The “Bridges and Pennies” activity was adopted from the CM curriculum

T quadratic, cubic, logarithmic relations.
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