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What have we |learned so far?

v Theory underlying genetic association

v’ Setting up a genome-wide association study

v Quality control for genetic datasets and analysis
v Conducting genetic association

v’ Several post-gwas analyses including SNP h?2, causal modeling, gSEM

Primary outcome of a genome-wide genetic association:
- Manhattan plot

- Summary statistics that include an effect estimate and significance of association per variant
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How to gain mechanistic insight from genetic
discoveries

Mendelian or monogenic disorders (influenced by one mutation in one gene)

* Segregation analysis (1970s — onwards) detected several genes co-
segregating with disease

* For each disease a mutation in one gene is sufficient to express that
disease

* Functional experimentation on these genes involved e.g. knock-out models
to investigate that gene’s function

* This has been successful for e.g. PKU, Huntington’s disease, breast cancer.

* Any mechanistic insight guides treatment development



How to gain mechanistic insight from genetic
discoveries

Polygenic disorders (influenced by 100’s of variants each of small effect)

GWAS (2006s — onwards) detected several genetic loci associated with diseases
that are polygenic

For each disease a single genetic variant is not sufficient to express that disease,
instead 100’s of variants cumulatively increase risk for disease

Detected loci contain 100’s of variants, sometimes no genes are implicated

Functional experimentation on these variants is not straightforward, mechanistic
insight is not easily obtained for polygenic traits



GWAS hits for polygenic traits often not
directly useful for functional follow-up

4 issues:

1. GWAS hits for polygenic traits mostly outside genes, or in non-coding genic
regions, with likely regulatory functions that are currently unknown

2. GWAS hits for polygenic traits have small effects, making them unsuitable
for small-scaled/under-powered functional studies

3. SNPs are correlated (LD) which complicates pinpointing ‘the’ causal SNP

There are 100’s of genes involved in polygenic traits — a single gene will not
provide the whole picture
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Zooming in on a locus
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SNPs are correlated (LD) which complicates

pinpointing ‘the’ causal SNP

The genotypes on SNPs close to each other tend to be
correlated due to linked segregation

Therefore, statistical associations will be picked up with
all SNPs that are correlated with the causal SNP



SNPs are correlated (LD) which complicates
pinpointing ‘the’ causal SNP

How to prioritize most likely causal SNPs/genes?
- Take the gene closest to the most significant SNP
Often, but not always seems to be a good guess

- Statistical fine-mapping

Model the known correlation structure against the observed pattern of association
values to pinpoint the most likely causal SNPs assuming N causal SNPs, can be
integrated with functional information (tools FINEMAP, PAINTOR)

- Functional annotation

Variants with a known effect on transcription or protein structure are more likely to
be causal than non-functional ones (tools FUMA, VEP, ANNOVAR)



Functional categories of SNPs

For a SNP to be potentially causal, it needs to affect the gene, either via structure or
via regulatory functions
-> Step 1 after GWAS: annotate associated SNPs with known functions

Protein Coding
— SNPs in exonic regions may alter protein structure and/or function e.g nonsense SNPs or missense SNPs

Splicing Regulation
— SNPs in splice sites may disrupt splicing regulation, resulting in exon skipping or intron retention
— They can also interfere with alternative splicing regulation by changing exonic splicing enhancers or silencers.

Transcriptional Regulation

— SNPs in transcription regulatory regions (e.g. transcription factor binding sites, CpG islands, microRNAs, etc.)
can alter binding sites, and thus disrupt proper gene regulation.

Post-Translational Modification

— SNPs in protein-coding regions may alter post-translational modification sites, interfering with proper
posttranslational modification.



Interpreting GWAS risk loci

 Are there functional variants in the GWAS risk loci?
E.g. nonsynonymous coding SNPs

* Are there SNPS that are likely to be deleterious?
E.g. SNPs with high (>~10) ‘CADD’ scores

* Are there SNPs likely to have regulatory effects on genes?

E.g. SNPs with low RegulomeDB scores, or eQTLs (SNPs previously associated
with differences in RNA levels), SNPs that are know to physically overlap
with promoter regions when the DNA is folded, via HiC interaction



Expression QTLs
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The same regulatory regions and variant could be an eQTL for gene 2 in (a) tissue 1 and
for gene 1 in (b) tissue 2, suggesting that limited interrogation of tissues would be
misleading for the biological signal underlying disease.
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Chromatin (HiC) interaction

A A
Chromatin Interaction

Profile
Chromatin Interaction

Network

3D Structure of the genome

X
Q }—‘/\"‘ X N { \
:k’f % ?'f“'

A S/0 DI,
X% Q,@. ,@.

Babaei et al Plos Comp Biol, 2015



GWAS risk locus
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GWAS risk locus
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GWAS risk locus

Plotted SNPs IR SRS {1 10 0 O 00

—log o(p—-value)

I,2
lo.s
15 0.6
0.4
Io.z
10
5
0

rs11191419
. L
Deleterious
coding SNPs
© 15284860 tf§g312 o ° ® 5
—_ = . O

#® CADD=15.®, g o 2

® o0

]
]
Oy

{
’f(

Position on chr10 (Mb)

RPARP-AS1— TRIMB—> SFXN2— ( < CYP17A1
H —a —HHa [ ] o-—+
TMEM180—> <ARL3 % AS3MT— RPEL1—>
HOH o—H——— HH——0 [ |
<ACTRIA C100rf32—>
CH— Ha
SUFU—> C100rf32-ASMT —>
¢ IH H—D H—HH——
I I I I
104 4 104 .6 1048 105

100

B D Qo
(=] o o

(dIN/IN9) @)es uoneulquwolsy

N
o



GWAS risk locus
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GWAS risk locus
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GWAS risk locus
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GWAS risk locus
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Interpreting GWAS results

PLINK

1. Linkage disequilibrium (LD)
Identify all SNPs which are in LD of significant hits.

2. Variant annotation
Functional consequence on genes (i.e. exonic, intronic or splicing site)

ANNOVAR snpeff  Me/™

3. Functional annotation
Deleteriousness, regulatory elements and epigenetic dz psycheNcoDE Consortium
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4. Functional analyses of genes
Tissue specific expression, gene set analyses

=1 MSigDB

- Molecular Signatures
w== a==  Database

Gene Expression Omnibus
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Interpreting GWAS results

PLINK

1. Linkage disequilibrium (LD)
Identify all SNPs which are in LD of significant hits.

Multiple databases
Multiple software
Multiple steps
Reformatting of data

Time-consuming + error prone

Molecular Signatures
Database

L— MSlgDB

Gene Expression Drnn'ibus




FUMA: Functional Mapping and Annotation

of genetic associations
Available at http://fuma.ctglab.nl

F UMA Home Tutorial Browse Examples SNP2GENE GENE2FUNC Links Updates Login Register

FUMA GWAS

Functional Mapping and Annotation of Genome-Wide Association Studies

FUMA is a platform that can be used to annotate, prioritize, visualize and interpret GWAS results.

The SNP2GENE function takes GWAS summary statistics as an input, and provides extensive functional annotation for all SNPs in genomic areas identified by lead SNPs.
The GENE2FUNC function takes a list of gene IDs (as identified by SNP2GENE or as provided manually) and annotates genes in biological context

To submit your own GWAS, login is required for security reason. If you have't registered yet, you can do from here.

You can browse example results of FUMA for a few GWAS from Browse Examples without registration or login.

Please post any questions, suggestions and bug reports on Google Forum: FUMA GWAS users.

Citation:

When using FUMA, please cite the following.

K. Watanabe, E. Taskesen, A. van Bochoven and D. Posthuma. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8:1826. (2017).
https://www.nature.com/articles/s41467-017-01261-5

Depending on which results you are going to report, please also cite the original study of data sources/tools used in FUMA (references are available at Links).
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http://fuma.ctglab.nl/

FUMA developed by Kyoko Watanabe

fuma.ctglab.nl [ cwas summary suistes |
Watanabe K, Taskesen, van Bochoven

SNP::EENE
Posthuma D. 2017 NatComm
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So far...

Locus based interpretation -> prioritization of SNPs and
genes within a locus

But -100’s of loci -> we also need to interpret across
loci



GWAS hits for polygenic traits often not
directly useful for functional follow-up

4 issues:

1. GWAS hits for polygenic traits mostly outside genes, or in non-coding genic
regions, with likely regulatory functions that are currently unknown

2. GWAS hits for polygenic traits have small effects, making them unsuitable
for small-scaled/under-powered functional studies

3. SNPs are correlated (LD) which complicates pinpointing ‘the’ causal SNP

There are 100’s of genes involved in polygenic traits — a single gene will not
provide the whole picture



SNP annotation implicates genes — after this:
look for convergence

* Explore gene functions

* Explore pathway enrichment of implicated genes

* Explore in which tissue genes are expressed

* Explore which cell types are indicated



Interpreting GWAS outcomes

Genetic variations

'll |4||"

molQTL mapping

W

Chromatin
interaction

mapping

Gene-set analysis

Prioritized genes Figure from Uffelmann & Posthuma, Biol Psychiatry, 2020
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