How do we go from genetic
discoveries from GWAS/WGS/WES to

mechanistic disease insight?

Danielle Posthuma

Part |1 — looking for convergence of gene
functions — gene-set analysis




Making sense of GWAS results for complex traits

- Annotate SNPs to genes, based on physical location or
regulatory relation

- Conduct gene-based analyses

- Conduct gene-set analyses



Testing for functional clustering of SNP

assoclations

Single SNP analysis

Gene-based analysis

Gene-set analysis

- GWAS
- single SNPs

SNP-set or gene-based analysis with gene as unit of
analysis

- SNPs annotated to genes based on e.g. position,
eQTL association, or chromatin interaction

- whole genome

Gene-set analysis with sets of genes
as unit of analysis

- targeted gene-sets/pathways

- all known gene-sets/pathways



Testing for functional clustering of SNP
associations

Single SNP analysis

Using quantitative characteristics of genes
e.g. expression levels or probability of

Gene-based analysis being a member of a gene-set
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Gene-set analysis Gene-property analysis




Gene-based analysis

* Instead of testing single SNPs and annotating GWAS-significant ones
to genes, we test for the joint association effect of all SNPs in a gene,
taking into account LD (correlation between SNPs)

* No single SNP needs to reach genome-wide significance, yet if
multiple SNPs in the same gene have a lower P-value than expected
under the null, the gene-based test can result in low P



SNP Manhattan plot
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Gene-based analysis

Unit of analysis is the gene

*Pro’s:
* reduce multiple testing (from 2.5M SNPs to 23k genes)
e accounts for heterogeneity in gene
* Immediate gene-level interpretation

Cons:
e Still a lot of tests



Gene-set analysis

Unit of analysis is a set of functionally related genes
Pro’s:
*Reduce multiple testing by prioritizing genes in biological
pathways or in groups of (functionally) related genes
*Increases statistical power
*Deals with genic heterogeneity
*Provides biological insight




Gene-set analysis

Cons

* Crucial to select reliable sets of genes!
—Different levels of information
—Different quality of information



Choosing gene-sets

Gene-sets can be based on e.g.
-protein-protein interaction
-CO-expression

-transcription regulatory network
-biological pathway

-Functional relations

Transcriptional

regulatory network

Virus-host network

Metabolic network

Protein-protein interaction

Disease network
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Protein interaction networks

Using Y2H or gy oo el
Immunoprecipitations
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Co-expression networks

Human Gene Coexpression Network

mitochondrial metabolism
and redox homeostasis
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https://doi.org/10.1371/journal.pone.0003911.g006

Based on function, Gene Ontology, or SYNGO

Neuron
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Knowledge Base for the Synapse
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Tools for statistical analysis of gene-sets

INRICH, ALIGATOR, MAGENTA, FORGE, SETSCREEN, DAPPLE, DEPICT,
MAGMA etc etc

-> do they all provide the same answer..?



Statistical issues in gene-set analyses

* Self-contained vs. competitive tests

* Different statistical algorithms test different
alternative hypotheses

e Different statistical algorithms have different
sensitivity to LD, ngenes, nSNPs, background h?



Self-contained vs. competitive tests

Null hypothesis:

Self-contained:
HO: The genes in the gene-set are not associated with

the trait

Competitive:

HO: The genes in the gene-set are not more strongly
associated with the trait than the genes not in the
gene-set



Why use competitive tests

* Polygenic traits influenced by thousands of SNPs in hundreds of
genes

* Very likely that many combinations (i.e. gene-sets) of causal
genes are significantly related

* Competitive tests define which combinations are biologically
most interpretable



Polygenicity and number of significant gene-sets in
self-contained versus competitive testing

b Self-contained a Competitive
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For self-contained methods, rates increase
with heritability, whereas they are constant
for competitive methods.

De Leeuw, Neale, Heskes, Posthuma. Nat Rev Genet, 2016



Different statistical algorithms test different
alternative hypotheses

Strategy Alternative hypothesis

Minimal P-value At least one SNP in the gene or
gene-set is associated with the trait

Combined P-value The combined pattern of individual
P-values provides evidence for
association with the trait



Different tools are differentially affected by
gene size

Gene size
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Different tools are differentially affected by LD
between genes

Mean type-1 error rate

Linkage disequilibrium between genes
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Different tools are differentially affected by the
number of genes
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Issues of interpretation in gene-set analysis
(GSA)

GSA tests for accumulation of genetic association in the set,
which may be because:

—Direct effect: the set (or biological function) itself is
involved

—Confounding: the set itself is not involved, but many genes
in the set overlap with genes in another set that is involved

—Interaction: the set itself is partially involved, with the
effect specific to a subset defined by another gene set
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Four general confounding scenarios
(A-D)

* Overlap with actually associated
set induces spurious association

* Interaction can be seen as special
instance of subset confounding

Example:

* Brain-expressed genes are strongly
enriched for schizophrenia-
associated genes

* Gene sets reflecting brain-specific
processes and pathways
predominantly contain brain-
expressed genes

* Such gene sets will therefore show
increased association with SZ even
if completely irrelevant to SZ
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Conditional gene-set analysis

Confounding among gene sets can be tested using a conditional
analysis
In MAGMA: linear regression framework, can add potential
confounders as covariates in the analysis to evaluate their
influence

When analysing a ‘causal’ set A and an overlapping set B:

Conditioning set B (on A) will make its association disappear,
whereas conditioning set A (on B) will only reduce its
association

Confounding remains problematic if ‘causal’ set not available



Interaction gene-set analysis

* Interaction between gene sets A and B can be tested as an
extension to the conditional analysis model in MAGMA

* The interaction term is the set AB of genes shared by A
and B

* The interaction can be evaluated by testing AB
conditional on Aand B

* A gene set interaction arises if the genetic associations are
specific to genes that share the same multiple functions



Interpreting GWAS outcomes

Genetic variations

'll |4||"

molQTL mapping

W

Chromatin
interaction

mapping

Gene-set analysis

Prioritized genes Figure from Uffelmann & Posthuma, Biol Psychiatry, 2020
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