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Outline

* Challenges of rare-variant association tests in large-scale
cohorts/biobanks (mostly for binary phenotypes)

e SAIGE-GENE: Scalable generalized linear mixed model for region-
based association tests in large biobanks and cohorts



Recall: GWAS in large-scale biobanks and
cohorts
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SAIGE: Zhou et al., 2018



Single-variant association tests are underpowered
for very rare variants
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Applying saddlepoint approximation to account for
unbalanced case-control ratios in set-based rare variant
assoclation tests

Zhao et al, 2020
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Accounting for sample relatedness using mixed
models
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EmmaX-SKAT:
Linear mixed-model for set-based tests

* b:random genetic effect, b ~ N(0O, ty) '
* 1: N x N genetic relationship matrix (GRM) ncividal 4 ..'..

Lee et al. 2012



EmmaXx-SKAT:

Linear mixed-model for set-based tests
y=Xa+GS+b+¢€ .
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* b:random genetic effect, b ~ N(0, t))
* 1: N x N genetic relationship matrix (GRM) i .-l..

* Score statistics of marginal model for variant j is S; = Gj’PY it .'-.
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SMMAT: Logistic mixed model for set-based rare
variant test for binary phenotypes
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Heavy computation burden in
EmmaX-SKAT and SMMAT

Bottleneck for computation cost:

» To obtain p-value for association, G’ PG needs to be computed for each
variant set
Computing P requires 1)1



EmmaX-SKAT needs
>11 CPUvyears,~1Th
for genome-wide region-based tests (16k sliding windows)
on one phenotype in UK Biobank

Lee et al. 2012



Using optimization strategies to reduce the
computation cost
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Large scale data

SAIGE: Zhou et al. 2018
BOLT-LMM: Loh et al, 2015




SAIGE-GENE
Scalable and Accurate Implementation of
GEneralized mixed model

Saddlepoint
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Burden, SKAT, and
SKAT-0 are
implemented

Zhou™* and Zhao* et al,
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SAIGE-GENE is computationally efficient for
large-scale biobanks
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Estimated and projected computational cost by sample size (N) for gene-based tests of 15,342
genes, each containing 50 rare variants.



SAIGE-GENE:
Generalized Linear Mixed Model for Gene-based Association Tests

Phenotype
GEHOB/RES tolcansTRyet lI)f Non-genetic covariates
(M1 genetic variants) (N individuals)

Step 0: Compute s Step 1: Fit the null generalized linear mixed model
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Conditioning analysis based Step 2: Perform association test for each gene
on summary statistics BURDEN/SKAT/SKAT-O

Conditional p-values Association Results (p-values...)

Extended Data Fig. 1| Workflow of SAIGE-GENE. SAIGE-GENE consists of two steps: (1) Fitting the null generalized linear mixed model (GLMM) to
estimate variance components and other model parameters; (2) Testing for association between each genetic variant set, such as a gene or a region, and
the phenotype.



Simulation Study

500 families
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5,000 independent individuals

Model:
Vi=X1 + G+ b te

* Xj:intercept
« b,~N(0,7y), T=0.20r0.4
e €,~%N(0,0%]),0%=1-7



Consistent P-values from SAIGE-GENE and SMMAT for
guantitative traits
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Observed (-logiq p-value)

SAIGE-GENE provides greatly improved type | error
control for binary traits relative to the unadjusted

approach of assuming normality

A. Case: Control = 1:9 B. Case: Control = 1:19 C. Case: Control =1:99
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Apply SAIGE-GENE to quantitative traits in the
HUNT study and UK Biobank

Automated readings of pulse rate in the UK

HDL in the HUNT study (N=69,214) Biobank (N=385,365)
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Apply SAIGE-GENE to the binary phenotype in
UK Biobank

Glaucoma in the UK Biobank (N cases =4,462; N
controls =397,761)
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Code and Data Availability

* SAIGE-GENE is implemented as an open-source R

package available at

e https://github.com/weizhouUMICH/SAIGE/

* The summary statistics and quantile—quantile plots

for 53 quantitative p
phenotypes in the U

nenotypes and 10 binary
K Biobank by SAIGE-GENE are

available for public ¢

ownload at

e https://www.leelabsg.org/resources



https://github.com/weizhouUMICH/SAIGE/
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