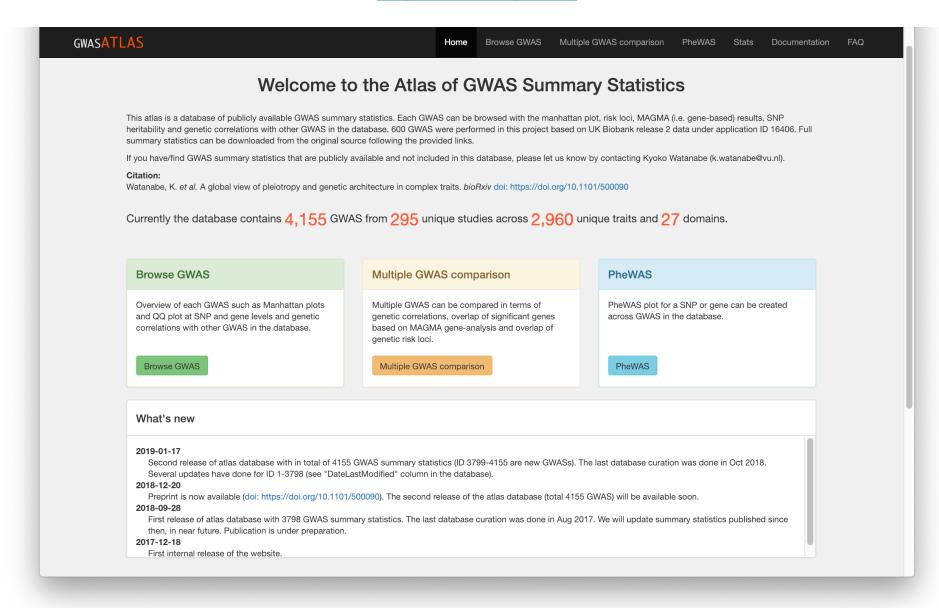
How do we go from genetic discoveries from GWAS/WGS/WES to mechanistic disease insight?

Danielle Posthuma

Part III – Pathway analysis using MAGMA

Practical session: Gene-set analysis using MAGMA

https://ctg.cncr.nl/software/magma


MAGMA gene-set analysis

- Software tool for gene and gene-set analysis
 - Command-line interface

- Input
 - Genotype and phenotype data
 - Or: (full) published GWAS results (plus reference data)
 - Gene definitions
 - Gene sets


Downloading summary statistics: GWAS ATLAS

http://atlas.ctglab.nl

Downloading summary statistics: GWAS ATLAS

http://atlas.ctglab.nl

MAGMA gene-set analysis

- Three main steps
 - Annotation: map SNPs onto genes
 - Gene analysis: compute association of genes with phenotype
 - Gene-set analysis: test gene associations in gene sets
- Generalized gene-set analysis
 - Continuous 'sets'
 - Conditional and joint analysis
 - Interaction analysis

Annotation

Map SNPs to a gene based on physical location

- If located inside the transcription region of the gene
- Optionally, if located in window around the gene
 - Especially upstream of transcription start site
- A SNP can be mapped to multiple genes

Gene-based analysis

- Four models available in MAGMA
 - Principal component linear regression
 - Performs test on explained phenotypic variance (F-test)
 - Requires raw genotype data
 - SNP-wise models: compute SNP associations with phenotype first
 - SNP-wise Mean: performs test on mean SNP association
 - SNP-wise Top: performs test on strongest SNP association
 - SNP-wise Multi: combines SNP-wise Top and Mean
- The main question for all gene analysis: what sensitivity do you want?
 - Also with regard to allele frequency, functional annotation, etc.
 - In general, no 'best' or most powerful model

Association	In gene set	
1.32	Yes	
-0.76	Yes	
0.48	Yes	
1.12	Yes	
-0.02	Yes	
-1.04	No	
0.86	No	
-1.27	No	
0.41	No	
0.11	No	
	1.32 -0.76 0.48 1.12 -0.02 -1.04 0.86 -1.27 0.41	

An analysis of genes:

- Genes are data points in the analysis
- The gene set is a grouping variable
- Genetic association with the phenotype is the outcome variable

So: gene-set analysis is like a t-test

- Testing the mean association of genes in the gene set
 - One-sided test
- Two kinds of t-test...

Gene ID	Association	In gene set		
1	1.32	Yes]	
2	-0.76	Yes		
3	0.48	Yes	7 }	$\mu_{\mathcal{S}}$
4	1.12	Yes		
5	-0.02	Yes		
6	-1.04	No		
7	0.86	No		
8	-1.27	No	7 }	μ_0
9	0.41	No		
10	0.11	No		

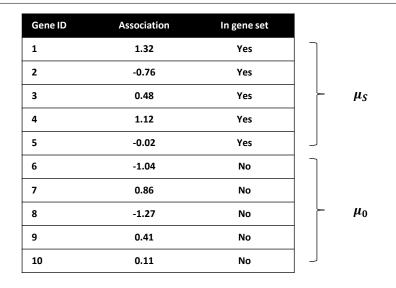
Self-contained analysis:

- Is the mean genetic association of genes in the gene set greater than 0?
 - H_0 : $\mu_S = 0$

Competitive analysis:

- Is the mean genetic association of genes in the gene set greater than that of genes outside the gene set?
 - H_0 : $\mu_S = \mu_0$

Clinical study

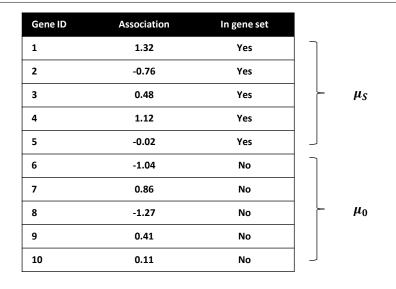

Patient	Improvement	Treatment		
1	1.32	Yes	7 7	
2	-0.76	Yes		
3	0.48	Yes	7 }	μ_T
4	1.12	Yes		
5	-0.02	Yes		
6	-1.04	No	7 7	
7	0.86	No		
8	-1.27	No	7 }	$\mu_{\mathcal{C}}$
9	0.41	No		
10	0.11	No		

Self-contained analysis:

- Is the mean improvement of patients in the treatment group greater than 0?
 - H_0 : $\mu_T = 0$

Competitive analysis:

- Is the mean improvement of patients in the treatment group greater than that of patients in the control group?
 - H_0 : $\mu_T = \mu_C$



Self-contained analysis:

• Is the process of the association of genes in the gene set greater than 0?

•
$$H_0$$
: $\mu_S = 0$

You need a baseline or reference group to say anything about the treatment, or the gene set

Competitive analysis:

 Is the mean genetic association of genes in the gene set greater than that of genes outside the gene set?

•
$$H_0$$
: $\mu_S = \mu_0$

Only competitive analysis allows any inference about the gene set itself

See you at the MAGMA practical!